Personalization of cardiac fiber orientations from image data using the Unscented Kalman Filter

Andreas Nagler¹, Cristòbal Bertoglio¹, Michael Gee² and Wolfgang Wall¹

1 Institute for Computational Mechanics. Technische Universität München. Germanv

Lehrstuhl für Numerische Mechanik

We propose to estimate rule-based myocardial fiber model (RBM) parameters from DT-MRI, with the goal of personalizing the fiber architecture for cardiac simulations. The RBM is based on a space-dependent angle distribution on the heart surface and then extended to the whole domain through an harmonic lifting of the fiber vectors. For the angles estimation we use a static Unscented Kalman Filter (UKF). We also show the effect of different fiber distributions on cardiac contraction simulations.

Results

The tools described above are now used to estimate a smooth fiber organization from 3D ex-vivo DT-MRI* data. For the ROUKF we use the a priori values $\Theta_{-} = 60^{\circ}$, std₀ =10.0, γ = 1.0, and 144 degrees-of freedom for the surface angles distribution, on a 1.7M tetrahedra mesh^{**}.

Acknowledgements. This work was supported by the Institute for Advanced Study (TU München) and one of its fellow Prof. Michael Ortiz (Caltech)

[1] Wong, J., Kuhl, E.: Generating fibre orientation maps in human heart models using poisson interpolation.

Computer Methods in Biomechanics and Biomedical Engineering (2012) 1{10 PMID: 23210529.

[2] Moireau, P., Chapelle, D.: Reduced-order Unscented Kalman Filtering with application to parameter identication in large-dimensional systems.

COCV 17 (2011) 380{405 doi:10.1051/cocv/2010006.

*DTMRI data Openly available on http://gforge.icm.jhu.edu/gf/project/dtmri data sets/; **Geometry created from in-vivo CT – imaging (courtesy of Klinikum Rechts der Isar)

