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Effects of Large Scale EV and PV Integration on

Power Supply Systems in the Context of Singapore
Matthias Huber, Annette Trippe, Philipp Kuhn, Thomas Hamacher

Abstract—Electric vehicles (EVs) are a key technology to
reduce dependency on oil imports as well as to diminish en-
vironmental effects of individual transportation. Especially in
megacities like Singapore where travel distances are moderate,
this new mode of transportation is often discussed as a future
option. This paper investigates possible effects of large scale EV
integration on the power supply system. A unit commitment
model combined with an integrated approach for smart charging
is used. The mixed-integer linear programming (MILP) formu-
lated unit commitment algorithm cooptimizes energy, regulation,
and spinning reserve power. The effects of different charging
strategies on the power plant scheduling are analyzed. The power
system infrastructure is kept at status quo in a baseline scenario
and extended to future scenarios with intermittent photovoltaics
(PV) power. Effects on power plants scheduling are evaluated
by measuring resulting variable cost of electricity as well as
CO2-emissions. Moreover, effects of EVs providing regulation
and spinning reserve by controllable charging are investigated.

Index Terms—Electric Vehicles (EV), Photovoltaic Cells (PV),
Singapore, Smart Grid, Unit Commitment.

I. NOMENCLATURE

Sets

J Set of indexes for power plants

K Set of indexes for ancillary services

Ta Set of time steps of EVs arriving at charging

stations

Tm Set of modeled time steps

Tp Set of parking durations of EVs

Variables

ask,ev(tm) Provision of type k ancillary service by EVs

ask,j(tm) Provision of type k ancillary service by

power plant j

cl(tm) Charging load of all EVs in tm
clh(tm, ta, tp) Auxiliary variable to calculate charging load
pj(tm) Power output of plant j

Parameters

ARPV Factor for additional regulation requirements

as share of CAPPV

ASk(tm) Requirement for type k ancillary service

CAPPV PV peak capacity
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CLmax Maximal charging load of electric vehicles

CT (ta, tp) Charging table of energy requirements

D(tm) Electricity demand without electric cars

FLHPV Annual full load hours of PV power

ηj Efficiency of power plant j

PPV (tm) Power output from photovoltaics

R(tm) Solar radiation

REGPV (tm) Regulation requirement for control of PV

power

II. INTRODUCTION

T
HE electrification of individual transport in the form

of EVs has been identified as a key issue to diversify

energy demand as well as to reduce CO2-emissions in the

transportation sector. Particularly megacities benefit from the

advantages of EVs such as energy efficiency in stop-and-go

traffic and zero local emissions. Moreover, EVs are viewed

as an important element of future intelligent power systems,

often called smart grids. EVs can be charged by smart control

strategies or even serve as mobile storage passing power back

to the grid as described in [1].

Singapore is an island and has only insignificant grid

connections to few of its neighbors. These conditions require

high efforts to manage deviation from a predicted load or

even power plant blackout. Plans for the integration of highly

variable PV power [2] will further challenge the system. In this

environment, the integration of EVs offers promising possibil-

ities. The flexibility of EVs regarding their charging strategy

can be used for load leveling and EVs could participate in the

regulation and reserve markets. The analysis of the interplay

between EVs, PVs, and the conventional power system in this

environment is main focus of this paper.

Effects of different charging strategies on the charging costs

in Singapore have been analyzed in [3] based on statistical

market prices. It was found that smart charging strategies could

lead to 30 % lower charging costs. In our model however, not

only historical prices are used to measure cost reductions, but

overall system costs for power generation are calculated in

a unit commitment model. This reflects costs in more detail

and also allows analyzing effects on fuel mix and emissions.

Besides, effects of PV integration or EVs providing ancillary

services can be analyzed.

Analysis of effects from EVs on utilities have also been

conducted for several other regions, e.g. [4] researched cost

effects for Illinois by integrating EV charging into unit com-

mitment. Economic savings of up to 7 % were found for

the overall system through smart charging strategies. In [5],
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an increase of load by 5-10 % at an EV penetration of

50 % was found for several regions in the US, but effects

on costs and emissions were not measured in detail. Several

other studies did not only consider smart charging but also

serving electricity back to the grid in form of Vehicle to Grid

(V2G), e.g. [1] or [6]. V2G is not considered in our model,

as effects on battery lifetime are not clarified yet. Moreover,

unidirectional controlled charging alone allows to shift load

and even supply all types of regulation and reserves. If charged

below maximum power, the charging load can be increased or

decreased at every moment providing up- and down-regulation

without any losses of energy through storage.

