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Abstract

In this article we present a MATLABR© toolbox to analyze networked systems from both a

dynamical and a graph theoretical point of view in a user-friendly GUI tool. It is designed to allow

easy creation, editing and simulation of models of networked dynamical systems, a large system

class of practical interest. The main features of the software are described and several application

examples are given.

1 Introduction

The analysis of networks of dynamical systems is an important area of system and control engineering
with many application areas. For this purpose, we present a MATLAB toolbox for interconnected dy-
namical systems (MTIDS). We consider interconnected systems to be systems that consist of several
subsystems which are connected to each other either physically, through communication, or both. This
definition includes the notions of large-scale interconnected systems, networked dynamical/control sys-
tems, multi-agent systems and distributed dynamical systems, which are often mentioned in this context.
An abstract illustration of an interconnected system is shown in Figure 1, where the Σi represent the
subsystems and the arrows indicate one of the forms of interaction. In the following we point out several
application areas in more detail: Technological and biological systems as well as economical and social
networks. The mentioned fields are also summarized in Figure 2.

Technological systems are often modeled as networks of comparatively small subsystems. For example,
the power system consists of thousands of components including generators, loads and transformers [11].
Traffic and transportation systems can also be modeled as interconnected systems [10]. Possibly the
largest artificial interconnected system is the Internet which consists of local dynamics representing
signal sources, routers and communication links [17]. On a comparably smaller scale, cooperative multi-
robot systems or groups of unmanned vehicles are also an example for this system class, e.g. in the
context of formation control [4].

The field of biological networks employs system modeling in the form of interconnected subsystems
as well, for example in studies on the human brain [3]. Investigations on population biology and ecosys-
tems [13] and on gene interaction [20] also take the perspective of interconnected systems with local
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Figure 2: Disciplines treating interconnected system

dynamics. Even the climate of the earth can be regarded as an interconnected system [23]. Lastly, an
important field is the study of flocking in the behavior of animals such as birds or fish [8].

The study of economical networks is another field that treats interconnected systems, e.g. in logistics,
production and distribution, financial networks of banks and investors, informational networks and labor
markets [18].

Dynamic network models are also used in the field of social networks. One direction of research is
the investigation of opinion formation in communities or social networks [12]. Another direction is the
research on the spreading of diseases among humans [2].

In the literature, interconnected dynamical systems are investigated from two different points of view.
The first is the application of graph theoretical methods to the interconnection structure of dynamical
systems, e.g. [16]. On the other hand, it is often desired to simulate or analyze the dynamical properties
of a system, for example in terms of performance in the field of distributed control, e.g. [5, 24].

To the best of the authors’ knowledge, no software tool is available that inherently offers the func-
tionality to do both analysis methods mentioned above – i.e. in terms of graphs and in terms of system
dynamics – in a quick and user-friendly fashion.

In this article we present MTIDS (MATLAB toolbox for interconnected dynamical systems), a MAT-
LAB/Simulink GUI program to create and simulate interconnected dynamical systems. The main pur-
pose of the program is a simplified construction and subsequent modification of large-scale interconnected
systems, in order to simulate them, e.g. to analyze system behavior or evaluate performance. It offers
a large degree of freedom in terms of possible system dynamics, in addition to interconnection graph
analysis methods.

The remainder of this article is organized as follows. In Section 2, we give a short introduction to
the main concepts of graph theory. Next, in Section 3 some canonical problems and possible system
classes are shown. Afterwards, we explain the usual workflow in MTIDS in Section 4 before presenting
some application examples in Section 5. In Sections 6 and 7, we give details on the installation and
implementation of MTIDS before concluding with a summary and outlook in Section 8.

2 Introduction to graph theory

For interconnected systems, a graph can be used to model the interconnection structure of the overall
system. In this section, we explain and define some of the main basic concepts of graph theory that are
referred to in later sections. For an in-depth introduction, we refer the reader to [9].

A graph G is described by a set of vertices V and a set of edges E. An edge is a pair of vertices
(also called nodes) of G, usually denoted by (i, j). If (i, j) is an edge, then i and j are adjacent and j
is a neighbor of i. In a complete graph, every pair of vertices is adjacent. For directed graphs, the edge
(i, j) has an order and signifies that there is an arc from node i to node j. For undirected graphs, the
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edge (i, j) is considered to be unordered. This signifies that there is an arc (j, i) whenever there is an
arc (i, j). An example of a directed graph is given in Figure 1.

