
•  Choice of reference triad as crucial step, that influences factors like continuity 
requirements, objectivity, convergence behaviour, robustness and complexity 

•  SR mapping defines triad          out of given triad     and given vector          : 

 
•  Direct application of the SR mapping leads to non-objectivity (SR element) 
•  An objective formulation follows with the procedure (NSRISR element): 

1) Define reference triads at nodal positions     and time    via SR mapping: 
 
    2) Define interior reference triad field at position    and time    via SR mapping: 

Reference Triad Field 
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Geometrically exact beam models 
•  Beams as structural models appropriate to describe the mechanics of bodies,  

whose length dimension is much larger than the transverse dimensions 
•  Geometrically exact (GE), if deformation and stress measures are work-paired  

•  Deduction of beam models from the 3D continuum: 

 

 

 

•  Constrained position vector due to Bernoulli assumption of rigid cross sections: 
 
 
 
•  Model reduction from 3D Boltzmann continuum to 1D Cosserat continuum: 
 
•  Reduction from Reissner theory to Kirchhoff theory possible for slender beams: 
 
Aim 
•  Existing GE FEM beam formulations exclusively of Reissner type 
•  Development of a GE FEM beam formulation according to Kirchhoff theory 

Introduction 

Kinematics 
•  Description of the beam centerline and the material frame     via the 4 DoF   ,   
•  Introduction of a reference triad field, which is part of the solution: 
 
•  Determination of the material frame via a relative rotation of reference frame: 
 
•  Derivation of geometrically exact spatial deformation measures: 

 
 
 
 
The torsion of the reference system and the centerline curvature are: 

 
Constitutive law 
•  Derivation of spatial stress resultants from hyperelastic stored energy function: 
 
 
 
 

Weak form 
 
 
 

 
with external line loads          and primary variables 

Governing Equations 

Conclusions 
Geometrically exact Kirchhoff beam element 
•  Strong enforcement of Kirchhoff constraint 
•  Kirchhoff kinematics based on objective reference triad interpolation 
•  C1-continuity of beam geometry through Hermite interpolation 
•  Efficient model reduction possible for isotropic and torsion free applications 
•  Objectivity, path independence, consistent convergence order and locking 

avoidance theoretically predicted and numerically confirmed 

Numerical Examples 

Instability of an elastic ring 
•  Circular ring: E=2.6G=2.1·107, R=20, 

    with h=1.0, b=1/3, IP=9.753·10-3 

•  Displacement-controlled twist  
angle Θ / reaction moment M 

Load displacement curves for twist angle Θ and in-plane displacements u(P) an v(P) of material point P as function of moment M 

Θ = π/4                                             Θ = π/2                                             Θ = 3π/4                                            Θ = π 

Initial (red) and deformed (green) geometries 
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•  Discretization of beam centerline with third order Hermite shape functions: 

 
 

with nodal positions    , nodal tangents    and the element length 
à Fulfilment of completeness, interpolation property, C1-continuity at nodes 

•  Discretization of relative angle with third order Lagrange shape functions: 

 

Discretization 
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Convergence plot for SR and NSRISR element                                   Initial (red) and deformed (green) geometries 

H 

R 

M 

R 

Inversion of an elastic helix 
•  Clamped helix: E=2G=1, l=103, 

n  with h=10, R=H=l/(9π√2) 
•  The external moment M=18πEI2/l  

exactly inverts the elastic helix 
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