TECHNISCHE UNIVERSITAT MUNCHEN
Lehrstuhl fiir Informatik VII

Verification of Discrete- and Continuous-Time
Non-Deterministic Markovian Systems

Jan Kretinsky

Vollsténdiger Abdruck der von der Fakultét fiir Informatik der Technischen Universitéit Miinchen
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Priifer der Dissertation:
1. Univ.-Prof. Dr. Dr. h.c. Francisco Javier Esparza Estaun

2. Univ.-Prof. Dr. ir. Joost-Pieter Katoen
Rheinisch-Westflische Technische Hochschule Aachen

Die Dissertation wurde am 10.07.2013 bei der Technischen Universitdt Miinchen eingereicht und
durch die Fakultat fiir Informatik am 19.10.2013 angenommen.

ii

Abstract

This thesis deals with verification of probabilistic systems both in
the setting of discrete time (e.g. Markov decision processes) and of
continuous time (e.g. continuous-time stochastic games, interactive
Markov chains).

In the discrete-time setting, we design a novel method to translate
formulae of linear temporal logic to automata and show how this
speeds up the verification process. This enables us, for instance, to
verify network protocols with more participants in situations where
this was previously hopelessly infeasible.

In the continuous-time setting, we give algorithms to compute or
approximate probabilities to reach a given state within a given time
bound. Moreover, we also consider the setting where the system
under verification operates in an unknown environment or in an
environment conforming to a given specification given in our new
formalism. This enables us, for instance, to verify a component
of a system without knowing the code of other components of the
system, only with the knowledge of some guarantees on their be-
haviour. This is the first compositional approach to verification and
assume-guarantee reasoning method in the probabilistic continuous-
time setting.

Attached to this thesis, there are papers published at conferences
CAV 2012, ATVA 2012, FSTTCS 2012, CAV 2013, ATVA 2013 and
CONCUR 2013 and in the journal Information and Computation in
2013.

iii

iv

Zusammenfassung

Diese Arbeit beschiiftigt sich mit Verifikation von probabilistischen
Systemen sowohl in diskreter Zeit (z.B. Markov Entscheidungspro-
zesse) als auch in kontinuierlicher Zeit (z.B. stochastische Spiele in
kontinuierlichen Zeit, interaktive Markov Ketten).

Beziiglich diskreter Zeit entwerfen wir eine neuartige Methode, um
Formeln der linearen zeitlichen Logik in Automaten iibersetzen, und
zeigen, wie diese den Verifikationsprozess beschleunigt. Dies erméglicht
es uns zum Beispiel, Netzwerk-Protokolle mit mehr Teilnehmer zu
iiberpriifen, auch in Situationen in denen dies bisher hoffnungslos
unmoglich war.

Beziiglich kontinuierlicher Zeit geben wir Algorithmen die Wahr-
scheinlichkeiten von der zeitgebundenen Erreichbarkeit berechnen
oder anndhern. Diese sind Wahrscheinlichkeiten, dass ein gegebe-
ne Zustand innerhalb gegebener Zeit erreicht ist. Dariiber hinaus
betrachten wir den Fall, dass das System zum Verifizieren in einer
unbekannten Umgebung oder in einer Umgebung, die eine gegebe-
nen Spezifikation in unserem neuen Formalismus erfiillt, laiift. Dies
ermoglicht es uns zum Beispiel, eine Komponente eines Systems,
ohne den Code der anderen Komponenten des Systems zu kennen,
sondern nur mit einiger Garantien fiir ihr Verhalten, zu verifizie-
ren. Dies ist das erste kompositorische Verifikationsverfahren und
assume-guarantee Argumentationsverfahren fiir probabilistische Sy-
stemen in kontinuierlicher Zeit.

Eingebunden in dieser Dissertationsarbeit befinden sich Papiere die
in den Konferenzen CAV 2012, ATVA 2012, FSTTCS 2012, CAV
2013, ATVA 2013 und CONCUR 2013 und in der Zeitschrift Infor-
mation and Computation im Jahr 2013 verdffentlicht wurden.

vi

Acknowledgements

First, I would like to thank all co-authors of the papers appended
to this thesis. These are the following amazing people: Javier, my
advisor here in Munich, always helpful, cheerful and friendly, I am
glad I could learn from this wise man; Tony and Toma4s, my consul-
tants in Brno, who taught me my first steps, tried to teach me that
more is always more and were always in for good food; Krish, my
future advisor in Vienna, smiling, efficient and always in for a Greek
fish; my dear office mates and friends Andreas, Rusldan and Jena in
Brno, each of whom was always ready to talk with me and help me,
they made me survive and enjoy my stay in a foreign country and I
cherish the moments spent with them, luckily too many to be listed;
the two Vojta’s, 48, who abandoned any Botswanian ambitions and
grew content with Oxford, and Rehék, who likes it the harder way
in Brno; Holger, the best homeless dean ever, who knows where to
spend the winter and how to shelter his guests properly.

I also want to thank all my colleagues from Lehrstuhl VII for the
atmosphere they created here, the Mensa lunches where I have learnt
German and the nice 4 years at TUM. Last, but not least, I want to
thank my beloved parents for their unconditional support and care,
and my dearest Zuzka for her love and for making Garching a rustic
paradise for me.

vii

viii

Contents

1 Introduction 1
1.1 Stateoftheart 3
1.2 Contribution of the thesis 4
1.3 Publication summary oL 4

1.3.1 Other co-authored papers 5
1.3.2 Summary 6
1.4 Outline of the thesis 6

2 Quantitative models, properties and analysis 9

2.1 Stochastic processes and Markov chains 9
2.1.1 Discrete-time Markov chains 10
2.1.2 Continuous-time Markov chains 11

2.2 Non-deterministic systems 11
2.2.1 Markov decision processes and games 13
2.2.2 Interactive Markov chains and games 14

2.3 Quantitative properties 15
2.3.1 Properties of linear and branching time 16
2.3.2 Probabilistic and timed extensions 17

2.4 Quantitative analysiso 19

3 Discrete-time systems 23
3.1 Stateoftheart 23
3.2 Newresults 28

4 Continuous-time systems 35
4.1 Stateoftheart 35
4.2 Newresults o 37

5 Summary of the results and future work 41
5.1 Summary of the papers 42

Bibliography 45

X

X CONTENTS

Appendix 55

I Papers on discrete-time Markovian systems 57
A Deterministic Automata for the (F,G)-Fragment of LTL 59
B Rabinizer:

Small Deterministic Automata for LTL(F,G) (
C Automata with Generalized Rabin Pairs for Probabilistic Model

Checking and LTL Synthesis 83
D Rabinizer 2:

Small Deterministic Automata for LTL\ gy 103
II Papers on continuous-time Markovian systems 109

E Continuous-Time Stochastic Games with Time-Bounded Reach-

ability 111
F Verification of Open Interactive Markov Chains 153
G Compositional Verification and Optimization of Interactive Markov

Chains 167
III Auxiliary materials 185
H Beyond Markov chains 187
I Quantitative analysis overview 189

J Note on copyrights 193

List of Figures

2.1 Processes with zero, one and two non-determinisms 14
2.2 Processes with non-determinism (N), Markovian probabilities (P),

and continuous time (CT).. 15
2.3 A deterministic timed automaton specification 19

3.1 Algorithm for non-probabilistic verification of LTL over transition
systems Lo 23
3.2 Automata-theoretic approach to non-probabilistic verification . . 24
3.3 An example showing why non-deterministic automata cannot be
used in Algorithm Al1RunsConform(S,¢) for probabilistic sys-
tems. The example is independent of whether a state or action
based logic is used. For simplicity, we use state-based notation
where h is assumed to hold in the left state and ¢ in the right one. 25
3.4 An example showing why non-deterministic automata cannot be

used in Algorithm Al1RunsConform(S, ¢) for games. 25
3.5 Automata-theoretic approach to synthesis and probabilistic ver-
ificationo 26

3.6 The standard way of translating LTL to deterministic w-automata.

All algorithms are also implemented in the academic tool GOAL [TCT*08]. 27
3.7 A new way of translating LTL to deterministic w-automata . . . 29
3.8 Automata produced by the traditional approaches (on the left)

and the new approach (on the right) for formula ¢ = GaVFb . . 29

3.9 Automaton for p = GFaANGFb L. 30
3.10 Algorithm for the analysis of the product S x. A 33
4.1 Two examples of open IMC, 37
4.2 A modal continuous-time automaton 40

xi

xii LIST OF FIGURES

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

I.1
1.2
I3
14

Non-stochastic analysis. 20
Qualitative stochastic analysis, 20
Quantitative stochastic analysis 20
Continuous-time analysis 21
Comparison of the methods on simple fairness constraints. 31
Blow up caused by de-generalisation. 32
Experimental results for model checking (time-out after 1800s) . 34
Experimental results for synthesis. 34
Non-stochastic analysis. 189
Qualitative stochastic analysis 190
Quantitative stochastic analysis, 190
Continuous-time analysis 191

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Cell phones, electric networks, water pumps, medical equipment, airplanes, in-
telligent houses and autonomous cars are all examples of cyber-physical systems
surrounding us with an increasing intensity. They are systems whose opera-
tion in a physical environment is controlled by an embedded computational
core. They have arisen from service-oriented systems, large and distributed
systems providing services supporting machine-to-machine interaction over net-
work, by incorporating a number of embedded systems, small and closed systems
autonomously controlling complex physical systems [mtlll]. Studying these
complex systems is a challenging and important task also for computer science.

Since cyber-physical systems operate in physical environment, it is vital to guar-
antee they operate safely and efficiently in real-time. How can safe behaviour
(“the steering system never crashes the car”) and acceptable performance (“the
internet service is available 98 % of time”) be ensured?

e In the first step, one can build and validate models of these systems. Due
to the systems’ interaction with the physical environment, appropriate
modelling languages need to feature probabilities to cope with uncertain-
ties, noisy inputs or failing components; and often also continuous-time
to capture random delays in real time such as customers’ arrivals, mes-
sage transmission time or time to failure. These features are often called
quantitative due to their use of real values as opposed to the traditional
discrete setting based on truth values.

e In the second step, one can then verify, possibly automatically, the desired
properties (called specifications) of the models using formal methods.

Cyber-physical systems have been identified as a key area of research by many
funding organisations such as the US National Science Foundation (see [Wol07]).
Many current projects develop and improve theories and methods for modelling
and verification of these complex systems. As to the recent projects in the

2 CHAPTER 1. INTRODUCTION

Germanic region, there are, for instance, AVACS (Automatic Verification And
Analysis of Complex Systems; universities of Oldenburg, Freiburg, Saarland et
al. [ava04]), ROCKS (RigorOus dependability analysis using model ChecKing
techniques for Stochastic systems; universities of Aachen, Dresden, Saarland,
Munich, Nijmegen, Twente [roc09]), QUASIMODO (Quantitative System Prop-
erties in Model-Driven-Design of Embedded Systems; universities and institutes
in Aalborg, Eindhoven, Nijmegen, Twente, Cachan, Aachen, Saarland, Brussels,
and industrial partners [qua08]), MT-LAB (Modelling of Information Technol-
ogy; universities of Copenhagen and Aalborg [mtl09]), IDEA4CPS (Founda-
tions fro cyber-physical systems; universities of Copenhagen and Aalborg and
in China [idel1]), to name just a few.

Further, many top conferences deal with various aspects of cyber-physical sys-
tems in general using methods of control theory, robotics and applied mathemat-
ics like ICCPS (International Conference on Cyber-Physical Systems), HSCC
(Hybrid Systems: Computation and Control), CDC (Conference on Decision
and Control), EMSOFT (International Conference on Embedded Software), or
RTAS (Real-Time and Embedded Technology and Applications Symposium).
Moreover, theoretical computer science can also offer theory and techniques for
specification and verification of such systems. Indeed, many renown conferences
extend their scope to analysis of quantitative models, e.g. LICS, CONCUR,
CAV, ATVA, POPL, FSTTCS, or focus purely on this area, e.g. QEST (Con-
ference on Quantitative Evaluation of SysTems), FORMATS (Formal Modelling
and Analysis of Timed Systems).

In this thesis, we improve theory and tools for specification and verification of
such quantitative systems. As foreshadowed, we have to deal with probabilities
and often with continuous-time, too. Nevertheless, we also deal with models
where time is not continuous, but simply advances in discrete steps. The reason
is twofold. Firstly, one can often reduce the continuous-time case to the discrete
one and then more easily solve the latter. Secondly, in many applications such as
randomised protocols or distributed randomised algorithms, the precise timing
is irrelevant for checking many properties such as mutual exclusion property or
eventual election of the leader.

We focus on some of the most common modelling frameworks featuring proba-
bilities and (continuous or discrete) time, namely on Markov chains and their
extensions such as Markov decision processes and stochastic games. We improve
some existing methods and provide new ones to cope with the demanding task
of analysis of these models.

Markov chains [Mar06, Nor98, MT09] are the most successful class of stochastic
processes and are for decades heavily used not only in computer science, but
also in biology (population models, genetics), operations research (queueing
theory), chemistry (kinetics of reactions), physics (thermodynamics), economics
(price models), or social sciences (regime-switching models) and are used in
many applications as diverse as internet searching, speech recognition, baseball
analysis, gambling and algorithmic music composition.

1.1. STATE OF THE ART 3

Markov decision processes [Bel57, How60, Put94, FV96] are an extension of
Markov chains, where the process can also be controlled. Apart from computer
science, they are used in robotics, automated control, economics, and manufac-
turing to solve optimisation problems using methods of linear programming, dy-
namic programming or reinforcement learning. Stochastic games [Sha53, FV96,
NS03] extend Markov decision processes to a competitive case where the con-
trol is divided between two antagonistic players. Their applications range from
economics over evolutionary biology to cyber-physical systems.

1.1 State of the art

Research on Markov chains, Markov decision processes and their extension has
traditionally been focused on long run properties, which describe how the sys-
tem performs on average when its behaviour “stabilises” after running “long
enough”. An example of a typical property is “the internet service is available
98 % of time”. Efficient techniques to compute or approximate this kind of
performance have been developed, see e.g. [Put94, Bré99].

However, many properties remain out of scope of this most traditional frame-
work. For instance, questions like “How long is the service continuously un-
available?” or “How likely is it that the service fails today?” require to in-
spect the behaviour of the system until a finite time horizon, i.e. to analyse
what the system does in a given time. Such analysis is often also called tran-
sient because it describes what the system goes through at a given time point).
Since satisfaction of these properties is vital in safety-critical systems, this topic
has attracted a lot of recent attention triggered by seminal papers [ASSBI6]
and [BHHKO04], for more details see Chapter 4. However, decidability of many
optimisation problems remains open and approximation techniques only start
to mature. Furthermore, the analysis is often limited to systems that operate in
a known environment despite the effort to transfer compositionality principles
to this setting. In this thesis, we establish decidability and approximability of
several optimisation problems and provide algorithms also for the setting where
the environment is unknown or only some of its properties are known.

Another type of properties interesting from the verification point of view are
temporal properties, which describe ordering of events in the system rather
than their frequency. A typical example is “whenever a service is requested
it is eventually almost surely provided without any idling inbetween”. These
properties—often expressed in temporal logics—have a long tradition in com-
puter science [Pnu77] and proved appropriate for describing systems’ desired
behaviour. Methods for verification of these properties are very mature, see
e.g. [BK08|. However, in the probabilistic setting, the running times of the
methods are often impractical. Furthermore, in the continuous-time setting, the
current logics are often inappropriate for description of interesting properties.
In this thesis, we improve on the existing methods in the probabilistic setting

4 CHAPTER 1. INTRODUCTION

and provide a new formalism for specifying properties in the continuous-time
setting.

1.2 Contribution of the thesis

Here we only give a very brief and high-level account on the contribution of the
thesis. For a technical summary, we refer the reader to Chapter 5.

In the discrete-time setting, we have designed a novel method to process tempo-
ral properties [KE12, GKE12, KG13] and show how this speeds up the verifica-
tion process [CGK13]. This enables us, for instance, to verify network protocols
with more participants in situations where this was previously hopelessly infea-
sible. For more details on these results, please see Chapter 3. Part I of Appendix
then provides the co-authored papers cited above as Paper A, B, D, and C as
published at conferences CAV 2012, ATVA 2012, ATVA 2013, and CAV 2013,
respectively.

In the continuous-time setting, we give algorithms to compute or approxi-
mate probabilities on which the transient analysis depends [BFK 13, BHK'12,
HKK13]. Moreover, we also consider the setting where the system under verifi-
cation operates in an unknown environment or in an environment conforming to
a given specification given in our new formalism. This enables us, for instance,
to verify components of a system without knowing the code of other compo-
nents of the system, only with the knowledge of some guarantees on the their
behaviour. This is the first compositional verification and assume-guarantee rea-
soning in the probabilistic continuous-time setting. For more details on these
results, see Chapter 4. Part IT of Appendix then provides the co-authored pa-
pers cited above as Paper E, F, and G as published in journal Information and
Computation (2013) and at conferences FSTTCS 2012, and CONCUR 2013,
respectively.

1.3 Publication summary

In Part I of Appendix, we present the following papers:

A Jan Kretinsky and Javier Esparza. Deterministic automata for the (F,G)-
fragment of LTL. CAV, 2012. [KE12]

B Andreas Gaiser, Jan Kretinsky, and Javier Esparza. Rabinizer: Small
deterministic automata for LTL(F, G). ATVA, 2012. [GKE12]

C Krishnendu Chatterjee, Andreas Gaiser, and Jan Kfetinsky. Automata
with generalized Rabin pairs for probabilistic model checking and LTL
synthesis. CAV, 2013. [CGK13]

1.3. PUBLICATION SUMMARY)

D Jan Kietinsky and Rusldn Ledesma Garza. Rabinizer 2: Small determin-
istic automata for LTL\gu. ATVA, 2013. [KG13]

In Part II of Appendix, we present the following papers:

E Tom&s Brazdil, Vojtéch Forejt, Jan Kréal, Jan Kretinsky, and Antonin
Kucera. Continuous-time stochastic games with time-bounded reachabil-
ity. Information and Computation, 2013. [BFK*13]

F Tomas Brazdil, Holger Hermanns, Jan Kréal, Jan Kretinsky, and Vojtéch
Rehdk. Verification of open interactive Markov chains. FSTTCS, 2012. [BHKT12]

G Holger Hermanns, Jan Krc¢al, and Jan Kietinsky. Compositional verifica-
tion and optimisation of interactive Markov chains. CONCUR, 2013. [HKK13]

1.3.1 Other co-authored papers

For the sake of completeness, apart from the presented papers we also list other
co-authored papers, which are, however, not a part of this thesis.

e Tomds Brazdil, Vojtéch Forejt, Jan Kietinsky, and Antonin Kucera. The
satisfiability problem for probabilistic CTL. LICS, 2008. [BFKKO8§]

Papers on non-Markovian continuous-time systems

e Tomas Brazdil, Jan Kréal, Jan Kietinsky, Antonin Kucera, and Vojtéch
Rehék. Stochastic real-time games with qualitative timed automata ob-
jectives. CONCUR, 2010. [BKK'10]

e Tomas Brazdil, Jan Krcal, Jan Kietinsky, Antonin Kucera, and Vojtéch
Rehak. Measuring performance of continuous-time stochastic processes
using timed automata. HSCC, 2011. [BKK*11]

e Tomds Bréazdil, Jan Krcsl, Jan Kietinsky, and Vojtéch Rehdk. Fixed-
delay events in generalized semi-Markov processes revisited. CONCUR,
2011. [BKKR11]

e Tomas Bréazdil, Lubos Korenciak, Jan Kréédl, Jan Kretinsky, and Vojtéch
Rehak. On time-average limits in deterministic and stochastic Petri nets.
ICPE, 2013. [BKK™13] (poster paper)

Papers on modal transition systems

e Nikola Benes, Jan Kietinsky, Kim G. Larsen, and Jiri Srba. EXPTIME-
completeness of thorough refinement on modal transition systems. Infor-
mation and Computation, 2012. [BKLS12]. Extended journal version of
an ICTAC 2009 conference paper. [BKLS09a]

6 CHAPTER 1. INTRODUCTION

e Nikola Benes, Jan Kretinsky, Kim Guldstrand Larsen, and Jiri Srba. On
determinism in modal transition systems. Theoretical Computer Science,
2009. [BKLS09b)]

e Nikola Benes and Jan Kietinsky. Process algebra for modal transition
systemses. MEMICS, 2010. [BK10]

e Nikola Benes, Ivana Cernd, and Jan Kfetinsky. Modal transition systems:
Composition and LTL model checking. ATVA, 2011. [BeK11]

e Nikola Benes, Jan Kietinsky, Kim G. Larsen, Mikael H. Moller, and Jiri
Srba. Parametric modal transition systems. ATVA, 2011. [BKL*11]

e Nikola Benes, Jan Kietinsky, Kim Guldstrand Larsen, Mikael H. Moller,
and Jiri Srba. Dual-priced modal transition systems with time durations.
LPAR, 2012. [BKLT12]

e Nikola Benes and Jan Kietinsky. Modal process rewrite systems. ICTAC,
2012. [BK12]

e Jan Kfetinsky and Salomon Sickert. On refinements of boolean and para-
metric modal transition systems. ICTAC, 2013. [KS13a]

e Nikola Benes, Benoit Delahaye, Uli Fahrenberg, Jan Kietinsky, and Axel
Legay. Hennessy-Milner logic with greatest fixed points as a complete
behavioural specification theory. CONCUR, 2013. [BDF*13]

e Jan Kfetinsky and Salomon Sickert. MoTraS: A tool for modal transition
systems and their extensions. ATVA, 2013. [KS13b] (tool paper)

1.3.2 Summary

Altogether Jan Kietinsky has published 3 journal papers (2xInformation and
Computation, Theoretical Computer Science), 16 conference regular papers
(2xATVA, 2xCAV, 4xCONCUR, 2xFSTTCS, HSCC, 3xICTAC, LICS, LPAR),
3 conference tool papers (3xATVA), 1 workshop paper (MEMICS) and 1 con-
ference poster paper (ICPE), altogether 24 papers. The current number of
citations according to Google Scholar is 164.

1.4 Outline of the thesis

Chapter 2 introduces the investigated models, properties and problems. We first
introduce the stochastic processes in Section 2.1 and then their decision and
game extensions in Section 2.2. We proceed with the properties of interest in
Section 2.3. We only give a semi-formal account; for technical definitions, please
consult the respective papers in Appendix. Section 2.4 closes with an overview
of the verification problems for the introduced models and properties, and their

1.4. OUTLINE OF THE THESIS 7

complexities. The state of the art as well as our contribution are described
in more detail (1) in the discrete-time setting in Chapter 3 and (2) in the
continuous-time setting in Chapter 4. Chapter 5 summarises the contribution
of the thesis and new results of the respective papers. The appendix has three
parts. In the first and the second part, we present preprints of Papers A-D and
E-G, respectively. The third part then provides several supplementary materials
on the context of our research and permissions to publish the preprints of the
papers within this thesis as they were sent to the publisher.

The reader is assumed to have some familiarity with labelled transition systems,
probability theory, logic, complexity and automata over infinite words to the
extent of standard basic courses.

CHAPTER 1. INTRODUCTION

Chapter 2

Quantitative models,
properties and analysis

In this chapter, we introduce the models, properties and analysis problems we
are interested in. Our results are concerned with different models, e.g. continuous-
time stochastic systems, discrete-time stochastic systems, non-stochastic games,
and with different properties, e.g. untimed linear time properties, time-bounded
properties. Despite this variety of topics, we want to present a unifying view on
our results. Therefore, we present quite a general framework unifying discrete-
time and continuous-time systems in Section 2.1 and extend it with non-determinism
to decision processes and games in Section 2.2. Section 2.3 then gives a unify-
ing view on the properties of interest. Section 2.4 provides an overview of the
analysis problems for the described systems and properties.

As we deal with many different objects, we mostly refrain from defining them
completely formally and stick to semi-formal descriptions. For technical defini-
tions, we refer to the respective papers in Appendix; for more extensive intro-
ductions to the topics, please consult the respectively cited sources.

2.1 Stochastic processes and Markov chains

Systems that we are considering do not evolve deterministically, but randomly.
Hence, in order to describe them we make use of their formalisation through
stochastic processes. A stochastic process is at each time point in a particular
state and can change its state at any time point to any other state according to
a probability distribution, which may depend on the previously visited states.
Formally, given

e a set S of states equipped with a measurable space (5, X),

9

10CHAPTER 2. QUANTITATIVE MODELS, PROPERTIES AND ANALYSIS

e a set T of time points equipped with a total ordering < and its smallest
element 0,

e a set Q of behaviours equipped with a probability space (2, F, P),
a stochastic process is a collection {X; | ¢ € T} of random variables X; : Q@ — S.

In this thesis, we mainly focus on stochastic processes corresponding to finite
transition systems, which makes them easier to analyse than infinite systems.
To ensure that, we require that

(F) the set S of states be finite,

(M) the process satisfy the Markov property, i.e. its current state distribution
depends only on its most recent configuration (its state and time), formally

PXy, =, | Xipy y =Tty gy Xty = 24| = PIXy, =2, [Xo , = 24,]

for any t, > t,_1 > -+ > to,

(H) time T be equipped with (associative and commutative) addition + and
the process be time homogeneous, i.e. probabilities to change the state
from one to another do not change over time, formally

PXiypa=2|Xi=y|=PXpg=2| Xy =y

for any t,t',d € T.