Singapore not only aims to introduce EVs but also inter-

mittent PV into the power system. In [7], a potential of up to

14 TWh/year PV power, around 30 % of overall production,

is reported. This is equivalent to 10.5 GW peak power assum-

ing 1,300 annual full load hours (FLH) [7]. These numbers

indicate significant contribution of PV to Singapore’s future

electricity production. In [8], the influence of PV integration

on the energy balance for Singapore is analyzed. The analysis

with the unit commitment model as we describe in this paper

extends this study. Influences of PV on power plant scheduling,

power system stability, as well as the interplay with different

EV charging strategies are discussed.

III. MOBILITY MODEL

By the end of 2011, 956,704 motor vehicles were registered

in Singapore, including cars and station-wagons, taxis, buses,

motorcycles and scooters, goods and other vehicles. Thereof

520,614 were private cars [9]. The electrification of private

cars is object of this study. The average daily mileage of

private cars was estimated at 52 km in 2010 [10]. Assuming

all private cars were EVs with an energy consumption in the

range of 15 to 20 kWh / 100 km according to project-internal

simulations specific to Singapore, the power system would

face an additional load of up to 5,414 MWh per day. This

accounts for 4.8 % of the daily load in Singapore [11]. The

additional load does not occur evenly throughout the day, but

during the charging processes of the single cars, which can

only take place during parking.

In order to obtain findings on the impact of charging

processes on the power system, information on the driving

and parking behavior in Singapore is required. Therefore, an

agent-based mobility model, which pictures the driving and

parking behavior of private cars in Singapore, was imple-

mented. Each agent follows a specific pattern of driving and

parking activities, whereas after each trip a parking activity

occurs. The model simulates the sequence of destinations,

the departure times of the first trip of the day, duration and

length of the trips, corresponding energy consumption as well

as parking duration. The parking locations were classified

into three categories, i.e. residential, work-related, and leisure-

related.

The different possible itineraries of an agent throughout a

weekday are shown in Fig. 1. This finite automaton indicates

the probabilities for a certain itinerary through the different

states, which reflect the destination of a trip and at the same

time the next parking location. Deriving from data on the

employment situation and working hours in Singapore in 2010,

4 % of all employees work part-time with an average of

5 hours per day [12]. This is reflected in the upper half of

Fig. 1. Agents depicting full-time employees drive to work

and stay there either for a whole workday with an average

duration of 9 hours working time [12] plus 1 hour lunch break

or for an average 3.5 hours work session followed by a lunch

break at a different location and another average 5.5 hours at

work. Half of the agents are assumed to drive home directly

after work, whereas the other half is going to leisure activities.

The 4 % of all agents not going to work include people who

are homeworking, which is offered by 2 % of the Singaporean

establishments [12], on medical or on other kinds of leave.
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Fig. 1. Finite automaton of mobility model for a weekday.

For weekends, similar finite automatons were developed. On

Saturdays, 25 % of the full-time employees excluding shift-

workers work half a day and 23 % a full day [12]. Apart

from that, the agents follow various sequences of the states

’leisure’ and ’home’ or stay at home. The behavior on Sundays

resembles the behavior of the agents, who are not working on

Saturdays, but with a higher proportion staying at home the

whole day.

The departure times of the first trip of a weekday are

assumed to be normally distributed with a standard deviation

of 2 hours and the mean at 8:00, so agents arrive at the

workplace in time for regular office hours starting at 9:00. The

departure times are limited to a range from 6:00 and 12:00.

Departures on Saturdays are divided into three blocks, from

6:00 to 14:00 with the mean at 9:00 and standard deviation

of 3 hours mainly for the agents working on Saturdays, from

14:00 to 17:00 and from 17:00 to 21:00 for the people going

out after lunch or for dinner with standard deviations of 1 hour

and means at 15:30 respectively 19:00. On Sundays, agents

depart between 8:00 and 14:00 with the mean at 11:00 and a

standard deviation of 3 hours.

The probabilities for the different itineraries result in 3 trips

per day on average and thus in a mean trip length of 17.3 km.

