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ABSTRACT: Based on the fact that the battery represents the most cost intensive component in a Battery Electric Vehicle (BEV), the usage 

of the maximum capacity installed is desirable. Therefore, a precise estimation of the State of Charge (SOC) and the State of Health (SOH) is 

needed, in order to increase the efficiency of the battery. The essential component for estimating the SOC and to supervise the safety is the 

Battery Management System (BMS). Nowadays, SOC estimation can be done by ampere hour counting, a complex, model-based filter 

estimation, or others. This paper focuses on the model based filter algorithm. For this analysis, a modular BMS was developed for 

implementation and verification. This paper presents the combination of the measurement, safety and state estimation components 

implemented in the software and hardware structure.  
The used filter for the state estimation is a Kalman Filter (KF) adapted for the implementation on a BMS. The KF shows a stable behaviour 

and provides a precise SOC estimation. The selected battery model was a simple electrical equivalent circuit based model that consists of an 

       resistance, a diffusion resistance and a diffusion capacity. Different papers [1] [5] have shown that a model such as the electrical 

equivalent circuit based model is adequate to provide a precise and fast SOC estimation. To calculate the SOH too, another filter for the 

battery parameter estimation was added. The resulting Dual Kalman Filter (DKF) combines an effective SOC and SOH estimation. To 

provide a realistic BEV environment, the battery cells were charged and discharged with the Artemis Driving Cycle via a BaSyTec system. 

As the measurement and calculation results presented in the paper show, the KF in combination with the battery model estimates an accurate 

SOC calculation and the predicted voltage of the KF matches with the real measured battery voltage. A relevant behaviour was the sensitivity 

of the SOC and SOH estimation related to inaccurate current sensors. The paper reveals that the SOC calculation still has a satisfactory 

accuracy, while the SOH estimation deviates slowly.  
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1. INTRODUCTION 

1.1. BMS Functions 

The functionalities of a BMS are divided into in six different 

categories: The measurement and data processing functions, the 

safety functions, the balancing function, the power management, the 

energy management and the thermal management. 

The collections of all cell voltages, the readout of the current sensor 

and the measurement of the temperatures inside the battery pack are 

the main measurement tasks of the BMS. Dangerous and lifecycle-

decreasing states have to be identified and have to be avoided. To 

detect those operating areas, data processing and data analysing 

tools are required. To maximize the usable cell capacity and to 

increase the charging time, an efficient balancing of each cell 

capacity is desirable. An adequate knowledge of the cell behaviour 

at different loads results in a useful power prediction and will 

increase the performance of the entire engine. For a precise range 

calculation, an interaction between the auxiliary loads, the engine 

loads and the usable battery capacity is important. To predict 

different temperature gradients in the battery pack, an adequate 

detection of the temperature distribution is preferable.  

To achieve a reliable range prediction a reliable SOC calculation is 

implemented. The parameter estimation, like the        resistance or 

the capacity of the cells, is needed to predict the allowed load for 

each cell. Knowledge of        cell losses results in a known 

temperature behaviour and consequently it is possible to manage the 

temperatures in the battery pack. Safety issues, such as the detection 

of cell contacting problems or anticipated cell risks, for example an 

inner short circuit, could be detected by the BMS as well.    

 

1.2. Methods of SOC calculating  

Nowadays several methods of SOC calculations are established. A 

common method is to integrate the current over time. Equation (1) 

shows, that in a time-discrete form, the current integration results in 

a summation of the current at each measurement cycle.  
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The accuracy of this method depends on the accuracy of the current 

sensor used. A sensor drifts and a limited measurement data 

resolution results in an increasing deviation of the calculated SOC. 

Calibration options for adapting the calculated SOC to the real SOC 

are necessary. The calibration could only be done in a load-free 

mode, when the Open Circuit Voltage (OCV) is measurable at the 

cell contacts. Typically the calibration of this method is done when 

the cell is fully charged. When the cell reaches its end of charge 

voltage, the SOC is set to 100 % after a defined rest time.  

Other SOC calculation methods are based on an estimation 

depending on the terminal voltage of the cell with the actual current. 

Variations of the        resistor and other dynamic procedures result 

in an increasing error over the cell lifetime.  

