A Three-Dimensional Nonlinear Finite Element

Formulation for Geometrically Exact Kirchhoff Rods

Introduction

Geometrically exact beam models

 Beams as structural models appropriate to describe the mechanics of bodies,
whose length dimension is much larger than the transverse dimensions

« Geometrically exact (GE), if deformation and stress measures are work-paired
* Deduction of beam models from the 3D continuum:

—_— Deformation i

* Constrained position vector due to Bernoulli assumption of rigid cross sections:
X(£1,82,63) = R(&1) +&2G2(&1) +£3G3(€1)

x(€1,£2,€3) = 1(&1) + €280(&1) + €383(&1)
« Model reduction from 3D Boltzmann continuum to 1D Cosserat continuum:
3 DoF:x(&) — 6 DoF:r(&1), q(&1) with g, = A(q(é1))e; for 1 =1,2,3

* Reduction from Reissner theory to Kirchhoff theory possible for slender beams:

6 DoF: r(&1), q(é1) — 4 DoF:r(&1), v(&1) since g1 x r'=0
Aim
+ Existing GE FEM beam formulations exclusively of Reissner type
« Development of a GE FEM beam formulation according to Kirchhoff theory

it h <l

Governing Equations

Kinematics
» Description of the beam centerline and the material frame g; via the 4 DoF r, ¢
* |ntroduction of a reference triad field, which is part of the solution:
Eref1 =T /Y]], Grepo =To(r), gpres3 = f3(r)
« Determination of the material frame via a relative rotation of reference frame:
81 = Bref,1> 82 = Bref,2 COSY + Bref,3 SiN @, g3 = 8ref,3COSY — Zref 2 Sin ¢
» Derivation of geometrically exact spatial deformation measures:

T+ ¢ — 70— ¢g /
w=| (g2-k) — (G2 ko) and e = |[r']| -1

(83-K) = (G3-ko) /o
The torsion of the reference system and the centerline curvature are:

/ !/
r=f5(r) - f3(r) and Kk = rll >f| |r2
r

Constitutive law
* Derivation of spatial stress resultants from hyperelastic stored energy function:

8Telr|int(€7 w) and m — 8relr|int(€, w)
Oe ow

n=mngy Wwith n=

1 1 . .
e.9. Miple,w) = EEAGQ + Echmw with ¢ = diag(Glp, Elo, El3)g,
Weak form
L I r/ ! ~ r/ -
/O (5at 2 X 51") m+6ér' - n—6r-f— (&xt /2 X 5r’> -m| ds
r r
__ — p— , - )
—|or - f — (6atl I;2><5r'>-m =30
L 115 . |I' | 115

with external line loads f, M and primary variablesr, or, ¢, o«

Discretization

» Discretization of beam centerline with third order Hermite shape functions:
2 2
. ] . .
rp(€) = - Hy(e)d' + 78 37 Hi(E)t'
i=1 i=1

with nodal positions d? nodal tangents t*and the element length ;.
- Fulfilment of completeness, interpolation property, C'-continuity at nodes

* Discretization of relative angle with third order Lagrange shape functions:

4 o
pr() = ) L&)
i=1
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Reference Triad Field

Choice of reference triad as crucial step, that influences factors like continuity
requirements, objectivity, convergence behaviour, robustness and complexity

SR mapping defines triad gsr,;out of given triad g; and given vector gsr 1:

gi - 8SR.1 _ .
—— 8sr,1 1+ 81) for j=2,3
1+81-8sRr1 ( )
Direct application of the SR mapping leads to non-objectivity (SR element)

An objective formulation follows with the procedure (NSRISR element):
1) Define reference triads at nodal positions £7 and time ¢;. via SR mapping:

8SR,j — gref,j(g?fa tr), 8 = gref,i(g?atk—l)a 8SR,1 — g1(&7, tr)
2) Define interior reference triad field at position§1and time t;, via SR mapping:
8SR = 8ref,i(€1,tk)s 8 = 8rer,i(€1,tk), 8sr,1 = 81(£1,tk)

SR, = 8

Numerical Examples

Inversion of an elastic helix lM

Clamped helix: E=2G=1, =103,

m with h=10, R=H=1/(91V2)

The external moment M=181EL)/I
exactly inverts the elastic helix
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Convergence plot for SR and NSRISR element

In

stability of an elastic ring

Circular ring: E=2.6G=2.1-107, R=20, |
B with h=1.0, b=1/3, [,=9.753:10-3 T~

Displacement-controlled twist | -
angle © / reaction moment M

Initial (red) and deformed (green) geometries
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Load displacement curves for twist angle © and in-plane dlsplacements u(P) an v(P) of material point P as function of moment M

Conclusions

Geometrically exact Kirchhoff beam element

Strong enforcement of Kirchhoff constraint

Kirchhoff kinematics based on objective reference triad interpolation
C'-continuity of beam geometry through Hermite interpolation

Efficient model reduction possible for isotropic and torsion free applications

Obijectivity, path independence, consistent convergence order and locking
avoidance theoretically predicted and numerically confirmed
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