The mobility model simulates the trip length of each trip with

a normal distribution, limited to a minimum of 1 km. 99 %

of the trips do not exceed 37.5 km. The trip duration results

from trip length and average speed of 21 km / h which was

derived from a project-internal fleet-test in Singapore. The

energy consumption during each trip is calculated with the

trip length and the average consumption of the EVs, which

ranges from 15 to 20 kWh / 100 km. A maximum trip length
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of 37.5 km means that at maximum 75 % of a 10 kWh battery

and 38 % of a 20 kWh battery is discharged during a trip.

During the parking activities, the batteries are recharged to

a favored state of charge (SOC) if possible, otherwise at a

maximum power of 5.75 kW. This is the maximum power

output of charging stations installed within the scope of the

EV test-bedding in Singapore co-leaded by the EMA (Energy

Market Authority) and LTA (Land Transport Authority) [13].

The simulation of the parking duration differs between the

categories work, leisure and home. The parking durations at

work are modeled according to a normal distribution with

different means and standard deviations, depending on the

kind of working behavior, i.e. full-time or part-time, including

lunch break or leaving for lunch. The parking durations reflect

the aforementioned average daily working hours from [12].

The parking activities at home overnight are not simulated by

means of probability distributions, but arise from the time in

between the last trip in the evening and the first in the next

morning. Home parking during the day on the weekend is

simulated analogously to the parking durations at work, i.e.

normally distributed with varying parameters.

In order to simulate the parking behavior at leisure-related

car parks, which in Singapore are mainly attached to shopping

malls, a probability distribution was determined empirically.

Therefore, a field test was conducted at a car park of a

shopping mall in downtown Singapore and parking durations,

arrival and departure times of the vehicles were recorded. The

data was statistically analyzed and the histogram of the parking

durations is shown in Fig. 2. It resembles the density function

of the Weibull distribution. This hypothesis was statistically

tested and accepted at a significance level of 5 %. The data

was divided into four time intervals, 7:00-11:00, 11:00-15:00,

15:00-19:00, and 19:00-23:00, as parking behavior varies

at different times of the day. The statistical analysis was

conducted for each interval resulting in four different Weibull

distributions, which are used for the simulation of parking

durations at leisure-related parking locations.
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Fig. 2. Histogram of empirical parking durations.

In order to validate the mobility model, the occupancy of

leisure-related parking locations derived from simulated data

is compared to empirical data, as shown in Fig. 3. Data on

the availability of parking lots at 23 car parks downtown in

Singapore is publicly available as a live online-service [14]

and was logged from December 2011 to April 2012. The

availability at these car parks was converted to occupancy and

an average week was consolidated. This empirical data on the

occupancy of the car parks is displayed in the upper part of

Fig. 3. The simulated curve in the lower part is the output of

a typical week of the mobility model for 50,000 vehicles. The

two curves show a similar developing, especially during the

weekdays, and thus the mobility model is capable to simulate

realistic mobility behavior. The weekends of the empirical data

show lower peaks than the simulated data, as the logged car

parks have limits due to their capacity. The simulation model

on the other hand includes vehicles driving and parking all

over Singapore and not only at a limited number of locations.
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Fig. 3. Occupancy of leisure-related car parks: empirical data of 23 car parks
(top) and simulated data with 50,000 vehicles (bottom).

The parking and driving activities of the mobility model are

interrelated and influence each other in the generation of the

next activity, including start time, duration and location of the

activity. The itinerary of each agent is a sequence of driving

and parking activities and each activity is based directly on its

predecessor.

With the described mobility model, a sample of 50,000

agents was simulated for a duration of 29 days. The resulting

parking and driving activities as well as energy consumptions

and demands serve as input for the unit commitment model

described in the subsequent chapter.

IV. UNIT COMMITMENT MODEL AND SMART CHARGING

Fig. 4 provides an overview of inputs and outputs of the

unit commitment model, which is called URBS-Singapore

(latin: city). Load is provided in a 30 minute time resolution.

Data for power plants include installed capacity and operating

parameters. The EV charging table will be described in the

following and a time series for PV generation can be included.

Outputs are the power plant schedule as well as resulting oper-

ating costs and emissions. Moreover, an aggregated charging

plan for all EVs is provided. Simulation was conducted for

one month as only very small seasonal effects of load and

PV power are observed in Singapore. March 2009 was used

because solar radiation data for this month is best in terms of

availability and quality.
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Fig. 4. Inputs and outputs of the MILP formulated program URBS.