We call such stochastic processes Markov chains [Nor98]. They can be equiva-
lently represented by the set S of states with an initial distribution x on S and
a transition function P assigning to each state a probability measure over timed
transitions to the subsequent states, written P : S — PB(T x S). Behaviours of
the chain then correspond to runs starting in a state randomly chosen according
to p and then changing states according to P. This representation is thus much
closer to the labelled transition systems (LTS), a de facto standard in computer
science.

In this thesis, the stochastic processes considered are Markov chains. The only
deviations can be be found in Paper E, where we sometimes relax Requirement
(F) and only demand countability of S. A comment how realistic this is and
what the limitations are can be found in Appendix H.*

2.1.1 Discrete-time Markov chains

By setting the time domain T to the discrete set Ny of natural numbers, we
obtain discrete-time Markov chains (DTMC). The time spent in a state is always
1 and then a transition is taken. The transition function P is thus just a
probability transition matrix and the chain can be drawn as a finite directed

*For author’s papers on non-Markovian systems, see Section 1.3.1.

2.2. NON-DETERMINISTIC SYSTEMS 11

graph with edges (4, 7) labelled by P(i,7). In the following, we will mostly use
this representation.

The respective probability space (Q,F,P) over the set € := ST of runs is then
generated by

P[Xo =0, X1 =i1...Xpn = in] = p(io)Plig,i1)P(i1,i2) - - Pin—1,in)

and the cylindrical construction using Carathéodory’s extension theorem [Bil12].

2.1.2 Continuous-time Markov chains

By setting the time domain T to the continuous set R>(of non-negative real
numbers, we obtain continuous-time Markov chains (CTMC). They can be rep-
resented by a discrete-time Markov chain together with a function R : S — R
assigning a rate to each state. Alternatively, we also use the representation
without R where edges (4, j) are labelled by P(i, j)R(¢), which clearly contains
the same information.

The chain then evolves in a manner similar to the discrete-time Markov chain.
The only difference is that a random time is spent in a state before a transition
to the next one is taken. Due to the Markov property (M), the time spent
in state s is given by a negative exponential distribution. More precisely, the
probability that s is left within time ¢ is 1 — e %)%, For more details, see
Paper E.

2.2 Non-deterministic systems

Markov chains have been a successful modelling framework not only in com-
puter science, but also in operation research, telecommunication or biology.
Huge effort has been invested to deal with Markov chains. There are many
tools for analysis of Markov chains, e.g. PEPA [TDGO09], PRISM [KNP11],
MRMC [KZH"09] to name a few commonly used in computer science, as well
as toolboxes for computing environments such as Matlab [MAT13] or Mathe-
matica [Mat12], or countless simulation tools. These tools have been applied
in real practice to analyse e.g. network, embedded, or chemical and biological
systems.

Using Markov chains, one can model closed systems (with no inputs from the
environment, but stochastic ones) and answer questions such as “What is the ex-
pected response time of a service?” or “What is the probability of failure before
the next scheduled maintenance?”. However, as cyber-physical systems often
communicate with the user and are distributed, such features as communica-
tion with the surrounding physical environment, 1/O data flow, synchronisation
between components, resource contention and hierarchical composition must be

12CHAPTER 2. QUANTITATIVE MODELS, PROPERTIES AND ANALYSIS

present in the framework. These features are added uniformly by a new kind
of transitions labelled by letters of an alphabet A, which is in our case again
required to be finite. Presence of such an outgoing transition under a letter
a € A denotes the system is ready to synchronise on the action a. We say
a is available or enabled. If all participating systems have a enabled they can
jointly perform it and synchronously change their states to the targets of their
respective a transitions. We call the resulting system a composition of the orig-
inal systems. Apart from these new “synchronising” actions, the systems still
may have “internal” (non-synchronising) action, which are performed by each
system alone without any interaction.

Whenever two actions can be performed at the same time, a non-deterministic
decision must be made. This means that some external entity resolves this
conflict. This entity is usually called a scheduler or a policy or in the game-
theoretical context a strategy. Based on what happened so far, the scheduler
decides which of the enabled actions shall be performed. Since Markov chains
are discrete-event systems, the current history of what has happened is just a
finite sequence of configurations of the system. Formally, the scheduler is then a
(measurable) function o : (S x T)* — PB(A) returning a distribution on actions
as we allow the scheduler to choose an action randomly, too. The semantics of
the non-deterministic process M is then a set of Markov chains M7 generated
by applying the decisions of each scheduler o.

These non-deterministic processes are often called decision processes. The non-
determinism in the decision processes can model many useful features:

e If the distribution on the environmental inputs is unknown or proper-
ties need to be guaranteed while not relying on the knowledge of the
distribution, the interaction with the environment can be modelled non-
deterministically.

e In many plants, there are more options how to react to the input. The
optimisation task is then to choose among the possible responses so that
the plant is controlled in the most efficient way with respect to given
criteria.

e Systems and algorithms are often underspecified and leave more options
open, e.g. how to search a tree or pop from a set.

e Whenever several components are composed and they run concurrently, it
may be out of control in which order these independent components change
their states. They can even run on a single core and then a scheduling
policy must determine in which order they are executed.

Now that we know that the semantics of a decision process M is the set {M? |
o is a scheduler}, how do we interpret that? When does a decision process
satisfy a property? For systems without non-determinism, whenever we have
a property ¢ of e.g. a probabilistic logic, then the stochastic process (Markov
chain) either satisfies the property (denoted M = ¢) or not. The model checking

2.2. NON-DETERMINISTIC SYSTEMS 13

problem is then to decide which of the two is the case. For non-deterministic
systems either all chains from the set satisfy ¢, or none of them, or some do and
some do not. The generalised model checking problem is then to decide which
of the three happens and if the last option is the case then also to synthesise
witnessing schedulers. Furthermore, we are mostly interested in one of the two
specialised questions:

1.Vo: M7 E¢?
2.3 M E¢?

We ask the first question if the non-determinism is demonic (uncontrollable,
adversarial). This means we cannot affect the choices and to be safe we have
to count on the worst. An example is the first bullet with the unknown inputs
from the user where we cannot assume anything unless we want to end up in a
court.

The second question is posed in the case with angelic (controllable) non-determi-
nism. Here we assume we can control the choices. If the answer is yes we also
want to obtain a scheduler that achieves the goal ¢ so that we can implement
it into the plant. An example is the second bullet.

The third and fourth bullets are examples of non-determinisms that are angelic
or demonic depending on the setting. Furthermore, it may be necessary to have
both angelic and demonic non-determinisms in our system if there are both
controllable and uncontrollable components. Such a system is then called a
game. In order to obtain a Markov chain, we need to apply a pair (o, 7) of
schedulers: the first being angelic and the latter demonic. We usually ask the
question whether we can control the controllable parts so that no matter what
happens in the uncontrollable part, the property is satisfied. Formally we ask

3. do:Vn Mo =¢ 7

If the answer is positive, we again want to synthesise the respective scheduler
o. For this reason, the task to decide the model checking question and compute
the respective scheduler is often called synthesis. In the discrete-time setting,
this question has been posed already in [Chu57]. The alternative question with
quantifiers swapped is not that much interesting as the scheduler of the environ-
ment rarely becomes known to the scheduler of the plant. In this thesis we deal
with decision processes as well as games. For an overview of the relationships
among the discussed systems, see Figure 2.1 and 2.2.

2.2.1 Markov decision processes and games

There are traditional models (see e.g. [Put94, FV96)) of discrete-time Markov
decision processes (MDP) and their game extension as well as continuous-time
Markov decision processes (CTMDP) and their new game extension of ours. In
all these models, the synchronisation and random steps strictly alternate and

14CHAPTER 2. QUANTITATIVE MODELS, PROPERTIES AND ANALYSIS

Game
(with both non-determinisms)

PN

Decision process Decision process

(with angelic non-determinism) (with demonic non-determinism)

~N 7

Stochastic process

(with no non-determinism)

Figure 2.1: Processes with zero, one and two non-determinisms

hence are merged into one step, which often simplifies argumentation. Formally,
they consist of the set S of states and the initial distribution p similarly to
Markov chain, but the transition function is now P : S x A — PB(S). After
visiting states sgs1 - - - Sp, & transition to a state s is taken with probability

Y 0((50,0)(s1,1) - (s0.1))(a) - P(sn, a)(s)

a€A

The same holds for games where we, moreover, distinguish which state belongs
to which player and depending on that we take decision of ¢ or 7 into ac-
count. In the discrete-time case, we call them stochastic games (SG) and in the
continuous-time case continuous-time stochastic games (CTSG).

2.2.2 Interactive Markov chains and games

CTMDP are a simple and useful framework as long as composition is not in-
volved. Further, the process algebras designed for description of Markov chains,
such as Hillston’s PEPA[Hil96], are compositional, but the result often does not
faithfully reflect the real behaviour. Indeed, in PEPA the rate of a synchronisa-
tion is set to be the minimum of the synchronising rates in order to model that
the faster process waits for the slower one. However, this is imprecise if both
run at a similar speed and thus not finish in a fixed order, see e.g. [Her02].

To bridge the gap between CTMDP and compositional methodology, interac-
tive Markov chains (IMC) [HHKO02] with their corresponding process algebra
have been designed. This allows for building complex Markov models in a com-
positional, hierarchical way. Technically, it is sufficient to strictly separate the
synchronising immediate transitions from the random timed transitions and not
require alternation. Formally, the states are partitioned into Markovian states
with transitions as in CTMC, and immediate states with the transition function

2.3. QUANTITATIVE PROPERTIES 15

CTSG
CEG
sa— |
— CTMDP
Game IMC
/
N MDP
/
LTS CTMC
/
N MC
Path
CcT

Figure 2.2: Processes with non-determinism (N), Markovian probabilities (P),
and continuous time (CT).

SxA— ST

In the same way, we can extend this concept to games. However, the reader
might ask whether timing should not at least partially be under control of the
schedulers. For instance, the user may delay the input as long as he likes; the
plant might also take its time to choose its response. This is partially developed
in Papers F and G in the form of controller-environment games (CEG) where
timing is partially under control of the demonic non-determinism. However,
the model where time is governed by both non-determinisms remains out of the
scope of this thesis. Nevertheless, let us at least note that problems over such
games become very easily undecidable [BF09).

2.3 Quantitative properties

The properties to be checked or optimised range from verification questions such
as “What is the probability of visiting an unsafe state?” to performance ques-
tions “What is the average throughput?”. However, as argued e.g. in [BHHK10],
verification and performance evaluation have become very close in the setting of

tHere we employ the maximum progress assumption and thus ignore any stochastic
continuous-time transitions if internal transitions are enabled, see Paper F. Therefore, no
“mixed” states are present.

16CHAPTER 2. QUANTITATIVE MODELS, PROPERTIES AND ANALYSIS

stochastic systems. Indeed, consider a simple system repeatedly sending mes-
sages. When asking “What is the probability that a message gets lost on the
way?” it is both a question of quantitative verification as well as a question on
average performance of the protocol. Further, liveness-like question as “some-
thing good eventually happens” are often bounded by a finite horizon under
consideration, which turns them into safety questions. The desirable properties
of safety, reliability, dependability and performance thus go hand in hand here.

Although these are all temporal properties and thus are evaluated based on
monitoring the system over time, we may still fuzzily distinguish two kinds of
properties:

o Cumulative properties are closer to performance measures. They stress
the total portion of time (discrete or continuous) spent in states more
than the order of visits. Typical properties are concerned with averages,
sums or discounted sums of rewards collected during the run. (Note that
this includes the reachability property, i.e. that a given state of the system
will eventually be reached with some probability.)

e Structural properties are closer to verification. The ordering of events hap-
pening is crucial, such as in “A packet is being resubmitted and no other
action is taken until its reception is acknowledged”. These properties are
typically expressed using temporal logics. (Again note that reachability is
an example of such properties.)

While the properties of the first kind usually evaluate a run to a real number, in
the second case the range is often 0 and 1. The overall result is then a weighted
sum or integral taken over the whole system. One can also examine the whole
distribution function of the values. While this gives no more information in
the second setting, a lot more additional information is yielded in the first
case. (Indeed, consider a system where every other message of each user is lost
compared to one where half of the users communicate perfectly and the other
half not at all.)

While the former class has traditionally been in focus of stochastic analysis, in
this thesis, we focus more on the latter class. However, as we investigate also the
fundamental reachability questions, the results have impact for both classes.

2.3.1 Properties of linear and branching time

One of the most successful ways to express properties of systems are temporal
logics. As opposed to predicate logic, they are tailored to this task and thus
easier to use and easier to analyse. The main feature of these logics is the
ability to talk about events subsequently happening over time in the system,
and to do so using a couple of built-in specialised constructs. Let us present
as an example the linear temporal logic (LTL) [Pnu77]. For us, this will be the

fFor author’s papers on analysis of the properties of the former kind, see Section 1.3.1.

2.3. QUANTITATIVE PROPERTIES 17

most important example for the discrete-time systems (or the continuous-time
systems where precise timing is not important). A formula of this logic is given
by the following syntax:

pu=al|=¢|oNd| X |1 U

where a ranges over propositions that can be atomically evaluated in a system’s
state to be true or false, e.g. “this is an error state” or “the system is ready
to receive a request”. As usual with logics, we have Boolean connectives. The
most interesting part are temporal operators X and U. A formula X¢ holds
if ¢ in the next step of the computation (recall the time being discrete here).
A formula ¢1Ugps holds if eventually ¢o will hold for a moment and up to this
moment ¢, holds. This way we can formalise e.g. the property “A packet is being
resubmitted and no other action is taken until it is acknowledged” mentioned
above as (resubmit A noother)Uack using the appropriate atomic propositions.
Further, we often use derived operators F and G. Here F¢ holds iff U¢ holds,
meaning ¢ will eventually hold at some point of time; and G¢ holds iff =F-¢
holds, meaning ¢ will hold from now forever.

A formula ¢ of LTL can thus be evaluated on a run to be true or false. Further,
¢ is said to hold in a (non-probabilistic) system such as LTS if all runs of
the system satisfy ¢. LTL is a logic of linear time as it expresses properties
of runs. However, one may demand that the fact that “all runs from a state
satisfy a property” is a first-order citizen of the logic. This leads to logics of
branching time where the the most common logic used is computation tree logic
(CTL) [CE81]. The syntax is very similar, but every operator is preceded by
either V meaning that all paths from the current state satisfy the property,
or 3 meaning there is a path from the current state satisfying the property.
An example of a property expressible by CTL is “at every time point there
is an action enabled leading us to a state where emergency holds” written as
VG (IX emergency).

2.3.2 Probabilistic and timed extensions

As the logics discussed above are not able to cope with many quantitative prop-
erties of interest, they have been extended to handle probabilistic behaviour and
precise timing.

Various temporal logics have been proposed capturing properties of probabilistic
systems. The main idea is to interpret the same logics as for non-probabilistic
systems now over probabilistic systems by replacing “all runs” with “almost all
runs”’, i.e. “with probability 1”. This probabilistic interpretation was introduced
already in [LS83] for CTL and in [Var85] for LTL. However, the probabilistic
quantification is only qualitative here. Using the probabilistic quantification
and negations we can only express that something happens with probability
=1, >0, <1, or =0. The full quantitative probabilistic extensions have been

18CHAPTER 2. QUANTITATIVE MODELS, PROPERTIES AND ANALYSIS

considered only later in PCTL [HJ94] and probabilistic LTL model checking as
in PRISM [KNP11] (often also called quantitative model checking). Here the
probabilistic operator expresses that a property holds true with a probability in
some interval. The syntax of probabilistic LTL formula is then

PG[a,b] ¢

where [a,b] C [0, 1] is an interval and ¢ is an LTL formula. The model checking
problem for Markov chains is then to decide whether the probability p := P[¢]
that ¢ holds lies in the interval [a, b]. Furthermore, we are often rather interested
in computing or approximating p. For a decision processes M, p is given as

sup PM [¢]

where ¢ ranges over all (or a subclass of) schedulers and P is the probability
measure P of the stochastic process M?. Of course, infimum can be considered,
too. Further, the problem is generalised to games similarly as the generalised
model checking is further generalised to question 3. in Section 2.2 and p is then

sup inf PM77[¢] (2.1)
o ™

where 7 ranges over the adversarial schedulers as in Section 2.2. As usual in

game theory, if a strategy achieves the extremum, it is called optimal; if it

achieves an e-neighbourhood of the extremum, it is called e-optimal.

The same probabilistic extensions happen with PCTL where every operator is
parametrised by an interval. Orthogonally, logics have been extended with time.
CTL has been extended with time to TCTL [ACD90], while MTL [Koy90] is a
timed extension of LTL. Here essentially the time bounded reachability (reach-
ability until a given time) has been substituted for the standard reachability.
More formally, the operators are now parametrised by a time interval. For
instance,
resubmit Uy 5 ack

says that the acknowledgement must arrive within 5 time units (and be preceded
by resubmissions up to that point).

Both probabilistic and timed extension of CTL is then covered in continuous
stochastic logic (CSL) [BHHKO00]. The operators are then parametrised by an
interval (or inequality) both for probability and for time. A simple example is
then a formula

P>o.9 Fjo5 goal

which expresses that one of the goal states is reached within 5 time units with
probability at least 90 per cent. This property is called time-bounded reachabil-
ity. In general, we want to decide whether for a given time T and set of goal
states goal,

P[F,7) goal]

2.4. QUANTITATIVE ANALYSIS 19

lies in a given interval. We also consider the same approximation problem and

game extension
sup inf PM”" [F (o 7y goal] (2.2)
o s

as above in (2.1). Computing (or at least approximating) time-bounded reach-
ability is the core of checking whether any CSL formula holds and as such will
be one of the topics of the thesis.

As CSL is a logic of branching time, when interpreting it over non-deterministic
systems every formula is evaluated as infimum (or supremum) over all non-
deterministic resolutions. This sometimes leads to counterintuitive results due
to nested quantification over the schedulers. One solution is to perform the
quantification once for the whole formula only, or in particular places only such
as in stochastic game logic (SGL) [BBGKO07]. This probabilistic logic is based
on ATL [AHK97], an extension of CTL where strategy quantification is made
explicit. Further, one could also consider a probabilistic version of timed ex-
tensions of linear time logics. To the best of our knowledge, MTL has not
been considered in the probabilistic interpretation yet. However, deterministic
timed automata can serve as the automata antipode of MTL and can be used to
specify linear time properties. The probabilistic interpretation has been consid-
ered in [CHKMO09, BKK*10, BKK'11]. The violation of the property “every
req must be answered by a resp within 5 time units” can be expressed as a
deterministic timed automaton (DTA) in Figure 2.3.2. A deterministic timed
automaton is like a standard finite automaton equipped with clocks that keep
on running, can be reset or checked against a constant when taking a transition.
A run is accepted by a DTA if it reaches a final state at least once [BKK'10]
or more generally infinitely often [CHKMO09, BKK*10, BKK'11].

req

resp
- O 9
c>H
UN_e AU
req,resp
c<5b req

resp

Figure 2.3: A deterministic timed automaton specification

2.4 Quantitative analysis

We now give a very brief overview of results on model checking the systems
and properties introduced above. The purpose of this section is to sketch the

20CHAPTER 2. QUANTITATIVE MODELS, PROPERTIES AND ANALYSIS

landscape of the verification and synthesis discipline and the positions of our
results therein.

We consider the systems of Figure 2.2. These are non-stochastic, discrete-time
stochastic and continuous-time stochastic systems each of which is considered in
its deterministic, non-deterministic and game form. In the tables below, we de-
note them by 0, 1, and 2, respectively, according to the number of players. The
problems we consider are model checking (1) non-stochastic systems with respect
to reachability, LTL and CTL, (2) stochastic systems with respect to their prob-
abilistic (both qualitative and quantitative) extensions, and finally we consider
(3) quantitative continuous-time specifications. These are time-bounded reach-
ability (TBR), deterministic timed automata (DTA), and continuous stochastic
logic (CSL). For better readability, we display the complexity of the respective
algorithms in the tables below. For more details on where and how these results
were obtained, please see Appendix I.

Table 2.1: Non-stochastic analysis

| 0 1 2
reachability NL NL P
LTL P PSPACE 2-EXP
CTL P P P

Observe the higher complexity of solving the LTL games. The problem is 2-
EXP-complete [PR89] since one needs to construct a deterministic w-automaton
for the given LTL property ¢ (the reason for this will be explained in Chapter 3),
which may require space doubly exponential in |¢|. The very same difficulty
occurs when LTL model checking stochastic decision processes (for MDP the
problem is again 2-EXP-complete) and in quantitative model checking Markov
chains.

Table 2.2: Qualitative stochastic analysis

| 0 1 2
reachability P P P
PLTL PSPACE 2-EXP 3-NEXPnNco-3-NEXP
PCTL P EXP ?

Table 2.3: Quantitative stochastic analysis

0 1 2
reachability P P NPNco-NP
PLTL 2-EXP 2-EXP 3-NEXPNco-3-NEXP
PCTL P undecidable undecidable

Note that stochastic analysis also applies to continuous-time systems by simply

2.4. QUANTITATIVE ANALYSIS 21

ignoring the timing. This is done by ignoring the rates R. For continuous-
time properties, the qualitative analysis can safely ignore the timing aspect
as the exponential distribution is supported on [0,00). However, the results
in quantitative analysis are much less encouraging. The main difficulty with
computing exact probabilities is caused by the irrationality and transcendence
of e, which is omnipresent due to the exponential distribution on the waiting
times. Time-bounded reachability probability in a CTMC can be expressed
and computed as an expression of the form Y ¢; - " where the sum is finite
and ¢;,r; are rational [ASSB96]. The comparison of such a sum to a rational
number is decidable using Lindemann-Weierstrass theorem, hence quantitative
reachability and CSL model checking is decidable (ibid.). However, apart from
that not much is known to be decidable. As a result, approzimations are usually
considered instead.

Table 2.4: Continuous-time analysis

| 0 1 2
TBR decidable approximable approximable
DTA approximable 7 ?
CSL decidable ? ?

The focus of this thesis will be on

(1) quantitative probabilistic LTL model checking MDP and LTL model check-
ing (non-stochastic) games, and

(2) quantitative time-bounded reachability in CTSG and IMC (which provides
a base for CSL model checking as there we iteratively check reachability
for the subformulae of the formula [ZN10]).

Since in (1) we are interested in optimising (closed or open) systems, we will
also discuss how to obtain optimal schedulers. We improve the complexity both
theoretically and practically. To achieve that, in Chapter 3 and in papers of
Part I, we propose a new type of a deterministic w-automaton for representing
LTL properties that allows for more efficient analysis.

As for (2), we focus on optimisation of open systems. There are three differ-
ent settings dealt with in the three papers of Part II. Namely, they are the
case where the structure of the environment is known (only its decisions are
unknown), the case with completely unknown environment, and the case where
the environment is unknown but conforms to a known specification. We provide
analysis techniques for all the cases and a specification formalism for the last
one. As mentioned above, the area of continuous-time systems mostly relies on
approximations. Therefore, although we give optimal schedulers in some cases,
we mostly focus on synthesising e-optimal schedulers.

22CHAPTER 2. QUANTITATIVE MODELS, PROPERTIES AND ANALYSIS

Chapter 3

Discrete-time systems

In this chapter, we focus on the analysis of time-unbounded properties. The
properties of interest are expressed as formulae of LTL. We consider both
discrete-time and continuous-time systems. However, note that the precise wait-
ing times are irrelevant for LTL properties. Therefore, instead of CTMDP we
work with the “embedded” discrete-time MDP instead. The same holds for
games. Here we thus focus on analysis of MDP and (non-stochastic) games.

3.1 State of the art

While model checking purely branching logics such as CTL can be done induc-
tively, where each step amounts to optimising reachability probabilities, the case
with LTL is more complex. The model checking task cannot be decomposed into
checking subformulae and has to deal with the whole formula at once. Along the
lines of the automata theoretic approach to verification [VW86], the negation
of the formula ¢ to be verified is first transformed to an w-automaton A to be
multiplied with the system & and then checked for emptiness as described in
Algorithm Al1RunsConform(S, ¢) in Figure 3.1.

Algorithm Al1RunsConform(S, ¢)
1. A «— w-automaton for —¢
2. return L(S® A) =0

Figure 3.1: Algorithm for non-probabilistic verification of LTL over transition
systems

For systems without probabilities and without the second non-determinism, .4
is usually a (non-deterministic) Biichi automaton. Firstly, it is rich enough

23

24 CHAPTER 3. DISCRETE-TIME SYSTEMS

to express LTL.* Secondly, it is guaranteed to be at most exponentially larger
than ¢. In contrast, deterministic Biichi automata cannot express the whole
LTL, e.g. FGa, and singly exponential procedure cannot exist for deterministic
Muller or deterministic Rabin automata [KR10]. This approach is graphically
summarised in Figure 3.2.

System Linear time property

expressed as a expressed as an

(Non-deterministic)

LTL f 1
transition system S ormula ¢

Y

(Non-deterministic)
Biichi automaton A

Product S ® A
to be checked
for emptiness

Figure 3.2: Automata-theoretic approach to non-probabilistic verification

However, checking systems with probabilities or with two players requires A
be deterministic. Intuitively, the non-determinism of A is neither angelic nor
demonic as it is not resolved during the run, but only after the infinite run of
the system is created. Therefore, when a Markov chain is multiplied with a
Biichi automaton, the resulting MDP cannot be played as a “pebble” game,
where non-determinism is always resolved in each step. Let us illustrate this
on a concrete example. Consider the Markov chain on the left and the Biichi
automaton on the right of Figure 3.3.