Several papers [1] [2] describe other SOC calculation methods, 

based on different Kalman filters. They base on a battery model that 

describes the static and dynamic behaviour of the battery. 

Measurable values, such as the current or the terminal cell voltage 

will be compared to the calculated values of the filter. This error is 

adapted to the filter parameters and filter states to minimize the 

error. Compared to other methods, this filter adapts the battery states 

and parameters over the lifetime.  

 

1.3 Modular BMS 

The BMS used for testing the algorithm in a real environment is a 

self developed system, designed for research institutes and 

universities. It consists of a modular architecture in which every 

connection topology is possible. It can be used as a standalone 

system with only one measurement and one calculation unit or a 

modular extension with more measurement units and only one 

calculation unit. A master slave topology is also possible. Figure 1 



 

shows the structure of one BMS unit. The measurement part and the 

calculating part can be used independently. It is possible to extend 

six measurement units for only one calculation unit. The following 

filter design is based on the master slave topology. Because every 

slave has its own processing unit, the filter is implemented on the 

slave. The desirable processing power for all cells is therefore 

partitioned at each slave. 

 

 
Figure 1: Structure of the used BMS 

 

 

2. BMS MEASUREMENT AND CALCULATION 

STRUCTURE 

2.1. Measurement Structure 

The measurement unit of the used BMS is based on a multi-cell 

battery stack monitor (LTC6803). It covers the following features: 

measures up to 12 battery cells in series, on board temperature 

sensor and thermistor inputs, built-in self-tests, open-wire 

connection fault detection, delta-sigma converter with built-in noise 

filter and more. The communication with the external control unit 

takes place via a 1 MHz serial interface (SPI) with packet error 

checking. These functions cannot be done simultaneously whereby 

these measurements and communications have to be subjected to 

several sequences. Figure 2 shows the sequence for one 

measurement interval. 

 
Figure 2: Measurement structure 

 

The measurement classifies into five categories: 

1. Cell voltage measurement: measures each cell voltage.  

2. Temperature measurement: evaluate the thermistor inputs. 

3. Open-wire detection: detects problems in the cell-sensing 

wires. 

4. ADC self-test: checks the functionality of the analogue to 

digital converter (ADC). 

5. Reference voltage diagnosis: checks the functionality of the 

internal voltage reference.  

 

Because the multi-cell monitor measures successively, the duration 

of the voltage measurements for 12 cells results in a duration of 50 

ms. Based on Figure 2, the voltage sample rate yield is 250 ms. The 

current will be measured before every measurement command, so 

the current sample rate is given to 50 ms. Related to Figure 3 in a 

master slave system the measured values are transmitted to the slave 

control unit.  

 
Figure 3: Master slave topology 

 

To demonstrate the differences in the state and parameter 

estimation, two different current sensors were used. Table 1 shows 

the accuracy and the measurable range of the current sensors used. 

The current sensor B was selected to analyse the performance of the 

KF in order to an inaccurate current sensor. 

 

Table 1: Current sensors used 

Sensor accuracy range 

A: Isabellenhütte IVT-A ±(0.2 % + 30 mA) ±300 A 

B: Allegro ACS756 ±7. 5 % ±50 A 

 

2.2. Calculation Structure 

 

The slave main task collects the measured data, analyses if there is a 

safety issue and computes the cell parameter and state calculation of 

each cell. The converted data will then be transmitted to the master. 

Each slave consists of a PIC32 (32 Bit) 80 MHz microprocessor 

with a performance of 125 DMIPS (Dhrystone Million Instructions 

per second).  

For the state and parameter estimation, the voltage and current data 

have to be referred to the same timestamp, according to the filter 

calculation interval.  

Figure 4 demonstrates the different sequence of the respective 

measurements and the necessary interpolation to the according 

calculation timestamp.  

 

 

Figure 4: Calculation of the interpolated values 

 

 

 

 



 

Before the filter algorithm at the BMS starts, the cell voltages were 

interpolated linearly according to the timestamp of the last measured 

cell voltage. Equation (2) describes this interpolation procedure:  

     
(       )

       
 (         )       (2) 

The error of this interpolation depends on the dynamics of the 

voltage changing between the sample rates.  

