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Abstract— This paper studies the second-order consensus
problem for multi-agent systems (MASs) associated with an
event-triggered update policy. We first investigate the topo-
logical properties of the heterogeneous position and velocity
information graph to guarantee consensus. Then, consensus
protocols using an event-triggered update law are analyzed
for the centralized and distributed cases. In particular, we
establish an event-triggered scheduling policy ensuring that the
MAS exponentially achieves consensus. Furthermore, a positive
lower bound for inter-event times is derived to guarantee the
absence of Zeno behavior. Finally, simulations are provided to
demonstrate the effectiveness of proposed approach.

I. INTRODUCTION

Consensus problems of MASs have become an active area
of research [1] due to the advances in information, communi-
cation and computation technologies. In the related literature
agents are often considered to be governed by first-order
or single-integrator dynamics [1]. Meanwhile, second-order
dynamics have received growing attention as many MASs
are characterized by two states per agent, often position and
velocity [2], [3]. It is well known that the consensus problem
with double-integrator dynamics is more challenging than
that with single-integrator dynamics.

Most works on second-order consensus assume that the in-
formation, such as position and velocity, is exchanged along
a homogeneous communication network, i.e. the underlying
graph topologies for the position and velocity information
exchange are identical. However, sometimes measurements
of position and velocity are not available for each single
agent due to higher cost of velocity sensors. Only few works
have investigated the potential advantages and drawbacks of
different information topologies for different measurement
signals, e.g. [3]. In this paper we investigate topological
properties to guarantee the heterogeneous double integrator
network achieving consensus.

In practice, a MAS achieves consensus by exchanging
information over a communication network, very often wire-
less communication is considered. The communication is
subject to limited communication bandwidth or limited bat-
tery capacity of intermediate transmission nodes in wireless
networks. Thus, the efficient utilization of such commu-
nication resources is one of the important challenges in
networked MASs. The scheduling of the control updates
meeting a trade-off between control performance and number
of update transmissions can be implemented in a time-

D. Xue and S. Hirche are with the Institute for Information-oriented Con-
trol, Technische Universität München, Arcisstraße 21, D-80290 München,
Germany; dong.xue@tum.de, hirche@tum.de.

or event-driven method. The former approach typically in-
volves periodic sampling, which leads to significant over-
provisioning of network resources since the predetermined
task period is determined by a worst situation time interval
in order to assure the system performance. In the past
years, aperiodic schemes have been proposed, in which the
information transmission is executed in an event-triggered
fashion [4]–[6]. In event-triggering schemes the system state
is sampled/transmitted when a certain internal measurement
function exceeds a threshold. Advantageously, the event-
driven control improves the overall control system perfor-
mance while maintaining the utilization rate of the commu-
nication resources, see e.g. [4].

The design of the event-triggering rule and the control law
aims at preserving the desired properties of control systems,
such as stability [5] and convergence [7]. In [5], an event-
triggered strategy is developed to schedule the control tasks
preserving input-to-state stability (ISS) with respect to the
measurement errors. A so-called L2 event-trigger is proposed
in [6] which preserves the induced L2 gain in the closed-
loop system. Regarding the fact that consensus algorithms
are input-to-state stable in [8], the event-triggered protocols
with respect to ISS are introduced into cooperative control
of single-integrator MAS [7]. To the best of our knowledge,
there is little prior work on event-triggered control for MASs
with double-integrator dynamics, e.g. [9].

The main contribution of this paper is an event-triggered
control law to guarantee the second-order consensus for
MASs with heterogeneous information topologies. We show
that the proposed event-triggered policy guarantees consen-
sus. Moreover, both cases of centralized and distributed
event-triggered consensus control are considered in this
paper. In the context of distributed event-triggered control,
each agent independently updates its own control input based
on the local information. We show the existence of a lower
bound on the time between consecutive executions of the
actuation update and guarantee the absence of Zeno behavior.
Numerical examples successfully show the validity of the
proposed approach.

The remainder of the paper is organized as follows:
In Section II, some necessary background and the model
formulation are given; the main results are presented in
Section III; numerical examples are given in Section IV.

