An ALE-formulation for dual mortar finite deformation contact problems with wear

P. Farah, M. Gitterle, A. Popp and W. A. Wall

Institute for Computational Mechanics, Technische Universität München, Germany www.lnm.mw.tum.de

ehrstuhl für Numerische Mechanik.

Archard's wear law Introduction • General wear description for numerous types of wear, e.g. abrasive and Wear due to frictional contact adhesive wear [1] • Complex phenomena characterized by loss of material at contact surfaces • Definition of the worn volume as product of normal force P, sliding length S and • One of the main causes for component damage and subsequent failure of the dimensionless wear coefficent K divided by the hardness H of the softer machines and devices [1] material: Abrasive wear Adhesive wear • High relevance in biomechanical applications, e.g. for joint prostheses [2] $V = K \frac{PS}{H}$ Aim of this work • Redefining the wear as pseudo displacement • Prediction of structural failure due to wear for employing it in the FEM-context • Consideration of different wear types with changing underlying physical effects,

Structure-ALE approach

Aspects of continuum mechanics

- Shape evolution due to wear is directly modeled Time dependent *reference configuration* which is called *material configuration*
- Consideration of wear only on mortar-slave surface (one-body wear)

Staggered structure-ALE algorithm

- 1. Calculate standard frictional mortar contact with holding the material displacements constant (*Lagrangean* step)
- 2. Determine wear in spatial configuration by employing nodal quantities from (1)
- 3. Solve *Eulerian* step in spatial configuration with calculated wear as Dirichlet boundary condition
- 4. Map resulting spatial nodal positions to material configuration (Advection map)

$w = k_w |p_n| \cdot ||\boldsymbol{v}_{\tau,rel}||\Delta t|$

Including the wear expression as additional gap in the mortar framework yields the modified Karush-Kuhn-Tucker conditions [3]

 $g(\mathbf{X}^{(1)}, t) + w(\mathbf{X}^{(1)}, t) \ge 0$ $p_n \le 0$ $p_n \left(g(\mathbf{X}^{(1)}, t) + w(\mathbf{X}^{(1)}, t)\right) = 0$

- The resulting discrete weighted wear increment and the unweighted wear increment are defined as $\Delta \tilde{w}_j = \int_{\gamma_c^{(1)}} \Phi_j(\lambda_n^h || \boldsymbol{u}_{\tau,rel}^h ||) d\gamma$ and $\Delta w_j = \frac{\Delta \tilde{w}_j}{\boldsymbol{D}_{ij}}$
- Removal of the weighting with the well-known mortar matrix D [5] is necessary because the weighted wear is rather a volumetric quantity than an applicable displacement

Results

Oscillating 2D block on cylinder

- Elastic beam is pressed onto a rigid cylinder [5]
- 5 Sinusoidal horizontal slidings
- Visualised normal contact tractions decreasing due to ongoing wear removal

- At least one surface of the body has to be fixed for the *Eulerian* step

 \rightarrow Preventing degeneration of nodes when accumulated wear displacements are larger than element thickness [5]

Advection map

- The last step in the structure-ALE algorithm is well-known as Advection Map problem
- Based on employing the isoparametric properties of the Finite Element Method
- 1. Find the parameter space coordinate ξ_i by solving

 $\sum_{i=1}^{n_{ele}} N_i(\tilde{\boldsymbol{\xi}}_j) \boldsymbol{x}_i - \tilde{\boldsymbol{x}}_j = \boldsymbol{0}$

2. Calculate material displacements with

$$ilde{oldsymbol{d}}_{\phi j} = oldsymbol{N}(ilde{oldsymbol{\xi}}_j) \cdot (oldsymbol{X}^{ele} - oldsymbol{\mathcal{X}}^{ele})$$

Material configuration Spatial configuration **Reference** configuration

Conclusions

- Wear modeled as stress-free displacements resulting in macroscopic structural effects
- Included wear variationally consistent as additional gap in constraint condition
- Embedded wear theory into the existing dual mortar framework
- Prevented element degeneration with *Eulerian* phase

Outlook

- Calculation of wear on both interacting bodies
- Consideration of wear on critical geometries, e.g. edges and corners
- Developing interaction of wear and thermomechanical effects

References

- [1] V. L. Popov, Contact Mechanics and Friction, Physical Principles and Applications, Springer, 2010.
- F. Jourdan, Numerical wear modeling in dynamics and large strains: Application to knee joint prostheses, Wear, 261: 283-292, 2006. [2]
- N. Strömberg, An augmented Lagrangian method for fretting problems, European Journal of Mechanics A/Solids, 16:573-593, 1997.
- A. Huerta, F. Casadei, New ALE applications in non-linear fast transient solid dynamics, Engineering Computations, 11: 317-345, 1994. [4]
- M. Gitterle, A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling, PhD thesis, [5] Technische Universität München, 2012