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For many applications in different fields of engineering and applied sciences, 

fluid systems in relatively large domains have to be investigated. 

Computational methods are increasingly used for such investigations. While 

most of the domain can often be discretized with a rather coarse 

discretization length without jeopardizing the overall solution quality, a rather 

small characteristic discretization length is required locally, for instance due to 

boundary layers, which need to be resolved. An adequate resolution of such 

boundary layers as well as the large number of elements needed to bridge 

from the fine boundary layer mesh to the coarse domain grid are usually 

linked with high computational costs. Therefore, it is desirable to develop 

efficient methods enabling the use of different discretizations for boundary-

layer regions and the bulk of the flow domain.  
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Non-conforming meshes 

Lid-driven cavity flow 

Blood flow through an artery with an aneurysm 

Beltrami flow 

 Domain decomposition into sub-domains with an internal boundary (see Fig. 1 and 2) 

 Mortar method is used for weakly enforcing coupling constraints by dual Lagrange 
Multipliers (mortar matrices M and D) 

 The initial saddle-point system is transformed to a non-saddle-point system by trivial 
condensation operations (see Fig. 3)   

Fig. 10: Velocity component ux and pressure p 
along the line P1-P2 in y-direction for 32x32x32 
elements at t=100. 

Fig. 8: Non-matching mortar-based discretization 
for the lid-driven cavity discretized with 32x32x32 
elements. 

Fig 9.: Euclidean norm of velocity vector ||u|| for 
the 32x32x32 nonmatching mortar-based 
discretization in three different planes at t = 100 

Fig. 11: Velocity component uy and pressure p 
along the line P3-P4 in y-direction for 32x32x32 
elements at t = 100 

Fig. 12: Patient-specific, aortic aneurysm with structured 
surface mesh. 

Fig.13: Inflow region of aneurysm with hexahedral boundary layer 
mesh and tetrahedral mesh in the bulk region. 

Fig. 14: Velocity field [mm/s] at t=1.5 s for the 
mesh shown in Fig. 12. 

Fig. 15: Pressure field [kPa] including isolines at t=1.5 s 
for the mesh shown in Fig. 12. 

Fig. 16: Wall shear stress [kPa] for the mesh 
shown in Fig. 12. 

Fig. 17: Wall shear stress [kPa] compared with a mesh without 
internal interface consisting of a comparable number of 
tetrahedral elements. 

Fig. 1 Fig. 2 

Fig. 4: Computational domain with a piecewise 
planar internal interface of a cubic subdomain. 

Fig. 3 

Fig. 5: Euclidean norm of velocity vector |u| for 
a convection dominated flow field. 

Fig. 6: Velocity error for diffusion-dominated 
flow. 

Fig. 7: Pressure error for diffusion-dominated 
flow. 