Notation 1.1: Throughout this paper, N, R and C denote
the set of non-negative integers, real numbers and com-
plex numbers, respectively. det(·) denotes the determinant
of a matrix and diag(·) denotes the diagonal matrix. 1
and 0 represent the column vector of all ones and all zeros



with appropriate dimensions, respectively. In (0n) is the n-
dimensional identity (zero) matrix. The conjugate transpose
of the matrix A is written A†. Re(µ) is the real part of a
complex µ. ‖ · ‖ denotes the Euclidean norm for vectors and
the induced 2-norm for matrices.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, some background of graph and matrix
theory are first presented followed by the model formulation
and problem statement.

A. Algebraic Graph Theory

The following results and further details on graph theory
are found in [10]. Let G = (V, E) be a graph with n vertices,
where V = {v1, . . . , vn} and E ⊆ V × V are the set of
vertices and edges, respectively. The set of neighbors of
node i is denoted by Ni = {vj ∈ V : (vi, vj) ∈ E}.
The adjacency matrix A(G) = (aij)n×n of an undirected
graph is defined such that aij = aji = 1 if there is a
connection between vertex i and j (j 6= i). The degree
of a node is given by d(vi) =

∑
j aij . Let the Laplacian

matrix L(G) = [lij ] ∈ Rn×n associated with A(G) be defined
as L(G) = diag(d(vi))−A(G) (for simplicity of notation, L
is used in the following paper).

In this paper, undirected graphs are considered. For an
undirected graph, L is symmetric positive semi-definite
and hence there exist n linearly independent eigenvectors.
Furthermore, all nonzero eigenvalues of L are positive and
real. 0 is an eigenvalue of L with the associated right (left)
eigenvector 1 (1>), i.e., L1 = 0. A graph is connected if
and only if 0 is simple eigenvalue of the Laplacian matrix.

B. System Model

Consider n agents with double-integrator dynamics

ẋi(t) = vi(t), v̇i(t) = ui(t), i ∈ {1, . . . , n}, (1)

where xi ∈ Rm and vi ∈ Rm are position and ve-
locity vectors of agent i with initial states xi(t0) = xi(0)
and vi(t0) = vi(0)(t0 is the initial time); ui ∈ Rm is the con-
trol input to be designed based on the information received
by agent i. Note that xi and vi can also represent other
physical quantities. To facilitate the following analysis, the
one-dimensional case is considered in this paper, i.e. m = 1.
Analogous results for higher dimensional systems are ob-
tained by means of the Kronecker product.

Let Gx and Gv be the information graphs with respect
to positions and velocities, respectively. The corresponding
Laplacian matrices are defined as Lx and Lv . In this pa-
per, we consider the general case where the information
graphs for position and velocity exchange might be different,
i.e. Lx 6= Lv . It is worth mentioning that the second-order
consensus discussed in [2], where Lv = Lx can be recovered
as a special case of this paper. Since the graphs Gx = (V, Ex)
and Gv = (V, Ev) share the same set of nodes, any operations
(such as adding, removing and renaming nodes) are executed
accordingly. For each agent i, two subsets Ni(Gx) ⊂ V
and Ni(Gv) ⊂ V are given to identify the agents with which

it can exchange position and velocity information. Ni(Gx)
and Ni(Gv) are replaced by N x

i and N v
i for convenience in

the following analysis.
The consensus algorithm for (1) is proposed as

ui = −α
∑
j∈Nx

i

(xi − xj)− β
∑
j∈Nv

i

(vi − vj). (2)

where α > 0 and β > 0 are the respective coupling strengths.
Let x = [x>1 , . . . , x

>
n ]>, v = [v>1 , . . . , v

>
n ]>, then applying

the control law (2), the closed loop dynamics of the MAS (1)
can be rewritten in a compact matrix form as[

ẋ
v̇

]
=

[
0n In

−αLx −βLv

]
︸ ︷︷ ︸

L

[
x
v

]
, (3)

where L represents the overall system matrix.
Definition 2.1: Consider the MAS (3), the second-

order consensus is said to be achieved if for any ini-
tial condition, one has limt→∞ (xi(t)− xj(t)) = 0,
and limt→∞ (vi(t)− vj(t)) = 0, ∀i, j ∈ {1, . . . , n}.

III. MAIN RESULTS

In this section, we will investigate under which condition
on the graph topologies Gx and Gv second-order consensus
is achieved via the analysis of the spectrum of the matrix L.
Furthermore, the convergence of the consensus protocols
associated with event-triggered update policy is investigated.