For the current interpolations, there are two options: 

1. Interpolation of the current between the sample points, referred 

to the necessary calculation timestamp 

2. Calculating the mean value of the current between the 

calculation intervals. 

 

As the next chapter will show, the first option is necessary for an 

accurate parameter estimation. Equation  (3) shows this first option. 

     
(       )

       
 (         )       (3) 

Equation (4) describes the recursive current mean calculation:  

        
          (   )    

 
 (4) 

Current variations between the estimation sample time would be 

unvalued, because only the current value at the proper calculation 

sample time would influences the used value. The SOC estimator is 

based on an ampere hour counter and therefore, it will increase the 

SOC estimation accuracy, if the current value for the SOC 

calculation part considers the mean value instead the interpolated 

current.  Therefore this second option will improve the filter 

performance. 

 
3. BATTERY MODEL 

To describe the behaviour of a battery, an electrical equivalent 

circuit is used. The different effects while charging or discharging 

are modelled with standard electrical parts such as a resistor and 

capacitor. A previous paper [1] [2]compared different models based 

on the common Randles equivalent circuit. It was shown that a 

model with one RC-element (Figure 5) approximates the real 

behaviour adequately and represents a good conformity between 

accuracy and computational power for the application in a BMS. 

 

                                                     
     diffusion resistant 

    diffusion capacity 

     terminal current  

     terminal voltage 

    diffusion voltage 

  (   )  SOC depended OCV 

Figure 5: A battery modelled by an equivalent circuit 

 

In the model, the terminal voltage consists of the SOC dependent 

OCV  (   ) , the voltage drop over        and the diffusion 

voltage   : 

   ( )    (   )            ( )    ( ) (5) 

The OCV is related to the proper cell SOC. This correlation is given 

in Figure 6 and is characteristically for the used cell type. It has to 

be measured for each cell type individually and reveals one of the 

most important references to the estimating SOC in the following 

algorithm. 

 
Figure 6: OCV dependency of the SOC 

 

The        is the resistor calculated (equation (6)) 1 s after a current 

pulse and contains the ohmic resistor and parts of the charge transfer 

resistor.  
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For the serial resistor the        is used, because the calculations for 

the KF are done every second (Figure 4). 

The diffusion voltage   ( ) is described by a first order differential 

equation: 
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The state vector  ( )  [     ]
  [  ( )    ( )]

  summarizes 

the equation as follows: 
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with the input  ( )     ( ) and the output equation  ( ).    is the 

usable capacity of the battery. 

 

 

4. KALMAN FILTER  

4.1. Fundamentals 

The KF is a set of mathematical equations which minimizes the root 

mean square error of the states, related to the measured and the 

predicted output of a linear system. The advantage of this filter is 

the prediction of the past, actual and future states of a system even if 

the dynamic of the system is not well known [3]. The following KF 

equations are adapted to the battery model of chapter 3. 

The filter predicts the states  ( )    
  of the system with the linear 

equation  

 ̇( )     ( )     ( )   ( ) (10) 

if the measurement equation 

 ( )     ( )    (11) 

with the measurement matrix          exists. The matrix 

         represents the dynamic matrix and        the input vector. 

The variables   and   represent an independent, zero–mean, 



 

Gaussian process and measurement noise. The process noise 

matrix   is related to the process-noise vector and is defined as 

   [     ] (12) 

The square measurement noise   is accorded to 

     (13) 

To design a discrete Kalman filter, the preceding equations must be 

discretised. To consider the calculation sample time   , the 

fundamental matrix   is necessary [3]. Accorded to 

 ( )     [(     )  ] (14) 

The fundamental matrix is given by the inverse Laplace 

transformation of the identity matrix   and the dynamic matrix  . 

Thereby, the actual state is now describable according to any 

previous state value  ( )   (    )   (  ).   