*It can express LTL, i.e. first order properties, as it can even express all w-regular properties,
i.e. monadic second order properties.

3.1. STATE OF THE ART 25

qoolEoip ¢
S vy [l
2 @T’Q

Figure 3.3: An example showing why non-deterministic automata cannot be
used in Algorithm A11RunsConform(S, ¢) for probabilistic systems. The exam-
ple is independent of whether a state or action based logic is used. For simplicity,
we use state-based notation where h is assumed to hold in the left state and ¢
in the right one.

The Markov chain produces a run by repeating coin tosses and announcing
head or tail. The Biichi automaton recognises the whole {h,t}*“, i.e. any run.
However, in the product MDP, half of the runs are rejected. Indeed, after
reading the first A (no matter which transition is taken in the automaton), in
the next step either h only or ¢ only will be available. No matter whether we are
in the upper or the lower branch of the automaton, with 50 % chance, the only
available transition will lead to the trap state. The trouble is that a decision
had to be made in the first step, which was not informed about the future.

The same holds for games even without probabilities. Consider the following
game in Figure 3.4, actually with only the player whose task is to play so that
the run is not in the language of the automaton on the right.

Figure 3.4: An example showing why non-deterministic automata cannot be
used in Algorithm A11RunsConform(S, ¢) for games.

26 CHAPTER 3. DISCRETE-TIME SYSTEMS

Consider now the product of the one-player game and the non-deterministic
automaton. This gives rise to a two-player game with the game player and the
automaton “player”. The game player always has a strategy how to make the
run rejected no matter what the automaton player does. Indeed, although the
language is again the whole {h, ¢}, the very first step resolves whether there are
finitely (in the upper branch) or infinitely (in the lower branch) many h’s and
the game player can adapt his strategy to then play only or no h’s, respectively.
Therefore, the problem again cannot be checked by a “pebble” game on the
product of § and A. Note that if there is only non-determinism trying to find
a conforming run, this problem does not arise as both players can cooperate.
Similarly, with only the other non-determinism (as in our example), we could
negate the formula first and switch the role of the player. However, when both
players are present, one will always be of the second kind causing the problem
above.

System Linear time property

expressed as a expressed as an

Markov chain,
Markov decision process, LTL formula
game

Y

Deterministic
Rabin automaton

Product to
be analysed

Figure 3.5: Automata-theoretic approach to synthesis and probabilistic verifi-
cation

As a result, A must be deterministic if the approach of analysing the product as
in Algorithm Al11RunsConform(S, ¢) is taken. We illustrate this in Figure 3.5.
Note that there are alternatives, ranging from considering tree automata in-
stead [KVO05] over “in-the-limit-deterministic” automata [CY88] to restricting to
fragments allowing for deterministic Biichi automata (or “generators”) [ATO04].
However, in the approach of Algorithm Al1RunsConform(S,¢), Step 1. must
yield a deterministic w-automaton. Deterministic Muller automaton would be
an option, but an expensive one. Although the state space is guaranteed to be
at most doubly exponentially larger than ¢, the representation of the acceptance
condition can require triply exponential space. Thus both the construction in

3.1. STATE OF THE ART 27

Step 1. and checking in Step 2. would often be infeasible. Therefore, deter-
ministic Rabin (or also Streett) automata are used as they combine reasonable
state space size (can require more than Muller automata, but still fit in doubly
exponential space) with a compact representation of the acceptance condition.

As to Step 1., the standard way to produce Rabin automata from LTL for-
mulae is to first obtain a non-deterministic Bilichi automaton and then deter-
minise it using the procedure of Safra [Saf88] or its variants, extensions and
optimisations [MS95, Pit06, KB06]. Both steps are in the worst case expo-
nential, see Figure 3.6. Unfortunately, this is unavoidable as the problems of
LTL model checking MDP and LTL game solving are 2-EXP-complete. Note
that the most widespread probabilistic model checker PRISM [KNP11] uses this
approach by chaining LTL2BA [GO01]—transforming LTL to Biichi automata—
and 1tl2dstar [Kle]—determinising Biichi automata to deterministic Rabin
automata. We note that the approach of LTL2BA has been developed because
of poor performance of the tableaux method for fairness constraints. However,
despite LTL2BA yielding smaller automata for fairness constraints, the approach
of PRISM often fails here as the determinisation then blows the automata up to
sizes beyond practical use.

Step 2. then for MDP requires to compute maximal end-components satisfying
the Rabin condition and then to optimise the probability to reach them. Step 2.
for games consists in deciding the existence of winning strategies in the Rabin
games.

LTL formula

tableaux method [LP85, GPVW95] used in Spin [Hol97]

EXP alternating automata [GOO01] used in LTL2BA (ibid.)

Y

non-det. Biichi
automaton

determinisation Safra [Saf88] used in 1t12dstar [Kle]
EXP Muller-Schupp [MS95]
Piterman [Pit06]

Y

det. Rabin

automaton

Figure 3.6: The standard way of translating LTL to deterministic w-automata.
All algorithms are also implemented in the academic tool GOAL [TCT*08].

28 CHAPTER 3. DISCRETE-TIME SYSTEMS

3.2 New results

In Part T of the thesis, we show how Algorithm Al1RunsConform(S,¢) of the
previous section can be significantly improved:

e Firstly, we give a direct way to compute Rabin automata from formulae
of some LTL fragment without using non-deterministic automata. We
avoid the determinisation procedures, which are designed to cope with
general Biichi automata, i.e. automata stemming from formulae not only
of LTL, but also of (monadic) second order logic. This results in a more
specialised procedure yielding (1) often smaller automata, (2) state space
with clear logical structure as opposed to the results of Safra’s construc-
tion (oriented trees over subsets of states with binary flags are generally
regarded as “messy” [Kupl2]), and (3) is considerably simpler than the
general Safra’s construction (together with the translation of formulae to
Biichi automata).

e Secondly, we introduce a new kind of deterministic w-automaton which
we call either generalised Rabin automaton (DGRA) or automaton with
a generalised Rabin pairs acceptance condition as an intermediate step of
the construction, see Figure 3.7. This deterministic automaton is often
a much more compact representation of the corresponding de-generalised
Rabin automaton (cf. generalised Biichi automata and Biichi automata,
for details see below). For more complex formulae, the difference grows
fast in orders of magnitude, see Table 3.2. The only price we have to
pay is a slightly more complex acceptance condition. However, we show
it is basically as easy to handle as the Rabin acceptance condition, both
for MDP and games analysis (as required by Step 2. of the approach of
Algorithm A11RunsConform(S, ¢)). This yields a significant speed-up, see
Table 3.3 and 3.4.

The drawback of this method is that it currently does not cover the whole LTL.
We first give a translation for LTL(F, G) only and then for LTL(X,F, G, U)
where U does not appear inside the scope of any G in the negation (also called
positive) normal form. The translation of the whole LTL is a subject of our

current research and we conjecture this method to be extensible to the whole
LTL.

Similarly to [WVS83], our translation (1) deals with “finitary” properties using
an automaton that checks local consistency after one transition is taken and (2)
uses a separate automata mechanism that checks “infinitary” properties such
as a satisfaction of a subformula infinitely often (or almost always in our case,
too). The idea of the translation relies on two observations. Firstly, we can
cope with “finitary” properties by lazily unfolding the formula.

Example 1. The formula ¢ = Ga V Fb is equivalent to (a AN XGa) V bV XFb,
which provides a way to determine a formula that is to be satisfied in the next
step if we know the current valuation. For example, if a holds and b does not

3.2. NEW RESULTS 29

LTL formula J

. . Ny unfolding
resolving connectives
y

non-det. Biichi J det. generalised

automaton Rabin automaton

determinisation —
de-generalisation

Y

det. Rabin
automaton

Figure 3.7: A new way of translating LTL to deterministic w-automata

then the formula to be satisfied in the next step remains the same ¢ as opposed to
the other translation methods, which non-deterministically pick which disjunct
will hold, see Figure 3.8.

Figure 3.8: Automata produced by the traditional approaches (on the left) and
the new approach (on the right) for formula ¢ = Ga vV Fb

30 CHAPTER 3. DISCRETE-TIME SYSTEMS

Secondly, when there are more sets of states to be visited infinitely often, we cap-
ture that in the acceptance condition similarly as in translations via generalised
Biichi automata. Similarly as generalised Biichi can be further de-generalised,
see e.g. [BKO08], we can also de-generalise DGRA into Rabin automata.

Example 2. For the formula ¢ = GFa A GFb we can have the following au-
tomaton, which simply keeps the current valuation in its state. The acceptance
condition corresponding to ¢ is to visit some of the right states and some of the
lower states infinitely often. As Rabin conditions cannot express this (without
blowing up the state space), we introduce a more powerful condition.

—aAb||—aA-b aAb||aAN—b

Figure 3.9: Automaton for ¢ = GFa A GFb

Generalised Rabin pairs acceptance condition

All standard types of w-automata share the same structure, and differ only in
their acceptance condition. We recall some of the most used conditions. All sets
below are subsets of the set of states. Further, we abuse the notation and use
“conjunctions” and “disjunctions” of sets. They are purely symbolic and serve
to ease reading of the conditions as logic-like formulae.

e A Biichi condition is given by a set /. A run is accepting if it visits /
infinitely often.

e A generalised Biichi condition is a conjunction
AT
i=l..n
of Biichi conditions; thus we need to visit each I’ infinitely often.
e A Rabin condition is a disjunction

\ (5, 1))

j=1..k

3.2. NEW RESULTS 31

of Rabin pairs; for some j we must visit F; finitely often and /; infinitely
often.

Inspired by Example 2, we introduce our generalisation of the Rabin condition.

e A generalised Rabin pairs condition is a Rabin condition generalised in
the same way the Biichi condition is generalized, i.e. it is a disjunction

V @& A 1)

j=1.k i=1..n

of generalised Rabin pairs; for some j we must visit F}; finitely often and
each Ij infinitely often. Note that there is no need to use conjunctions on
the first components as F! and F? are visited finitely often if and only if
F1'U F? is visited finitely often.t

Example 3. Consider the conjunction

/\ GFa; = GF;

i€{1,..n}

of strong fairness constraints. While the traditional approach of Figure 3.6 is
hardly able to handle conjunction of three conditions (it takes more than a day
to compute the automaton), our new approach generates automata of sizes com-
parable to non-deterministic automata. We display experimental results in Ta-
ble 3.1. Our approach is represented by our implementations Rabinizer [GKE12]
(Paper B) generating Rabin automata and Rabinizer 2 [KG13] (Paper D) gen-
erating generalised Rabin automata.

Table 3.1: Comparison of the methods on simple fairness constraints.

Automaton type | NBA DRA DRA DGRA | DTGRA
Tool |LTL2BA|1tl2dstar|Rabinizer |Rabinizer 2

n=1 4 4 4 4 1

n=2 14 11324 18 16 1

n=3 40 > 106 462 64 1

We also consider deterministic transition-based generalised Rabin automata
(DTGRA) where the sets are sets of transitions to be taken finitely/infinitely of-
ten. Their size is 1 for the following reason. The DGRA remembers here exactly
the last letter read as in Example 2. Therefore, we can easily encode DGRA as
a one-state TDGRA as follows. Whenever a state of a DGRA remembering let-
ter £ is in a set of the state-based condition, the incoming transition under £ in
the TDGRA is in the set of the transition-based condition. In general, we store

TFurthermore, we could consider arbitrary Boolean combinations. However, our algorithm
generates the condition already in the disjunctive normal form and, moreover, we can only
provide efficient analysis for conditions in the disjunctive normal form.

32 CHAPTER 3. DISCRETE-TIME SYSTEMS

more information in the DGRA states, but TDGRA can still help to reduce the
size. However, since the systems under verification have valuations on states,
the information about the current valuation is present in the product anyway.
Hence the size of the product is not affected by this transition-based acceptance
optimisation. Therefore, we do not consider it here any more.

How can we use DGRA in the verification process, namely for probabilistic
LTL model checking and LTL synthesis? Consider an automaton A with the
condition \/ (F;,7;) where J; = /\ I, There are two ways:
j=1..k i=1..n;
e De-generalise A into a Rabin automaton. Similarly to the de-generalisation
of generalised Biichi automata, we create copies of A to track which I}’s
are now awaited for each j. The number of copies is thus

k .
'D::\H’J”:nlm..-nk
j=1

which we call the de-generalisation index. This determines the ratio of a
de-generalised automaton (not employing any optimisations) to the origi-
nal automaton.

Example 4. Again for the example of fairness constraints, we compare
the sizes of DGRA, the optimised and the naive de-generalisation and the
old approach in Table 3.2.

Table 3.2: Blow up caused by de-generalisation.

n D DGRA DRA DRA DRA

Rabinizer 2 | Rabinizer | naive de-gen. | 1tl2dstar
1 1 4 4 4 4
2 2 16 18 32 11324
3 24 64 462 29568 > 10°
4 | 20736 128 ? > 106 ?

Note that even with the naive de-generalisation the results are by orders
of magnitude smaller than those generated by the old approach.

e Directly use A as input to model checking/synthesis algorithms. Here
we need to extend these algorithms from the DRA setting to DGRA.
Fortunately, the complexity for model checking remains almost the same
and for synthesis is only D times slower [CGK13] (Paper C). We thus
obtain the following theoretical bounds for the speed up of our method,
where the speed up factor is defined as the ratio of the upper bounds for
the old and the new algorithm.

Theorem 1. The speed up factor for probabilistic LTL model checking
is at least D°/3 and for LTL synthesis D*T1.

3.2. NEW RESULTS 33

Note that the speed up even for probabilistic model checking is exponential
in the number of non-trivially generalised pairs, and is doubly exponential
in the number of fairness constraints in Example 3 and 4.

Probabilistic LTL model checking

For probabilistic model checking, the idea of the extension is very simple. We
take the traditional algorithm implemented in PRISM and at the point where we
check non-emptiness of the intersection of maximal end-components (MECs)
with the set to be visited infinitely often, we replace this by a conjunction over
all sets to be visited infinitely often. Our algorithm is depicted in Figure 3.10.
The box there replaces “I;” of the traditional algorithm.

Algorithm MaxConformingRuns(S, .A)
1. For j =1..k
(a) Remove S x F; from S x A
(b) Compute the maximal end-component (MEC) decomposition
(c) If a MEC intersects | each Ij, fori=1,2,...,n,
then include it as a winning MEC
(d) Win, :=J winning MECs (for the jth pair).
2. Win = J_, Win,.
3. Return the maximal probability to reach W

Figure 3.10: Algorithm for the analysis of the product & x A

Example 5. We show experimental results on the Pnueli-Zuck randomised mu-
tual exclusion protocol [PZ86], which has 2368 states for 3 participants, 27 600
for 4 participants, and 308 800 for 5 participants. We consider running times of
ltl2dstar (L), optimised de-generalisation of DGRA into DRA by Rabinizer
(R), and the direct use of DGRA (GR). Table 3.3 further displays the de-
generalisation index D and also the speed up R/GR of our method against
the de-generalisation method; this displays practical consequences of Theorem 1.
Finally, the speed up L/ GR against the traditional method is shown.

LTL synthesis

The algorithm for games with generalised Rabin pairs winning condition is more
complex. It is an extension of progress mesasure style algorithms for Rabin
games and Streett games. Further, we also give a symbolic algorithm.

Example 6. The theoretically predicted speed up according to Theorem 1 for
2 fairness constraints (with D = 2,k = 4) is by factor 2* = 16, while for 3
fairness constraints (with D = 24,k = 8) it is by factor 248 ~ 10''. Below we

34 CHAPTER 3. DISCRETE-TIME SYSTEMS

Table 3.3: Experimental results for model checking (time-out after 1800s)

Formula # L R GR[Z& D[&
Praz =![GFp1=10 3 12 0.4 02] 22 3 6.8
A GFpy=10 4 | 174 1.8 03| 64 3 | 608

A GFp3=10] 5 | 2575 152 06| 267 3 |447.9
Prin =7 32897 126 34 37 12| 843
(FGp1#0 V FGp2#0 V GFp3=0)V 4 - 1945 332 | 59 12 -
(FGp1#10 A GFpy = 10 A GFps = 10)] | 5 - - 543 | — 12 -
Praz =?[(GFp1=0 V FGpy#0) 3 - 1221 71172 24 -
A(GFp2=0V FGp3#£0) 4 - — 75.6 - 24 —
A(GFp3=0V FGp; #0)] 5 - - 12195 | — 24 -
Praz =?[(GFp1=0 V FGp,#0) 3 - 763 72 12 24 -
A(GFpa=0 Vv FGpy#0) 4 — 13356 789 | 196 24 -
A(GFp3=0V FGp3#0)] 5 - — 12676 | — 24 -

show an experimental example for D = 6,k = 3. Apart from the running time,
we show columns “Size factor” displaying the ratio of the product size |S ® Al

to the system size |S]|.

Table 3.4: Experimental results for synthesis

Formula S| Size factor Time
L R GR | L R GR
(GFa V FGb) 3 21.1 10.1 4.0 |- 1175 12.3
ANGFcV GF-a) | 6 162 92 37| — - 196.7
ANGFcV GF-b) | 9 176 92 36| — — 1017.8

Chapter 4

Continuous-time systems

In this chapter, we focus on time-bounded reachability in continuous-time sys-
tems. We optimise the control in open systems, i.e. we deal with games where
both the controller of the plant and the inputs from the environment take turns.

4.1 State of the art

The environments here are modelled by processes of the same kind as the system
under verification. In this thesis, we consider CTMDP (in Paper E) and IMC
(in Paper F and G). We distinguish three different cases of the analysis:

e The structure is of the environment is known. This means that at the
verification time, we know the available actions of the environment and
its distributions on the waiting times at each moment. The only unknown
part are the decisions of the environmental scheduler, i.e. which action will
be chosen. This case is the most often considered one and has appeared
in various timed settings, e.g. [BF09, Spr1l, HNP*11]. For continuous-
time systems, this problem naturally translates to CTSG. We consider
two types of strategies in CTSG: time-abstract, which do not base their
decisions on the time waited (for example because they do not have access
to it) and time-dependent, which know the precise times.

In the time-abstract setting, the first algorithm to approximate time-
bounded reachability probability (2.2) appeared in [BHHKO04] for one-
player game (CTMDP) with one rate. Further, one can employ the method
of uniformisation—a transformation of systems with more rates to systems
with a single rate—to extend the result to systems with more rates [RS10].

In the time-dependent setting, analytic methods are too complex and nu-
merical approaches are employed instead. The basic method is discreti-

35

36

CHAPTER 4. CONTINUOUS-TIME SYSTEMS

sation, applied to IMC in [ZN10] and thus directly applicable to CT-
MDP [NZ10]. The complexity has been further improved in [FRSZ11]
and [HH13]. A similar more involved approach closer to uniformisation
has been proposed in [BS11]. The idea of the discretisation method is to
chop time into small chunks and assume that at most one stochastic tran-
sition is taken in each chunk. Thus we obtain a discrete-time Markovian
system. Moreover, the probability that more than one transition hap-
pens is quadratically smaller than that of at most one happening, hence
we obtain quadratically small error, which becomes negligible for smaller
chunks. The optimisations then relax the assumption that only one tran-
sition happens in one chunk.

The environment is completely unknown. This means there are no
limitations on what the environment can do except that it is again an
IMC/CTMDP, i.e. an unknown component of the same kind as our sys-
tem. In the discrete setting this case is close to the classical synthesis
problem [Chu57]. In the continuous-time setting, this problem has to the
best of our knowledge not been considered. For other forms of timed
systems see the third case below.

Example 7. Consider the upper system of Figure 4.1, where outdated
18 an action that takes place when both the system and the environment
have this action available in the current states. What are the guarantees
to reach the goal state (double circled) after at most 0.5 time units? The
worst case that can happen is the following. The environment first waits,
which yields high probability that the faulty branch happens. Shortly be-
fore the deadline (at ~0.31) if this transition has not been taken yet, the
environment enables the outdated action. It is executed and we are taken
to a state where we are quite likely stuck till the deadline. The resulting
guaranteed lower bound is then =~ 0.52.

The environment is unknown, but conforms to a known specifica-
tion. This means that we do not know its structure, but we have some
information about its behaviour. Proving properties based on this infor-
mation is called assume-guarantee reasoning. Iterating this approach on
components of the system gives basis for a compositional method for verifi-
cation. This approach has been widely used in the discrete setting [MC81,
AH96] as well as the real-time setting [TAKB96, AH97, HMPO1].

Example 8. Consider the lower system of Figure 4.1. As opposed to
the previous example, we can derive no guarantees on reaching the target
state without any knowledge of the environment. Indeed, the environment
may enforce outdated and then block update forever. Therefore, in order
to obtain better guarantees, we would need to assume that update will be
available some time after executing outdated.

4.2. NEW RESULTS 37

3 send
(stale data

—>
outdated send
fresh data
3 o 3/5 send
(stale data
2/5
—>

outdated out of | Update send
date fresh data

Figure 4.1: Two examples of open IMC

4.2 New results

We now present our results for each of the three settings.

Known environment

Here we focus on continuous-time stochastic games, which we introduced in [BFK*09]
(Paper E is an extended journal version [BFK*13]). We consider time-abstract
schedulers and show the following;:

e Even with countably infinite arenas these games are determined, i.e. (2.2)
equals to value where the supremum and the infimum are swapped.

e Optimal strategies may not exist in countably infinite arenas. However,
they exist for finitely branching games with rates bounded from above,
thus also in particular in finite games.

e We give an algorithm to compute optimal strategies in finite games with
one rate; moreover, we also describe their structure, which yields a finite
description of optimal strategies:

38 CHAPTER 4. CONTINUOUS-TIME SYSTEMS

Theorem 2. For every finite CTSG, there are computable optimal
time-abstract strategies and n € N such that after n steps, the decisions
of the strategies depend only on the current state.

This algorithm on CTSG is also the first algorithm computing optimal
strategies in CTMDP. It has been further generalised to CTSG with more
rates in [RS10] using uniformisation.

The idea of our result is that after long enough time has most likely
elapsed (recall the strategies are time-abstract), the optimal strategy tries
to reach the goal in as few discrete steps as possible no matter what the
probabilities are. Our result reduces the problem to solving inequalities
of the form Zle gi - " > 0 for rational g;,r; similarly as [ASSB96].
Although the latter problem is decidable, there is no upper bound known.*

e Therefore, we also give an approximative algorithm:

Theorem 3. For every finite game with n states, m actions, r rates,
mazximum rate A, bit length b of transition probabilities (considered as
fractions of integers), and ¢ > 0, e-optimal time-abstract strategies for
time-bounded reachability till time t are computable in time

1 2r+0(1)
n?-m-b%- (/\~t—|—ln)
€

This extends the result [BHHKO04] for CTMDP.

Note that the complexity depends on the logarithm of the error in con-
trast to the results for time-dependent strategies. There the discretisation
approaches lead to dependencies on roots of the error at best [FRSZ11].

Unknown environment

Here we want to give guarantees on a system S no matter which environment
E it is composed with (recall the composition of Section 2.2 denoted here by
S || E). Furthermore, we want to compute the respective e-optimal (time-
dependent) scheduler of S that yields this guarantee. Formally, we want to
compute

(S|e)r [

SI;p IIbLf P F 0,4 g0al] (%)

T

*That is why there is no upper bound known on CSL model checking CTMC.
fTechnically, = ranges over schedulers of the composition “respecting” o. For details, see
Paper F.

4.2. NEW RESULTS 39

e We transform the problem to a game played on S where the second player
chooses some of the waiting times non-deterministically. We solve this
game using the discretisation approach. However, this game has the same
value only under some conditions as we show in [BHK12] (Paper F),

under which the complexity stays the same as for the one player case
(closed IMC):

Theorem 4. For everye > 0,t > 0 and IMC S with n states and maz-
imum rate A, where internal (non-synchronising) actions and synchro-
nising action are not available in the same state, an e-approximation
of (%) and the respective e-optimal scheduler can be computed in poly-
nomial time O(n?*t2/e).

e In [HKK13], (Paper G) we lift the assumption and give a solution to the
general case. In the previous case, the unknown environment FE interferes
only with stochastic timed transitions which leads to games with stochastic
and non-deterministic time. Now F interferes with internal transitions as
well. This introduces incomplete information and leads to games with
partial observation yielding worse complexity:

Theorem 5. For everye > 0,t >0 and IMC S, an e-approximation
of (%) and the respective e-optimal scheduler can be computed in expo-
nential time.

Specified environment

In compositional assume-guarantee analysis, we ask what guarantees we can get
for our system S when it works in composition with an unknown environment
E satisfying a specification ¢. Formally, we want to compute

sup inf PEIE™ [Fo 1 goal] (s5)

o Ele
T

In Paper G, we design a specification formalism for expressing assumptions and
an algorithm for computing guarantees:

e Firstly, we provide a specification formalism to express assumptions on
continuous-time stochastic systems called modal continuous-time automata
(MCA). The novel feature of the formalism are continuous time con-
straints. They are like guards in time automata [AD94] only not using con-
stants, but distributions. This is a crucial step for getting guarantees with
respect to time-bounded reachability in IMC. Indeed, hard bounds cannot
be applied in the setting where waiting is always positively distributed on
[0, 00). Furthermore, to allow underspecification, we use modal extension
of automata following [LT88|. Further, as usual, we require determinism.