A. Spectrum Analysis of Matrix L
In the second-order model (3), the eigenvalues of the

matrix L play an important role for the convergence of the
system. It is worthy to note that, as a consequence of the
asymmetry of matrix L, one should expect to have complex
entries in its eigenvectors.

For a nonzero vector ω, the Rayleigh quotient of ω w.r.t.
the real symmetric matrix Lx and Lv are defined as

R(Lx, ω) =
ω†Lxω

ω†ω
≥ 0, R(Lv, ω) =

ω†Lvω

ω†ω
≥ 0,

where the nonnegativity is derived from the positive semi-
definiteness of Laplacian matrix of undirected graph. As in
this paper, the Rayleigh quotient is associated with the Lapla-
cian matrix, and for simplicity of notation we write Rx(ω)
instead of R(Lx, ω).

Lemma 3.1: All the eigenvalues of L lie in the closed left
half plane of C.

Proof: The characteristic polynomial of matrix L is

P (λ) = det(λI2n − L) = det(λ2In + βλLv + αLx︸ ︷︷ ︸
:=Q(λ)

), (4)

where the λ-matrix Q(λ) is an n× n matrix polynomial of
degree 2. It is shown in [11] that Q(λ) has the same spectrum
as L and we can investigate the spectrum of Q(λ) instead
of L. Due to the fact that Laplacian matrices are real, all
the eigenvalues of Q(λ) are symmetric with respect to the
real axis of the complex plane. Let (λ, ω) be an eigenpair
of Q(λ), i.e. Q(λ)ω = 0, which leads to ω†Q(λ)ω = 0.



Therefore, an explicit formula for the eigenvalues of matrix
polynomial Q(λ) can be given as

λ± = −βRv(ω)

2
±
√
β2R2

v(ω)

4
− αRx(ω). (5)

From above formulae, it is straightforward to show that all
the eigenvalues of L have a nonpositive real part.

Lemma 3.2: [2] The MAS in (3) achieves second-order
consensus asymptotically if and only if matrix L has exactly
one zero eigenvalue of algebraic multiplicity 2 and geometric
multiplicity 1, and all the other nonzero eigenvalues have
negative real parts.

Note that for a nonzero vector ω, if (λ, ω) is an
eigenpair of Q(λ), then the vector ξ =

[
ω
λω

]
is an

eigenvector associated with eigenvalue λ for L. In par-
ticular, (0,1) is an eigenpair of Q(λ) and we can
straightforwardly verify that (0,

[
1
0

]
) is an eigenvalue pair

of L. In addition, due to 1 ∈ kerLx ∩ kerLv , the
Rayleigh quotients Rx(1) = Rv(1) = 0. Furthermore, if ω
is an eigenvector of Lx associated with a zero eigenvalue,
i.e. ω ∈ kerLx, then Rx(ω) = 0. In (5), when Rx(ω) = 0,
the λ-matrix Q(λ) has two zero eigenvalues. The next lemma
is quite obvious from previous reasoning, therefore the proof
is omitted here.

Lemma 3.3: λ = 0 is an eigenvalue of L and
[
1
0

]
is

the associated right eigenvector. Moreover, the geometric
multiplicity of eigenvalue λ = 0 equals the number of
connected components contained in the position graph.

Lemma 3.4: The MAS (3) achieves consensus only if the
position graph Gx is connected.

Proof: Straightforward from Lemma 3.2 and
Lemma 3.3.

Next, the case of purely imaginary eigenvalues in L is
eliminated, since it fails to guarantee the convergence of the
second-order MAS. According to (5), the purely imaginary
eigenvalues exist only when Rv(ω) = 0 while Rx(ω) 6= 0.

Proposition 3.1: Consider the MAS (1) together with the
control law (2). If the graph Gx and Gv are both connected,
then the matrix L has exactly one zero eigenvalue with
algebraic multiplicity 2 and geometric multiplicity 1, and
all the other nonzero eigenvalues have negative real parts.

