A Three-Dimensional Nonlinear Finite Element Formulation for Geometrically Exact Kirchhoff Rods

Christoph Meier, Alexander Popp and Wolfgang A. Wall

Institute for Computational Mechanics, Technische Universität München, Germany www.lnm.mw.tum.de

Introduction

Geometrically exact beam models

- Beams as structural models appropriate to describe the mechanics of bodies, whose length dimension is much larger than the transverse dimensions
- Geometrically exact (GE), if deformation and stress measures are work-paired
- Deduction of beam models from the 3D continuum:

Reference Triad Field

- Choice of reference triad as crucial step, that influences factors like continuity • requirements, objectivity, convergence behaviour, robustness and complexity
- SR mapping defines triad $g_{SR,i}$ out of given triad \bar{g}_i and given vector $g_{SR,i}$:

$$\mathbf{g}_{SR,j} = \bar{\mathbf{g}}_j - \frac{\bar{\mathbf{g}}_j \cdot \mathbf{g}_{SR,1}}{1 + \bar{\mathbf{g}}_1 \cdot \mathbf{g}_{SR,1}} \left(\mathbf{g}_{SR,1} + \bar{\mathbf{g}}_1 \right) \quad \text{for} \quad j = 2,3$$

- Direct application of the SR mapping leads to non-objectivity (SR element)
- An objective formulation follows with the procedure (NSRISR element): 1) Define reference triads at nodal positions ξ_1^n and time t_k via SR mapping: $\mathbf{g}_{SR,j} = \mathbf{g}_{ref,j}(\xi_1^n, t_k), \ \bar{\mathbf{g}}_i = \mathbf{g}_{ref,i}(\xi_1^n, t_{k-1}), \ \mathbf{g}_{SR,1} = \mathbf{g}_1(\xi_1^n, t_k)$
- Constrained position vector due to Bernoulli assumption of rigid cross sections: $\mathbf{X}(\xi_1,\xi_2,\xi_3) = \mathbf{R}(\xi_1) + \xi_2 \mathbf{G}_2(\xi_1) + \xi_3 \mathbf{G}_3(\xi_1)$ if $h \ll l$ $\mathbf{x}(\xi_1,\xi_2,\xi_3) = \mathbf{r}(\xi_1) + \xi_2 \mathbf{g}_2(\xi_1) + \xi_3 \mathbf{g}_3(\xi_1)$
- Model reduction from 3D Boltzmann continuum to 1D Cosserat continuum: 3 DoF: $\mathbf{x}(\boldsymbol{\xi}) \rightarrow 6$ DoF: $\mathbf{r}(\xi_1)$, $\mathbf{q}(\xi_1)$ with $\mathbf{g}_i = \Lambda(\mathbf{q}(\xi_1))\mathbf{e}_i$ for i = 1, 2, 3
- Reduction from Reissner theory to Kirchhoff theory possible for slender beams: 6 DoF: $r(\xi_1), q(\xi_1) \rightarrow 4$ DoF: $r(\xi_1), \varphi(\xi_1)$ since $g_1 \times r' \doteq 0$

Aim

- Existing GE FEM beam formulations exclusively of Reissner type
- Development of a GE FEM beam formulation according to Kirchhoff theory

Governing Equations

Kinematics

2) Define interior reference triad field at position ξ_1 and time t_k via SR mapping: $\mathbf{g}_{SR,j} = \mathbf{g}_{ref,j}(\xi_1, t_k), \ \bar{\mathbf{g}}_i = \mathbf{g}_{ref,i}(\xi_1^n, t_k), \ \mathbf{g}_{SR,1} = \mathbf{g}_1(\xi_1, t_k)$

Numerical Examples

Inversion of an elastic helix

- Clamped helix: E=2G=1, $I=10^3$, with h=10, R=H=I/($9\pi\sqrt{2}$)
- The external moment $M=18\pi EI_2/I$ exactly inverts the elastic helix

Initial (red) and deformed (green) geometries

Instability of an elastic ring

Description of the beam centerline and the material frame ${f g}_i$ via the 4 DoF ${f r}$, arphi

Introduction of a reference triad field, which is part of the solution:

 $g_{ref,1} = r'/||r'||, \quad g_{ref,2} = f_2(r), \quad g_{ref,3} = f_3(r)$

- Determination of the material frame via a relative rotation of reference frame: $\mathbf{g}_1 = \mathbf{g}_{ref,1}, \, \mathbf{g}_2 = \mathbf{g}_{ref,2} \cos \varphi + \mathbf{g}_{ref,3} \sin \varphi, \, \mathbf{g}_3 = \mathbf{g}_{ref,3} \cos \varphi - \mathbf{g}_{ref,2} \sin \varphi$
- Derivation of geometrically exact spatial deformation measures:

$$\omega = \begin{pmatrix} \tau + \varphi' - \tau_0 - \varphi'_0 \\ (g_2 \cdot \kappa) - (G_2 \cdot \kappa_0) \\ (g_3 \cdot \kappa) - (G_3 \cdot \kappa_0) \end{pmatrix}_{g_i} \text{ and } \epsilon = ||\mathbf{r}'|| - \epsilon$$