40

CHAPTER 4. CONTINUOUS-TIME SYSTEMS

Example 9. Recall Example 8 with the lower system of Figure 4.1. We
could not derive any guarantees unless we assume that update will be avail-
able some time after executing outdated. This is exactly what the MCA in
Figure 4.2 describes. Indeed, if update comes nothing changes; outdated
may not be available, but if it is and is taken then we go to another state.
We stay there for at most the time distributed according to the exponential
distribution with rate 3, and then move to a state where update must be
present. However, if it is not taken (because S was not ready) then the
time flow (denoted by T) leads us to the starting situation. Assuming this,
one can derive the same guarantee of = 0.52 as in Example 7 for the upper
system of the same figure.

update outdated outdated
7 \\ 77N 77N

outdated < Exp(3)

update

T

Figure 4.2: A modal continuous-time automaton

e Secondly, we integrate the assume-guarantee reasoning to the IMC frame-

work. We show how to synthesise e-optimal schedulers for IMC in an
unknown environment satisfying a given specification and approximate
the respective guarantee (#x). The approach is to compute some kind of a
product S x ¢ of the system and the specification and reduce this problem
to the previous one, namely computing

sup i%f pxllE " [F[0,1g0al]

T

The product construction introduces further incomplete information to
the game, but the complexity class stays the same:

Theorem 6. For everye > 0, ¢t > 0, IMC S and MCA ¢, we can
e-approzimate (xx) and compute an e-optimal scheduler in exponential
time.

Chapter 5

Summary of the results and
future work

The thesis contributes in two areas:

Firstly, we have provided a novel translation of LTL formulae to w-automata. It
introduces a new type of deterministic w-automata with generalised Rabin pairs
acceptance condition, which allows for

e much more compact representation of many LTL formulae than Rabin
automata [KE12];

e almost as efficient analysis as Rabin automata both for probabilistic LTL
model checking and LTL synthesis [CGK13];

e speed up in orders of magnitude even for very small, but more complex for-
mulae such as fairness constraints, at least by factor of D%/3 for probabilis-
tic model checking and DF*+1! for synthesis, where D is the de-generalisation
inder and k the number of pairs.

We have provided tools for translating formulae of LTL fragments to deter-
ministic generalised Rabin automata. The tool Rabinizer [GKE12] covers
LTL(F,G) and has been experimentally incorporated to PRISM [CGK13]. Sec-
ondly, Rabinizer 2 [KG13] covers LTL(X,F, G, U) \ GU where U operators
are not in the scope of G operators.

In future work, we plan to extend the translation algorithms to make use of
the generalised condition for the whole LTL. Further, we plan to release an
implementation of our method, which would be downloadable as a plug-in for
PRISM and thus would facilitate practical use of our method.

41

42 CHAPTER 5. SUMMARY OF THE RESULTS AND FUTURE WORK

Secondly, we have also studied optimisation of open continuous-time systems
with respect to the fundamental problem of time-bounded reachability. We
have shown how to

e compute optimal and e-optimal time-abstract strategies in [BFK*13];

e compute e-optimal strategies in IMC which operate in an unknown en-
vironment [BHK'12, HKK13] introducing a new concept of controller—
environment game, which is an asymmetric mixture of CTMDP and timed
automata;

e specify properties using a new formalism of modal continuous-time au-
tomata [HKK13] using continuous time constraints;

e compute e-optimal strategies in an IMC operating in an unknown envi-
ronment conforming to an MCA specification [HKK13]

In future work, we will focus on identifying structural subclasses of IMC allowing
for polynomial analysis. Further, we are aiming at designing a temporal logic
matching the needs of the assume-guarantee verification in this context and its
translation to MCA. Finally, we plan to implement our approach and employ
heuristics to cope with the higher complexity of incomplete information games.

5.1 Summary of the papers

In Part I of Appendix, we present the following papers:
A Deterministic automata for the (F,G)-fragment of LTL. (CAV 2012)

The paper provides a novel translation of LTL(F, G) to Rabin automata
and introduces the generalised Rabin pairs acceptance condition.

B Rabinizer: Small deterministic automata for LTL(F,G). (ATVA 2012)

This tool paper provides an optimised implementation of the construction
of Paper A.

C Automata with generalized Rabin pairs for probabilistic model checking and
LTL synthesis. (CAV 2013)

This paper extends verification algorithms from Rabin to the generalised
Rabin setting and shows both theoretical and experimental speed ups.

D Rabinizer 2: Small deterministic automata for LTL\gu. (ATVA 2013)

This tool paper extends the translation of Paper A to the fragment of
LTL(X,F,G,U) where U does not appear in the scope of any G, and
provides an implementation thereof.

5.1. SUMMARY OF THE PAPERS 43

In Part IT of Appendix, we present the following papers:

E Continuous-time stochastic games with time-bounded reachability. (Infor-
mation and Computation 2013)

This paper is an extended journal version of an FSTTCS 2009 conference
paper [BFK109]. Tt defines continuous-time stochastic games, investigates
their basic properties and gives algorithms to compute optimal and e-
optimal time-abstract strategies.

F Verification of open interactive Markov chains. (FSTTCS 2012)

This paper identifies and solves the problem of synthesising e-optimal
schedulers of IMC operating in an unknown environment.

G Compositional verification and optimization of interactive Markov chains.
(CONCUR 2013)

This paper introduces the specification formalism of modal continuous-
time automata and solves the problem of synthesising e-optimal sched-
ulers of IMC operating in an unknown environment satisfying a given
specification.

In Appendix, each paper is again summarised and the author’s contribution is
listed. The percentage indicating the author’s contribution has been approved
by the respective co-authors.

44 CHAPTER 5. SUMMARY OF THE RESULTS AND FUTURE WORK

Bibliography

[ACDY0]

Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking
for real-time systems. In LICS, pages 414-425. IEEE Computer So-
ciety, 1990.

[ACHH92| Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-

[AD94]
[AH96]

[AHO7]

[AHK97]

Hsin Ho. Hybrid automata: An algorithmic approach to the specifica-
tion and verification of hybrid systems. In Robert L. Grossman, Anil
Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems,
volume 736 of Lecture Notes in Computer Science, pages 209-229.
Springer, 1992.

Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183-235, 1994.

Rajeev Alur and Thomas A. Henzinger. Reactive modules. In LICS,
pages 207-218. IEEE Computer Society, 1996.

Rajeev Alur and Thomas A. Henzinger. Modularity for timed and
hybrid systems. In Antoni W. Mazurkiewicz and Jézef Winkowski,
editors, CONCUR, volume 1243 of Lecture Notes in Computer Sci-
ence, pages 74-88. Springer, 1997.

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-time temporal logic. In FOCS, pages 100-109, 1997.

[ASSB96] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert K. Bray-

[AT04]

[ava04]

ton. Verifying continuous time Markov chains. In Rajeev Alur and
Thomas A. Henzinger, editors, CAV, volume 1102 of Lecture Notes in
Computer Science, pages 269-276. Springer, 1996.

Rajeev Alur and Salvatore La Torre. Deterministic generators and
games for LTL fragments. ACM Trans. Comput. Log., 5(1):1-25, 2004.

AVACS. http://www.avacs.org, 2004.

[BBFKO06] Tom4s Brézdil, Vaclav Brozek, Vojtéch Forejt, and Antonin Kucera.

Stochastic games with branching-time winning objectives. In LICS
[DBLO06], pages 349-358.

45

46 BIBLIOGRAPHY

[BBGKO7] Christel Baier, Tom4s Brazdil, Marcus Grofler, and Antonin Kucera.
Stochastic game logic. In QEST, pages 227-236. IEEE Computer
Society, 2007.

[BeK11] Nikola Benes, Ivana cernd, and Jan Kretinsky. Modal transition sys-
tems: Composition and LTL model checking. In Bultan and Hsiung
[BH11], pages 228-242.

[BDF*13] Nikola Benes, Benoit Delahaye, Uli Fahrenberg, Jan Kietinsky, and
Axel Legay. Hennessy-milner logic with greatest fixed points as a
complete behavioural specification theory. In D’Argenio and Melgratti
[DM13], pages 76-90.

[Bel57] Richard Bellman. A Markovian decision process. Journal of Mathe-
matics and Mechanics, 6, 1957.

[BF09] Patricia Bouyer and Vojtéch Forejt. Reachability in stochastic timed
games. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Ma-
tias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, ICALP
(2), volume 5556 of Lecture Notes in Computer Science, pages 103—
114. Springer, 2009.

[BFKO08] Tomds Brazdil, Vojtéch Forejt, and Antonin Kuc¢era. Controller
synthesis and verification for Markov decision processes with qual-
itative branching time objectives. In Luca Aceto, Ivan Damgard,
Leslie Ann Goldberg, Magnus M. Halldérsson, Anna Ingdlfsdottir,
and Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture
Notes in Computer Science, pages 148-159. Springer, 2008.

[BFKT09] Tomas Brazdil, Vojtéch Forejt, Jan Kreal, Jan Kietinsky, and An-
tonin Kucera. Continuous-time stochastic games with time-bounded
reachability. In Ravi Kannan and K. Narayan Kumar, editors,
FSTTCS, volume 4 of LIPIcs, pages 61-72. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2009.

[BFK™13] Tomas Brazdil, Vojtech Forejt, Jan Kreal, Jan Kietinsky, and An-
tonin Kucera. Continuous-time stochastic games with time-bounded
reachability. Inf. Comput., 224:46-70, 2013.

[BFKKO08] Tomas Brazdil, Vojtéch Forejt, Jan Kfetinsky, and Antonin Kucera.
The satisfiability problem for probabilistic CTL. In LICS, pages 391—
402. IEEE Computer Society, 2008.

[BGL104] Christel Baier, Marcus Groler, Martin Leucker, Benedikt Bollig, and
Frank Ciesinski. Controller synthesis for probabilistic systems. In
Jean-Jacques Lévy, Ernst W. Mayr, and John C. Mitchell, editors,
IFIP TCS, pages 493-506. Kluwer, 2004.

[BH11] Tevfik Bultan and Pao-Ann Hsiung, editors. Automated Technology
for Verification and Analysis, 9th International Symposium, ATVA

BIBLIOGRAPHY 47

2011, Taipei, Taiwan, October 11-14, 2011. Proceedings, volume 6996
of Lecture Notes in Computer Science. Springer, 2011.

[BHHKO00] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and
Joost-Pieter Katoen. Model checking continuous-time Markov chains
by transient analysis. In E. Allen Emerson and A. Prasad Sistla, edi-
tors, CAV, volume 1855 of Lecture Notes in Computer Science, pages
358-372. Springer, 2000.

[BHHKO04] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and
Joost-Pieter Katoen. Efficient computation of time-bounded reach-
ability probabilities in uniform continuous-time Markov decision pro-
cesses. In Kurt Jensen and Andreas Podelski, editors, TACAS, volume
2988 of Lecture Notes in Computer Science, pages 61-76. Springer,
2004.

[BHHK10] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and
Joost-Pieter Katoen. Performance evaluation and model checking join
forces. Commun. ACM, 53(9):76-85, 2010.

[BHK"12] Tom4s Brazdil, Holger Hermanns, Jan Krédl, Jan Kretinsky, and
Vojtech Rehdk. Verification of open interactive Markov chains. In
Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrish-
nan, editors, FSTTCS, volume 18 of LIPIcs, pages 474-485. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[Bil12] Patrick Billingsley. Probability and Measure. Series in Probability and
Statistics. John Wiley, 2012.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[BK10] Nikola Benes and Jan Kietinsky. Process algebra for modal transition
systemses. In Ludek Matyska, Michal Kozubek, Tomas Vojnar, Pavel
Zemcik, and David Antos, editors, MEMICS, volume 16 of OASICS,
pages 9-18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many, 2010.

[BK12] Nikola Bene§ and Jan Kfetinsky. Modal process rewrite systems.
In Abhik Roychoudhury and Meenakshi D’Souza, editors, ICTAC,
volume 7521 of Lecture Notes in Computer Science, pages 120-135.
Springer, 2012.

[BKK*10] Tom4s Brazdil, Jan Krédl, Jan Kietinsky, Antonin Kucera, and
Vojtéch fehak. Stochastic real-time games with qualitative timed au-
tomata objectives. In Paul Gastin and Francois Laroussinie, editors,
CONCUR, volume 6269 of Lecture Notes in Computer Science, pages
207-221. Springer, 2010.

[BKK*11] Tom4s Brazdil, Jan Krédl, Jan Kietinsky, Antonin Kucera, and
Vojtéch fehdk. Measuring performance of continuous-time stochastic

48 BIBLIOGRAPHY

processes using timed automata. In Marco Caccamo, Emilio Frazzoli,
and Radu Grosu, editors, HSCC, pages 33—42. ACM, 2011.

[BKK*13] Tom4s Brézdil, Lubos Korenciak, Jan Kréél, Jan Kietinsky, and
Vojtech Rehdk. On time-average limits in deterministic and stochastic
Petri nets. In Seetharami Seelam, Petr Tuma, Giuliano Casale, Tony
Field, and José Nelson Amaral, editors, ICPFE, pages 421-422. ACM,
2013.

[BKKR11] Tomés Brézdil, Jan Krcal, Jan Kietinsky, and Vojtech Rehék.
Fixed-delay events in generalized semi-Markov processes revisited. In
Joost-Pieter Katoen and Barbara Koénig, editors, CONCUR, volume
6901 of Lecture Notes in Computer Science, pages 140-155. Springer,
2011.

[BKL"11] Nikola Benes, Jan Kietinsky, Kim G. Larsen, Mikael H. Moller, and
Jiri Srba. Parametric modal transition systems. In Bultan and Hsiung
[BH11], pages 275-289.

[BKL"12] Nikola Benes, Jan Kietinsky, Kim Guldstrand Larsen, Mikael H.
Moller, and Jiri Srba. Dual-priced modal transition systems with time
durations. In Nikolaj Bjgrner and Andrei Voronkov, editors, LPAR,
volume 7180 of Lecture Notes in Computer Science, pages 122-137.
Springer, 2012.

[BKLS09a] Nikola Benes, Jan Kietinsky, Kim Guldstrand Larsen, and Jiri
Srba. Checking thorough refinement on modal transition systems is
exptime-complete. In Martin Leucker and Carroll Morgan, editors,
ICTAC, volume 5684 of Lecture Notes in Computer Science, pages
112-126. Springer, 2009.

[BKLS09b] Nikola Benes, Jan Kietinsky, Kim Guldstrand Larsen, and Jiri Srba.
On determinism in modal transition systems. Theor. Comput. Sci.,
410(41):4026-4043, 2009.

[BKLS12] Nikola Benes, Jan Kietinsky, Kim G. Larsen, and Jiri Srba. Exptime-
completeness of thorough refinement on modal transition systems. Inf.
Comput., 218:54-68, 2012.

[Bré99] Pierre Brémaud. Markov Chains: Gibbs Fields, Monte Carlo Simula-
tion, and Queues. Springer, 1999.

[BS11] Peter Buchholz and Ingo Schulz. Numerical Analysis of Continuous
Time Markov Decision processes over Finite Horizons. Computers and
Operations Research, 38:651-659, 2011.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In
Dexter Kozen, editor, Logic of Programs, volume 131 of Lecture Notes
in Computer Science, pages 52-71. Springer, 1981.

BIBLIOGRAPHY 49

[CESS3]

[CGK13]

Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Auto-
matic verification of finite state concurrent systems using temporal
logic specifications: A practical approach. In John R. Wright, Larry
Landweber, Alan J. Demers, and Tim Teitelbaum, editors, POPL,
pages 117-126. ACM Press, 1983.

Krishnendu Chatterjee, Andreas Gaiser, and Jan Kfietinsky. Au-
tomata with generalized Rabin pairs for probabilistic model checking
and LTL synthesis. In Helmut Veith and Natasha Sharygina, edi-
tors, CAV, volume 8044 of Lecture Notes in Computer Science, pages
559-575, 2013.

[CHKMO09] Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexandru

[Chub7]

[CJHO4]

[CYsS]

[DBLSS]

[DBLO6]

[DBL10]

[DBL11]

[DM13]

[EHS2]

Mereacre. Quantitative model checking of continuous-time Markov
chains against timed automata specifications. In LICS, pages 309—
318. IEEE Computer Society, 2009.

Alonzo Church. Applications of recursive arithmetic to the problem of
circuit synthesis. In Summaries of the Summer Institute of Symbolic
Logic, volume I, pages 3-50. Cornell Univ., Ithaca, N.Y., 1957.

Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Hen-
zinger. Quantitative stochastic parity games. In J. Tan Munro, editor,
SODA, pages 121-130. STAM, 2004.

Costas Courcoubetis and Mihalis Yannakakis. Verifying temporal
properties of finite-state probabilistic programs. In FOCS [DBLSS],
pages 338-345.

29th Annual Symposium on Foundations of Computer Science, 24-26
October 1988, White Plains, New York, USA. IEEE, 1988.

21th IEEE Symposium on Logic in Computer Science (LICS 20006),
12-15 August 2006, Seattle, WA, USA, Proceedings. IEEE Computer
Society, 2006.

QFEST 2010, Seventh International Conference on the Quantitative
Evaluation of Systems, Williamsburg, Viginia, USA, 15-18 September
2010. IEEE Computer Society, 2010.

Eighth International Conference on Quantitative Evaluation of Sys-
tems, QEST 2011, Aachen, Germany, 5-8 September, 2011. IEEE
Computer Society, 2011.

Pedro R. D’Argenio and Herndn Melgratti, editors. CONCUR 2013 -
Concurrency Theory, 24th International Conference, CONCUR 2013,
Buenos Aires, Argentina, August 27-30, 2013. Proceedings, volume
8052 of Lecture Notes in Computer Science. Springer, 2013.

E. Allen Emerson and Joseph Y. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time. In Harry R.

50

BIBLIOGRAPHY

Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H.
Landweber, editors, STOC, pages 169-180. ACM, 1982.

[FRSZ11] John Fearnley, Markus Rabe, Sven Schewe, and Lijun Zhang. Ef-

[FV96]

[GKE12]

[GOO1]

ficient approximation of optimal control for continuous-time Markov
games. In Supratik Chakraborty and Amit Kumar, editors, FSTTCS,
volume 13 of LIPIcs, pages 399-410. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2011.

Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes.
Springer, 1996.

Andreas Gaiser, Jan Kfetinsky, and Javier Esparza. Rabinizer: Small
deterministic automata for LTL(F, G). In Supratik Chakraborty and
Madhavan Mukund, editors, AT VA, volume 7561 of Lecture Notes in
Computer Science, pages 72-76. Springer, 2012.

Paul Gastin and Denis Oddoux. Fast ltl to biichi automata trans-
lation. In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
CAV, volume 2102 of Lecture Notes in Computer Science, pages 53—
65. Springer, 2001.

[GPVW95] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Sim-

[Her02]

[HH13]

[HHK02]

[Hil96]

[HJ94]

[HKK13]

ple on-the-fly automatic verification of linear temporal logic. In Piotr
Dembinski and Marek Sredniawa, editors, PSTV, volume 38 of IFIP
Conference Proceedings, pages 3—18. Chapman & Hall, 1995.

Holger Hermanns. Interactive Markov Chains: The Quest for Quan-
tified Quality, volume 2428 of Lecture Notes in Computer Science.
Springer, 2002.

Hassan Hatefi and Holger Hermanns. Improving time bounded com-
putations in interactive Markov chain. In Farhad Arbab and Mar-
jan Sirjani, editors, Fundamentals of Software Engineering, 5th IPM
International Conference, FSEN 2013, Lecture Notes in Computer
Science. Springer, 2013. to appear.

Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process
algebra for performance evaluation. Theor. Comput. Sci., 274(1-2):43—
87, 2002.

Jane Hilston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

Hans Hansson and Bengt Jonsson. A logic for reasoning about time
and reliability. FAC, 6:512-535, 1994.

Holger Hermanns, Jan Krcal, and Jan Kietinsky. Compositional ver-
ification and optimization of interactive Markov chains. In D’Argenio
and Melgratti [DM13], pages 364-379.

BIBLIOGRAPHY 51

[HMPO1]

Thomas A. Henzinger, Marius Minea, and Vinayak S. Prabhu.
Assume-guarantee reasoning for hierarchical hybrid systems. In Maria
Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli, edi-
tors, HSCC, volume 2034 of Lecture Notes in Computer Science, pages
275-290. Springer, 2001.

[HNP*11] Ernst Moritz Hahn, Gethin Norman, David Parker, Bjorn Wachter,

[HO13]

[Hol97]
[How60]

[HPW10]

[HS84]

lidel1]
[KBOG]

[KE12]

[KG13]

[Kle]

[KNP11]

[Kom12]

and Lijun Zhang. Game-based abstraction and controller synthesis
for probabilistic hybrid systems. In QEST [DBL11], pages 69-78.

Dang Van Hung and Mizuhito Ogawa, editors. Automated Technology
for Verification and Analysis, 11th International Symposium, ATVA
2013, Hanoi, Vietnam, October 15 - 18, 2013. Proceedings, Lecture
Notes in Computer Science. Springer, 2013.

Gerard J. Holzmann. The model checker SPIN. IEEFE Transactions
on Software Engineering, 23:279-295, 1997.

Ronald A. Howard. Dynamic Programming and Markov Processes.
M.I.T. Press, 1960.

Michael Huth, Nir Piterman, and Daniel Wagner. p-automata: New
foundations for discrete-time probabilistic verification. In QEST
[DBL10], pages 161-170.

Sergiu Hart and Micha Sharir. Probabilistic temporal logics for finite
and bounded models. In STOC, pages 1-13. ACM, 1984.

IDEA4CPS. http://www.ideadcps.dk, 2011.

Joachim Klein and Christel Baier. Experiments with deterministic
omega-automata for formulas of linear temporal logic. Theor. Comput.

Sci., 363(2):182-195, 2006.

Jan Kretinsky and Javier Esparza. Deterministic automata for the
(F,G)-fragment of LTL. In P. Madhusudan and Sanjit A. Seshia,
editors, CAV, volume 7358 of Lecture Notes in Computer Science,
pages 7—22. Springer, 2012.

Jan Kietinsky and Ruslan Ledesma Garza. Rabinizer 2: Small de-
terministic automata for LTL\GU. In Hung and Ogawa [HO13]. To
appear.

Joachim Klein. 1tl2dstar - LTL to deterministic Streett and Rabin
automata. http://www.lt12dstar.de/.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM
4.0: Verification of probabilistic real-time systems. In CAV, volume
6806 of LNCS, pages 585-591. Springer, 2011.

Zuzana Komarkova. Phase-type approximation techniques. Bachelor’s
thesis, Masaryk University, Faculty of Informatics, 2012.

52
[Koy90]

[KR10]

[KS13a]

[KS13b)

[Kup12]

[KVO5]

BIBLIOGRAPHY

Ron Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255-299, 1990.

Orna Kupferman and Adin Rosenberg. The blowup in translating
LTL to deterministic automata. In MoChArt, volume 6572 of LNCS,
pages 85-94. Springer, 2010.

Jan Kfetinsky and Salomon Sickert. On refinements of boolean and
parametric modal transition systems. In Zhiming Liu, Jim Woodcock,
and Huibiao Zhu, editors, ICTAC, volume 8049 of Lecture Notes in
Computer Science, pages 213-230, 2013.

Jan Kietinsky and Salomon Sickert. MoTraS: A tool for modal tran-
sition systems and their extensions. In Hung and Ogawa [HO13]. To
appear.

Orna Kupferman. Recent challenges and ideas in temporal synthesis.
In SOFSEM, volume 7147 of LNCS, pages 88-98. Springer, 2012.

Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures.
In FOCS, pages 531-542. IEEE Computer Society, 2005.

[KZHT09] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger

[LP85]

[LS83]

[LT8S]

[Mar06]

[Mat12]

[MAT13]

Hermanns, and David N. Jansen. The ins and outs of the proba-
bilistic model checker MRMC. In Quantitative Evaluation of Systems
(QEST), pages 167-176. IEEE Computer Society, 2009. www.mrmc-
tool.org.

Orna Lichtenstein and Amir Pnueli. Checking that finite state con-
current programs satisfy their linear specification. In Mary S. Van
Deusen, Zvi Galil, and Brian K. Reid, editors, POPL, pages 97-107.
ACM Press, 1985.

Daniel J. Lehmann and Saharon Shelah. Reasoning with time and
chance (extended abstract). In Josep Diaz, editor, ICALP, volume
154 of Lecture Notes in Computer Science, pages 445-457. Springer,
1983.

Kim G. Larsen and Bent Thomsen. A modal process logic. In LICS,
pages 203—-210. IEEE Computer Society, 1988.

Andrey A. Markov. Rasprostranenie zakona bol’shih chisel
na velichiny, zavisyaschie drug ot druga. Tzvestiya Fiziko-
matematicheskogo obschestva pri Kazanskom universitete, 15, 2-ya
seriya:135-156, 1906.

Mathematica. version 9. Wolfram Research, Inc., Champaign, Illinois,
2012.

MATLAB. version 8.1 (R2013a). The MathWorks Inc., Natick, Mas-
sachusetts, 2013.

BIBLIOGRAPHY 53

[MC81]

[MS95]

[MT09]

[mt109]
[mtl11]

[Nor9g|
[NS03]

[NZ10]

[Pit06]

[Pnu77]

[PRSY]

[Put94]
[PZ86]

[qua0g]
[roc09]
[RS10]
[Saf88]

[SC85]

[Sha53)

Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.
IEEE Trans. Software Eng., 7(4):417-426, 1981.