The adjacency matrix A of a graph is an integer matrix where the (i, j)th entry is equal to the number
of arcs from i to j (usually 0 or 1). Because graphs usually do not have loops, the diagonal entries of A
are zero. The incidence matrix B of a graph is a binary matrix where the rows and columns are indexed
by the vertices and edges of the graph G, respectively, such that the (k, l)th entry of B is one iff the
vertex k is in the edge l. In contrast to the adjacency matrix A, B is not quadratic, but has the size
n× e, where n is the number of nodes and e the number of edges.

The degree of a node i is the number of neighbors of i. The maximum and minimum degree of a
graph G is the maximum and minimum value of degrees of any node in G. For directed graphs, we need
to distinguish an in-degree and an out-degree. We call D the degree matrix which is a diagonal n × n
matrix where the (i, i)th entry is the degree of node i. It can then be shown that BBT = D − A. The
matrix BBT = L is also called the Laplacian of the graph. L is always positive semi-definite and the
number of times 0 appears as an eigenvalue is the number of connected components in the graph. That
means that the whole graph is connected, iff λ2(L) > 0.

A node is called balanced iff its in-degree and out-degree are equal. A graph is balanced iff every
node is balanced. Every undirected graph is balanced. A graph is connected if there is a path between
any two vertices. A directed graph is strongly connected if there is a directed path connecting any two
nodes. A cycle is a connected graph where every node has exactly two neighbors. If V (G1) = V (G2) but
E(G1) ⊆ E(G2) then G1 is a spanning subgraph of G2. A spanning subgraph with no cycles is a spanning
tree. A graph has a spanning tree iff it is connected.

3 Canonical problems

In this section, we present three typical problems and system classes often considered in the literature
on interconnected systems which can be investigated using MTIDS: Interconnected LTI systems, the
consensus problem and coupled oscillators.

3.1 Interconnected linear time invariant (LTI) systems

A very common system class when interconnected systems are treated is the class of interconnected LTI
systems which are coupled in the state. The dynamics of the individual subsystem i can be written as

ẋi(t) = Aiixi(t) +
∑

j∈Ni,in

Aijxj(t) +Biui(t),

where xi(t) ∈ R
ni is the state of the local subsystem, xj(t) is the state of subsystem j with j ∈ Ni,in

and ui(t) is the local input. The set Ni,in is the set of nodes that have an influence on subsystem i.
We can define a graph G = (V,E) corresponding to the system dynamics with nodes representing the
subsystems and there is an edge (j, i) ∈ E iff Aij 6= 0, i.e. if subsystem j influences subsystem i. Thus,
we can formally define

Ni,in = {j|(j, i) ∈ E}.

This system class is often used as a general system model in distributed control [5], or more specifically,
for example, to model power systems [15], for models of vehicle string platoons [1] or for formation
control [7, 14].

Stability and performance of controllers with respect to some cost functional is often of interest for
interconnected LTI systems. MTIDS allows the easy construction and simulation of this system class
and enables the user to process the simulation data for the desired analysis.

3.2 Consensus

Another common point of interest that is investigated thoroughly with regards to distributed systems is
consensus. We refer to [22] for a summary of important results. In the consensus literature, it is often
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assumed that the agent dynamics are simple integrators ẋi = ui. The typical consensus algorithm is
constituted by the input ui(t) =

∑N

j=1 Aij(xj(t)− xi(t)) such that the agent dynamics become

ẋi(t) = −
N∑

j=1

Aij(xi(t)− xj(t)), i ∈ 1, ..., N, (1)

where N is the number of nodes in the system. Aij is the (i, j)th entry of the adjacency matrix and
describes if node i has access to the state information of node j, in addition to a gain for the consensus
algorithm. Using the definition of the Laplacian matrix L, the overall system dynamics can be rewritten
as

ẋ(t) = −Lx(t).

From this equation, we can see that the convergence rate of the consensus algorithm is determined by
the second smallest eigenvalue λ2 of L, where λ2 is also a measure for the connectivity of the graph. This
means that higher connectivity leads to a faster consensus achievement. Since λ2 = 0 indicates that the
graph is not connected, the convergence condition for undirected graphs is then simply that the graph
is connected. For directed graphs, the conditions for consensus are slightly more complicated. Here, the
consensus converges if the graph contains a rooted directed spanning tree [22]. Average consensus (the
final attained state is the average of the initial conditions) is achieved iff the graph is strongly connected
and balanced.

