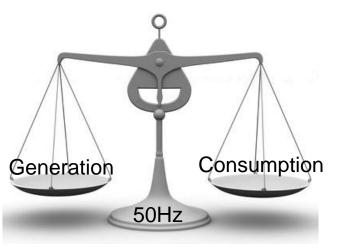
Smart Grid Simulation

3rd Colloquium of the Munich School of Engineering: "Research Towards Innovative Energy Systems and Materials" Garching, 04.07.2013

Christoph Doblander

Joint work with: Christoph Goebel, Hans-Arno Jacobsen

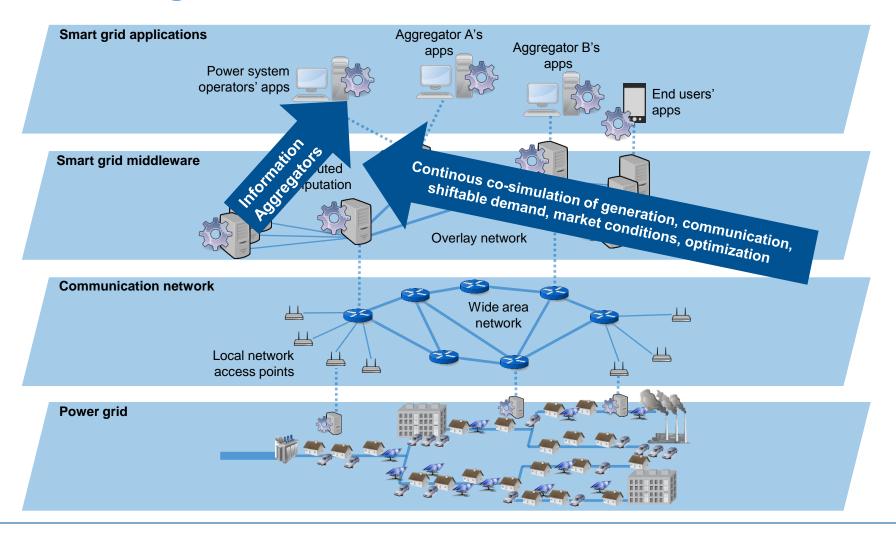
Department of Computer Science, Chair for Application and Middleware Systems (I13)


Smart grid, balancing both sides

wikipedia.com

wikipedia.com

flickr.com/wfiupblicradio



rwe.de

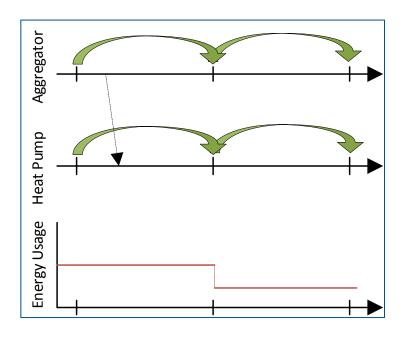
siemens de

Smart grid vision

Imagine the case ...

- The mobile phone network of a specific operator fails. Does uncontrolled battery charging overload the grid?
- High latencies in the GSM network occur. How far from the optimal is the distributed optimization performing?
- Two aggregators with competing optimization algorithms control car charging. Could this scenario lead to an overheated transformer?

wikipedia.com

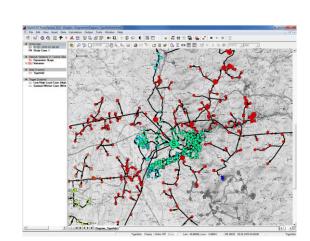

Motivation for smart grid simulation

- Many smart grid stakeholders
 - Aggregators with competing objectives can interfere
 - Fluctuating energy sources and controllable demand
 - Increased volatility on energy markets
- Many communication strategies
 - Low latency e.g., responding to frequency changes
 - High latency e.g., GSM network
- Fault scenario
 - N-1, N-2, N-3
 - Grid infrastructure, communication infrastructure
 - Byzantine behavior


→ Explore scenarios through simulation

Smart grid simulation requirements

- Discrete time
 - Fluctuating demand/generation
 - Powerflow analysis


- Agent modeling
 - Markets and control
 - Distributed optimization

State of the art

- Research and Open Source
 - GridLab-D
 - Issues
 - Hard to extend
 - Many hard-coded U.S. grid assumptions
- Commercial
 - Digsilent PowerFactory
 - Issues
 - Most components black boxes
 - Focused on current operator needs
 - Integration