David E. Muller and Paul E. Schupp. Simulating alternating tree
automata by nondeterministic automata: New results and new proofs
of the theorems of Rabin, McNaughton and Safra. Theor. Comput.
Sei., 141(1&2):69-107, 1995.

Sean P. Meyn and Richard L. Tweedie. Markov chains and stochastic
stability. Cambridge University Press, 2009.

MT-LAB. http://www.mt-lab.dk/en/research/research.htm, 2009.

MT-LAB: Midterm status report. http://www.mt-
lab.dk/download /research/midterm_report.pdf, 2011.

James R. Norris. Markov Chains. Cambridge University Press, 1998.

Abraham Neyman and Sylvain Sorin. Stochastic Games and Applica-
tions. Dordrecht: Kluwer Academic Press, 2003.

Martin R. Neuh&dufler and Lijun Zhang. Time-bounded reachability
probabilities in continuous-time Markov decision processes. In QEST
[DBL10], pages 209-218.

Nir Piterman. From nondeterministic Buchi and Streett automata to
deterministic parity automata. In LICS [DBL06], pages 255-264.

Amir Pnueli. The temporal logic of programs. In FOCS, pages 46-57.
IEEE, 1977.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module.
In POPL, pages 179-190. ACM Press, 1989.

Martin L. Puterman. Markov Decision Processes. Wiley, 1994.

Amir Pnueli and Lenore Zuck. Verification of multiprocess probabilis-
tic protocols. Distributed Computing, 1(1):53-72, 1986.

QUASIMODO. http://www.quasimodo.aau.dk, 2008.
ROCKS. http://rocks.w3.rz.unibw-muenchen.de, 2009.

Markus Rabe and Sven Schewe. Optimal time-abstract schedulers
for ctmdps and Markov games. In Alessandra Di Pierro and Gethin
Norman, editors, QAPL, volume 28 of EPTCS, pages 144-158, 2010.

Shmuel Safra. On the complexity of w-automata. In FOCS [DBLSS],
pages 319-327.

A. Prasad Sistla and Edmund M. Clarke. The complexity of proposi-
tional linear temporal logics. J. ACM, 32(3):733-749, 1985.

Lloyd S. Shapley. Stochastic games. PNAS, 39 (10):1095-110, 1953.

54

[Sprll]

BIBLIOGRAPHY

Jeremy Sproston. Discrete-time verification and control for probabilis-
tic rectangular hybrid automata. In QEST [DBL11], pages 79-88.

[TAKB96] Serdar Tasiran, Rajeev Alur, Robert P. Kurshan, and Robert K.

Brayton. Verifying abstractions of timed systems. In Ugo Montanari
and Vladimiro Sassone, editors, CONCUR, volume 1119 of Lecture
Notes in Computer Science, pages 546-562. Springer, 1996.

[TCT*08] Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Wen-Chin Chan,

[TDGOY)]

[Var85]

[VWS6]

[Wol07]

[WVS83]

[ZN10]

and Chi-Jian Luo. GOAL extended: Towards a research tool for
omega automata and temporal logic. In C. R. Ramakrishnan and
Jakob Rehof, editors, TACAS, volume 4963 of Lecture Notes in Com-
puter Science, pages 346-350. Springer, 2008.

Mirco Tribastone, Adam Duguid, and Stephen Gilmore. The
PEPA eclipse plugin. SIGMETRICS Performance Evaluation Review,
36(4):28-33, 20009.

Moshe Y. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. In FOCS, pages 327-338. IEEE, 1985.

Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach
to automatic program verification (preliminary report). In LICS,
pages 332-344. IEEE Computer Society, 1986.

Wayne Wolf. The good news and the bad news (embedded computing
column). IEEE Computer, 40 (11):104, 2007.

Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning
about infinite computation paths (extended abstract). In FOCS, pages
185-194. IEEE Computer Society, 1983.

Lijun Zhang and Martin R. Neuh&ufler. Model checking interactive
Markov chains. In Javier Esparza and Rupak Majumdar, editors,
TACAS, volume 6015 of Lecture Notes in Computer Science, pages
53-68. Springer, 2010.

Appendix

95

Part 1

Papers on discrete-time
Markovian systems

57

Paper A:

Deterministic Automata for the (F,G)-Fragment
of LTL

Jan Kretinsky and Javier Esparza

This paper has been published in P. Madhusudan and Sanjit A. Seshia (eds.):
Proceedings of Computer Aided Verification - 24th International Conference,
CAV 2012, Berkeley, CA, USA, July 7-13, 2012. Lecture Notes in Computer
Science, vol. 7358, pages 7-22. Springer, 2012. Copyright (© by Springer-
Verlag. [KE12]

Summary

Methods for probabilistic LTL model checking and LTL synthesis mostly re-
quire to construct a deterministic w-automaton from a given LTL formula. The
standard way is to first translate the formula into a non-deterministic Biichi
automaton and then determinise it using Safra’s construction or its variants.
As this construction is very general and covers more than automata arising
from LTL, we design a more specialised translation tailored to the goal men-
tioned above. We give a translation of an LTL fragment with only the F and
G operators directly to a new kind of a deterministic w-automaton called gen-
eralised Rabin automaton. This automaton can be further de-generalised into
a deterministic Rabin automaton. Preliminary experimental results show huge
improvements for more complex formulae such as e.g. fairness constraints.

Author’s contribution: 85 %

e design of the method,

e proof of correctness,

99

60

e experimental implementation and evaluation,

e writing the paper from Section 2 onwards.

Deterministic Automata
for the (F,G)-fragment of LTL

1,2% 1

Jan Kretinsky and Javier Esparza

! Fakultit fiir Informatik, Technische Universitit Miinchen, Germany
{jan.kretinsky,esparza}@in.tum.de
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. When dealing with linear temporal logic properties in the
setting of e.g. games or probabilistic systems, one often needs to express
them as deterministic omega-automata. In order to translate LTL to de-
terministic omega-automata, the traditional approach first translates the
formula to a non-deterministic Biichi automaton. Then a determiniza-
tion procedure such as of Safra is performed yielding a deterministic
w-automaton. We present a direct translation of the (F,G)-fragment of
LTL into deterministic w-automata with no determinization procedure
involved. Since our approach is tailored to LTL, we often avoid the typ-
ically unnecessarily large blowup caused by general determinization al-
gorithms. We investigate the complexity of this translation and provide
experimental results and compare them to the traditional method.

1 Introduction

The w-regular languages play a crucial role in formal verification of linear time
properties, both from a theoretical and a practical point of view. For model-
checking purposes one can comfortably represent them using nondeterministic
Biichi automata (NBW), since one only needs to check emptiness of the in-
tersection of two NBWs corresponding to the system and the negation of the
property, and NBWs are closed under intersection. However, two increasingly
important problems require to represent w-regular languages by means of de-
terministic automata. The first one is synthesis of reactive modules for LTL
specifications, which was theoretically solved by Pnueli and Rosner more than
20 years ago [PRS88], but is recently receiving a lot of attention (see the refer-
ences below). The second one is model checking Markov decision processes (see
e.g. [BKO08]), where impressive advances in algorithmic development and tool
support are quickly extending the range of applications.

It is well known that NBWs are strictly more expressive then their deter-
ministic counterpart, and so cannot be determinized. The standard theoretical
solution to this problem is to translate NBW into deterministic Rabin automata
(DRW) using Safra’s construction [Saf88] or a recent improvement by Piterman

* The author is a holder of Brno PhD Talent Financial Aid and is supported by the
Czech Science Foundation, grant No. P202/12/G061.

61

62

[Pit06]. However, it is commonly accepted that Safra’s construction is difficult
to handle algorithmically due to its “messy state space” [Kupl2]. Many pos-
sible strategies for solving this problem have been investigated. A first one is
to avoid Safra’s construction altogether. A Safraless approach that reduces the
synthesis problem to emptiness of nondeterministic Biichi tree automata has
been proposed in [KV05,KPV06]. The approach has had considerable success,
and has been implemented in [JBO6]. Another strategy is to use heuristics to
improve Safra’s construction, a path that has been followed in [KB06,KBO07]
and has produced the It12dstar tool [Kle]. Finally, a third strategy is to search
for more efficient or simpler algorithms for subclasses of w-regular languages.
A natural choice is to investigate classes of LTL formulas. While LTL is not as
expressive as NBW | the complexity of the translation of LTL to DRW still has
929" complexity [KR10]. However, the structure of NBWs for LTL formulas
can be exploited to construct a symbolic description of a deterministic parity
automaton [MS08]. Fragments of LTL have also been studied. In [AT04], single
exponential translations for some simple fragments are presented. Piterman et
al. propose in [PPS06] a construction for reactivity(1) formulas that produces
in cubic time a symbolic representation of the automaton. The construction has
been implemented in the ANZU tool [JGWBO07].

Despite this impressive body of work, the problem cannot yet be consid-
ered solved. This is particularly so for applications to probabilistic model check-
ing. Since probabilistic model checkers need to deal with linear arithmetic, they
profit much less from sophisticated symbolic representations like those used in
[PPS06,MS08], or from the Safraless approach which requires to use tree au-
tomata. In fact, to the best of our knowledge no work has been done so far in
this direction. The most successful approach so far is the one followed by the
It12dstar tool, which explicitly constructs a reduced DRW. In particular, the
1t12dstar has been reimplemented in PRISM [KNP11], the leading probabilistic
model checker.

However, the work carried in [KB06,KB07] has not considered the devel-
opment of specific algorithms for fragments of LTL. This is the question we
investigate in this paper: is it possible to improve on the results of Itl2dstar
by restricting attention to a subset of LTL? We give an affirmative answer by
providing a very simple construction for the (F,G)-fragment of LTL, i.e., the
fragment generated by boolean operations and the temporal operators F and
G. Our construction is still double exponential in the worst case, but is algo-
rithmically very simple. We construct a deterministic Muller automaton for a
formula ¢ of the fragment with a very simple state space: boolean combinations
of formulas of the closure of ¢. This makes the construction very suitable for
applying reductions based on logical equivalences: whenever some logical rule
shows that two states are logically equivalent, they can be merged. (This fact
is also crucial for the success of the constructions from LTL to NBW.) Since
the number of Muller accepting sets can be very large, we also show that the
Muller condition of our automata admits a compact representation as a gener-
alized Rabin acceptance condition. We also show how to efficiently transform

63

this automaton to a standard Rabin automaton. Finally, we report on an im-
plementation of the construction, and present a comparison with ltl12dstar. We
show that our construction leads to substantially smaller automata for formulas
expressing typical fairness conditions, which play a very important role in proba-
bilistic model checking. For instance, while It]12dstar produces an automaton with
over one million states for the formula /\?:I(GFai — GFb;), our construction
delivers an automaton with 1560 states.

2 Linear Temporal Logic

This section recalls the notion of linear temporal logic (LTL) [Pnu77].

Definition 1 (LTL Syntax). The formulae of the (F,G)-fragment of linear
temporal logic are given by the following syntax:

pu=al-alenpleVe|Fo|Ge
where a ranges over a finite fixed set Ap of atomic propositions.

We use the standard abbreviations tt := a V —a, ff;= a A —-a. We only have
negations of atomic propositions, as negations can be pushed inside due to the
equivalence of Fy and ~G—¢p.

Definition 2 (LTL Semantics). Let w € (247)% be a word. The ith letter of

w is denoted wli], i.e. w = w[0Jw[1]---. Further, we define the ith suffix of w as
w; = wlilw[i4+1]---. The semantics of a formula on w is then defined inductively
as follows:

wEa < a € w0

w = —a <= a ¢ w|0]

whkEeAY — wkypandwpEY

wk vy = wkporuwky

w = Fp < JkeN:wyf=¢

wE Gy — VkeN:w, =g

We define a symbolic one-step unfolding il of a formula inductively by the
following rules, where the symbol X intuitively corresponds to the meaning of
the standard next operator.

H(a) =a
$(—a) = —a
U A1p) = U(p) ALU()
Ulp V)
)
)

Ezample 3. Consider ¢ = FaAGFb. Then U(p) = (aVXFa)A(bVXFb)AXGFb.

64
3 Deterministic Automaton for the (F,G)-fragment

Let ¢ be an arbitrary but fixed formula. In the following, we construct a deter-
ministic finite w-automaton that recognizes the words satisfying ¢. The definition
of the acceptance condition and its variants follow in the subsequent sections.
We start with a construction of the state space. The idea is that a state cor-
responds to a formula that needs to be satisfied when coming into this state.
After evaluating the formulae on the propositions currently read, the next state
will be given by what remains in the one-step unfold of the formula. E.g. for
Example 3 and reading a, the successor state needs to satisfy Fo A GFb.

In the classical syntactic model constructions, the states are usually given by
sets of subformulae of ¢. This corresponds to the conjunction of these subformu-
lae. The main difference in our approach is the use of both conjunctions and also
disjunctions that allow us to dispose of non-determinism in the corresponding
transition function. In order to formalize this, we need some notation.

Let F and G denote the set of all subformulae of ¢ of the form Fv and
G, respectively. Further, all temporal subformulae are denoted by a shorthand
T := FUG. Finally, for a set of formulae ¥, we denote X¥ := {X¢ | ¢ € ¥}.

We denote the closure of ¢ by C(yp) := ApU{—a | a € Ap}UXT. Then U(¢p) is
a positive Boolean combination over C(¢p). By states(y) we denote the set 227
Each element of states(y) is a positive Boolean function over C(p) and we often
use a positive Boolean formula as its representative. For instance, the definition
of U is clearly independent of the choice of representative, hence we abuse the
notation and apply U to elements of states(y). Note that |states(p)| € (9(22M)
where |¢| denotes the length of .

Our state space has two components. Beside the logical component, we also
keep track of one-step history of the word read. We usually use letters 1, x when
speaking about the former component and «, § for the latter one.

Definition 4. Given a formula ¢, we define A(p) = (Q,14,9) to be a determin-
istic finite automaton over X = 24P given by

— the set of states Q = {i} U (states(ga) X 2Ap)
— the initial state i;
— the transition function

0 ={(i,, {Up),) | @ € Z3U{((,), B, (suce(vh, @), B)) | (¥,a) € Q, 8 € I}

where suce(y, &) = U(next (Yo — tt, Ap \ a — fF]) where next(y’) removes
Xs from)’ and Y[T — tt, F — fF] denotes the equivalence class of formulae

where in ¥ we substitute tt for all elements of T and ff for all elements of
F.

Intuitively, a state (1, @) of Q corresponds to the situation where v needs to be
satisfied and « is being read.

65

Ezample 5. The automaton for Fa with Ap = {a} is depicted in the following
figure. The automaton is obviously unnecessarily large, one can expect to merge
e.g. the two states bearing the requirement tt as the proposition a is irrelevant
for satisfaction of tt that does not even contain it. For the sake of simplicity, we
leave all possible combinations here and comment on this in Section 8.

{a}
Q

start —» ta} [(a V XFa, {a})]ﬁ){(tt, {a})}
Lo

(tt, 0)

0 0

The reader might be surprised or even annoyed by the fact that the logical
structure of the state space is not sufficient to keep enough information to decide
whether a run p is accepting. In order to ensure this, we remember one-step
history in the state. Why is that? Consider ¢ = GF(a A Fb). Its unfold is then

XGF(a A Fb) A (XF(a AFD)V (an (bV XFb))) (+)

Then moving under {a} results into the requirement GF (aAFb)A (F(aAFb)VFD)
for the next step where the alternative of pure Fb signals progress made by not
having to wait for an a. Nevertheless, the unfold of this formula is propositionally
equivalent to (x). This is indeed correct as the two formulae are temporally
equivalent (i.e. in LTL semantics). Thus, the information about the read a is not
kept in the state and the information about this partial progress is lost! And
now the next step under both {b} and () again lead to the same requirement
GF(a A Fb) A F(a A Fb). Therefore, there is no information that if b is read,
then it can be matched with the previous a and we already have one satisfaction
of (infinitely many required satisfactions of) F(a A Fb) compared to reading 0.
Hence, the runs on ({a}{b})“ and ({a}0)* are the same while the former should
be accepting and the latter rejecting. However, this can be fixed by remembering
the one-step history and using the acceptance condition defined in the following
section.

4 Muller Acceptance Condition

In this section, we introduce a Muller acceptance condition. In general, the num-
ber of sets in a Muller condition can be exponentially larger than the size of the
automaton. Therefore, we investigate the particular structure of the condition. In
the next section, we provide a much more compact whilst still useful description
of the condition. Before giving the formal definition, let us show an example.

66

Ezample 6. Let ¢ = F(GaV Gb). The corresponding automaton is depicted be-
low, for clarity, we omit the initial state. Observe that the formula stays the same
and the only part that changes is the letter currently read that we remember
in the state. The reason why is that ¢ can neither fail in finite time (there is
always time to fulfill it), nor can be partially satisfied (no progress counts in this
formula, only the infinite suffix). However, at some finite time the argument of
F needs to be satisfied. Although we cannot know when and whether due to Ga
or Gb, we know it is due to one of these (or both) happening. Thus we may shift
the non-determinism to the acceptance condition, which says here: accept if the
states where a holds are ultimately never left, or the same happens for b. The
commitment to e.g. ultimately satisfying Ga can then be proved by checking
that all infinitely often visited states read a.

{o} {a, b}

We now formalize this idea. Let ¢ be a formula and A(yp) = (Q, 7, 0) its corre-
sponding automaton. Consider a formula x as a Boolean function over elements
of C(p). For sets T, F C C(¢), let x[T + tt, F' — ff] denote the formula where tt
is substituted for elements of T', and ff for F'. As elements of C(¢p) are considered
to be atomic expressions here, the substitution is only done on the propositional
level and does not go through the modality, e.g. (aV XGa)[a — ff] = ff V XGa,
which is equivalent to XGa in the propositional semantics.

Further, for a formula y and o € X and I C T, we put I =, x to denote
that

X[aUTI— tt, Ap\ a — ff]

is equivalent to tt in the propositional semantics. We use this notation to describe
that we rely on a commitment to satisfy all formulae of I.

Definition 7 (Muller acceptance). A set M C @ is Muller accepting for a
set I C T if the following is satisfied:

1. for each (x,a) € M, we have XI =, X,
2. for each Fip € I there is (x,a) € M with I =, 1,
3. for each Gy € I and for each (x,«) € M we have I =, 1.

A set F C Q is Muller accepting (for ¢) if it is Muller accepting for some I C T.

67

The first condition ensures that the commitment to formulae in I being
ultimately satisfied infinitely often is enough to satisfy the requirements. The
second one guarantees that each F-formula is unfolded only finitely often and
then satisfied, while the third one guarantees that G-formulae indeed ultimately
hold. Note that it may be impossible to see the satisfaction of a formula directly
and one must rely on further promises, formulae of smaller size. In the end,
promising the atomic proposition is not necessary and is proven directly from
the second component of the state space.

4.1 Correctness

Given a formula ¢, we have defined a Muller automaton A(p) and we let the
acceptance condition M(p) = {Mjy, ..., M;} be given by all the Muller accepting
sets M; for ¢. Every word w : N — 247 induces a run p = A(p)(w) : N — Q
starting in ¢ and following 6. The run is thus accepting and the word is accepted
if the set of states visited infinitely often Inf(p) is Muller accepting for . Vice
versa, a run p = i(x1,a1)(xz, @2) - - - induces a word Ap(p) = ayag - --. We now
prove that this acceptance condition is sound and complete.

Theorem 8. Let ¢ be a formula and w a word. Then w is accepted by the
deterministic automaton A(p) with the Muller condition M(p) if and only if

w E p.

We start by proving that the first component of the state space takes care of
all progress or failure in finite time.

Proposition 9 (Local (finitary) correctness). Let w be a word and A(p)(w) =
i(x0,0)(Xx1,1) -+ the corresponding run. Then for all n € N, we have w = ¢
if and only if w, = Xn-

Proof (Sketch). The one-step unfold produces a temporally equivalent (w.r.t. LTL
satisfaction) formula. The unfold is a Boolean function over atomic propositions
and elements of XT. Therefore, this unfold is satisfied if and only if the next
state satisfies next(1)) where 1 is the result of partial application of the Boolean
function to the currently read letter of the word. We conclude by induction. O

Further, each occurrence of satisfaction of F must happen in finite time. As
a consequence, a run with x; # ff is rejecting if and only if satisfaction of some
F is always postponed.

Proposition 10 (Completeness). If w = ¢ then Inf(A(p)(w)) is a Muller
accepting set.

Proof. Let us show that M := Inf(A(p)(w)) is Muller accepting for
I'={yeFlwkG)iU{yeCGlwFy}

As a technical device we use the following. For every finite Boolean combina-
tion 1 of elements of the closure C, there are only finitely many options to satisfy

68

it, each corresponding to a subset of C. Therefore, if w; = ¢ for infinitely many
1 € N then at least one of the options has to recur. More precisely, for some sub-
set o C Ap there are infinitely many ¢ € N with w; E ¢y UaU{-a|a € Ap\ a}.
For each such o we pick one subset I, o, C T such that for infinitely many 4,
after reading w' = w(0] - - - w[i] we are in state (x,) and w; = 1 U XI, o, and
Lo Fa ¥. We say that we have a recurring set I, o, modelling 1 (for a state
(x, @)). Obviously, the recurring sets for all states are included in I, i.e. I, o C T
for every (x,a) € Q.

Let us now proceed with proving the three conditions of Definition 7 for M
and I.

Condition 1. Let (x, a) € M. Since w = ¢, by Proposition 9 w; = x whenever
we enter (, «) after reading w?, which happens for infinitely many i € N. Hence
we have a recurring set I, o, modelling x. Since I, o F=q X, We get also I =4 X
by I« C1I.

Condition 2. Let F¢p € I, then w = GF. Since there are finitely many
states, there is (y,a) € M for which after infinitely many entrances by w® it
holds w; {= 1 by Proposition 9, hence we have a recurring set I, , modelling ¢
and conclude as above.

Condition 3. Let Gy € I, then w = FG. Hence for every (y,a) € M
infinitely many w’ leading to (x, a) satisfy w; |= 1 by Proposition 9, hence we
have a recurring set I, , modelling 1) and conclude as above. a

Before proving the opposite direction of the theorem, we provide a property
of Muller accepting sets opposite to the previous proposition.

Lemma 11. Let p be a run. If Inf(p) is Muller accepting for I then Ap(p) E G
for each b € INT and Ap(p) = Fy for each v € ING.

Proof. Denote w = Ap(p). Let us first assume ¢» € I NF and w; = ¢ for
all j > i € N. Since v € I N, for infinitely many j, p passes through some
(x, @) € Inf(p) for which I =, . Hence, there is ¢); € I which is a subformula
of ¢ such that for infinitely many 4, w; j= 11. If ¢ € F, we proceed as above;
similarly for ¢; € G. Since we always get a smaller subformula, at some point
we obtain either v,, = F3 or ¢, = G with 8 a Boolean combination over Ap
and we get a contradiction with the second or the third point of Definition 7,
respectively. O

In other words, if we have a Muller accepting set for I then all elements of I
hold true in w; for almost all 4.

Proposition 12 (Soundness). If Inf(A(y)(w)) is a Muller accepting set then
w = p.

Proof. Let M := Inf(A(¢)(w)) be a Muller accepting set for some I. There is
i € N such that after reading w® we come to (, a) and stay in Inf(A(p)(w)) from
now on and, moreover, w; = for all ¢ € I by Lemma 11. For a contradiction,
let w £ ¢. By Proposition 9 we thus get w; (= x. By the first condition of
Definition 7, we get I |=, x. Therefore, there is ¢ € I such that w; [~ ¥, a
contradiction. O

69

5 Generalized Rabin Condition

In this section, we investigate the structure of the previously defined Muller
condition and propose a new type of acceptance condition that compactly, yet
reasonably explicitly captures the accepting sets.

Let us first consider a fixed I C T and examine all Muller accepting sets for I.
The first condition of Definition 7 requires not to leave the set of states {(x, « |
I =4 x)}- Similarly, the third condition is a conjunction of |I NG| conditions not
to leave sets {(x, @) | I Fq 9} for each Gy € I. Both conditions thus together
require that certain set (complement of the intersection of the above sets) is
visited only finitely often. On the other hand, the second condition requires to
visit certain sets infinitely often. Indeed, for each Fi the set {(x,a) | [Eq4 ¢}
must be visited infinitely often.

Furthermore, a set is accepting if the conditions above hold for some set I.
Hence, the acceptance condition can now be expressed as a positive Boolean
combination over Rabin pairs in a similar way as the standard Rabin condition
is a disjunction of Rabin pairs.

Ezample 13. Let us consider the (strong) fairness constraint ¢ = FGa V GFb.
Since each atomic proposition has both F and G as ancestors in the syntactic
tree, it is easy to see that there is only one reachable element of states(y) and
the state space of A is {i} U 2{®%} ie. of size 1 4+ 22 = 5. Furthermore, the
syntactic tree of U(¢) = XFGaV (XGaAa)V (XGFbA (XFbVD)) immediately
determines possible sets I. These either contain Ga (possibly with also FGa or
some other elements) or GFb, Fb. The first option generates the requirement to
visit states with —a only finitely often, the second one to visit b infinitely often.
Thus the condition can be written as

({glgF—a},Q) VvV (0,{q|qF0b})

and is in fact a Rabin acceptance condition.
We formalize this new type of acceptance condition as follows.