Proof: According to Lemma 3.3, for connected position
graph, the Jordan canonical form of L has one Jordan block
corresponding to the zero eigenvalue. Furthermore,

[
1
0

]
is

one of the right eigenvector associated with zero eigenvalue
and

[
0
1

]
is a generalized eigenvector due to L

[
0
1

]
=
[
1
0

]
. In

addition, there is no vector
[ p1
p2

]
such that L

[ p1
p2

]
=
[
0
1

]
,

which is derived from the fact that p2 = 0 here and
there is no p1 that satisfies −αLxp1 = 1. Hence, matrix L
has exactly one zero eigenvalue with algebraic/geometric
multiplicity 2/1. The remainder of the proof is derived
by using Lemma 3.1 and the result that for the connected
position and velocity graphs, a vector ω satisfies Rv(ω) = 0
which leads to Rx(ω) = 0.

In the sequel of the paper, we call the graph pair Gx and Gv
heterogeneously connected if both are connected but their
topologies are not necessary identical.

B. Distributed Event-triggered Control

In contrast to traditional time-triggered sampling ap-
proaches, the control law considered in this paper is updated
at instants triggered by events, specifically, at times when the
measurement error exceeds a certain threshold. In particular,
we investigate the distributed case in the sense that each
agent locally decides the event instants. By “local” we
mean, that the decision on an event only depends on local
information from its neighboring agents.

The sequence of event times for each agent i ∈ {1, . . . , n}
is denoted by {tik}k∈N. We assume that they are
determined by an event-function fi(·) which triggers
an event at agent i as soon as it crosses zero,
i.e. tik+1 = inf{t : t > tik, fi(·) > 0}. Furthermore, we as-
sume that the control is piecewise constant between consec-
utive updates and equals the value of the last control update,
i.e. having a zero-order hold characteristics. The distributed
control law for agent i is updated not only at its own event-
triggered time instants {tik}k∈N but also the last event times
of its neighbors {tjk}k∈N, j ∈ {N x

i ∪N v
i }.

For each t ∈ [tik, t
i
k+1), the distributed event-triggered

control law is given by

ui(t) = −α
∑
j∈Nx

i

(
xi(t

i
k)− xj(tjk′(t))

)
− β

∑
j∈Nv

i

(
vi(t

i
k)

− vj(tjk′(t))
)
, i ∈ {1, . . . , n}, k ∈ N, (6)

where k′(t) , argl∈N min
t≥tjl
{t−tjl }, which is the index for the

last event time of agent j before the time t. The control law
at agent i is calculated using the most recently received states
for the position and velocity of itself and its “neighbors”.

Remark 3.1: In [9], a first-order hold scheme is introduced
to estimate the position state at the controller between update
times. However, due to the heterogeneous characteristics of
second-order MAS in this paper, the position and velocity of
each agent are not necessarily simultaneously available from
its neighbors.

Let θx and θv be the vectors of measurement errors for
position and velocity, and for the second-order agent i they
are defined as

θxi (t) = xi(t
i
k)− xi(t),

θvi (t) = vi(t
i
k)− vi(t), t ∈ [tik, t

i
k+1), i ∈ {1, . . . , n}.

Note that at the event instant they are reset
to zero. Based on the definition of k′(t),
it follows that xj(t

j
k′(t)) = θxj (t) + xj(t)

and vj(t
j
k′(t)) = θvj (t) + vj(t). The second-order dynamics

of agent i under the distributed event-triggered control
law (6) can be rewritten by

ẋi(t) = vi(t),

v̇i(t) = −α
∑
j∈Nx

i

(
θxi (t)− θxj (t) + xi(t)− xj(t)

)
− β

∑
j∈Nv

i

(
θvi (t)− θvj (t) + vi(t)− vj(t)

)
,



and hence, the entire MAS model becomes[
ẋ
v̇

]
= L

[
x
v

]
+ L̂θ, (7)

where θ = [(θx)>, (θv)>]> and L̂ =
[

0n 0n

−αLx −βLv

]
.

From the Proposition 3.1, the assumption that Gx and
Gv are heterogeneously connected implies L has exactly
two zero eigenvalues which have geometric multiplicity
1 associated with partial multiplicity 2. Furthermore, the
remaining eigenvalues have strictly negative real parts. As
a result, L can be written in the Jordan canonical form as

L = PJP−1 =
[
p1 · · · p2n

] 0 1 0>

0 0 0>

0 0 J̃


q
>
1
...
q>2n

 ,
where pi ∈ R2n can be chosen to be the right
eigenvectors or generalized eigenvectors of L,
and qi ∈ R2n are the left eigenvectors or generalized
eigenvectors of L. Without loss of generality,
let p1 =

[
1>,0>

]>
, p2 =

[
0>, 1>

]>
, q1 =

[
η>,0>

]>
and q2 =

[
0>, η>

]>
, where η ∈ kerLx ∩ kerLv

and η>1 = 1. The remaining Jordan
blocks J̃ ∈ R(2n−2)×(2n−2) are upper diagonal
corresponding to non-zero eigenvalues.