A. Power Plant Scheduling

1) Method: The simulation of conventional power plants

is based on a MILP-formulated unit commitment problem. A

mathematical formulation of the objective function as well as

all constraints can be found for instance in [15]. A minimum

cost solution for the power plant dispatch is simulated every

30 minutes as it happens in real world [16]. In order to be able

to simulate longer time periods with reasonable computational

power, a receding horizon is used. Thereby, 72 timesteps of

30 min each are optimized in one step of which the first 48

are used for the solution. The optimization takes the following

constraints for power plant operation into account:

• Minimum power

• Minimum up and downtime

• Lower efficiencies in part load

• Maximum power change

• Stochastic power plant outages

In addition to the restrictions in power plant operations, sys-

tem requirements for regulation and reserves are considered.

In each time step, a co-optimization of electricity production

and provision of these ancillary system services ASk(tm) is
conducted. According to [16], there are four types of services

with different activation times to be included in the process:

• Regulation (Second to second)

• Primary Reserve (8 seconds)

• Secondary Reserve (30 seconds)

• Contingency Reserve (10 minutes)

2) Data: A list of all licensed power plants and their

capacity is available from [17]. A study conducted by KEMA

[18] provides information about efficiencies for each single

plant as well as additional general information for each type of

power plant. Data for startup costs of different types was used

from [19] and converted with an exchange rate of 1.6 S$/Euro.

Table I gives an overview of general parameters used.

Data that was not provided by [18] is the capability of the

power plants to provide regulation and reserves. According to

[20] all power plants except open cycle gas turbines (OCGTs)

are able to provide around 3 %, 6 %, 10 %, 30 % of their

net capacity for regulation, primary, secondary and contin-

gency reserve, respectively. OCGTs are only able to provide

contingency reserves. Industry power plants are assumed not

to take part in these ancillary services. The requirement for

TABLE I
MAJOR POWER PLANTS PARAMETERS [18], [19]. FUEL FOR STARTUP IS

EXPRESSED AS SHARE OF 1 HOUR FULL POWER CONSUMPTION.

type Pmin
ηmin

ηmax
Min.
Down

Costs
Var

Costs
Start

Fuel
Startup

CCGT 40 % 85 % 2 h 1 S$/MWh 24 S$/MW 100 %

Steam 40 % 90 % 4 h 1 S$/MWh 24 S$/MW 70 %

OCGT 40 % 40 % 0 h 1 S$/MWh 24 S$/MW 50 %

Industry 100 % 100 % 0 h 1 S$/MWh 24 S$/MW 100 %

these services is around values of 87 MW, 200 MW, 260 MW,

540 MW in each half hour of scheduling [21]. The half hourly

system demand for March 2009 is available from [22] and was

scaled to an annual consumption of 41.2 TWh in 2010 [11].

Overall losses in transmission and distribution are assumed

to 5 % according to [23]. Fuel costs are considered to be

at 85 S$/MWh for Oil, 95 S$/MWh for Light fuel oil (used

for OCGTs), 42.5 S$/MWh for Orimulsion and 70 S$/MWh

for natural gas according to historically determined ratios

[18], an oil price of 110 US$/Barrel and an exchange rate

of 1.2 S$/US$.

B. EV Charging

1) Method: Optimal charging of EVs is integrated in the

unit commitment framework. In addition to the electricity

demand D(tm), the charging load of EVs cl(tm) has to be

considered and provided by power plants in each modeled

timestep tm leading to
∑

j∈J

pj(tm) = D(tm) + cl(tm) (1)

Four different charging strategies were implemented for ana-

lyzing the value of intelligent charging. They can be described

as follows:

• ’Dumb’: EVs start charging upon arrival and are charged

with maximum power of 5.75 kW

• ’Mean’: EVs are charged evenly over their parking time

• ’Smart’: EVs are charged by minimizing electricity gen-

eration costs

• ’SmartPlus’: EVs are able to provide regulation and

reserve in addition to smart charging

The charging load is an additional parameter for ’Dumb’

and ’Mean’ charging. For smart strategies however, cl(tm)
can be considered as a variable. EVs are even able to provide

one or more of the four ancillary services ask,ev(tm) with

’SmartPlus’. The optimization decides at which timesteps EVs

should be charged and whether they should be scheduled for

any ancillary services or not. Together with ancillary services

provided by power plants, the system requirements have to be

fullfilled:

ask,ev(tm) +
∑

j∈J

ask,j(tm) ≥ ASk(tm) (2)