Definition 14 (Generalized Rabin Automaton). A generalized Rabin au-
tomaton is a (deterministic) w-automaton A = (Q,i,06) over some alphabet X,
where Q) is a set of states, i is the initial state, 6 : Q X X — Q is a transition
function, together with a generalized Rabin condition GR € BT (29 x 2%9). A run
p of A is accepting if Inf(p) = GR, which is defined inductively as follows:

Inf(p) =@ A9 <= Inf(p) = ¢ and Inf(p) =4
Inf(p) E @ Ve < Inf(p) = ¢ or Inf(p) = ¢
Inf(p) = (F, 1) <= Fnnf(p) =0 and I NInf(p) #0

The generalized Rabin condition corresponding to the previously defined
Muller condition M can now be formalized as follows.

70

Definition 15 (Generalized Rabin Acceptance). Let ¢ be a formula. The
generalized Rabin condition GR(y) is

V| ({ea) [THEaxn A wh@)n A (40ca) [1o w))

ICT Gyel Fwel

By the argumentation above, we get the equivalence of the Muller and the
generalized Rabin conditions for ¢ and thus the following.

Proposition 16. Let ¢ be a formula and w a word. Then w is accepted by the
deterministic automaton A(p) with the generalized Rabin condition GR(yp) if

and only if w = .

Ezample 17. Let us consider a conjunction of two (strong) fairness constraints
¢ = (FGa V GFb) A (FGe VvV GFd). Since each atomic proposition is wrapped
in either FG or GF, there is again only one relevant element of states(y) and
the state space of A is {i} U2{@b¢d} je. of size 1+ 2* = 17. From the previous
example, we already know the disjunctions correspond to (—a, @) V (0,b) and
(¢, Q) V (B,d). Thus for the whole conjunction, we get a generalized Rabin

condition
t (Ca.@vE.n)A(Ceve.a)

6 Rabin Condition

In this section, we briefly describe how to obtain a Rabin automaton from A(¢p)
and the generalized Rabin condition GR(p) of Definition 15. For a fixed I, the
whole conjunction of Definition 15 corresponds to the intersection of automata
with different Rabin conditions. In order to obtain the intersection, one has first
to construct the product of the automata, which in this case is still the original
automaton with the state space @), as they are all the same. Further, satisfying

Gn N 0.F)

feF:=INF

amounts to visiting G only finitely often and each F) infinitely often. To check
the latter (for a non-empty conjunction), it is sufficient to multiply the state
space by F with the standard trick that we leave the fth copy once we visit F
and immediately go to the next copy. The resulting Rabin pair is thus

(fo,fo{f})

for an arbitrary fixed f € F.

As for the disjunction, Rabin condition is closed under it as it simply takes
the union of the pairs when the two automata have the same state space. In our
case, one can multiply the state space of each disjunct corresponding to I by all

71

JNF for each J € 2T\ {I} to get the same state space for all of them. We thus
get a bound for the state space

[[1Z7nFl-Q|

ICT

Ezxample 18. The construction of Definition 15 for the two fairness constraints
Example 17 yields

(maV =¢,Q) V (ma,d) V (=¢,b) V ((0,b) A (0,d))

where we omitted all pairs (F, I) for which we already have a pair (F’,I’) with
F C F and I D I'. One can eliminate the conjunction as described above at the
cost of multiplying the state space by two. The corresponding Rabin automaton
thus has 2 -1 |[{i} U24P| = 34 states. (Of course, for instance the initial state
need not be duplicated, but for the sake of simplicity of the construction we
avoid any optimizations.)

For a conjunction of three conditions, ¢ = (FGa V GFb) A (FGcV GFd) A
(FGeVGFE f), the right components of the Rabin pairs correspond to tt, b, d, f, bA
d,bA f,dN f,b ANd A f. The multiplication factor to obtain a Rabin automaton
is thus 2223 = 24 and the state space is of the size 24 -1 - (1 + 25) = 1560.

7 Complexity

In this section, we summarize the theoretical complexity bounds we have ob-
tained.

The traditional approach first translates the formula ¢ of length n into a
non-deterministic automaton of size O(2"). Then the determinization follows.
The construction of Safra has the complexity m®(™) where m is the size of the
input automaton [Saf88]. This is in general optimal. The overall complexity is

thus
gn-0(2") _ 9O(2"FleE)

The recent lower bound for the whole LTL is 22°*"” [KR10]. However, to be more

precise, the example is of size less than 29(2"). Hence, there is a small gap. To

the authors’ best knowledge, there is no better upper bound when restricting to

automata arising from LTL formulae or from the full (F,G)-fragment. (There

are results on smaller fragments [AT04] though.) We tighten this gap slightly as

shown below. Further, note that the number of Rabin pairs is O(m) = O(2").
Our construction first produces a Muller automaton of size

IT|

0(22 . 2‘141)‘) — O(22n+1’b) g 2@(2")

which is strictly less than in the traditional approach. Moreover, as already
discussed in Example 13, one can consider an “infinitary” fragment where every
atomic proposition has in the syntactic tree both Fand Gas some ancestors.
In this fragment, the state space of the Muller/generalized Rabin automaton

72

is simply 24P (when omitting the initial state) as for all & C Ap, we have
succ(yp, a) = . This is useful, since for e.g. fairness constraints our procedure
yields exponentially smaller automaton.

Although the size of the Muller acceptance condition can be potentially expo-
nentially larger than the state space, we have shown it can be compactly written
as a disjunction of up to 2" of conjunctions each of size at most n.

Moreover, using the intersection procedure we obtain a Rabin automaton
with the upper bound on the state space

‘]F‘QHH) ‘Ql c n2n) 20(27z) _ 20(10‘%”'271) _ 20(2n+1oglogn) g 20(2n+logn)

thus slightly improving the upper bound. Further, each conjunction is trans-
formed into one pair, we are thus left with at most 2!Tl € ©(2") Rabin pairs.

8 Experimental Results and Evaluation

We have implemented the construction of the state space of A(p) described
above. Further, Definition 15 then provides a way to compute the multiplication
factor needed in order to get the Rabin automaton. We compare the sizes of this
generalized Rabin automaton and Rabin automaton with the Rabin automaton
produced by ltl2dstar. Ltl2dstar first calls an external translator from LTL to
non-deterministic Biichi automata. In our experiments, it is LTL2BA [GOO01]
recommended by the authors of 1t12dstar. Then it performs Safra’s determiniza-
tion. Ltl2dstar implements several optimizations of Safra’s construction. The
optimizations shrink the state space by factor of 5 (saving 79.7% on average on
the formulae considered here) to 10 (89.7% on random formulae) [KB06]. Our
implementation does not perform any ad hoc optimization, since we want to eval-
uate whether the basic idea of the Safraless construction is already competitive.
The only optimizations done are the following.

— Only the reachable part of the state space is generated.

— Only atomic propositions relevant in each state are considered. In a state
(x, @), a is not relevant if y[a — tt] = x[a — ff], i.e. if for every valuation,
x has the same value no matter which value a takes. For instance, let Ap =
{a, b} and consider x = U(Fa) = Fa V a. Then instead of having four copies
(for 0,{a},{b},{a,b}), there are only two for the sets of valuations {@, {b}}
and {{a}, {a,b}}. For its successor tt, we only have one copy standing for
the whole set {0, {a}, {b}, {a,b}}.

— Definition 15 takes a disjunction over I € 2T. If I C I’ but the set of states
(x,a) with T =, x and I' |, x are the same, it is enough to consider
the disjunct for I only. E.g. for {(G(Fa Vv Fb)), we only consider I either
{G(FaV Fb),Fa} or {G(FaV Fb),Fb}, but not their union.

This is an instance of a more general simplification. For a conjunction of
pairs (Fy, 1) A (Fa,I3) with I; C I, there is a single equivalent condition
(Fy U Fy,).

73

Table 1 shows the results on formulae from BEEM (BEnchmarks for Ex-
plicit Model checkers)[Pel07] and formulae from [SB00] on which 1t12dstar was
originally tested [KBO06]. In both cases, we only take formulae of the (F,G)-
fragment. In the first case this is 11 out of 20, in the second 12 out of 28. There
is a slight overlap between the two sets. Further, we add conjunctions of strong
fairness conditions and a few other formulae. For each formula ¢, we give the
number |states(p)| of distinct states w.r.t. the first (logical) component. The
overall number of states of the Muller or generalized Rabin automaton follows.
The respective runtimes are not listed as they were less than a second for all
listed formulae, with the exception of the fifth formula from the bottom where
it needed 3 minutes (here ltl2dstar needed more than one day to compute the
Rabin automaton). In the column GR-factor, we describe the complexity of the
generalized Rabin condition, i.e. the number of copies of the state space that are
created to obtain an equivalent Rabin automaton, whose size is thus bounded
from above by the column Rabin. The last column states the size of the state
space of the Rabin automaton generated by 1tl12dstar using LTL2BA.

Table 1. Experimental comparison to lt12dstar on formulae of [Pel07], [SB00], fairness
constraints and some other examples of formulae of the “infinitary” fragment

Formula states|Muller/GR|GR-factor|Rabin| 1t12dstar
G(a V Fb) 2 5 1 5 4
FGaVFGbV GFc 1 9 1 9 36
F(aVb) 2 4 1 4 2
GF(aV b) 1 3 1 3 4
G(aVbVe) 2 4 1 4 3
G(a v Fb) 2 5 1 5 4
G(aVF(bVe) 2 5 1 5 4
Fa Vv Gb 3 7 1 7 5
G(aVF(AC) 2 5 1 5 4
(FGa V GFb) 1 5 1 5 12
GF(aVb) AGF(bVc) 1 5 2 10 12
(FFa A G—a) V (GG—a A Fa) 2 4 1 4 1
(GFa) AFGb 1 5 1 5 7
(GFa AFGb) V (FG—a A —b) 1 5 1 5 14
FGa A GFa 1 3 1 3 3
G(Fa AFD) 1 5 2 10 5
FaANFb 4 8 1 8 4
(G(bV GFa) A G(cV GF-a)) VGbV Ge 4 18 2 36 26
(G(bVFGa) ANG(cVFG—a))VGbV Ge 4 18 1 18 29
(F(bAFGa) VF(cAFG—-a)) AFbAFe 4 18 1 18 8
(F(bA GFa) VF(cAGF-a)) N\FbAFc 4 18 1 18 45
(FGa vV GFb) 1 5 1 5 12
(FGa VvV GFb) A (FGe Vv GFd) 1 17 2 34| 17527
N._,(GFa; — GFb,) 1 65 24| 1560|1304 706
(A_, GFa;) — GFb 1 65 1 65 972
GF(FaGFbFG(a Vb)) 1 5 1 5 159
FG(FaV GFbV FG(a Vb)) 1 5 1 5/ 2918
FG(FaV GFbV FG(a Vb))V FGb) 1 5 1 5 4516

74

While the advantages of our approach over the general determinization are
clear for the infinitary fragment, there seem to be some drawbacks when “fini-
tary” behaviour is present, i.e. behaviour that can be satisfied or disproved after
finitely many steps. The reason and the patch for this are the following. Consider
the formula Fa and its automaton from Example 5. Observe that one can easily
collapse the automaton to the size of only 2. The problem is that some states
such as (a V XFa,{a}) are only “passed through” and are equivalent to some
of their successors, here (tt,{a}). However, we may safely perform the following
collapse. Whenever two states (x, «), (X, @) satisfy that x[a — tt, Ap \ « — ff]
is propositionally equivalent to x'[a — tt, Ap \ o — ff] we may safely merge the
states as they have the same properties: they are bisimilar with the same set of
atomic propositions satisfied. Using these optimizations, e.g. the automaton for
Fa A Fb has size 4 as the one produced by 1tl12dstar.

Next important observation is that the blow-up from generalized Rabin to
Rabin automaton (see the column GR-factor) corresponds to the number of
elements of F that have a descendant or an ancestor in G and are combined with
conjunction. This follows directly from the transformation described in Section 6
and is illustrated in the table.

Thus, we may conclude that our approach is competitive to the determiniza-
tion approach and for some classes of useful properties such as fairness con-
straints or generally the infinitary properties it shows significant advantages.
Firstly, the state space of the Rabin automaton is noticeably smaller. Secondly,
compact generalized Rabin automata tend to be small even for more complex
formulae. Thirdly, the state spaces of our automata have a clear structure to be
exploited for further possible optimizations, which is more difficult in the case
of determinization. In short, the state space is less “messy”.

9 Discussion on Extensions

Our approach seems to be extensible to the (X,F,G)-fragment. In this setting,
instead of remembering the one-step history one needs to remember n last steps
(or have a n-step look-ahead) in order to deal with formulae such as GF(a AXDbD).
Indeed, the acceptance condition requires to visit infinitely often a state provably
satisfying a A Xb. This can be done by remembering the last n symbols read,
where n can be chosen to be the nesting depth of Xs. We have not presented
this extension mainly for the sake of clarity of the construction.

Further, one could handle the positive (X,U)-fragment, where only atomic
propositions may be negated as defined above. These formulae are purely “fini-
tary” and the logical component of the state space is sufficient. Indeed, the
automaton simply accepts if and only if tt is reached and there is no need to
check any formulae that we had committed to.

For the (U,G)-fragment or the whole LTL, our approach would need to be
significantly enriched as the state space (and last n symbols read) is not sufficient
to keep enough information to decide whether a run p is accepting only based on
Inf(p). Indeed, consider a formula ¢ = GF(a AbUc). Then reading {a, b} results

75

in the requirement GF(a A bUc) A (F(a A bUc) V (bUc)) which is, however,
temporally equivalent to ¢ (their unfolds are propositionally equivalent). Thus,
runs on ({a,b}{c}0)* and ({a,b}0{c})* have the same set of infinitely often
visited states. Hence, the order of visiting the states matters and one needs the
history. However, words such as ({a, b}{b}"{c})* vs. ({0}"{c})¥ show that more
complicated structure is needed than last n letters. The conjecture that this
approach is extensible to the whole LTL is left open and considered for future
work.

10 Conclusions

We have shown a direct translation of the LTL fragment with operators F and
G to deterministic automata. This translation has several advantages compared
to the traditional way that goes via non-deterministic Biichi automata and then
performs determinization. First of all, in our opinion it is a lot simpler than the
determinization and its various non-trivial optimizations. Secondly, the state
space has a clear logical structure. Therefore, any work with the automata or
further optimizations seem to be conceptually easier. Moreover, many optimiza-
tions are actually done by the logic itself. Indeed, logical equivalence of the
formulae helps to shrink the state space with no further effort. In a sense, the
logical part of a state contains precisely the information that the semantics of
LTL dictates, see Proposition 9. Thirdly, the state space is—according to the
experiments—not much bigger even when compared to already optimized de-
terminization. Moreover, very often it is considerably smaller, especially for the
“infinitary” formulae; in particular, for fairness conditions. Furthermore, we have
also given a very compact deterministic w-automaton with a small and in our
opinion reasonably simple generalized Rabin acceptance condition.

Although we presented a possible direction to extend the approach to the
whole LTL, we leave this problem open and will focus on this in future work.
Further, since only the obvious optimizations mentioned in Section 8 have been
implemented so far, there is space for further performance improvements in this
new approach.

Acknowledgement

Thanks to Andreas Gaiser for pointing out to us that 1tl2dstar constructs sur-
prisingly large automata for fairness constraints and the anonymous reviewers
for their valuable comments.

References

[AT04] Rajeev Alur and Salvatore La Torre. Deterministic generators and games
for LTL fragments. ACM Trans. Comput. Log., 5(1):1-25, 2004.

[BKOS] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

76

[GOO1]

[JBO6]

Paul Gastin and Denis Oddoux. Fast LTL to Biichi automata translation.
In CAV, volume 2102 of LNCS, pages 53—65. Springer, 2001. Tool accessible
at http://www.lsv.ens-cachan.fr/ gastin/It12ba/.

Barbara Jobstmann and Roderick Bloem. Optimizations for LTL synthesis.
In FMCAD, pages 117-124. IEEE Computer Society, 2006.

[JGWBO07] Barbara Jobstmann, Stefan J. Galler, Martin Weiglhofer, and Roderick

[KBO6]

[KBO7]

[Kle]

[KNP11]

[KPV06)

[KR10]

[Kup12]
[KVO05]

[MS08]

[Pel07]

[Pit06)

[Pnu77]
[PPSO06]
[PRSS)]
[Safss]

[SBOO]

Bloem. Anzu: A tool for property synthesis. In CAV, volume 4590 of
LNCS, pages 258-262. Springer, 2007.

Joachim Klein and Christel Baier. Experiments with deterministic omega-
automata for formulas of linear temporal logic. Theor. Comput. Sci.,
363(2):182-195, 2006.

Joachim Klein and Christel Baier. On-the-fly stuttering in the construction
of deterministic omega -automata. In CIAA, volume 4783 of LNCS, pages
51-61. Springer, 2007.

Joachim Klein. 1tl12dstar - LTL to deterministic Streett and Rabin automata.
http://www.lt12dstar.de/.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In CAV, volume 6806 of
LNCS, pages 585-591. Springer, 2011.

Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Safraless composi-
tional synthesis. In CAV, volume 4144 of LNCS, pages 31-44. Springer,
2006.

Orna Kupferman and Adin Rosenberg. The blowup in translating LTL to
deterministic automata. In MoChArt, volume 6572 of LNCS, pages 85-94.
Springer, 2010.

Orna Kupferman. Recent challenges and ideas in temporal synthesis. In
SOFSEM, volume 7147 of LNCS, pages 88-98. Springer, 2012.

Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In
FOCS, pages 531-542. IEEE Computer Society, 2005.

Andreas Morgenstern and Klaus Schneider. From LTL to symbolically rep-
resented deterministic automata. In VMCAI, volume 4905 of LNCS, pages
279-293. Springer, 2008.

Radek Peldanek. Beem: Benchmarks for explicit model checkers. In Proc. of
SPIN Workshop, volume 4595 of LNCS, pages 263-267. Springer, 2007.
Nir Piterman. From nondeterministic Buchi and Streett automata to deter-
ministic parity automata. In LICS, pages 255-264. IEEE Computer Society,
2006.

Amir Pnueli. The temporal logic of programs. In FOCS, pages 46-57. IEEE,
1977.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) de-
signs. In VMCAI volume 3855 of LNCS, pages 364-380. Springer, 2006.
Amir Pnueli and Roni Rosner. A framework for the synthesis of reactive
modules. In Concurrency, volume 335 of LNCS, pages 4-17. Springer, 1988.
Shmuel Safra. On the complexity of w-automata. In FOCS, pages 319-327.
IEEE Computer Society, 1988.

Fabio Somenzi and Roderick Bloem. Efficient Biichi automata from LTL
formulae. In CAV, volume 1855 of LNCS, pages 248-263. Springer, 2000.

Paper B:

Rabinizer:
Small Deterministic Automata for LTL(F,G)

Andreas Gaiser, Jan Kretinsky, and Javier Esparza

This tool paper has been published in Supratik Chakraborty and Madhavan
Mukund (eds.): Proceedings of Automated Technology for Verification and
Analysis - 10th International Symposium, ATVA 2012, Thiruvananthapuram,
India, October 3-6, 2012. Lecture Notes in Computer Science, vol. 7561, pages
72-76. Springer, 2012. Copyright (© by Springer-Verlag. [GKE12]

Summary

Methods for probabilistic LTL model checking and LTL synthesis mostly re-
quire to construct a deterministic w-automaton from a given LTL formula. We
implement the approach of [KE12] (Paper A) for the LTL fragment with F and
G operators and produce the respective Rabin automata. Compared to [KE12],
where only a very preliminary implementation was used, we implement the
whole process and optimise it significantly. Firstly, the information carried in
the states is modified in order to avoid constructing many redundant transient
states. Secondly, the intermediate generalised Rabin acceptance condition is
simplified resulting in huge savings in the size of the de-generalised automaton.
Thirdly, the de-generalisation is optimised so that the redundant intermediately
accepting states are not created. Fourthly, each copy in the de-generalisation is
factorised with respect to the congruence induced by the acceptance condition
of that copy. Finally, we provide not only command line interface, but also a
graphical web interface.

7

78

Author’s contribution: 60 %

e design and definition of the optimisations,
e the proofs of correctness,
e experimental evaluation,

e writing the paper.

Rabinizer:
Small Deterministic Automata for LTL(F,G)

Andreas Gaiser'*, Jan Kietinsky'?**, and Javier Esparzal

! Institut fiir Informatik, Technische Universitiat Miinchen, Germany
{gaiser, jan.kretinsky, esparza}@model.in.tum.de

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. We present Rabinizer, a tool for translating formulae of the
fragment of linear temporal logic with the operators F (eventually) and
G (globally) into deterministic Rabin automata. Contrary to tools like
It12dstar, which translate the formula into a Biichi automaton and apply
Safra’s determinization procedure, Rabinizer uses a direct construction
based on the logical structure of the formulae. We describe a number of
optimizations of the basic procedure, crucial for the good performance
of Rabinizer, and present an experimental comparison.

1 Introduction

The automata-theoretic approach to model checking is one of the most important
successes of theoretical computer science in the last decades. It has led to many
tools of industrial strength, like Holzmann’s SPIN. In its linear-time version, the
approach translates the negation of a specification, formalized as a formula of
Linear Time Temporal logic (LTL), into a non-deterministic w-automaton ac-
cepting the possible behaviours of the system that violate the specification. Then
the product of the automaton with the state space of the system is constructed,
and the resulting w-automaton is checked for emptiness. Since the state space
can be very large (medium-size systems can easily have tens of millions of states)
and the size of a product of automata is equal to the product of their sizes, it is
crucial to transform the formula into a small w-automaton: saving one state in
the w-automaton may amount to saving tens of millions of states in the product.
For this reason, cutting down the number of states has been studied in large
depth, and very efficient tools like LTL2BA [4] have been developed.

In recent years the theory of the automata-theoretic approach has been suc-
cessfully extended to probabilistic systems and to synthesis problems. However,
these applications pose a new challenge: they require to translate formulas into
deterministic w-automata (loosely speaking, the applications require a game-
theoretical setting with 11/2 or 2 players, whose arenas are only closed under
product with deterministic automata) [3]. For this, deterministic Rabin, Streett,
or parity automata can be used. The standard approach is to first transform LTL
formulae into non-deterministic Biichi automata and then translate these into
deterministic Rabin automata by means of Safra’s construction [10]. (The deter-
minization procedure of Muller-Schupp is known to produce larger automata [1].)

* The author is supported by the DFG Graduiertenkolleg 1480 (PUMA).
** The author is supported by the Czech Science Foundation, grant No. P202/12/G061.

79

80

In particular, this is the procedure followed by 1tl2dstar [5], the tool used in
PRISM 8], the leading probabilistic model checker. However, the approach has
two disadvantages: first, since Safra’s construction is not tailored for Biichi au-
tomata derived from LTL formulae, it often produces (much) larger automata
than necessary; second, there are no efficient ways to minimize Rabin automata.

We have recently presented a procedure to directly transform LTL formu-
lae into deterministic automata [7]. The procedure, currently applicable to the
(F,G)-fragment of the logic, heavily exploits formula structure to yield much
smaller automata for important formulae, in particular for formulae describing
fairness. For instance, a conjunction of three fairness constraints requiring more
than one million states with 1t12dstar only required 1560 states in [7].

While the experiments of [7] are promising, they were conducted using a
primitive implementation. In this paper we report on subsequent work that has
transformed the prototype of [7] into Rabinizer, a tool incorporating several
non-trivial optimizations, and mature enough to be offered to the community.
For example, for the formula above, Rabinizer returns an automaton with only
462 states.

2 Rabinizer and Optimizations

We assume the reader is familiar with LTL and w-automata. The idea of the
construction of [7] is the following. The states of the Rabin automaton consist
of two components. The first component is the LTL formula that, loosely speak-
ing, remains to be satisfied. For example, if a state has ¢ = Fa A Gb as first
component, then reading the label {a,b} leads to another state with Gb as first
component. The second component remembers the last label read (one-step his-
tory). To see why this is necessary, observe that for ¢ = GFa the first component
of all states is the same. The second component allows one to check whether a
is read infinitely often. Finally, while the Rabin acceptance condition is a dis-
junction of Rabin pairs, the construction yields a disjunction of conjunctions of
Rabin pairs, cf. e.g. ¢ = GFa A GFb, and so in a final step the “generalized
Rabin” automaton is expanded into a Rabin automaton.

The only optimizations of implementation used for the experiments of [7] are
the following. Firstly, only the reachable state space is constructed. Secondly,
the one-step history only records letters appearing in the first component of
each state. Thirdly, a simple subsumption of generalized Rabin conditions is
considered and the stronger (redundant) conditions are removed. Nevertheless,
no algorithm to do this has been presented and manual computation had to be
done to obtain the optimized results.

Rabinizer is a mature implementation of the procedure of [7] with several ad-
ditional non-trivial optimizations. Rabinizer is written in Java, and uses BDDs
to construct the state space of the automata and generate Rabin pairs. While
for “easy” formulas 1t12dstar would often generate slightly smaller automata
than the implementation of [7], Rabinizer only generates a larger automaton
in 1 out of 27 benchmarks. Moreover, for “difficult” formulas, Rabinizer con-
siderably outperforms the previous implementation. We list the most important
optimizations performed.

81

— The evolution of the first component containing the formula to be satisfied
has been altered. In the original approach, in order to obtain the acceptance
condition easily, not all known information has been reflected immediately
in the state space thus resulting in redundant “intermediate” states.

— The generalized Rabin condition is now subject to several optimizations.
Firstly, conjunctions of “compatible” Rabin pairs are merged into single
pairs thus reducing the blowup from generalized Rabin to Rabin automa-
ton. Secondly, some subformulae, such as outer F subformulae, are no more
considered in the acceptance condition generation.