Define z(t) = P−1
[
x(t)>v(t)>

]>
=
[
z>1 . . . z

>
2n

]>
and

its derivative is

ż = P−1LPz + P−1L̂θ = Jz + P−1L̂θ. (8)

As the first two rows of P−1L̂ are equal to zero, we have

ż1(t) = z2(t), ż2(t) = 0. (9)

Proposition 3.2: Suppose that the MAS with the posi-
tion graph Gx and velocity graph Gv is heterogeneously
connected. Then, second-order consensus in MAS (7) is
reached if limt→∞ ‖zi(t)‖ = 0 for i ∈ {3, . . . , 2n}. Specif-
ically, xi(t)→ η>x(0) + tη>v(0) and vi(t)→ η>v(0),
as t→∞, for all i ∈ {1, . . . , n}, where η>Lx = η>Lv = 0
and η>1 = 1.

Proof: Since the position graph Gx and velocity
graph Gv are heterogeneously connected, p1 =

[
1>,0>

]>
and p2 =

[
0>,1>

]>
are the two right eigenvectors of

matrix L associated with the zero eigenvalue. Con-
sider limt→∞ ‖zi(t)‖ = 0 for i = 3, . . . , 2n and the defini-
tion of P , one gets

lim
t→∞

∥∥∥∥[xv
]
− [z1, . . . , z1︸ ︷︷ ︸

n

, z2, . . . , z2︸ ︷︷ ︸
n

]>
∥∥∥∥

= lim
t→∞

∥∥Pz − [z1, . . . , z1︸ ︷︷ ︸
n

, z2, . . . , z2︸ ︷︷ ︸
n

]>
∥∥ = 0 (10)

where z1 and z2 are the solutions of (9). The equa-
tion (10) implies that, as time evolves, all agents
achieve a common position z1 and a common veloc-
ity z2. By solving (9), the analytic solutions can be ob-
tained as z1(t) = η>x(0) + tη>v(0) and z2(t) = η>v(0),
where η>Lx = η>Lv = 0 and η>1 = 1.

Before moving on, the following notations are nec-
essary for presenting the main results of this paper.
Let {λ1, λ2, λ3, . . . , λ2n} be an ordered sequence of eigen-
values for matrix L, specifically, 0 = λ1 = λ2 ≥ Re(λ3) ≥
. . . ≥ Re(λ2n). For presentation simplicity, let Mq =‖ L̂ ‖
and Mp = ‖P−1‖‖P‖ is equivalent to the quotient of largest
singular value of P divided by the smallest one.

Theorem 3.1: Consider the MAS (1) associated with dis-
tributed control law (6) and event times {tik}∞k=0 which is
implicitly given by the update rule

fi (t, θxi (t), θvi (t)) =

∥∥∥∥θxi (t)
θvi (t)

∥∥∥∥− σie−γit > 0 (11)

where 0 < σi and 0 < γi < |Re(λ3)| for i ∈ {1, . . . , n}. If
the position graph Gx and velocity graph Gv are heteroge-
neously connected, then consensus is achieved for any initial
condition. Furthermore, there exists a lower bound on the
inter-event interval {tik+1 − tik}k∈N for all agents.

Proof: According to Proposition 3.2, for i = 3, . . . , 2n,
if limt→∞ ‖zi(t)‖ = 0, then the MAS (7) achieves
consensus asymptotically. To facilitate the following
analysis, the P−1 is decomposed as qi = [q>i1 , υ

>
i ]>,

where qi1 ∈ Rn, υi = [υi1, . . . , υin]> ∈ Rn, i ∈ {3, . . . , 2n}.
For i ∈ {3, . . . , 2n} in (8), we have

żi = λizi − αυ>i Lxθx − βυ>i Lvθv,

and its analytical solution can be calculated as follows:

zi = eλitzi(0)−
∫ t

t0

eλi(t−s)υ>i (αLxθ
x + βLvθ

v) ds.