Both, reserve and regulation requires the EVs to be capable

of providing additional power to the system within the respec-

tive timespan. EVs are able to stop or reduce their load when

reserve or regulation is needed:
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∑

k∈K

ask,ev(tm) ≤ cl(tm) (3)

Regulation, ASreg(tm), not only requires the cars to reduce
load, but also to increase load within seconds. For EVs, this

leads to another restriction:

asreg,ev(tm) + cl(tm) ≤ CLmax(tm) (4)

The charging load has to meet the aggregated energy

demand of each single car derived from the results of driving

and parking behavior according to chapter III. Therefore, a

matrix with information about parking and charging behavior,

CT (ta, tp), is provided as an additional model input. Table

II exemplarily illustrates its structure as an output from the

mobility model with 50,000 EVs. It contains the required

charging energy for EVs sorted by their arrival time ta in

a parking lot and the duration of their stay, tp.

TABLE II
ENERGY REQUIREMENTS FOR 50,000 SIMULATED EVS.

tp = 1 tp = 2 tp = 3 ...

... ... ... ... ...

ta = 20 212 kWh 218 kWh 315 kWh 553 kWh

ta = 21 269 kWh 267 kWh 362 kWh 668 kWh

ta = 22 387 kWh 407 kWh 483 kWh 645 kWh

... ... ... ... ...

According to the table CT (ta, tp), cars arriving in ta = 20
and staying one period (tp = 1) need to be charged with

212 kWh in tm = 20. Also, cars arriving in ta = 21 must be

charged with a fixed amount (269 kWh) in tm = 21 without

any flexibility. Cars arriving in ta = 20 and staying tp = 2
periods allow more freedom for smart charging. The 218 kWh

can be distributed to tm = 20 and tm = 21. The longer cars
are parking, the more freedom for smart charging exists. The

resulting restrictions for optimal charging can be formulated

with an auxiliary variable clh(tm, ta, tp) as follows:

ta+tp−1∑

tm=ta

clh(tm, ta, tp) = CT (ta, tp) (5)

∑

ta∈Ta

∑

tp∈Tp

clh(tm, ta, tp) = cl(tm) (6)

Since all cars with same (ta, tp) are summarized in this

table, the number of equations and thus, the computational

time of the simulation is independent of number of EVs.

At the same time, this simplification does not permit an

analytical proof of per-car feasibility of optimization results.

However by using a numerical software tool which distributes

the cumulated charging loads back to single cars, all solutions

obtained were proven feasible within a deviation of less than

1 %.

In the modeling approach it is assumed that drivers want to

recharge their batteries after every trip. There are two main

reasons for this assumption:

• Battery lifetime: Li-ion batteries loose more lifetime

when discharged deeper [24], the state of charge (SOC)

should be in the range of 30 to 70 % to maximize lifetime

[25], [26]. As energy for 99 % of all trips is lower than

7.5 kWh (see chapter III), an EV with a 20 kWh battery

could be operated in this range when recharged after

every trip.

• Convenience: In Singapore, traffic jams together with

extensive use of air conditioning can significantly reduce

range. Charging after every trip minimizes the risk for

running out of electricity.

The provider of electricity in a parking lot is assumed to

manage charging by minimizing costs. Thus, the assumption of

cost-minimal charging within parking periods but not between

different parking periods seems reasonable. Nevertheless, the

proposed framework also allows to simulate other scenarios,

e.g. charging at home only.

2) Data: All data is described in chapter III.