— The one-step history now does not contain full information about the let-
ters, but only equivalence classes of letters. The quotienting is done in the
coarsest way to still reflect the acceptance condition. A simple example is a
formula ¢ = GF(a V b) where we only distinguish between reading any of
{{a}, {b},{a,b}} and reading 0.

— The blow-up of the generalized Rabin automaton into a Rabin automaton
has been improved. Namely, the copies of the original automaton are now
quotiented one by one according to the criterion above, but only the con-
juncts corresponding to a particular copy are taken into account. Thus we
obtain smaller (and different) copies.

Further, linking of the copies is now made more efficient. Namely, the final
states in all but one copy have been removed completely.

— No special state is dedicated to be initial without any other use. Although
this results only in a decrease by one, it plays a role in tiny automata.

For further details, correctness proofs, and a detailed input/output description,
see Rabinizer’s web page http://www.model.in.tum.de/tools/rabinizer/.

3 Experimental Results

The following table shows the results on formulae from BEEM (BEnchmarks
for Explicit Model checkers)[9] and formulae from [11] on which 1t12dstar was
originally tested [6]. In both cases, we only take formulae of the (F,G)-fragment.
In the first case this is 11 out of 21, in the second 12 out of 28. There is a slight
overlap between the two sets. Further, we add conjunctions of strong fairness
conditions and a few other formulae.

For each formula ¢, we give the size of the Rabin automaton generated by
1tl2dstar (using the recommended configuration with LTL2BA), the prototype
of [7], and Rabinizer. For reader’s convenience, we also include the size of non-
deterministic Biichi automata generated by LTL2BA [4] and its recent improve-
ment LTL3BA [2] whenever they differ. The last two columns state the number of
Rabin pairs for automata generated by 1tl12dstar and Rabinizer, respectively.

In all the cases but one, Rabinizer generates automata of the same size as
1tl2dstar or often considerably smaller. Further, while in some cases Rabinizer
generates one additional pair, it generates less pairs when the number of pairs
is high. Runtimes have not been included, as Rabinizer transforms all formulae
within a second except for the conjunction of three fairness constraints. This
one took 13 seconds on an Intel i7 with 8 GB RAM, whereas 1t12dstar crashes
here and needs more than one day on a machine with 64 GB of RAM.

D)

ormula 1tl2dstar| [7]|Rabinizer||LTL2(3)BA|| *-pairs|R-pairs
G(a V Fb) 4 5 1 2 1 2
FGa Vv FGbV GFc 8 9 8 6 3 3
F(aVb) 2| 4 2 2 1 1
GF(aVb) 2l 3 2 2 1 1
G(a V Fa) 4 3 2 2 1 2
G(aVbVe) 3 4 2 1 1 1
G(aVF(bVe) 4 5 4 2 1 2
FaV Gb 4 7 3 4 2 2
GaVFbAC) 4 5 4 5(2) 1 2
FGa Vv GFb 4 5 4 5 2 2
GF(aVb)AGF(bV) 7110 3 3 2 1
(FFa A G-a) V (GG-a A Fa)® 1l 4 1 1 0 0
GFa ANFGbD 3 5 3 3 1 1
(GFa AFGb) V (FG-a A GF-D) 5 5 4 7 2 2
FGa A GFa 2l 3 2 2(3) 1 1
G(Fa A Fb) 51 10 3 3 1 1
FaANF-a 4 8 4 4 1 1
(G(bV GFa) ANG(cVGF-a))VGbV Ge 13| 36 18 11 3 4
(G(bVFGa) ANG(cVFG—a))VGbV Ge 14| 18 6 12(8) 4 3
(F(bAFGa)VF(cAFG—-a)) AFbAFc 7 18 5 15 (10) 1 2
(F(b A GFa)V F(cANGF-a)) ANFbAFc 7 18 5 13 (10) 2 2
(GFa — GFb) 4 5 1 5 2 2
(GFa — GFb) A (GFc — GFd) 11324 34 18 14 8 4
N>_, (GFa; — GFb,) 1304 707|1 560 462 40 10 8
GF(FaV GFbVFG(a Vb)) 4l 5 4 25 (6) 1 3
FG(FaV GFbV FG(a Vb)) 145 5 4 24 (6) 9 3
FG(FaV GFbV FG(aV b) V FGb) 181 5 4 24 (6) 9 3
References

1. C. S. Althoff, W. Thomas, and N. Wallmeier. Observations on determinization of

10.
11.

Biichi automata. Theor. Comput. Sci., 363(2):224-233, 2006.

T. Babiak, M. Kfetinsky, V. Rehdk, and J. Strejcek. LTL to Biichi automata
translation: Fast and more deterministic. In TACAS, pages 95-109, 2012.

C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translation. In CAV,
volume 2102 of LNCS, pages 53-65, 2001. Tool accessible at http://www.lsv.ens-
cachan.fr/ gastin/1t12ba/.

. J. Klein. Itl2dstar - LTL to deterministic Streett and Rabin automata.

http://www.1t12dstar.de/.

J. Klein and C. Baier. Experiments with deterministic w-automata for formulas of
linear temporal logic. Theor. Comput. Sci., 363(2):182-195, 2006.

J. Kretinsky and J. Esparza. Deterministic automata for the (F,G)-fragment of
LTL. In CAV, 2012. To appear.

M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In CAV, volume 6806 of LNCS, pages 585—-591, 2011.
R. Pelanek. BEEM: Benchmarks for explicit model checkers. In Proc. of SPIN
Workshop, volume 4595 of LNCS, pages 263-267, 2007.

S. Safra. On the complexity of w-automata. In FOCS, pages 319-327, 1988.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In CAV,
volume 1855 of LNCS, pages 248-263, 2000.

Paper C:

Automata with Generalized Rabin Pairs for Prob-
abilistic Model Checking and LTL Synthesis

Krishnendu Chatterjee, Andreas Gaiser, and Jan Kretinsky

This paper has been published in Helmut Veith and Natasha Sharygina (eds.):
Proceedings of Computer Aided Verification - 25th International Conference,
CAV 2012, St. Petersburg, Russia, July 13-19, 2013. Lecture Notes in Computer
Science, vol. 8044. Springer, 2013. Copyright (© by Springer-Verlag. [CGK13]

Summary

Methods for probabilistic LTL model checking and LTL synthesis mostly re-
quire to construct a deterministic w-automaton from a given LTL formula.
The automata used by the state-of-the-art tools such as PRISM are Rabin
automata. Theoretical algorithms sometimes also use Streett automata, too.
Here we present extensions of these algorithms to the setting of generalised Ra-
bin automata of [KE12] (Paper A). Firstly, we deal with the analysis of the
product of Markov decision processes and the respective w-automata, which is
needed for probabilistic LTL model checking. Secondly, we solve LTL games
with the generalised winning condition, which are needed for LTL synthesis.
Our theoretical results predict speed ups in orders of magnitude even for small,
but more complex formulae, such as e.g. fairness constraints. These predictions
have been confirmed by our implementations of the algorithms.

Author’s contribution: 65 %

e the extension of the algorithms,

e the proofs of correctness,

83

84

e analysis of the speed ups,
e parts of experimental evaluation,

e writing most of the paper (from Section 2 onwards with some exceptions
in Subsection 3.1).

Automata with Generalized Rabin Pairs for
Probabilistic Model Checking and LTL Synthesis

Krishnendu Chatterjee!*, Andreas Gaiser?**, and Jan Kietinsky?3* * *
L IST Austria

2 Fakultit fiir Informatik, Technische Universitit Miinchen, Germany

3 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. The model-checking problem for probabilistic systems cru-
cially relies on the translation of LTL to deterministic Rabin automata
(DRW). Our recent Safraless translation [KE12,GKE12] for the LTL(F,G)
fragment produces smaller automata as compared to the traditional ap-
proach. In this work, instead of DRW we consider deterministic automata
with acceptance condition given as disjunction of generalized Rabin pairs
(DGRW). The Safraless translation of LTL(F,G) formulas to DGRW re-
sults in smaller automata as compared to DRW. We present algorithms
for probabilistic model-checking as well as game solving for DGRW con-
ditions. Our new algorithms lead to improvement both in terms of theo-
retical bounds as well as practical evaluation. We compare PRISM with
and without our new translation, and show that the new translation
leads to significant improvements.

1 Introduction

Logic for w-regular properties. The class of w-regular languages generalizes reg-
ular languages to infinite strings and provides a robust specification language
to express all properties used in verification and synthesis. The most convenient
way to describe specifications is through logic, as logics provide a concise and
intuitive formalism to express properties with very precise semantics. The linear-
time temporal logic (LTL) [Pnu77] is the de-facto logic to express linear time
w-regular properties in verification and synthesis.

Deterministic w-automata. For model-checking purposes, LTL formulas can be
converted to nondeterministic Biichi automata (NBW) [VWS86], and then the
problem reduces to checking emptiness of the intersection of two NBWs (rep-
resenting the system and the negation of the specification, respectively). How-
ever, for two very important problems deterministic automata are used, namely,
(1) the synthesis problem [Chu62,PR89]; and (2) the model-checking problem

* The author is supported by Austrian Science Fund (FWF) Grant No P 23499-N23,
FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games),
and Microsoft faculty fellows award.

** The author is supported by the DFG Graduiertenkolleg 1480 (PUMA).
*** The author is supported by the Czech Science Foundation, project No. P202/10/1469

85

86

for probabilistic systems or Markov decision processes (MDPs) [BK08] which
has a wide range of applications from randomized communication, to security
protocols, to biological systems. The standard approach is to translate LTL to
NBW [VW86], and then convert the NBW to a deterministic automata with Ra-
bin acceptance condition (DRW) using Safra’s determinization procedure [Saf88]
(or using a recent improvement of Piterman [Pit06]).

Avoiding Safra’s construction. The key bottleneck of the standard approach in
practice is Safra’s determinization procedure which is difficult to implement due
to the complicated state space and data structures associated with the con-
struction [Kupl2]. As a consequence several alternative approaches have been
proposed, and the most prominent ones are as follows. The first approach is
the Safraless approach. One can reduce the synthesis problem to emptiness of
nondeterministic Biichi tree automata [KV05]; it has been implemented with
considerable success in [JB06]. For probabilistic model checking other construc-
tions can be also used, however, all of them are exponential [Var85,CY95]. The
second approach is to use heuristic to improve Safra’s determinization proce-
dure [KB06,KB07] which has led to the tool 1t12dstar [Kle]. The third approach
is to consider fragments of LTL. In [AT04] several simple fragments of LTL were
proposed that allow much simpler (single exponential as compared to the gen-
eral double exponential) translations to deterministic automata. The generalized
reactivity(1) fragment of LTL (called GR(1)) was introduced in [PPS06] and a
cubic time symbolic representation of an equivalent automaton was presented.
The approach has been implemented in the ANZU tool [JGWBO07]. Recently, the
(F, G)-fragment of LTL, that uses boolean operations and only F (eventually
or in future) and G (always or globally) as temporal operators, was considered
and a simple and direct translation to deterministic Rabin automata (DRW)
was presented [KE12]. Not only it covers all fragments of [AT04], but it can also
express all complex fairness constraints, which are widely used in verification.

Probabilistic model-checking. Despite several approaches to avoid Safra’s deter-
minization, for probabilistic model-checking the deterministic automata are still
necessary. Since probabilistic model-checkers handle linear arithmetic, they do
not benefit from the symbolic methods of [PPS06,MS08] or from the tree au-
tomata approach. The approach for probabilistic model-checking has been to
explicitly construct a DRW from the LTL formula. The most prominent proba-
bilistic model-checker PRISM [KNP11] implements the 1t12dstar approach.

Our results. In this work, we focus on the (F, G)-fragment of LTL. Instead of
the traditional approach of translation to DRW we propose a translation to
deterministic automata with generalized Rabin pairs. We present probabilistic
model-checking as well as symbolic game solving algorithms for the new class
of conditions which lead to both theoretical as well as significant practical im-
provements. The details of our contributions are as follows.

1. A Rabin pair consists of the conjunction of a Biichi (always eventually) and a
coBiichi (eventually always) condition, and a Rabin condition is a disjunction
of Rabin pairs. A generalized Rabin pair is the conjunction of conjunctions

87

of Biichi conditions and conjunctions of coBiichi conditions. However, as
conjunctions of coBiichi conditions is again a coBiichi condition, a general-
ized Rabin pair is the conjunction of a coBiichi condition and conjunction
of Biichi conditions.! We consider deterministic automata where the accep-
tance condition is a disjunction of generalized Rabin pairs (and call them
DGRW). The (F, G)-fragment of LTL admits a direct and algorithmically
simple translation to DGRW [KE12] and we consider DGRW for proba-
bilistic model-checking and synthesis. The direct translation of LTL(F,G)
could be done to a compact deterministic automaton with a Muller condi-
tion, however, the explicit representation of the Muller condition is typically
huge and not algorithmically efficient, and thus reduction to deterministic
Rabin automata was performed (with a blow-up) since Rabin conditions ad-
mit efficient algorithmic analysis. We show that DGRW allow both for a
very compact translation of the (F, G)-fragment of LTL as well as efficient
algorithmic analysis. The direct translation of LTL(F,G) to DGRW has the
same number of states as for a general Muller condition. For many formulae
expressing e.g. fairness-like conditions the translation to DGRW is signifi-
cantly more compact than the previous lt12dstar approach. For example, for
a conjunction of three strong fairness constraints, 1t12dstar produces a DRW
with more than a million states, translation to DRW via DGRW requires
469 states, and the corresponding DGRW has only 64 states.

2. One approach for probabilistic model-checking and synthesis for DGRW
would be to first convert them to DRW, and then use the standard al-
gorithms. Instead we present direct algorithms for DGRW that avoids the
translation to DRW both for probabilistic model-checking and game solving.
The direct algorithms lead to both theoretical and practical improvements.
For example, consider the disjunctions of k£ generalized Rabin pairs such that
in each pair there is a conjunction of a coBiichi condition and conjunctions
of j Biichi conditions. Our direct algorithms for probabilistic model-checking
as well as game solving is more efficient by a multiplicative factor of j* and
jkz"’k as compared to the approach of translation to DRW for probabilistic

model checking and game solving, respectively. Moreover, we also present

symbolic algorithms for game solving for DGRW conditions.

3. We have implemented our approach for probabilistic model checking in
PRISM, and the experimental results show that as compared to the existing
implementation of PRISM with 1tl12dstar our approach results in improve-
ment of order of magnitude. Moreover, the results for games confirm that
the speed up is even greater than for probabilistic model checking.

T Note that our condition (disjunction of generalized Rabin pairs) is very different
from both generalized Rabin conditions (conjunction of Rabin conditions) and the
generalized Rabin(1) condition of [Ehl11], which considers a set of assumptions and
guarantees where each assumption and guarantee consists of one Rabin pair. Syn-
tactically, disjunction of generalized Rabin pairs condition is /;(FGa; A A ; GFb;;),
whereas generalized Rabin condition is A;(V,(FGai; A GFbi;)), and generalized
Rabin(1) condition is (A;(FGai A GFb;) = A ;(FGa; A GFb;)).

88

2 Preliminaries

In this section, we recall the notion of linear temporal logic (LTL) and illustrate
the recent translation of its (F,G)-fragment to DRW [KE12,GKE12] through the
intermediate formalism of DGRW. Finally, we define an index that is important
for characterizing the savings the new formalism of DGRW brings as shown in
the subsequent sections.

2.1 Linear temporal logic

We start by recalling the fragment of linear temporal logic with future (F) and
globally (G) modalities.

Definition 1 (LTL(F,G) syntax). The formulae of the (F,G)-fragment of
linear temporal logic are given by the following syntaz:

pu=al-alpAp|eVe|Fo|Gy

where a ranges over a finite fixed set Ap of atomic propositions.

We use the standard abbreviations tt := a V —a and ff := a A —a. Note that
we use the negation normal form, as negations can be pushed inside to atomic
propositions due to the equivalence of Fy and -G—.

Definition 2 (LTL(F,G) semantics). Let w € (247)% be a word. The ith
letter of w is denoted w(i], i.e. w = w[0lw[l]---. Further, we define the ith
suffix of w as w; = wlilwl[i + 1]---. The semantics of a formula on w is then
defined inductively as follows: w = a <= a € w[0]; w E ~a < a ¢ w[0];
wEANY <= wEpadwEY;, wEeVY <= wE ¢ orwkEY; and

wEFop < JkeNy:w, Eo
’LUl:GgD <:>Vk€No:wk|:g0

2.2 Translating LTL(F,G) into deterministic w-automata

Recently, in [KE12,GKE12], a new translation of LTL(F,G) to deterministic au-
tomata has been proposed. This construction avoids Safra’s determinization and
makes direct use of the structure of the formula. We illustrate the construction
in the following examples.

Ezample 3. Consider a formula Fa V Gb. The construction results in the follow-
ing automaton. The state space of the automaton has two components. The first
component stores the current formula to be satisfied. Whenever a letter is read,
the formula is updated accordingly. For example, when reading a letter with no
b, the option to satisfy the formula due to satisfaction of Gb is lost and is thus
reflected in changing the current formula to Fa only.

89

{0} 0,{b} 0.{a}, {b},{a, b}

N
al,{a,b
il [tt | {w,{a}v{b},{a,b}}]

start —

Fav Gb | {{b}}

{a}, {a, b}

The second component stores the last letter read (actually, an equivalence
class thereof). The purpose of this component is explained in the next example.
For formulae with no mutual nesting of F and G this component is redundant.

The formula Fa V Gb is satisfied either due to Fa or Gb. Therefore, when
viewed as a Rabin automaton, there are two Rabin pairs. One forcing infinitely
many visits of the third state (a in Fa must be eventually satisfied) and the
other prohibiting infinitely many visits of the second and third states (b in Gb
must never be violated). The acceptance condition is a disjunction of these pairs.

Ezxample 4. Consider now the formula ¢ = GFa A GF—a. Satisfaction of this
formula does not depend on any finite prefix of the word and reading {a} or
() does not change the first component of the state. This infinitary behaviour
requires the state space to record which letters have been seen infinitely often
and the acceptance condition to deal with that. In this case, satisfaction requires
visiting the second state infinitely often and visiting the first state infinitely
often.

0

However, such a conjunction cannot be written as a Rabin condition. In order
to get a Rabin automaton, we would duplicate the state space. In the first copy,
we wait for reading {a}. Once this happens we move to the second copy, where
we wait for reading (). Once we succeed we move back to the first copy and start
again. This bigger automaton now allows for a Rabin condition. Indeed, it is
sufficient to infinitely often visit the “successful” state of the last copy as this
forces infinite visits of “successful” states of all copies.

In order to obtain a DRW from an LTL formula, [KE12,GKE12] first con-
structs an automaton similar to DGRW (like the one on the left) and then
the state space is blown-up and a DRW (like the one on the right) is obtained.
However, we shall argue that this blow-up is unnecessary for application in prob-
abilistic model checking and in synthesis. This will result in much more efficient
algorithms for complex formulae. In order to avoid the blow-up we define and use
DGRW, an automaton with more complex acceptance condition, yet as we show
algorithmically easy to work with and efficient as opposed to e.g. the general
Muller condition.

90

2.3 Automata with generalized Rabin pairs

In the previous example, the cause of the blow-up was the conjunction of Rabin
conditions. In [KE12], a generalized version of Rabin condition is defined that
allows for capturing conjunction. It is defined as a positive Boolean combination
of Rabin pairs. Whether a set Inf(p) of states visited infinitely often on a run p
is accepting or not is then defined inductively as follows:

Inf(p) = A < Inf(p) = ¢ and Inf(p) = o
Inf(p) =V < Inf(p) = ¢ or Inf(p) F v
Inf(p) E (F, 1) <= FnNiInf(p) =0 and I NInf(p) # 0

Denoting Q as the set of all states, (F,I) is then equivalent to (F,Q) A (0,1).
Further, (F1,Q) A (F2, Q) is equivalent to (Fy U Fy, Q). Therefore, one can trans-
form any such condition into a disjunctive normal form and obtain a condition
of the following form:

k £;

V{(EQ)a A (0) (%)

i=1 j=1
Therefore, in this paper we define the following new class of w-automata:

Definition 5 (DGRW). An automaton with generalized Rabin pairs (DGRW)
is a (deterministic) w-automaton A = (Q,qo,d) over an alphabet X, where
Q is a set of states, qo is the initial state, § : Q X X — @ is a transition
function, together with a generalized Rabin pairs (GRP) acceptance condition

GR C 929x22% " 4 p of A is accepting for GR = {(Fi,{ll-l,...,lfi}) ‘ i€
{1,...,k}} if there is i € {1,...,k} such that

F;NInf(p) =0 and

If NInf(p) # O for every j € {1,...,4;}

Fach (F;,T;) = (Fi, {1},... ,If"}) is called a generalized Rabin pair (GRP),
and the GRP condition is thus a disjunction of generalized Rabin pairs..

W.lo.g. we assume k > 0 and ¢; > 0 for each i € {1,...,k} (whenever ¢; = 0 we
could set Z; = {Q}). Although the type of the condition allows for huge instances
of the condition, the construction of [KE12] (producing this disjunctive normal
form) guarantees efficiency not worse than that of the traditional determinization
approach. For a formula of size n, it is guaranteed that k < 2" and ¢; < n for each
i € {1,...,k}. Further, the size of the state space is at most 202") Moreover,
consider “infinitary” formulae, where each atomic proposition has both F and
G as ancestors in the syntactic tree of the formula. Since the first component
of the state space is always the same, the size of the state space is bounded by
2147l a5 the automaton only remembers the last letter read. We will make use of
this fact later.

91

2.4 Degeneralization

As already discussed, one can blow up any automaton with generalized Rabin
pairs and obtain a Rabin automaton. We need the following notation. For any
n € N, let [1..n] denote the set {1,...,n} equipped with the operation @& of
cyclic addition, i.e. m@®1l=m+1lform<nandn®d1l=1.

The DGRW defined above can now be degeneralized as follows. For each
i € {1,...,k}, multiply the state space by [1..4;] to keep track for which I we
are currently waiting for. Further, adjust the transition function so that we leave
the jth copy once we visit I and immediately go to the next copy. Formally,
for o € X set (q,wy,...,wg) — (r,w},...,w}) if ¢ - 7 and w! = w; for all i
with ¢ ¢ I'"" and w] = w; ® 1 otherwise.

The resulting blow-up factor is then the following;:

Definition 6 (Degeneralization index). For a GRP condition GR = {(F};,Z;)
i € [1..k]}, we define the degeneralization domain B := Hle[l..ﬂiﬂ and the de-
generalization index of GR to be |B| = Hle |Z:].

The state space of the resulting Rabin automaton is thus |B|-times bigger and
the number of pairs stays the same. Indeed, for each i € {1,...,k} we have a
Rabin pair
(Fi x B, 1% x {be B|b(i) = ei})

Ezample 7. In Example 3 there is one pair and the degeneralization index is 2.

Ezample 8. For a conjunction of three fairness constraints ¢ = (FGa VvV GFb) A
(FGeV GFd) A (FGeV GFf), the Biichi components Z;’s of the equivalent GRP
condition correspond to tt,b,d, f,bAd,bA f,dN f,b AdA f. The degeneralization
index is thus |[B] = 1-1-1-1-2-2-2-3 = 24. For four constraints, it is
1-14.26.3%.4 = 20736. One can easily see the index grows doubly exponentially.

3 Probabilistic Model Checking

In this section, we show how automata with generalized Rabin pairs can signifi-
cantly speed up model checking of Markov decision processes (i.e., probabilistic
model checking). For example, for the fairness constraints of the type mentioned
in Example 8 the speed-up is by a factor that is doubly exponential. Although
there are specialized algorithms for checking properties under strong fairness
constraints (implemented in PRISM), our approach is general and speeds up
for a wide class of constraints. The combinations (conjunctions, disjunctions) of
properties not expressible by small Rabin automata (and/or Streett automata)
are infeasible for the traditional approach, while we show that automata with
generalized Rabin pairs often allow for efficient model checking. First, we present
the theoretical model-checking algorithm for the new type of automata and the
theoretical bounds for savings. Second, we illustrate the effectiveness of the ap-
proach experimentally.

92

3.1 Model checking using generalized Rabin pairs

We start with the definitions of Markov decision processes (MDPs), and present
the model-checking algorithms. For a finite set V', let Distr(V') denote the set of
probability distributions on V.

Definition 9 (MDP and MEC). A Markov decision process (MDP) M =
(V,E,(Vo,Vp),0) consists of a finite directed MDP graph (V, E), a partition
(Vo, Vp) of the finite set V' of vertices into player-0 vertices (V) and probabilistic
vertices (Vp), and a probabilistic transition function §: Vp — Distr(V') such that
for all vertices u € Vp and v € V' we have (u,v) € E iff §(u)(v) > 0.

An end-component U of an MDP is a set of its vertices such that (i) the
subgraph induced by U is strongly connected and (ii) for each edge (u,v) € E, if
u€UNVp, thenv €U (i.e., no probabilistic edge leaves U).

A maximal end-component (MEC) is an end-component that is mazimal
w.r.t. to the inclusion ordering.

If U; and Uy are two end-components and Uy NUs # (), then U; UUs is also an
end-component. Therefore, every MDP induces a unique set of its MECs, called
MEC' decomposition.

For precise definition of semantics of MDPs we refer to [Put94]. Note that
MDPs are also defined in an equivalent way in literature with a set of actions such
that every vertex and choice of action determines the probability distribution
over the successor states; the choice of actions corresponds to the choice of edges
at player-0 vertices of our definition.