The norm of zi is bounded by

‖zi‖ ≤ eRe(λi)t‖zi(0)‖+

∫ t

t0

eRe(λi)(t−s)‖vi‖∥∥−αLx −βLv
∥∥ ‖θ‖ ds. (12)

By taking the event-triggered function (11) into account, the
Euclidean norm of θ can be expressed as

‖θ(t)‖ =

√√√√ n∑
j=1

∥∥∥∥θxjθvj
∥∥∥∥2 ≤ n∑

j=1

σje
−γjt.

With ‖ − αLx − βLv‖ = Mq , the norm in (12) is upper
bounded

‖zi‖ ≤ eRe(λi)t

(
‖zi(0)‖+Mq‖vi‖

n∑
j=1

σj

∫ t

t0

e−(Re(λj)+γj)sds

)

≤ eRe(λi)t‖zi(0)‖+

n∑
j=1

Mq‖vi‖σj
−(Re(λi) + γj)

e−γjt. (13)

Since 0 < γj < |Re(λ3)| ≤ |Re(λi)| for j ∈ {1, . . . , n}
and i ∈ {3, . . . , n}, limt→∞ ‖zi(t)‖ = 0 can be derived
from (13), which implies the consensus of MAS is reached.

In order to show that the Zeno behavior is excluded,
we show that there exists a positive lower bound on the
inter-event times for all agents. Let t′ be the latest event
time for agent i such that the measurement error is reset



to zero at time t′, i.e. θxi (t′) = θvi (t′) = 0, which results
in fi (t′, θxi (t′), θvi (t′))) < 0. For the time between t′ and
the next event time, the following inequality can be obtained
from properties of the norm:∥∥∥∥θxi (t)

θvi (t)

∥∥∥∥ ≤ ‖θ(t)‖ ≤ ∫ t

t′
‖θ̇(s)‖ds. (14)

Wherein the time-derivative of θ becomes

θ̇(t) =

[
θ̇x(t)

θ̇v(t)

]
=

[
v(t′)− ẋ(t)
−v̇(t)

]
=

[
θv(t)
−u(t)

]
. (15)

Taking norm of θ̇(t) gives

‖θ̇(t)‖ ≤ ‖θ(t)‖+ ‖u(t)‖. (16)

From the MAS model (7), the norm of the control u(t) is

‖u(t)‖ =

∥∥∥∥[−αLx −βLv
](

θ(t) +

[
x(t)
v(t)

])∥∥∥∥
≤Mq (‖θ(t)‖+ ‖P‖‖z(t)‖) (17)

Consider (8) and (13), the norm of z(t) can be evaluated by

‖z(t)‖ ≤ eRe(λ3)t‖z(0)‖+

n∑
j=1

σjMq‖P−1‖e−γjt

−(Re(λ3) + γj)
. (18)

Based on above analysis in (15), (16), (17), (18), the norm
in (14) becomes∥∥∥∥θxi (t)

θvi (t)

∥∥∥∥ ≤ ∫ t

t′
(1 +Mq)‖θ(s)‖+Mq‖P‖‖z(s)‖ds

≤ M̃
∫ t

t′
e−γsds ≤ M̃e−γt

′
(t− t′),

with constant

M̃ = σ̂(1 +Mq) +MqMp

∥∥∥∥x(0)
v(0)

∥∥∥∥+
σ̂MpM

2
q

−(Re(λ3) + γ)
,

where σ̂ =
∑n
j=1 σj , γ = min{γj} and γ = max{γj}

for j ∈ {1, . . . , n}. The next event time t > t′ will not
occur before fi(t, θ

x
i t, θ

v
i (t)) crosses zero. As a result,

the inter-event time is bounded from below by a positive
time τD = t− t′, which is the solution of M̃τD = σe−γτD ,
where σ = max

j∈{1,...,n}
{σj}.

C. Centralized Event-triggered Control

In some applications, there exists a global master sta-
tion that collects the information of the whole system
and determines the triggering time. In this centralized
case, the sequence of event times is denoted by {tk}k∈N,
where tk > tk−1 ≥ t0, and it corresponds to a sequence of
control updates {u(tk)}k∈N with the following control law

u(t) = −αLxx(tk)− βLvv(tk), t ∈ [tk, tk+1). (19)

Theorem 3.2: Consider the multi-agent systems (1) with
the consensus protocol (19) under a centralized event-
triggering schedule and assume that the graphs Gx and Gv
are heterogeneously connected. Let the event times {tk}k∈N
be defined by the update rule

f(t, θ) = ‖θ(t)‖ − σe−γt > 0 (20)

where σ > 0, 0 < γ < Re(λ3). Then for any initial condi-
tions x(0), v(0) ∈ Rn, all the agents reach consensus expo-
nentially. Furthermore, the inter-event times {tk+1 − tk}k∈N
are lower bounded by a positive constant, i.e., the MAS does
not exhibit Zeno behavior.