The discrete fundamental matrix is therefore given by 

    (       )   (  ) (15) 

With this transformation, the equations (11) and (12) can be 

described as 

                        (16) 

and the measurement equation yields in 

                (17) 

The discrete process noise matrix    can be found in the continuous 

process-noise matrix  ( ) and the fundamental matrix according to 

   ∫  ( )   ( )   ( )   
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If      is constant between sampling instants, the discrete    is 

obtained from  

   ∫  ( )   ( )  
  

 

 (19) 

The aim of the filter is to calculate the weighted difference between 

the real measured output    and the predicted value from the 

measurement equation  ̂ : 

 ̃      ̂  (20) 

Based on the discrete measurement equation (17) and the state 

equation (16), this measurement difference yields in 

 ̃      (               ) (21) 

The resultant Kalman filtering equation becomes 

 ̂      ̂              ( ̃ ) (22) 

where the first term   ̂ 
  (    ̂           ) describes the 

filter prediction and the second term   ( ̃ ) the correction. 

With the a priori estimation  ̂ 
      and the a posteriori estimation 

 ̂    
  of the same time step  , the estimation error is defined as 

  
      ̂ 

  (23) 

       ̂  (24) 

The error covariance of the estimation errors are 

  
   [  

   
  ] (25) 

    [    
 ] (26) 

The a priori error covariance is now calculated with the fundamental 

matrix    and the process noise   : 

  
            

     (27) 

The Kalman gain       
   is calculated to 

     
    (    

      )   (28) 

The a posteriori error covariance    is updated with the Kalman 

gain to 

   (      )    
   (29) 

Figure 7 describes the process of the Kalman filter. The prediction 

calculates the actual system state and the correction adjusts the 

estimation due to the measured values. 

Prediction

(time update)
Correction

(measurement update)

 

Figure 7: Process of the Kalman filter 

This filter structure results in a non-recursive estimation. The new 

state  ̂  is calculated in one single step. For this reason, the 

calculation performance of this filter is not dependent on the 

calculation sample time   . 

 

4.2. Dual Estimation Structure 

In addition to the state of charge (SOC) of a battery system, the state 

of health (SOH) also has to be estimated. For this purpose, a second 

KF can be used for estimating the parameters of the cell. Based on 

the fact, that the space vector form is only given for the state 

estimation, the prediction part of the parameter KF yields in 

  
             (30) 

where       describes the process noise of the parameter filter [4] 

and the vector  ( ) contains the parameter: 

   [           ]
  [                   ]

 
  (31) 

The resulting parameter process noise matrix S is given by 

    [       
 ] (32) 

The Kalman equation for the parameter estimation is now set to 

 ̂   ̂ 
     ( ̃ ) (33) 

The difference voltage  ̃  is the same difference as for the state 

estimation in equation (21). The adaption of the parameters is 

therefore only possible by the correction part with the Kalman 

parameter gain and the difference voltage. To calculate this 

parameter Kalman gain the equations (27) (28) (29) has to be 

adapted to the parameter equations (30) (33): 

By the reason, that there is no prediction information possible, the 

fundamental matrix yields in an identity matrix. The a priori error 

covariance matrix is now updated with the parameter process noise 

as 

   
           (34) 

Referred to equation (11) the measurement equation for the 

parameter estimation  is now set to 

    (     )     (35) 

For the Kalman gain calculation the measurement matrix H has to 

be linearized with the Jacobi matrix    to 

   
  (     )

   
 (36) 

  



 

The Kalman gain        
   for the parameter estimator is now 

calculated to 

       
    

 (      
    

   )
  

 (37) 

The a posteriori error covariance    
  is updated with the calculated 

Kalman gain [5] and the Jacobi Matrix to 

    (        )   
   (38) 

Equations (16) and (30) allow the reference of  (     )  to the 

previous time step k-1. The Jacobi Matrix has therefore not to be 

derived partially and is given by 

   
  ( ̂     ̂        )

     
 (39) 

This resulting DKF structure is presented in Figure 8 

 

Figure 8: Dual estimation filter structure 

Figure 8 shows that both filters have the same input values at the 

timestamp k-1 and simultaneously calculate the new values at the 

timestamp k. The combination of both these filters is done at the 

beginning of each cycle and differs from the common dual 

parameter estimator [6]. 

 

4.3. Implementation 

In this section, the battery model of chapter 3 and the KF equations 

of section 4.1 and 4.2 will be combined for an implementation in the 

modular BMS of chapter 2.  