For some applications (e.g. robot formation control), it is more fitting to use double integrator
dynamics ẍi(t) = ui(t). A possible consensus algorithm [21] is given by

ui(t) =

N∑

j=1

Aij ((xj(t)− xi(t)) + γ(ẋj(t)− ẋi(t))) ,

such that the resulting overall dynamics are

ẍ(t) = −γLẋ(t)− Lx(t),

where γ denotes a scaling or damping factor. This is identical to writing

d

dt

[
x(t)
ẋ(t)

]

=

[
0n×n In
−L −γL

]

︸ ︷︷ ︸

Γ

[
x(t)
ẋ(t)

]

. (2)

It can then be shown that consensus is achieved iff the matrix Γ has exactly two zero eigenvalues and all
other eigenvalues have negative real parts.

We will show later that it is very easy to verify the convergence conditions using MTIDS.

3.3 Coupled oscillators

So far, we have only considered linear system dynamics. But naturally, some applications require the
consideration of nonlinear local dynamics. One typical example that is often considered is the synchro-
nization of coupled oscillators. These are investigated in the various fields of physics, mathematics,
biology and engineering, e.g. with respect to power systems [6]. One particular case we want to consider
is the so-called Kuramoto model which has the dynamics [19]

θ̇i(t) = ωi +
K

N

N∑

j=1

sin(θj(t)− θi(t)),

where θi is the phase of the oscillator, ωi the frequency and N is the number of oscillators in the network.
Note that this formula assumes all-to-all coupling of the oscillators. A condition to achieve synchronized
frequencies (all θ̇i are identical to a common frequency ωsync) and cohesive phases (|θi(t)− θj(t)| ≤ γ <
π/2 for all i, j) is given by [6]

K > max
i,j∈{1,...,N}

|ωi − ωj |. (3)
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Figure 3: Workflow in MTIDS

3.4 Further system classes

In the previous subsections, we pointed out three system classes or problems that frequently appear in
the literature on interconnected systems. But we want to stress the point that since MTIDS is based
on Simulink, the variety of system classes that can be treated is far greater because the templates
can contain any Simulink block including custom blocks. For example, we can have coupled transfer
functions, delays, or nonlinear phenomena like saturation or quantization. If one was interested only
in the simulation aspect and not in the graph analysis part, it could even be used to create time-
varying graphs by modeling the actual interconnections as subsystems with time-varying throughput. In
summary, the possibilities are vast, and cannot all be presented in detail.

4 Workflow

In this section, we want to explain the general steps of working with MTIDS. A visualization can be
found in Figure 3.

After the program start the main MTIDS window serving as the GUI of the program opens. In Fig-
ure 4, the GUI is shown with an already created graph. This window serves as the hub to the functionality
of the program, and most importantly this is where the interconnection structure is designed.

The workflow usually consists of the following steps.

4.1 Creation of subsystem dynamics

The underlying dynamics of the individual subsystems are specified in so-called templates which the
user creates in Simulink. An empty template is provided which can be filled with the desired dynamics.
These templates allow very general system dynamics by combining any desired Simulink blocks.

After creating the desired subsystem dynamics, the user can import the new template into MTIDS.
MTIDS includes a parameter set manager (PSM) which automatically identifies all parameters of the
subsystem and asks the user to provide numerical values. Additionally, if the automatic detection of the
PSM misses some parameters or blocks, they can be manually added here as well. The manager also
checks if the values set by the user are valid and allowed by Simulink. It is possible to add several different
parameter sets for each template. New parameter sets can be added, and old ones edited or deleted in the
parameter set manager. The templates themselves are saved as Simulink *.mdl files, the corresponding
parameter sets in a *.mat file, allowing to share the templates easily with other users. Some standard
templates such as LTI systems or Kuramoto oscillators are already included in the software.
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Figure 4: MTIDS GUI

4.2 Creation of the interconnection graph

When all necessary templates are added, the user can start with actually building the interconnected
system by adding a specified number of nodes of a certain template. Afterwards, the user can easily add
any connection between nodes as edges in the graph. MTIDS supports both directed and undirected
graphs. With every added edge, some graph statistics are immediately updated and shown in a field below
the graph. Furthermore, some fixed topologies can be created with dedicated buttons: Ring topology,
complete graph and a random graph, where the random graph is implemented as an Erdös-Renyi graph
with edge probability 0.5. More specific topologies need to be created by hand. The user can also specify
the node color of each template which is useful to distinguish nodes with different dynamics.