The torsion of the reference system and the centerline curvature are:

$$au = \mathbf{f}_2'(\mathbf{r}) \cdot \mathbf{f}_3(\mathbf{r})$$
 and $\kappa = rac{\mathbf{r}' imes \mathbf{r}''}{||\mathbf{r}'||^2}$

Constitutive law

Derivation of spatial stress resultants from hyperelastic stored energy function:

$$\mathbf{n} = n\mathbf{g}_1 \quad \text{with} \quad n = \frac{\partial_{rel} \Pi_{int}(\epsilon, \omega)}{\partial \epsilon} \quad \text{and} \quad \mathbf{m} = \frac{\partial_{rel} \Pi_{int}(\epsilon, \omega)}{\partial \omega}$$

e.g. $\Pi_{int}(\epsilon, \omega) = \frac{1}{2} EA\epsilon^2 + \frac{1}{2} \omega^T \mathbf{c}_m \omega \quad \text{with} \quad \mathbf{c}_m = \text{diag}(GI_P, EI_2, EI_3)_{\mathbf{g}_i}$

Weak form

$$\int_{0}^{L} \left[\left(\delta \alpha \mathbf{t} + \frac{\mathbf{r}'}{|\mathbf{r}'|^{2}} \times \delta \mathbf{r}' \right)' \cdot \mathbf{m} + \delta \mathbf{r}' \cdot \mathbf{n} - \delta \mathbf{r} \cdot \tilde{\mathbf{f}} - \left(\delta \alpha \mathbf{t} + \frac{\mathbf{r}'}{|\mathbf{r}'|^{2}} \times \delta \mathbf{r}' \right) \cdot \tilde{\mathbf{m}} \right] ds$$

Conclusions

Geometrically exact Kirchhoff beam element

- Strong enforcement of Kirchhoff constraint
- Kirchhoff kinematics based on objective reference triad interpolation

$$-\left[\delta \mathbf{r} \cdot \mathbf{f}\right]_{\Gamma_{\sigma}} - \left[\left(\delta \alpha \mathbf{t} + \frac{\mathbf{r}'}{|\mathbf{r}'|^2} \times \delta \mathbf{r}'\right) \cdot \mathbf{m}\right]_{\Gamma_{\sigma}} = 0$$

with external line loads $\tilde{\mathbf{f}}, \tilde{\mathbf{m}}$ and primary variables $\mathbf{r}, \delta \mathbf{r}, \varphi, \delta \alpha$

Discretization

Discretization of beam centerline with third order Hermite shape functions:

$$\mathbf{r}_{h}(\xi) = \sum_{i=1}^{2} H_{d}^{i}(\xi) \mathbf{d}^{i} + \frac{l_{ele}}{2} \sum_{i=1}^{2} H_{t}^{i}(\xi) \mathbf{t}^{i}$$

with nodal positions d^i , nodal tangents t^i and the element length l_{ele} \rightarrow Fulfilment of completeness, interpolation property, C¹-continuity at nodes Discretization of relative angle with third order Lagrange shape functions:

$\varphi_h(\xi) = \sum L^i(\xi) \hat{\varphi}_i$

- C¹-continuity of beam geometry through Hermite interpolation
- Efficient model reduction possible for isotropic and torsion free applications
- Objectivity, path independence, consistent convergence order and locking avoidance theoretically predicted and numerically confirmed

References

- [1] F. Armero, J. Valverde, Invariant hermitian finite elements for thin kirchhoff rods. I: The linear plane case, Computer Method in Applied Mechanics and Engineering 213216 (2012) 427 – 457.
- [2] F. Armero, J. Valverde, Invariant hermitian finite elements for thin kirchhoff rods. II: The linear three-dimensional case, Computer Methods in Applied Mechanics and Engineering 213216 (2012) 458 – 485.
- [3] M. A. Crisfield, G. Jelenic, Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 455 (1999) 1125–1147.
- M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures, Volume 2: Advanced Topics, Wiley & Sons, 1997.
- [5] E. Reissner, On finite deformations of space-curved beams, Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 32 (1981) 734-744.
- [6] J. Simo, A finite strain beam formulation. The three-dimensional dynamic problem. Part I, Computer Methods in Applied Mechanics and Engineering 49 (1985) 55-70.
- [7] J. Simo, L. Vu Quoc, A three dimensional finite strain rod model. Part II: Computational aspects, Computer Methods in Applied Mechanics and Engineering 58 (1986) 79–116.
- [8] D. Zupan, M. Saje, Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures, Computer Methods in Applied Mechanics and Engineering 192 (2003) 5209 – 5248.