C. Photovoltaics

1) Method: In addition to the analysis of smart charging in

the current power system, future integration of photovoltaics

(PV) is considered in several scenarios. The PV power output

in each timestep is determined from solar radiation data as

described in the following. PV power output is assumed to be

linear to solar radiation. The power in each step (every 30 min)

can thus be calculated by:

PPV (tm) =
R(tm)∑

tm∈Tm
R(tm)

· 2 · FLHPV · CAPPV (7)

As PV power is an intermittent source, it will most prob-

ably require additional regulation power REGPV (tm) in the

system which is added to ASreg(tm). This can be considered
by:

REGPV (tm) = sign(PPV (tm)) · CAPPV ·ARPV (8)

2) Data: Measurement data for solar radiation is available

for several stations at schools across Singapore from [27]. Data

from six different and geographically spread stations (Hen-

derson Secondary, Hua Yi Secondary, Nanyang, Northbrooks,

NTU Intelligent Systems Centre, North Spring) was available

for March 2009 in a 5 minute resolution. It was spatially

averaged to a Singaporean mean radiation. As power plant

scheduling is conducted every 30 minutes only, PV output has

to be time averaged as well. Fig. 5 shows the resulting spatial

and time averaged data for March 9th 2009, as an example.

The deviation of the real PV power from the 30 min

averaged radiation has to be balanced by regulation. The

amount of additional regulation and reserve requirements was,

according to our best knowledge, not analyzed for Singapore

yet. We thus consider two different scenarios. One does not

include additional requirements at all. It is assumed, that some

new technology will balance the deviations, e.g. local batteries

or regulation power provided by air conditioning. In the second

scenario, we consider the additional reserve requirements in

the power system according to equation 8. Fig. 6 shows

the deviation of spatially averaged single measurement points

from the 30 min average. The deviation is lower than 15 %

peak radiation for almost all data points. In [28], values
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between 10-20 % of installed PV power were estimated for

additional regulation requirement for a geographical spread of

50-170 km in the US. Taking into account these two aspects,

the assumption of ARPV =15% seems to be a reasonable

approach, but further research has to be done. However,

calculating these two scenarios gives an idea about the system

effects of PV under different conditions.
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Fig. 6. Deviations of single measurement data from 30 min average as
share of peak radiation. Dashed line shows estimated dynamic regulation
requirements to balance PV

V. SCENARIOS AND RESULTS

A. Smart Charging and Conventional Power System

Simulations with different levels of EV penetration (0,

200, 400, and 600 thousand EVs) were conducted. The main

findings regarding the effects of EVs on the power system are

shown in Fig. 7 (a)-(d). Overall additional costs are maximal

6.16 % with 600k EVs and the ’Dumb’ charging strategy as

shown in (a). This is proportional to the additional electricity

demand. With ’Mean’ charging, effects on costs are slightly

lower with 6.00 %. ’Smart’ charging could reduce additional

costs to 5.11 % and provision of regulation/reserve with

’SmartPlus’ can even reduce costs to only 4.42 %, a 30 %

decrease compared to ’Dumb’. Fig. 7 (b) shows effects on

CO2-emissions, which are similar to effects on costs. Lower

cost and emissions with smart charging result from load

leveling and less startups as shown in (c) and (d). The standard

deviation (std) of the load (incl. charging) is 15 % less with

smart charging strategies compared to ’Dumb’ charging. No

additional startups are required even with 600k EVs and smart

charging instead of up to 18 % additional startups with ’Mean’

charging. The increase in peak load within the simulation

period is only 203 MW (3.5 %) with ’Smart’ charging instead

of 353 MW (6.2 %) with ’Dumb’ charging.
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Fig. 7. Effects of charging EVs on conventional power systems. a) Additional
costs, b) Additional emissions, c) Additional startups, d) Change in standard
deviation of load.

Additional costs and emissions from EVs are relatively

low. With the introduction of smart charging, they are even

smaller. Moreover, provision of system services from EVs

would allow a more efficient power plant operation. Fig. 8

shows the resulting load for the four charging strategies with

600k EVs for a typical weekday. A close resemblance of the

load including ’Smart’ charging and a typical power plant

generation curve can be observed.
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Fig. 8. Comparison of different charging loads for a typical weekday. 600k
EVs were simulated in this scenario.

B. Smart Charging and Integration of Intermittent PV Power

Scenarios for different levels of PV power (from 1000 -

11,000 MW) were calculated. In the first block of scenarios,

no additional regulation requirements for PV were assumed

and EV penetration was set to 600k EVs in the system.

Fig. 9 shows emission reductions for different levels of PV

and charging strategies. The influence of charging strategies is

relatively low. PV can be integrated efficiently up to high levels
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with all scenarios. Starting with 5000 MW, smart charging

allows to integrate PV more efficient.
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Fig. 9. Emission reduction through PV with different charging strategies
(600k EVs) compared to system without PV but same EV penetration and
strategy. No additional regulation requirements for PV are imposed.

