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Motivation
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Fig. 1. rotating wind turbine, contacting red blood cells, arriving U-Bahn train in Munich, biofilm streamer.

» The objective of this project is to derive a stabilized fixed-grid fluid discretization
approach based on the eXtended Finite Element Method (XFEM) and to develop a
robust fixed-grid fluid-structure interaction (FSI) scheme in 3D.

» Fixed-grid fluid-structure interaction methods are highly promising for a wide variety
of industrial and biomedical applications since they allow for
* large motions, rotations and deformations of flexible structures or even

topological changes without remeshing,
 contact of submersed structures (fluid-structure-contact interaction (FSCI) ().

Fig. 10: Fixed-grid fluid-structure interaction: bending of a flexible wall.

Spatial discretization using cut elements

1. Volume-cell (3D polyhedra) representation of the physical fluid domain
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Governing equations

* Fluid flow described in a fixed-grid Eulerian frame of
reference using cut elements

pfaa—::+pfu-Vu+Vp—2pV-e(u)=pfbf in Qf(t)

2. Standard continuous approximations based on fluid volume-cells ['!
« Build volume-cell connections ; on supp(N™) between elements via common facets
« Number of connections C; per node n determines the number of required degrees of freedom
« Assign the respective degree of freedom (DOF) to the volume-cells

0 else

3. Integration of weak formulation & 3 ﬁ
V-u=0in Q' (1) based on the o o /G
» Description of the structural motion in a Lagrangean divergence theorem [l R P VA A
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i=1 Fig. 2: Support for continuous approximations, volume-cell

connections and dofset numbers, number of DOFs per node. [/

[o-n]:= (6! -n)—(o° n)=0o0nTps(t)

Numerical Analysis and Results !

« Optimal spatial convergence in domain L2-norms and interface
H'2 and H-'/2-norms for u and p in viscous and convection

) dominated cases.

o » Good accuracy regarding the weak imposition of boundary

o conditions.

Pl « « Clear improvement of viscous and pressure fluxes at the
interface compared to residual-based stabilized methods [©l.

» Less sensitivity with respect to the interface position.

» Ghost penalty stabilization and face-oriented fluid stabilizations
in the interface zone supersede any DOF-blocking strategy.

»  Well conditioned system matrices in viscous and convection

dominated cases.
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+ Consistent Nitsche-type weak enforcement of interface conditions |
for viscous ¥ and convection dominated flows ”
Find (u”,p") € V* x Q" such that ¥(v", ¢"*) € VF x Q™
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Fig. 5: GP/FOS faces.
» Face-oriented Ghost-penalty and fluid stabilizations (GP+FOS):

Sh [(vh7 qh), (u‘h’ ph)] = jGP(vh7 uh) + jp(qhvph) + jstream(vh, uh)

viscous ghost penalty ! + pressure stab. ! + streamline stab. [']
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Fig. 3: Kim-Moin flow: viscous and pressure fluxes, enforcement of boundary Fig. 4: Kim-Moin flow: viscous fluxes and enforcement . ) .
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1. Tracking X back in time ¢ with z* =z — f::“ w(z, t)dt

=z =z — At(0spu™ 1 (x) + (1 — Osp)u™(z*))

Partitioned Fluid-Structure Interaction
Iterative Dirichlet-Neumann Coupling (with Aitken relaxation)
* Fluid-operator: ‘J"Fﬂ(d?H) = it ‘

solve fluid flow for (wp,pn) = frt nti_gn
—Y%r

with prescribed Dirichlet velocity u = EFT

2. Solution at time " w.r.t. interface position I'"*!
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. Structure-operator:‘ SpUMTH (Rt =dpt |
solve structure for d;, = di™!
n+1

with prescribed Neumann interface forces f|:
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* Update using Aitken relaxation:
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Fig. 9: Partitionened Dirichlet-Neumann coupling
for fluid-structure interaction.

Fig. 7: Moving cylinder at RE=300, Fig. 8: Rotating beam with constant angular velocity: velocity norm at different t.
velocity norm and pressure at different t.

+ lterative coupling until convergence for each t™.
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