Recorded to the model equation (8), the fundamental matrix for the 

battery model is given by 

 ( )  * 
 

 
      
  

+
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According to equation (7) the input value consists of the terminal 

current    . Referred to chapter 2 the current can be calculated in 

two different ways, the 1 s mean current and the interpolated 

current. Because the second state is based on the current integration, 

it will increase the estimation accuracy, if for the second state the 

averaged current is used instead of the interpolated current. Hence 

the input vector is given as 

     [
        
         

] (41) 

Recorded to equation (19),    is set to 
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  (   

 
  

     )
  
  

] (42) 

The resulted state equation results in 

                      (43) 

Referred to equation (18), the process noise matrix Q(t) is set to 

 ( )    [
  
  

] (44) 

A white noise with the spectral density    adds to both states 

independently. 

The resulted discrete process noise is set to 
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For the measurement equation, the OCV dependency of the SOC-

state will to be normed to the SOC state. The resulting measurement 

filter equation is described to 

 ̂       ̂        [

 
   ( ̂  )

 ̂  

]  ̂  [
       
 

]    (46) 

When the OCV is deposited as a look-up table based on the SOC 

dependency, this nonlinearity seems like a known and describable 

correlation to the SOC state. An important issue for the 

implementation of the filter is the difference between the 

measurement vectors     ̂ . It is necessary that the equation is 

referred to the states  ̂   in order to the known vector    . The 

measurement vector is referred to the actual time step  . Therefore, 

the equation  ̂  consists of three different current-input values. One 

is an interpolated current from the previous time step        , the 

other one is the averaged current from the previous time step 

         and the last one is the actual interpolated current      . 

The final measurement equation is given by 

 ̂         ̂                       (47) 

with  

   [
       
 

] (48) 

 

4.4. Optimization 

The estimation accuracy of the DKF depends on four criteria: The 

measurement sample time, the sensor accuracy, the initial values 

and the adjustment of the processes and measurement noises. Based 

on the measurement equation (11), the voltage measurement 

inaccuracy are contained in the measurement noise. Due to the fact, 

that the current measurement results in an input vector    , this 

inaccuracy is described in the process noise of the equation (10). 

Referred to the Kalman equations (27) (28) (29), an increasing of 

the measurement errors   decreases the Kalman gain and reduces the 

filter performance. An increase in the process noise add up to a 

more uncertain battery model. The minimization of the squared state 

error will be approached to the chosen process noise. This results in 

a more stable filter, but also causes a lower theoretical accuracy.  

A wrong value initialization is responsible for a slower convergence 

of the filter. Therefore, the procedure in the filter optimization 

contains the following steps: 

1. Minimizing the measurement noise, based on the output 

measurement accuracy 

2. Choosing the lowest possible process noise value, whereby the 

estimation is still converging 

The process noise creation of the parameter estimation in particular 

requires an accurate analysis. Referred to equation (34), the 

estimated parameter covariance at each cycle is increased by the 

parameter process noise. Referred to [3], there are three different 

options to describe this parameter process noise: 

1. Constant factor:           That effects a consecutive 

excitation of the covariance. Thereby the system tends to 



 

diverge but the parameter estimation is dynamic over the 

cycles. 

2. Converge to zero:    
    

     
   [   ]  The process 

noise will be converge to zero, the system becomes more 

stable. Parameter changes at higher cycle rates will be 

detected slowly.  

3. Forgetting factor:         (  
 

    
)      [    ] 

The process noise is dependent on the previous 

covariance. It provides an exponentially decaying 

weighting on past data. 

In a BMS for a BEV, only the first option is usable. The second 

would affect a progressive estimation error, the third option would 

diverge at less dynamic processes, like the charging or the load free 

states. Finding the parameter process noise value, which excites the 

parameter system correctly for a precise estimation and avoids the 

divagation of the system, is the main goal of the optimization 

process. 

 

5. BEHAVIOUR OF STATE AND PARAMETER 

ESTIMATION 

For the simulation in a real environment, a li-ion cell (see Table 2) 

was forced with the Artemis driving cycle.  

Table 2: Specifications of the li-ion cell 

Name Panasonic NCR18650PD 

Rated capacity  2.68 Ah 

End of charge voltage 4.2 V 

End of discharge voltage 2.5 V 

Max discharge current  10 A 

Max charge current 0.825 A 

 

To conform the cycles the battery testing system BaSyTec (see 

Table 3) was used.  