Proof: Similar to the analysis in Theorem 3.1, a
reduced-order model can be derived from (8) as

˙̂z = J̃ ẑ +

q
>
3
...
q>2n

 L̂θ,
where ẑ =

[
z>3 . . . z

>
2n

]>
. By solving above differential

equation and taking the norm, we have

‖ẑ(t)‖ ≤ eRe(λ3)t‖ẑ(0)‖+

∫ t

t0

eRe(λ3)(t−s)‖P−1‖‖L̂θ(s)‖ds

≤ eRe(λ3)t‖ẑ(0)‖+
σMq‖P−1‖
−(Re(λ3) + γ)

e−γt,

which takes
∥∥p3, . . . , p2n∥∥> ≤ ‖P−1‖ into consid-

eration. Since 0 < γ < Re(λ3), we can verify
that limt→∞ ‖zi(t)‖ = 0 for i ∈ {3, . . . , 2n}. To exclude
the Zeno behavior, the anaylsis parallels what is al-
ready presented in the proof of Theorem 3.1. Specifi-
cally, let t′ be the latest event time for MAS and de-

note M̄ = σ(1 +Mq +
MpMq

−(Re(λ3)+γ)
) +Mp

∥∥∥∥x(0)
v(0)

∥∥∥∥. As a re-

sult, the measurement error bounded by

‖θ‖ ≤M
∫ t

t′
e−γt′ds ≤ M̄e−γt

′
(t− t′),

which implies that there exists a lower bound on the inter-
event times t − t′ = τD, which is implicitly given by the
analytical solution of following formula MτD = σe−γτD .

IV. NUMERICAL EXAMPLES

In this section, some simulation examples are presented to
demonstrate the effectiveness of the proposed event-triggered
control laws in heterogeneous MAS with double-integrator
characteristics.

The MAS under investigation consists of five
agents; the communication graph Gx is graph 1
and the velocity graph is Gv be graph 2 for the
centralized and distributed case. Five agents launch
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Fig. 1. Communication topologies for numerical example
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Fig. 2. Consensus under the distributed event-triggered control
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Fig. 3. Evolution of distributed event-triggered function fi (i = 1, . . . , 5)

from initial position x(0) =
[
10, 12, 14, 16, 18

]>
and velocity v(0) =

[
1, 2, 3, 4, 5

]>
. In distributed

casse, set α = 1, β = 1.5, σi =
[
1.5, 1.5, 2, 1.5, 2

]
and γi = [0.12, 0.12, 0.12, 0.15, 0.2] for i ∈ {1, . . . , 5}.
As shown in the Figure 2, the MAS achieves the position
and velocity consensus. Moreover, the corresponding
event-triggered function for each agent can be found in
Figure 3, where the event-triggered rates of agents are in
turn (30%, 15%, 16%, 32%, 47%).

In the centralized case, σ = 2.5 and γ = 0.1 are
chosen. Figure 4 shows the MAS under centralized event-
triggered control achieves position and velocity consensus
asymptotically. Figure 5 shows the the norm of measurement
error in the centralized case stays below the specified time-
dependent threshold.

V. CONCLUSIONS

Second-order consensus problems of MASs under event-
triggered update rules are investigated in this paper. The
agents with double integrator dynamics exchange informa-
tion over a heterogenous network where the information
topologies of position and velocity are different in the most
general case. In addition, the convergence of the consensus
protocol based on event-triggered scheduling is examined in,
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Fig. 4. Consensus under centralized event-triggered control
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Fig. 5. Evolution of centralized event-triggered function f

the distributed and centralized case. The proposed event-
triggering strategies not only preserve the desired conver-
gence properties, but also guarantee exclusion of the Zeno
behavior in both cases. Future work involves the investigation
of transmission delay, and packet loss case for event-based
control in second-order consensus problem.
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