Assuming additional regulation requirements for PV as

discussed in section IV-C, the picture changes dramatically.

According to equation 8, additional requirements for regula-

tion will be 15 % of installed PV power. Including power plant

maintenance and outages, a maximum of 250 MW regulation

power is available from conventional power plants of which

87 MW are required for system operation without any PV.

Thus, not more than 1087 MW of PV can be integrated to the

system without additional providers of regulation. The black

line in Fig. 10 reflects regulation that has to be provided

by non-conventional sources. Controllable charging of EVs

is one possible option. Data points in Fig. 10 show minimal

regulation power provided by EVs in timesteps with higher

regulation requirements due to PV. If this data points are

below the black line, no feasible solution was obtained for

the scenario. 600k EVs could provide 225 MW of regulation

power which would allow to integrate maximal 2500 MW PV

instead of 1000 MW without EVs.
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Fig. 10. Minimal regulation power provided by EVs in timesteps with higher
regulation requirements due to PV. Black line shows regulation that cannot
be provided by the conventional power system.

C. Resulting Emissions and Costs for Charging Mix

One main objective of integrating EVs to future power

systems is to reduce emissions and costs of traffic. To measure

these reductions, system costs and emissions without EVs

were subtracted from those with EVs. These differences were

divided by the additional electricity consumption from EVs to

get specific costs and emissions for charging. Fig. 11 shows

specific emissions at different levels of PV (no additional

regulation for PV assumed). Without any PV, emissions are

at 477 g/kWh when charging cars with a ’Dumb’ strategy, but

only 399 g/kWh (16 % less) with ’Smart’ charging. Applying

’SmartPlus’, emissions are further reduced to 323 g/kWh

(33 % less). With high penetrations of PV, advantages from

smart strategies get higher as they enable higher PV inte-

gration. Specific costs and emissions are independent of the

number of EVs.

Reductions of variable costs through PV integration have the

same characteristic behavior as emission reductions depicted

in Fig. 11. Without PV integration, variable charging costs

can be reduced from 0.168 S$/kWh with ’Dumb’ to 0.114 S$

(32 % less) with ’SmartPlus’. The numbers for cost savings are

in the same region as stated by [3]. This shows, that prices are

a good indicator for system cost savings from smart charging

if effects on the overall system are relatively small as in our

example, Singapore.
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Fig. 11. Specific emissions for charging at different levels of PV in the
system. No additional regulation requirements for PV are assumed.

VI. COMPUTATIONAL EFFECTIVENESS

An advantage of the proposed method is, that calculation

time is independent of number of simulated cars. In table III

an overview of simulation times for the different scenarios is

given. Calculation time is higher with ’SmartPlus’ charging.

Calculations were performed on a Intel(r) Core(TM) i7 CPU

with 3.2 GHz and 24 GB RAM. The FICO XPress Solver

[29], called from GAMS [30], was used with a MIP tolerance

set to 0.001 in all scenarios.

TABLE III
AVERAGE CALCULATION TIME FOR ONE DAY (72 TIMESTEPS ARE

OPTIMIZED AT ONCE).

number of cars ’dumb’ ’mean’ ’smart’ ’smartPlus’

0 EVs 122 s 122 s 122 s 122 s

200k EVs 86 s 95 s 184 s 467 s

400k EVs 76 s 78 s 102 s 484 s

600k EVs 48 s 117 s 60 s 425 s
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VII. CONCLUSION AND OUTLOOK

A method to analyze the impact of EVs on the power

system was implemented. In several scenarios, the effects of

EV integration to the Singapore power system were analyzed.

Major findings can be summarized to:

• Overall system effects on costs and emissions are rela-

tively small even with 600,000 EVs.

• Integration of PV is possibly limited by additional regu-

lation requirements.

• Controllable charging of EVs could contribute up to

225 MW regulation power and thus increase maximal

level of PV integration.

• Cost and emissions of EVs are up to 30 % less when

smart strategies are applied.

Future research will consider the spatial distribution of

power generation and consumption. A model of the trans-

mission and distribution grid will be implemented therefore.

Results from a detailed traffic model will be used to further

analyze the interaction of power and traffic systems. This

research will be done within TUM CREATE in the next years.
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