In order to show the behaviour also in the less dynamic charging and 

load-free states, the driving cycle was expanded to three consecutive 

cycles: 

1. Charge to 93.5 % (4.1 V) 

2. Discharge with the Artemis cycle to 11.5 % (3.36 V) 

3. Charge to 74 % (3.9 V) 

4. Discharge with the Artemis cycle to 11.5 % (3.36V) 

 Charge to 93.5 % (4.1 V) 

 Discharge with the Artemis cycle to 11.5 % (3.36V) 

5. Charge to 74 % (3.9 V) 

 

Figure 9: Cycle description 

 

 

Table 3: Specifications of the BaSyTec testing system 

Voltage resolution ±0.25 mV 

Current resolution ±0.25 mA 

Voltage accuracy ±0.05 % 

Current accuracy ±0.1 % 

  

5.1. State Estimation 

Figure 10 illustrates the estimated SOC of the DKF, based on the 

inaccurate current sensor (Table 1 B). In order to evaluate the 

behaviour of the filter, the proper ampere hour counting is also 

plotted. 

 

Figure 10: Estimated SOC compared with ampere hour counting 

(sensor  B) 

The DKF adapts to the demand cycle reference points at the end of 

each driving and charging cycle. The DKF shows a smooth 

estimation behaviour, relating to the inaccurate current sensor. The 

ampere hour counting diverges as anticipated due to the inaccurate 

measurement. Figure 11 presents the covariance of the filter. As 

already observed at the SOC estimation, the covariance 

demonstrates an accurate working behaviour, based on the DKF. In 

the dynamic period the covariance decrease, whereas increases in 

the less dynamic charging period. 

 

Figure 11: Covariance of the SOC  

Figure 12 now shows the state estimation behaviour of the filter 

with the more accurate current sensor A (Table 1 A). The 

improvements by the KF are marginal whereby the independence of 

the current sensor used in the state estimation is demonstrated. 



 

 
Figure 12: Calculated SOC with sensor A 

5.2. Parameter Estimation 

Because the parameter equation depends only on the measurement 

vector, as shown in equation (30), a precise estimation needs a high 

excitation of the battery system, otherwise the correction part in the 

parameter estimation (equation (33)) will not adapt to the proper 

parameter. Figure 13 shows the estimation of the       resistor and 

the proper covariance (Figure 14) with the accurate sensor. As 

expected, the covariance increases in areas of less dynamic curve 

segments, like the constant voltage charging or the load-free mode. 

When there is an excitation process, based on the Artemis driving 

cycle, the estimated parameter converges fast to the proper value.  

Related to equation (5), the       resistor equation is based on the 

current measurement. Therefore, the estimated       resistor 

depends on the accuracy of the current sensor used. Figure 15 shows 

the estimated resistor, based on the estimated SOC. It shows a 

typical behaviour, especially at the end of the discharging process, 

the resistor increases and will causes a power decrease of the cell.   

Figure 13: Estimated       resistor with sensor A 

 

Figure 14: Covariance of the       resistor with sensor A 

 

Figure 15: Estimated       cell resistant, referred to the SOC 

 

The two parameters    and    influence the dynamic behaviour of 

the battery model. Figure 16 shows the diffusion time constant 

related to six driving charging cycles. The time constant changes 

significantly over the cycles. The filter corrects the initialized time 

constant of 30 s to a value around 90 s and shows therefore a slow 

convergence behaviour at not exact initial values. It takes more 

driving charging cycles until the accorded value is reached. The cell 

capacity     and the diffusion capacity    change slowly. Therefore 

a correct value initialization, especially for those two capacity 

parameters is essential for an accurate parameter estimation. The 

convergence of those values by an inaccurate initialization could 

take an indefinite time or in the worst case it will cause a diverging 

behaviour. Based on this initialization issue, the estimated 

parameters must be latched for an after and after proper 

initialization. This can be done on the BMS or offline on a server 

platform. This data are essential for a reliable working BMS.  



 

 

Figure 16: Estimated diffusion time constant related to sensor A 

5.3. Processing power 

The calculation time for one battery cell, based on the implemented 

KF with the presented battery model reveals 200000 cycles. 