4.3 Editing specific settings of the system

We can access settings for a specific node by double-clicking it. Here, we can select if we want to
automatically plot the system states or outputs of the node immediately after a simulation is run, and
set parameters for the plots (line colors, styles, widths, markers). In addition, these settings include
the dynamics template and the system parameters. This is an important advantage of MTIDS over
directly using Simulink because it allows to easily change system dynamics while retaining the system
interconnection structure. For example, if the user wants to compare the performance of several different
local controllers, he can create templates with the respective controllers and then assign these templates
to the nodes. The option to set the dynamics of all nodes to a specified template is also useful in this
regard.

4.4 Simulation and post-processing

After the graph structure, template selection and parameter settings are finished, the user can either
work with the graph representation of the system, or export the interconnected system to Simulink for
a simulation. The latter automatically connects all the individual Simulink subsystems according to
the templates and graph structure we select in MTIDS and sets all the parameters, thus creating an
interconnected Simulink model.
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Simulink simulation parameters, e.g. the solver, start time and stop time, can also be set in MTIDS.
After the simulation is finished, plots of the simulation data can be generated automatically. Additionally,
the simulation data can be exported to the base MATLAB workspace for further processing or be saved
in a *.mat file.

The software also allows to save both the graph and the simulation results in *.mat files. The
graphs can be loaded again, thus allowing easy continuation of your work, or exchange of your work with
colleagues.

5 Application examples

In this section, we illustrate the workflow with application examples from the canonical problems pre-
sented in Section 3. Important features and advantages of MTIDS are introduced as we follow the
examples.

5.1 Interconnected linear time invariant (LTI) systems

In order to simulate interconnected LTI systems (Section 3.1), we first create a template for the individual
subsystem dynamics. Every template in MTIDS is started with the empty template in Figure 5. The
reader will notice the Mux block at the input. This Mux block should not be changed, nor should its
input ports be used in the template because it is used to couple the systems to each other.

We fill in the LTI dynamics to obtain Figure 6. The input u is set to 0 for now, but it could be replaced
by any local controller. For example, this controller could either use only the local state xi (decentralized
control), or additionally the state information xj from other subsystems (distributed control). MTIDS
thus allows the evaluation of local control schemes through simulations.

Next, we use the PSM to import the template into MTIDS and set the parameters. If we want LTI
subsystems that are not identical, we can add several different sets of parameters.

One important issue is that the matrix size of the gain Aij depends on the number of incoming
states xj . For linear model parameters, MTIDS offers the possibility to enter the names of the parameters
whose sizes depend on the number of external inputs. Then MTIDS always checks if these parameters
have the right sizes before the export of the system to prevent Simulink simulation failures. After a
successful parameter test, we can finish the import of the template.

The newly added template and parameter set are immediately added in the main window of MTIDS
where we can add nodes to the graph, and connect them with each other. For better visibility, they are
arranged in a ring but they can be easily moved using the mouse.

After adding edges, the parameters Aij of the subsystems do not have the correct sizes anymore.
We could either enter them manually for every node, but MTIDS is also able to automatically set these
size-dependent parameters with a suitable size by selecting the menu point Input parameter Adaptation,
where we have different options to automatically set the parameters for all nodes:

Figure 5: Empty dynamics template
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Figure 6: LTI template

• Fill them with one specific constant value.

• Set every entry to 1/n, where n is the number of incoming signals.

• Average over the existing values if the parameter was set before.

• Fill them with a random matrix.

• Preserve the matrix if it was set already but concatenate with ones, or trim to the required size.

This functionality of testing and setting the right sizes of parameters make quick simulations very easy
when a system is changed which is a big advantage over using Simulink directly.

When we are done with all the system parameters and graph connections, we start the export to
Simulink and proceed with simulations of the system.

5.2 Consensus

In Section 3.2, conditions for convergence of a consensus algorithm are given. Checking if a given
interconnected system of simple integrators converges is very easy with MTIDS. For example, a very
simple undirected connected graph is a ring. First, we design a consensus template implementing Eq. (1).
Then we create 100 nodes and form the ring topology with the respective button. The statistics at the
bottom show us that there is only one independent graph in the system, thus it is connected. We
could actually stop here because of the implications of the theoretical results but we can also look at
simulation results. Therefore we export the system and run the simulation. For random initial conditions,
the consensus is shown in Figure 7. As expected, a consensus is reached and the resulting value is, also
as expected, the average of the initial states.

