A temporal consistent monolithic approach to fluid-

structure interaction enabling single field predictors

Introduction

Motivation and goals

» Possibility to choose time integration scheme in structure and fluid field
differently and tailored to the needs of the respective field

+ Interpolation of interface traction in presence of different temporal discretizations
in structure and fluid field in order to avoid possible stability problems [1]

» Enable field specific predictors in order to reduce computational costs

Problem Definition
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Coupling conditions at fluid-structure interface
» Weak enforcement of kinematic coupling condition by Lagrange multiplier field
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Figure 1: Problem definition

 |dentify Lagrange multiplier field as interface traction A= h[—FSI hrFSI

Discretization

Spatial discretization of structure and fluid field

* Mixed/hybrid finite elements for structure field

+ Stabilized finite elements for fluid field

- Distinguish between interface DOFs (subscript [") and interior DOFs (subscriptI)

Spatial disretization of Lagrange multiplier field

+ Dual Mortar method for Lagrange multiplier field [2]

+ Distinguish between master and slave side due to Mortar method

Temporal discretization

« Temporal discretization with fully implicit, single-step, single-stage time
integration schemes with dynamic equilibrium at generalized mid-point

« Different time integration schemes in structure and fluid field > ¢5™ #* 7 m

+ Single field predictors might result in a gap Adr at the interface that has to be
accounted for in the discrete kinematic coupling condltlons

Discrete coupling conditions
» Kinematic continuity (accounting for possible predictors)
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« Dynamic coupling conditions have to respect possible different time integrators in
structure and fluid field. Hence, the Neumann-like interface traction has to be
incorporated into the balances of linear momentum at the respective generalized
mid-point tS,m or ¢I»m by interpolation (Fig. 2): 1—a
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Linearization for Newton-Krylov solver
 Linearization with respect to unknown Lagrange multipliers
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* Monolithic system of linearized equations
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Monolithic System of Equations

Linear System of Equations
» We exemplarily choose the structure field as master field > structure-governed

interface motion - Mortar coupling operators: Cgr = M, GFS = ’.D
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Condensation of Lagrange multipliers
» Use balance of linear momentum of slave interface DOFs for condensation

« Dual Mortar method leads to diagonal form of Mortar matrix D > Computationally
cheap condensation of Lagrange multipliers and slave interface DOFs

Numerical Examples

Pseudo 1D FSI example with analytical solution
» Temporal convergence study with different
time integrators in structure and fluid field (Fig. 4) yk:r
* Overall order of accuracy depends on single =z
field accuracy - second order accuracy only
if all time integrators are second order accurate ”[
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Figure 4: Temporal convergence of L2-error in velocity and pressure field

2D leaky driven cavity with flexible bottom

* Number of linear iterations reflects computational costs

 Reference solution without predictor (ConstDis)

* Reduction of number of linear iterations by 10% on average by employing simple
predictors in structure field like constant velocity assumption (ConstVel) or
constant acceleration assumption (ConstAcc) (see Fig. 5)
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Figure 5: Saving of linear iterations as measure of
computational costs
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Figure 6: Velocity, pressure and
Lagrange multiplier field
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