The tools described above are now used to estimate a smooth fiber organization from 3D ex-vivo DT-MRI data. For the ROUKF we use the a priori values \(\Theta_\ast = 60° \), \(\text{std}_0 = 10.0 \), \(\gamma = 1.0 \), and 144 degrees of freedom for the surface angles distribution, on a 1.7M tetrahedra mesh.

We propose to estimate rule-based myocardial fiber model (RBM) parameters from DT-MRI, with the goal of personalizing the fiber architecture for cardiac simulations. The RBM is based on a space-dependent angle distribution on the heart surface and then extended to the whole domain through an harmonic lifting of the fiber vectors. For the angles estimation we use a static Unscented Kalman Filter (UKF). We also show the effect of different fiber distributions on cardiac contraction simulations.

Rule-based fiber model

The construction of the spatially variant fiber model includes the following parts:

- Lifting operation (L) of surface parameter \(g(x) \):
 \(\Delta f(x) = 0 \), for \(x \in \Omega \)
 \(f(x) = g(x) \), for \(x \in \Gamma \cap \partial \Omega \)
 \(\partial_h f = 0 \), for \(x \in \partial \Omega \)

- Construction of axial and circumferential coordinate system

- Bilinear interpolation of \(\Theta \) in axial and circumferential direction

- Rule-base fiber algorithm, inspired from [1]: For given long-axis evaluate:
 I. For surface \(\pi \) do:
 For every node \(x_j \in \pi \) do:
 1. Evaluate the local pseudonormal \(n(x_j) \), circumferential direction \(c(x_j) = \text{cross}(n(x_j), l) \) with \(\lambda(x_j) = \{+1, \text{for } x_j \in \text{spacium} \}
 \{-1, \text{for } x_j \in \text{spacium} \} \)
 2. Compute the interpolation of angle \(\Theta(x) \)
 3. Generate the surface fibers:

II. Solve the harmonic lifting (L) with \(g(x) \)

Unscented Kalman Filter

We aim to minimize the following functional:

\[
J(\Theta) = ||f_m - f(\Theta)||^2_{W^{-1}} + ||\Theta - \Theta_\ast||^2_{P^{-1}}
\]

with:

- noisy fiber measurements \(f_m \) from DTMRI measurements
- rule-base algorithm \(f \) with variables \(\Theta \)
- a priori estimate \(\Theta_\ast = \gamma \text{Id} \), \(P = (\text{std}_0)^2 \text{Id} \), \(\gamma \), \(\text{std}_0 \) positive scalars
- norms \(|| \cdot ||_W \) and \(|| \cdot ||_P \) for weighting the terms

For solving this least squared problem for \(\Theta \) we apply the reduced order unscented Kalman filter (ROUKF) [2] in a static manner:

- simplex sigma points, recursively calculated via
- Innovation for each particle:

\[
\frac{1}{\sqrt{\text{det}(P)}} \left[\begin{array}{c} u_{i+1}^j \\ \vdots \\ u_{i+k}^j \end{array} \right]
\]

- Estimation

\[
\hat{\Theta} = \gamma \Theta_\ast - \text{L}_P \left(\text{U} \right) \text{W}^{-1} \text{L}_T
\]

\[
\delta_{\Theta_{\text{Cor}}} = \Theta - \text{L}_P \left(\text{U} \right) \text{W}^{-1} \text{L}_T
\]

\[
P_{\Theta_{\text{Cor}}} = \text{L}_P \text{U} \left(\text{L}_P \right)^T
\]

Results

The tools described above are now used to estimate a smooth fiber organization from 3D ex-vivo DT-MRI data. For the ROUKF we use the a priori values \(\Theta_\ast = 60° \), \(\text{std}_0 = 10.0 \), \(\gamma = 1.0 \), and 144 degrees of freedom for the surface angles distribution, on a 1.7M tetrahedra mesh.

Acknowledgements. This work was supported by the Institute for Advanced Study (TU München) and one of its fellow Prof. Michael Ortiz (Caltech)

DTMRI data Openly available on http://gforge.icm.jhu.edu/gf/project/dtmri data sets; **Geometry created from in-vivo CT – imaging (courtesy of Klinikum Rechts der Isar)**