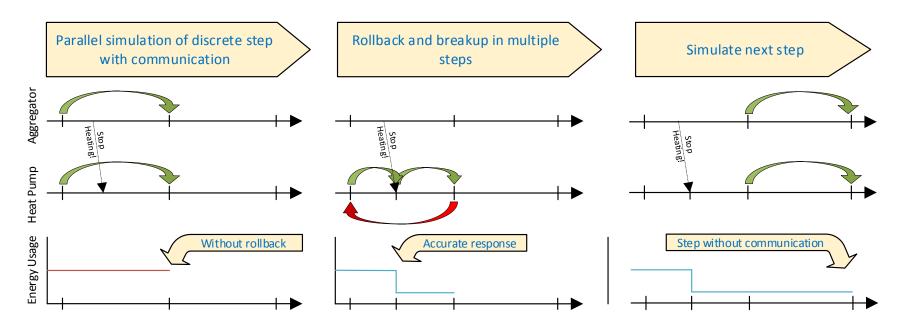
Recent approach: Mosaik

- Schütte et al. "Mosaik Smart Grid Simulation API"
 - Python, Matlab
 - Reference data model for smart grid simulation
 - Integration of COTS, e.g.: Digsilent PowerFactory

Issues

- Step size must be set initially
- Discrete time: communication between models could be realised by setting and getting properties after step
- Accuracy ⇔ step size ⇔ performance

Recent approach: FMI

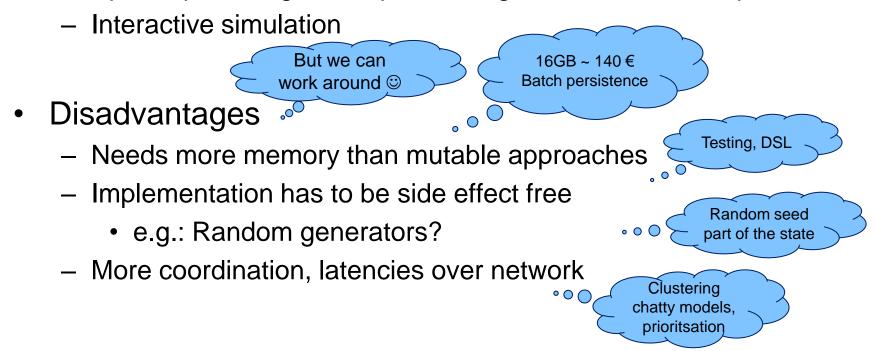

- FMI "Functional Mock-up Interface 2.0"
 - Targets interoperability between modeling tools (Modelica)
 - Development initiated by Daimler
 - Usage for micro grid simulation has been shown

Issues

- API definition very low level, C/C++
- Not a good fit for large scale distributed simulation
 - Generated code grows with number of model instances
- Accuracy ⇔ step size ⇔ performance

Proposed approach

- Parallelism by optimistic simulation of next steps
- In case of communication, rollback and breakup into smaller intervals
- No tradeoff between accuracy and simulation step size


Timeslot defintion

Proposed interface

- Simulation and receiving messages can be composed
- State can be recomputed by replaying communication events and steps

Our approach compared to Mosaik and FMI

- Advantages
 - Accurate representation of communication
 - Speedups through lookups and larger discrete time steps

Proposed architecture

Distribution across multiple machine by using actors

- Models should run on the JVM
 - Expressed in any JVM language (JRuby, Clojure, JPython, ...)
 - Scala DSL
 - "Bridging the Communication Gap" with Modim (Modelica → Java)
 - Dymola, Simulation X, Wolfram SystemModeler ...
- Cluster deployment, resource management with Apache YARN
- Respect software engineering principles

Phadoop

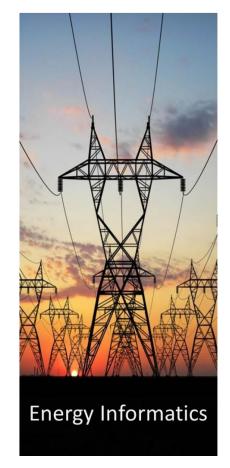
Modularity, reusability, tests and documentation

Thank you!

Questions?

References

- Schütte et. al. Mosaik Smart Grid Simulation API, SmartGreens 2012
- FMI, https://www.fmi-standard.org/
- Akka, http://akka.io/
- Apache YARN, http://hadoop.apache.org/
- Höger Modelica on the Java Virtual Machine, EOOLT 2013


Chair for Application and Middleware Systems

Prof. Dr. Hans-Arno Jacobsen Alexander von Humboldt Professor

Technische Universität München Institut für Informatik Boltzmannstraße 3 85748 Garching

> sekretariati13@in.tum.de www.i13.in.tum.de