Accorded to the BMS structure in Figure 2, based on the used 

processing unit, this BMS can theoretically estimate the states and 

parameters of more than 625 cells per second. In practice the 

estimation performance will decreased due to the other BMS 

functions. Regarded to the modular extension possibility of the 

modular BMS, the calculation sample time Ts depends on the 

number of used cells. When the sample time Ts has to be 100 ms 

instead of 1 s, the theoretically usable cell number decreases to less 

than 62. The processing power of the slaves would not be enough 

for the full modular extension capability of 72 cells per module 

(referred to chapter 1). Figure 17 demonstrates the different 

calculated SOC states at different sampling times (1 s and 100 ms). 

An improvement of the KF estimated SOC output based on a much 

lower sampling time is not observable. This issue is based on the 

fact that the KF does not need to be linearized and consequently the 

calculations performance does not depend on the sampling 

calculation time.  

 

Figure 17: Filter behaviour compared to 1 s and 100 ms calculation 

sample time 

 

 
6. VERIFICATION 

6.1. Verification of the SOC Estimation 

To verify the calculated SOC, a new cycle was provided. The new 

cycle consist of the first four steps of the driving cycle described in 

chapter 5, in which the second Artemis cycle is interrupted at 3.7 V.  

Then, after a 3 h rest time, the cell was fully discharged with a 

constant current to the end of discharge voltage of 2.5 V followed 

with a constant voltage discharge to a current of 0.134 A (Figure 

18). With the ampere hour counter of the BaSyTec a removed 

capacity of             was measured. With the previous 

measured usable capacity of             the        is 

calculated as follows: 

       
  
  
 
        

        
                (49) 

 This capacity  is compared to the estimated      : 

                                      (50) 

 

Figure 18: Test procedure for the SOC verification 

This verification was executed with the more inaccurate current 

sensor B (Table 1). However, the SOC algorithm reveals a high 

accuracy and an independency of the current sensor used accuracy. 

The SOC estimation refer the state calculation more to the OCV 

dependency then to the current integration. An inaccurate OCV 

curve would decrease the state estimation significantly and therefore 

an accurate OCV determination is necessary for a reliable state 

estimation. 

 

7. CONCLUSION AND OUTLOOK 

In the presented work the behaviour of a dual Kalman filter, 

implemented on a modular BMS has been described. Based on the 

calculation structure of a discrete Kalman filter, a Kalman Filter was 

adapted to the proper battery model. This Kalman filter yielded in an 

accurate state estimation at a low processing power. The paper 

revealed that for an implementation of such a filter, several 

implementation processes have to be considered. Differences in the 

sampling rate and in the measurement accuracy affect the 

performance of the algorithm. Several optimization issues were 

shown and the importance of the process and measurement noise 

adjustment was explained. The correlation between the measured 

values and the achieved estimations were revealed. Moreover, the 

problems in the parameter estimation, based on dynamic loads were 

discussed and their impacts on the estimated values were presented. 

 

The KF provides a reliable performance in an accurate SOC 

estimation, within an error less than 0.24 %. The dependency on the 

current sensor used and the importance of a correct filter 

initialization must be considered for the BMS architecture. 

Improvements of several BMS functions such as the cell balancing, 

the charging time or the energy management can be modelled with 

this algorithm. To rely on the estimated battery states, much more 

critical scenarios have to be analysed. The filter behaviour with 

respect to the battery lifetime and the filter performance in failure 

scenarios has to be investigated as well. 



 

The parameter estimation shows differences in the estimation 

accuracy, depending on the actual loads. Uncertainty at the 

initialization process could result in inaccurate parameter 

estimations. Referred to the state estimation, the parameter 

estimation needs further investigations of the BMS measurement 

accuracy and of the optimization processes. The KF shows an 

improvement in the calculation complexity with a cycle count of 

82k cycles for one cell. The resultant behaviour shows that a reliable 

parameter estimation is only possible in high dynamic procedures. 

For an efficient power prediction or an accurate temperature 

management, additional parameter equations are necessary to 

improve the prediction procedure. The verification of the estimated 

cell capacity was hardly possible, based on the slowly changing 

behaviour of the capacity parameters and would require long cycle 

investigations.  
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