Furthermore, we validate the condition for average consensus in directed graphs: The graph must be
strongly connected and balanced. To do this, we create two directed graphs with 20 nodes, one satisfying
the conditions – a ring structure (1 → 2 → ... → 20 → 1) – and one that does not, namely a ring with
an added edge in the opposite direction (e.g. 2 → 1). We can use the same template as before.

We run the simulations using random initial conditions, and indeed with the ring structure the
consensus converges to the average of the initial condition (1.329), while the unbalanced graph causes
an offset (1.441).

If we have double integrator dynamics it is also easy to check the convergence condition for a given
graph. MTIDS allows the export of the Laplacian matrix to the workspace. Then the matrix Γ from
Eq. (2) is easy to construct and be checked for the required properties.

5.3 Coupled Oscillators

In this subsection, we test the synchronization conditions for Kuramoto oscillators given in Eq. (3) in
MTIDS. We investigate an interconnected system with 20 subsystems. The frequency ωi of each node
is set to be a multiple of 0.1, so that ω1 = 0.1 for the first node and ω20 = 2 for the 20th node. The
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critical value for the coupling K/N is then 1.9/20 = 0.095. Thus, we run one simulation with a value
for K/N which is above this threshold (0.1) and one with K/N below it (0.05). The resulting plots are
seen in Figure 8. We see that we have synchronized frequencies and cohesive phases when K/N is large
enough in Figure 8(a) while synchronization fails in Figure 8(b) because the coupling is too weak.

6 Installation

MTIDS requires MATLAB/Simulink. It can be downloaded from the website

http://code.google.com/p/mtids/

which also provides a handbook for the software.

7 Implementation

MTIDS is a MATLAB GUI that combines graph theory with numerical simulations of dynamical systems.
For the graph theory aspect of the software, it builds on the software Matgraph [25]. We use functions

from Matgraph mainly as the basis to create, store and draw the graph in the GUI. However, the
functionality of the functions has been extended so that we can also treat directed graphs with MTIDS.

The numerical simulations of MTIDS are based on Simulink because it offers a large variety of design
options to create dynamical systems. The user has to use Simulink directly to create the dynamics of
the individual subsystems, but he does not have to use the overall Simulink model of the interconnected
system directly. Instead, the whole parametrization and settings of the overall model are done in MTIDS.

In addition to the graph structure itself and general settings of the program, we save an associated
dynamics template and parameter settings for every node. Only after the system graph and dynamics
are finished in MTIDS, the system model is exported to Simulink so that the simulation can be run.
During the export to Simulink, MTIDS automatically connects the subsystems according to the graph
structure and sets the desired parameters. The simulation is then also run from MTIDS, and thus the
user only uses Simulink to create (relatively small) subsystem dynamics.

For graph analysis, MTIDS gives several measures for the graph. Naturally, the number of nodes
and edges is shown. Additionally, several measures of the degrees are given (minimum, maximum,
average). For undirected graphs, the graph density, heterogeneity, algebraic connectivity and number of
independent graphs are calculated. For directed graphs, we also get the number of weakly and strongly
connected subgraphs, as well as the information if the graph is balanced and if it has cycles. There is
also the possibility for the user to export graph matrices (Laplacian matrix, adjacency matrix, edge list)
to the MATLAB workspace for further computations.
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Figure 7: Consensus for the undirected graph
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Figure 8: Kuramoto oscillators

8 Conclusion

In this article, we present a new MATLAB software called MTIDS which can be used to easily create and
simulate large-scale interconnected systems in a graphical user interface. Several application examples
are shown to illustrate how the program works and what it can be used for. It should be stressed that
the functionality of MTIDS is not restricted to the presented applications.

MTIDS is under active development. Many improvements are planned, for example additional graph
analysis tools, weighted connections, switching topologies, and GUI optimization. Most importantly the
automatic creation of graphs based on statistical measures like small-world or scale-free networks is a
planned feature. Since the limitations on the program are given mainly by the possibilities of Simulink
and system memory, the authors are also always open to suggestions by users, or even participation by
interested programmers.
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