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Introduction

Discontinuous Galerkin methods have several properties that make them attractive for the
simulation of fluid flow:

� Mimic physical directionality in transport problems: Fluxes into and out of the cells
balanced (generalization of finite volumes to high order)

� Work well also for convection-dominated problems, as opposed to continuous FEM which
need stabilization

� Can easily couple non-conforming grids together
� Stable approximation with standard polynomial spaces

However, their cost is typically higher than continuous FEM or finite volumes (more degrees of
freedom, wider stencils). Hybridized discontinuous Galerkin (HDG) methods try to mitigate
this cost disadvantage by reducing the final linear problem to degrees of freedom on element
faces.

HDG for the steady convection–diffusion equation

For a given convection velocity c and diffusivity κ, solve for

∇ · (cu)−∇ · (κ∇u) = f

Write the equation as a system

q + κ∇u = 0
∇ · (cu + q) = f

�
in Ω;

u = gD on ΓD (Dirichlet),
(q + cu) · n = gN on ΓN (Neumann).

Weak HDG form solves for the discontinuous element variables u and q and the discontinuous
trace variable �u [1]:

�
w, κ−1q

�
Th
− (∇ ·w, u)Th

+ �w · n,�u�∂Th
= 0 ∀w ∈ Vd

h

− (v , cu + q)Th
+ �v , (c�u + q) · n + τ (u − �u)�∂Th

= (v , f )Th
∀v ∈ Vh

�µ, (c�u + q) · n + τ (u − �u)�∂Th
= �µ, gN�ΓN

∀µ ∈ Mh

Concept of hybridizable discontinuous Galerkin schemes:
Use the trace �u as a new variable, solved alongside with u and q [2].

Implementation aspects

Aspect 1: Static condensation

A

B

C D

Statically condense local u,q block matrix AK on
cell K in �

AK BK

CK DK

�

into transformed global stiffness matrix M by
Schur complement

M =
n cells�

K=1

(DK − CKA
−1
K BK)⇒

HDG linear system: only solve trace system MΛ = F

Aspect 2: Superconvergent postprocessing

HDG produces a solution that is more accurate than standard FEM solutions:

� u converges with rate p + 1 for p-th order polynomials
� q converges with rate p + 1

Main ingredient for postprocessing: If gradients q converge with rate p + 1, can reconstruct a
solution u∗ that converges with rate p + 2. Post-processing can include physically desired
features, e.g. exactly divergence-free solutions for incompressible flow.

HDG trace system with Legendre basis: Computational efficiency

2D
5120 elements

10304 faces

matrix size (dofs) matrix nonzeros
FEM HDG FEM HDG

p = 1 5 185 20 608 0.021m 0.18m
p = 2 20 609 30 912 0.32m 0.64m
p = 3 46 273 41 216 1.1m 1.1m
p = 4 82 177 51 520 2.9m 1.8m
p = 5 128 321 61 824 6.2m 2.6m

3D
28672 elements

86784 faces

matrix size (dofs) matrix nonzeros
CG HDG CG HDG

p = 1 29 521 260 352 0.74m 6.1m
p = 2 232 609 520 704 14m 34m
p = 3 781 297 867 840 94m 93m
p = 4 1 847 617 1 301 760 390m 210m
p = 5 3 603 601 1 822 464 1200m 410m

HDG is involves more work per element for lower orders compared to usual finite elements
(CG), but is very competitive for higher orders p ≥ 3, as pointed out also in [3]. With
post-processing, HDG at degree p gives similar results as CG at degree p + 1:
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CG and HDG solver time: Use Trilinos ML algebraic multigrid preconditioner within GMRES
iterative solver for diffusion-dominated problem, takes 20–40 iterations:
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HDG solution representation and solutions

HDG solution space:

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

continuous FEM

Q1: 16 dofs

Q2: 49 dofs
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HDG, linears

12 interior faces, 12 boundary faces

u: 9× 4 = 36 dofs

q: 72 dofs

�u: 24× 2= 48 dofs

HDG solutions are of good quality for difficult convection-dominated problems without
additional stabilization

Problem 1: Ω = [0, 1]2, κ = 10−6, c = 1
2

�
1,−

√
3
�
, f = 0

Dirichlet conditions: u = 0 on {x = 1}, {y = 0}, {x = 0 ∧ y ≤ 0.7}
u = 1 on {y = 1} and {x = 0 ∧ y > 0.7}

h = 1
8 h = 1

32

trace solution �u

Problem 2: Ω = [0, 1]2, κ = 10−6, c = (1, 0), f = 1, u = 0 on ∂Ω

h = 1
8 h = 1

32

HDG for the incompressible Navier–Stokes equations

Consider the time-dependent incompressible Navier–Stokes equations in 2D/3D:

ρ

�
∂u

∂t
+∇ · (u⊗ u)

�
−∇ · (2µ(∇u +∇uT )) +∇p = f

∇ · u = 0
HDG formulation [4]: Find u, L, p, and �u such that

(G,L)Th
+ (∇ · G,u)Th

− ��u,G · n�∂Th
= 0 ∀G ∈ Vd×d

h�
v, ρ

∂u

∂t

�

Th

+
�
∇v, µ(L + LT )− pI− ρu⊗ u

�
Th
+

�
v, (−µ(L + LT ) + pI + ρ�u⊗ �u) · n + sh(u, �u)

�
∂Th

= (v, f)Th
∀v ∈ Vd

h

− (∇q,u)Th
+ �q, �u · n�∂Th

= 0 ∀q ∈ Vh�
µ, (−µ(L + LT ) + pI + ρ�u⊗ �u) · n + sh(u, �u)

�
∂Th

= 0 ∀�u ∈Mh

Navier–Stokes solution procedure
� Implicit time integration

� In each time step, solve a nonlinear equation with Newton iteration
� Assembly: condense local matrix AK for L,u, p into a trace matrix
� Solve trace system
� Reconstruct local solution L,u, p

Characterization of trace system
Local linearized Navier–Stokes system on element K is a Dirichlet problem—need to also fix
the pressure average that couples the pressure between the elements,

p = (p − p̄) + ψ,

where p̄ =
�
K pdx is the average of the pressure on the element K and ψ a the average

element pressure that couples to other elements. This gives the linear system�
K B
BT 0

� �
δΛ
δΨ

�
=

�
R
0

�

size(δΛ) = d × nfaces × dim(Pp(face)) (trace velocity �u)
size(δΨ) = nelements × dim(P0(K )) = nelements (average pressure ψ)

As for the convection–diffusion equation, this system is larger than similar CG systems for
p = {1, 2}, but competitive for p ≥ 3.

3D Beltrami flow:
Consider relative velocity error at time t = 1 for
ρ = 0.5, µ = 1

arrows:
velocity field u

colored:
pressure p

Convergence rate velocity:
p + 1
Convergence rate post-
processed velocity:
p + 2
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