The standard model-checking algorithm for MDPs proceeds in several steps.
Given an MDP M and an LTL formula ¢

1. compute a deterministic automaton A recognizing the language of ¢,
2. compute the product M = M x A,
3. solve the product MDP M.

The algorithm is generic for all types of deterministic w-automata A. The lead-
ing probabilistic model checker PRISM [KNP11] re-implements Itl2dstar [Kle]
that transforms ¢ into a deterministic Rabin automaton. This approach em-
ploys Safra’s determinization and thus despite many optimization often results
in an unnecessarily big automaton.

There are two ways to fight the problem. Firstly, one can strive for smaller
Rabin automata. Secondly, one can employ other types of w-automata. As to
the former, we have plugged our implementation Rabinizer [GKE12] of the ap-
proach [KE12] into PRISM, which already results in considerable improvement.
For the latter, Example 4 shows that Muller automata can be smaller than Ra-
bin automata. However, explicit representation of Muller acceptance conditions
is typically huge. Hence the third step to solve the product MDP would be too
expensive. Therefore, we propose to use automata with generalized Rabin pairs.

On the one hand, DGRW often have small state space after translation.
Actually, it is the same as the state space of the intermediate Muller automaton

93

of [KE12]. Compared to the corresponding naively degeneralized DRW it is |B|
times smaller (one can still perform some optimizations in the degeneralization
process, see the experimental results).

On the other hand, as we show below the acceptance condition is still algo-
rithmically efficient to handle. We now present the steps to solve the product
MDP for a GRP acceptance condition, i.e. a disjunction of generalized Rabin
pairs. Consider an MDP with k generalized Rabin pairs (F}, {I},... ,Ifi}), for
i =1,2,...,k. The steps of the computation are as follows:

1. Fori=1,2,...,k;
(a) Remove the set of states F; from the MDP.
(b) Compute the MEC decomposition. .
(c) Ifa MEC C has a non-empty intersection with each I, for j = 1,2,....,¢;,
then include C as a winning MEC.
(d) let W; be the union of winning MECs (for the ith pair).
2. Let W be the union of W;, i.e. W = Ule W;.
3. The solution (or optimal value of the product MDP) is the maximal proba-
bility to reach the set W.

Given an MDP with n vertices and m edges, let MEC(n, m) denote the complex-
ity of computing the MEC decomposition; and LP(n,m) denotes the complexity
to solve linear-programming solution with m constraints over n variables.

Theorem 10. Given an MDP with n vertices and m edges with k generalized
Rabin pairs (F;, {I},... ,Ifi}), fori=1,2,... k, the solution can be achieved in
time O(k - MEC(n,m) +n - Yr_, £;) + O(LP(n,m)).

Remark 11. The best known complexity to solve MDPs with Rabin conditions
of k pairs require time O(k - MEC(n,m)) + O(LP(n, m)) time [dA97]. Thus de-
generalization of generalized Rabin pairs to Rabin conditions and solving MDPs
would require time O(k - MEC(|B| - n, |B| - m)) + O(LP(|B| - n, |B]| - m)) time.
The current best known algorithms for maximal end-component decomposition
require at least O(m - n?/3) time [CH11], and the simplest algorithms that are
typically implemented require O(n-m) time. Thus our approach is more efficient
at least by a factor of B%/3 (given the current best known algorithms), and even
if both maximal end-component decomposition and linear-programming can be
solved in linear time, our approach leads to a speed-up by a factor of |B|, i.e. ex-
ponential in O(k) the number of non-trivially generalized Rabin pairs. In general
if 8 > 1 is the sum of the exponents required to solve the MEC decomposition
(resp. linear-programming), then our approach is better by a factor of | B|?.

Example 12. A Rabin automaton for n constraints of Example 8 is of doubly
exponential size, which is also the factor by which the product and thus the run-
ning time grows. However, as the formula is “infinitary” (see end of Section 2.3),
the state space of the generalized automaton is 247 and the product is of the
very same size as the original system since the automaton only monitors the
current labelling of the state.

94

3.2 Experimental results
In this section, we compare the performance of

L the original PRISM with its implementation of Itl2dstar producing Rabin
automata,

R PRISM with Rabinizer [GKE12] (our implementation of [KE12]) producing
DRW via optimized degeneralization of DGRW, and

GR PRISM with Rabinizer producing DGRW and with the modified MEC check-
ing step.

We have performed a case study on the Pnueli-Zuck randomized mutual
exclusion protocol [PZ86] implemented as a PRISM benchmark. We consider
the protocol with 3, 4, and 5 participants. The sizes of the respective models are
s3 = 2368, s4 = 27600, and s5 = 308 800 states. We have checked these models
against several formulae illustrating the effect of the degeneralization index on
the speed up of our method; see Table 1.

In the first column, there are the formulae in the form of a PRISM query.
We ask for a maximal/minimal value over all schedulers. Therefore, in the Py,q4
case, we create an automaton for the formula, whereas in the case of P,,;, we
create an automaton for its negation. The second column then states the number
1 of participants, thus inducing the respective size s; of the model.

The next three columns depict the size of the product of the system and
the automaton, for each of the L, R, GR variants. The size is given as the
ratio of the actual size and the respective s;. The number then describes also
the “effective” size of the automaton when taking the product. The next three
columns display the total running times for model checking in each variant.

The last three columns illustrate the efficiency of our approach. The first col-
umn tgr/tgr states the time speed-up of the DGRW approach when compared
to the corresponding degeneralization. The second column states the degeneral-
ization index |B|. The last column tr,/tgr then displays the overall speed-up of
our approach to the original PRISM.

In the formulae, an atomic proposition p; = j denotes that the ¢th participant
is in its state 5. The processes start in state 0. In state 1 they want to enter the
critical section. State 10 stands for being in the critical section. After leaving
the critical section, the process re-enters state 0 again.

Formulae 1 to 3 illustrate the effect of |B| on the ratio of sizes of the product
in the R and GR cases, see 2%, and ratio of the required times. The theoretical
prediction is that sg/sgr = |B\ Nevertheless, due to optimizations done in the
degeneralization process, the first is often slightly smaller than the second one,
see columns “* and B. (Note that sgr/s; is 1 for “infinitary” formulae.) For

the same reason, tt—RR is often smaller than |B|. However, with the growing size
of the systems it gets bigger hence the saving factor is larger for larger systems,
as discussed in the previous section.

Formulae 4 to 7 illustrate the doubly exponential growth of | B| and its impact
on systems of different sizes. The DGRW approach (GR method) is often the

only way to create the product at all.

Table 1. Experimental comparison of L, R, and GR methods. All measuremerts
performed on Intel i7 with 8 GB RAM. The sign “—” denotes either crash, out-of-
memory, time-out after 30 minutes, or a ratio where one operand is —.

Formula # ‘% S?? S?,R tL, tr tGR ti;iRR |B| téiLR
Prroe =7[GFp1=10 3141 26 1] 1.2 0.4 0.2 2.2 3 6.8
A GFp2=10 41 4.3 2.7 1] 174 1.8 0.3] 6.4 3| 60.8

A GFp3=10] 51 4.4 2.7 1(257.5 15.2 0.6/26.7 3 |447.9
Praz =7[GFp1=10 A GFp2=10 4 6 3.5 1| 27.3 2.5 09 2.8 4| 32.1
A GFp3=10 A GFps=10] 51 6.2 3.6 1/408.5 17.8 0.9/20.4 4 |471.2
Prin =?7[GFp1=10 A GFp2=10 4 — 1 1 - 36.5 36.3 11 —
A GFp3=10 A GFps=10] 5 — 1 1 — 610.6 607.2 11 —
Priaz =?[(GFp1=0V FGp2#0) 31(79.7 1.9 1{225.5 4.1 2.2| 1.8 2 |101.8
AN(GFp2=0V FGp3#0)] 4 - 19 1 — 61.7 29.2| 2.1 2 —

5 - 19 1 — 1007 479| 2.1 2 -

Prae =?[(GFp1=0V FGp;#£0) 3123.3 1.9 1] 66.4 3.92 2.2 1.8 2| 30.7
AN(GFp2=0V FGp2#0)] 4123.3 1.9 1/551.5 61 282 2.2 2| 19.6

5 - 19 1 —1002.7 463 2.2 2 -

Prrae =?[(GFp1=0V FGp2#£0) 3 — 16.3 1 — 1221 7.1117.2 24 -
AN(GFp2=0V FGp3#0) 4 - = 1 — — 756 — 24 -
AN(GFp3=0V FGp;#0)] 5 - = 1 — — 1219.5| — 24 —
Praz =?[(GFp1=0V FGp1#0) 3 - 12 1 — 76.3 7.2 12 24 -
AN(GFp2=0V FGp2#0) 4 —12.1 1 — 1335.6 78.9/19.6 24 —
AN(GFp3=0V FGps#0)] 5 - = 1 — — 1267.6] — 24 -
Prin =7[(GFp1 Z10V GFpi=0VFGpi=1)[3 | 2.1 1 1] 1.2 09 08 1 1] 15
AGFp1#0 A GFp;=1] 41 2.1 1 1| 11.8 8.7 8.8 11 1.3

51 2.1 1 1/186.3 147.5 146.2 11 1.3

Pz =?[(Gp1#£10V Gp2#10 V Gps#£10) |3 - 32 59 — 405 80.1] 5.1 8 —
A (FGp1#1V GFp2 =1V GFp3 = 1) 4 - — 64 - — 7035 — 8 -
A\ (Fsz?fl Vv GFp1 =1V GFp3 = 1) 5 — — — — — — - 8 —
Priin =?[(FGp1#£0 V FGp2#0 V GFp3=0) |3 |55.9 4.7 1{289.7 12.6 3.4 3.7 12| 84.3
V (FGp1#10 A GFp2 = 10 A GFps = 10) |4 — 4.6 1 — 194.5 33.2| 5.9 12 -

5 - = 1 - — 543 — 12 -

Formula 8 is a Streett condition showing the approach still performs compet-
itively. Formulae 9 and 10 combine Rabin and Streett condition requiring both
big Rabin automata and big Streett automata. Even in this case, the method
scales well. Further, Formula 9 contains non-infinitary behaviour, e.g. Gp1#10.
Therefore, the DGRW is of size greater than 1, and thus also the product is
bigger as can be seen in the sgr/s; column.

4 Synthesis

In this section, we show how generalized Rabin pairs can be used to speed up
the computation of a winning strategy in an LTL(F,G) game and thus to speed
up LTL(F,G) synthesis. A game is defined like an MDP, but with the stochastic
vertices replaced by vertices of an adversarial player.

Definition 13. A game M = (V, E, (W, V1)) consists of a finite directed game
graph (V, E) and a partition (Vo, V1) of the finite set V' of vertices into player-0
vertices (Vo) and player-1 vertices (V1).

96

An LTL game is a game together with an LTL formula with vertices as
atomic propositions. Similarly, a Rabin game and a game with GRP condition
(GRP game) is a game with a set of Rabin pairs, or a set of generalized Rabin
pairs, respectively.

A strategy is a function V* — FE assigning to each history an outgoing
edge of its last vertex. A play conforming to the strategy f of Player 0 is any
infinite sequence vy - - - satisfying v;41 = f(vo - - - v;) whenever v; € V4, and just
(vi,vi+1) € E otherwise. Player 0 has a winning strategy, if there is a strategy f
such that all plays conforming to f of Player 0 satisfy the LTL formula, Rabin
condition or GRP condition, depending on the type of the game. For further
details, we refer to e.g. [PP06].

One way to solve an LTL game is to make a product of the game arena
with the DRW corresponding to the LTL formula, yielding a Rabin game. The
current fastest solution of Rabin games works in time O(mn**1kk!) [PP06],
where n = |V|,m = |E| and k is the number of pairs. Since n is doubly ex-
ponential and k singly exponential in the size of the formula, this leads to a
doubly exponential algorithm. And indeed, the problem of LTL synthesis is 2-
EXPTIME-complete [PR89].

Similarly as for model checking of probabilistic systems, we investigate what
happens (1) if we replace the translation to Rabin automata by our new trans-
lation and (2) if we employ DGRW instead. The latter leads to the problem of
GRP games. In order to solve them, we extend the methods to solve Rabin and
Streett games of [PP06].

We show that solving a GRP game is faster than first degeneralizing them
and then solving the resulting Rabin game. The induced speed-up factor is | B|*.
In the following two subsections we show how to solve GRP games and analyze
the complexity. The subsequent section reports on experimental results.

4.1 Generalized Rabin ranking

We shall compute a ranking of each vertex, which intuitively states how far
from winning we are. The existence of winning strategy is then equivalent to
the existence of a ranking where Player 0 can always choose a successor of the
current vertex with smaller ranking, i.e. closer to fulfilling the goal.

Let (V, E, (Vy, V1)) be a game, {(F1,Z1),. .., (Fk,Zr)} a GRP condition with
the corresponding degeneralization domain B. Further, let n := |V| and denote
the set of permutations over a set S by S!.

Definition 14. A ranking is a function r : V X B — R where R is the ranking
domain {1,...,k}! x {0,...,n}**1 U {cc}.

The ranking r(v, wf) gives information important in the situation when we are
in vertex v and are waiting for a visit of Iiwf(z) for each i given by wf € B. As
time passes the ranking should decrease. To capture this, we define the following
functions.

97

Definition 15. For a ranking r and given v € V and wf € B, we define next,, :
B— B

wf(i) ifvg 77V

next (uf) (1) = {wfw o1 ifver™

andnext: Vx B — R

next(v, wf) ming, w)eg r(w, next, (wf)) if v e Vo
X b) = .
max(y,wyep r(w, next, (wf)) ifveV;

where the order on (w1 - -+ T, wowy - - - wg) € R is given by the lexicographic order
>1g ON WM W1 MW - - - TW) and 0o being the greatest element.

Intuitively, the ranking r(v, wf) = (71 - - - T, wowy - - - wg) is intended to bear the
following information. The permutation 7 states the importance of the pairs. The
pair (Fr,,Zx,) is the most important, hence we are not allowed to visit Fy, and
we desire to either visit Z,,, or not visit F}, and visit Z,, and so on. If some
important F; is visited it becomes less important. The importance can be freely
changed only finitely many (ig) times. Otherwise, only less important pairs can
be permuted if a more important pair makes good progress. Further, w; measures
the worst possible number of steps until visiting Z,. This intended meaning is
formalized in the following notion of good rankings.

Definition 16. A ranking r is good if for every v € V, wf € B with (v, wf) #
oo we have (v, wf) >, next(v, wf).

We define (11 - - - Tg, Wowy - - - Wg) >y wp (7] - T, wow] - - - wy,) if either wg >
w(, or wy = wj with >}),wf hold. Recursively, >f;7wf holds if one of the following
holds:

— >,

— m =y, v Fr, and we > wy,

— g =7p, v Fr, and v | Iy (me)

— mg =y, v Fr, and wg = w) and >£ﬁjf holds (where >ff+w} never holds)

Moreover, if one of the first three cases holds, we say that >—f;$wf holds.

Intuitively, > means the second element is closer to the next milestone and ¢,
moreover, that it is so because of the first £ pairs in the permutation.

Similarly to [PP06], we obtain the following correctness of the construction.
Note that for |B| = 1, the definitions of the ranking here and the Rabin ranking
of [PP06] coincide. Further, the extension with |B| > 1 bears some similarities
with the Streett ranking of [PP06].

Theorem 17. For every vertex v, Player 0 has a winning strategy from v if and
only if there is a good ranking v and wf € B with r(v, wf) # oco.

98

4.2 A fixpoint algorithm

In this section, we show how to compute the smallest good ranking and thus
solve the GRP game. Consider a lattice of rankings ordered component-wise, i.e.
r1 > ro if for every v € V and wf € B, we have ri(v, wf) >4 ro(v, wf). This
induces a complete lattice. The minimal good ranking is then a least fixpoint of
the operator Lift on rankings given by:

Lift (r) (v, wf) = max {r(v, wf), min{z | >, . next(v, wf)}}

where the optima are considered w.r.t. >;,. Intuitively, if Player 0 cannot choose
a successor smaller than the current vertex (or all successors of a Player 1 vertex
are greater), the ranking of the current vertex must rise so that it is greater.

Theorem 18. The smallest good ranking can be computed in time O(mnF+1kk!-
|B|) and space (nk - |B|).

Proof. The lifting operator can be implemented similarly as in [PP06]. With
every change, the affected predecessors to be updated are put in a worklist, thus
working in time O(k - out-deg(v)). Since every element can be lifted at most |R|-
times, the total time is O(3_,cy ., e g k-out-deg(v)-|R|) = | B|lkm-nF*+1k!. The
space required to store the current ranking is O(3_,cy > rep k) =n:|Bl-k. O

We now compare our solution to the one that would solve the degeneralized
Rabin game. The number of vertices of the degeneralized Rabin game is |B|
times greater. Hence the time needed is multiplied by a factor | B|¥*2, instead of
|B| in the case of a GRP game. Therefore, our approach speeds up by a factor
of |B|¥*!, while the space requirements are the same in both cases, namely
O(nk - |B|).

Ezxample 19. A conjunction of two fairness constraints of example 8 corresponds
to |B| = 2 and k = 4, hence we save by a factor of 2* = 16. A conjunction of
three fairness constraints corresponds to |B| = 24 and k = 8, hence we accelerate
248 =~ 10! times.

Further, let us note that the computation can be implemented recursively as
in [PP06]. The winning set is uZ. 8BR(GR, tt, OZ) where &R(D, o, W) =W,

SRGR. 0. W)= \/ w¥. X 6R(GR\((F. T} 0 A-F;
i€[1..k] JE[L..|Z:]]

W\/(goAﬂFi/\Iij/\(?Y)\/(go/\—'F/\@XD

Qp={ueV|3Iuv) e E:vEptU{ueV|VY(uv) € E:vfE ¢} and
1 and v denote the least and greatest fixpoints, respectively. The formula then
provides a succinct description of a symbolic algorithm.

99

4.3 Experimental Evaluation

Reusing the notation of Section 3.2, we compare the performance of the methods
for solving LTL games. We build and solve a Rabin game using

L [tl2dstar producing DRW (from LTL formulae),
R Rabinizer producing DRW, and
GR Rabinizer producing DGRW.

We illustrate the methods on three different games and three LTL formulae;
see Table 2. The games contain 3 resp. 6 resp. 9 vertices. Similarly to Section 3.2,
s; denotes the number of vertices in the ith arena, sy, sr,Sgr the number
of vertices in the resulting games for the three methods, and tr,,tRr,tcr the
respective running times.

Formula 1 allows for a winning strategy and the smallest ranking is relatively
small, hence computed quite fast. Formula 2, on the other hand, only allows for
larger rankings. Hence the computation takes longer, but also because in L and
R cases the automata are larger than for formula 1. While for L and R, the
product is usually too big, there is a chance to find small rankings in GR. fast.
While for e.g. FG(a V —bV ¢), the automata and games would be the same for
all three methods and the solution would only take less than a second, the more
complex formulae 1 and 2 show clearly the speed up.

Table 2. Experimental comparison of L, R, and GR methods for solving LTL games.
Again the sign “—” denotes either crash, out-of-memory, time-out after 30 minutes, or
a ratio where one operand is —.

Formula sif SR EGRI t, tr lcr ttG—RR B| té—LR
(GFa A GFb A GFc) 3| 2273 4/ 63.2 1.6 1.1] 1.4 9| 48.2
V(GF-a A GF-b A GF-c)|6 |21.3 7.3 3.7|878.6 14.1 7.3 2 9 130.3
91206 7 3.6 — 548 31.3] 1.8 9 —

(GFaVFGh) A (GFev GF—a)[3| 21 10 4] — 1175 12| 98 6| —
ANGFeV GF-b) 616292 37| - — 1967 — 6| -
9117.6 9.2 3.6 — —1017.8| — 6 —

5 Conclusions

In this work we considered the translation of the LTL(F,G) fragment to deter-
ministic w-automata that is necessary for probabilistic model checking as well as
synthesis. The direct translation to deterministic Muller automata gives a com-
pact automata but the explicit representation of the Muller condition is huge and
not algorithmically amenable. In contrast to the traditional approach of transla-
tion to deterministic Rabin automata that admits efficient algorithms but incurs
a blow-up in translation, we consider deterministic automata with generalized
Rabin pairs (DGRW). The translation to DGRW produces the same compact

100

automata as for Muller conditions. We presented efficient algorithms for prob-
abilistic model checking and game solving with DGRW conditions which shows
that the blow-up of translation to Rabin automata is unnecessary. Our results
establish that DGRW conditions provide the convenient formalism that allows
both for compact automata as well as efficient algorithms. We have implemented
our approach in PRISM, and experimental results show a huge improvement over
the existing methods. Two interesting directions of future works are (1) extend
our approach to LTL with the U(until) and the X(next) operators; and (2) con-
sider symbolic computation and Long’s acceleration of fixpoint computation (on
the recursive algorithm), instead of the ranking function based algorithm for
games, and compare the efficiency of both the approaches.

References

[AT04] R. Alur and S. La Torre. Deterministic generators and games for LTL
fragments. ACM Trans. Comput. Log., 5(1):1-25, 2004.

[BKO0S] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.

[CH11] K. Chatterjee and M. Henzinger. Faster and dynamic algorithms for max-
imal end-component decomposition and related graph problems in proba-
bilistic verification. In SODA, pages 1318-1336, 2011.

[Chu62] A. Church. Logic, arithmetic, and automata. In Proceedings of the Inter-
national Congress of Mathematicians, pages 23-35. Institut Mittag-Leffler,
1962.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic veri-
fication. J. ACM, 42(4):857-907, 1995.

[dA9T] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,
Stanford University, 1997.

[Eh111] R. Ehlers. Generalized rabin(1) synthesis with applications to robust system
synthesis. In NASA Formal Methods, pages 101-115, 2011.

[GKE12] A. Gaiser, J. Kfetinsky, and J. Esparza. Rabinizer: Small deterministic
automata for 1t1(f, g). In ATVA, pages 72-76, 2012.

[JBO6] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In FMCAD,
pages 117-124. IEEE Computer Society, 2006.

[JGWBO07] B. Jobstmann, S. J. Galler, Martin Weiglhofer, and Roderick Bloem. Anzu:
A tool for property synthesis. In CAV, volume 4590 of LNCS, pages 258—
262. Springer, 2007.

[KBO6] J. Klein and C. Baier. Experiments with deterministic w-automata for
formulas of linear temporal logic. Theor. Comput. Sci., 363(2):182-195,
2006.

[KBO7] J. Klein and C. Baier. On-the-fly stuttering in the construction of determin-
istic w-automata. In CIAA, volume 4783 of LNCS, pages 51-61. Springer,
2007.

[KE12] J. Kretinsky and J. Esparza. Deterministic automata for the (f, g)-fragment
of 1tl. In P. Madhusudan and Sanjit A. Seshia, editors, CAV, volume 7358
of Lecture Notes in Computer Science, pages 7T-22. Springer, 2012.

[Kle] J. Klein. 1Itl2dstar - LTL to deterministic Streett and Rabin automata.
http://www.lt12dstar.de/.

[KNP11]

[Kup12]
[KV05]

[MS08]

[Pit06]
[Pru77]
[PPO6]
[PPS06]
[PR89)

[Put94]
[PZ86]

[Saf88]
[Var85]

[VWS6)]

101

M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In CAV, volume 6806 of LNCS, pages
585-591. Springer, 2011.

O. Kupferman. Recent challenges and ideas in temporal synthesis. In SOF-
SEM, volume 7147 of LNCS, pages 88-98. Springer, 2012.

O. Kupferman and M. Y. Vardi. Safraless decision procedures. In FOCS,
pages 531-542. IEEE Computer Society, 2005.

A. Morgenstern and K. Schneider. From LTL to symbolically represented
deterministic automata. In VMCAI, volume 4905 of LNCS, pages 279-293.
Springer, 2008.

N. Piterman. From nondeterministic Buchi and Streett automata to deter-
ministic parity automata. In LICS, pages 255-264, 2006.

A. Pnueli. The temporal logic of programs. In FOCS, pages 46-57. IEEE,
1977.

N. Piterman and A. Pnueli. Faster solutions of rabin and streett games. In
LICS, pages 275-284, 2006.

N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In
VMCAI volume 3855 of LNCS, pages 364—380. Springer, 2006.

A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive
module. In ICALP, volume 372 of LNCS, pages 652—-671. Springer, 1989.
M.L. Puterman. Markov Decision Processes. Wiley, 1994.

A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols.
Distributed Computing, 1(1):53-72, 1986.

S. Safra. On the complexity of w-automata. In FOCS, pages 319-327. IEEE
Computer Society, 1988.

M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In FOCS, pages 327-338, 1985.

M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. J. Comput. Syst. Sci., 32(2):183-221, 1986.

102

Paper D:

Rabinizer 2:
Small Deterministic Automata for LTL\qy

Jan Krtetinsky and Ruslin Ledesma Garza

This tool paper is accepted for publication in Hung Van Dang and Mizuhito
Ogawa (eds.): Proceedings of Automated Technology for Verification and Anal-
ysis - 11th International Symposium, ATVA 2013, Hanoi, Vietnam, October
15-18, 2012. Lecture Notes in Computer Science. Springer, 2013. Copyright
© by Springer-Verlag. [KG13]

Summary

Methods for probabilistic LTL model checking and LTL synthesis mostly require
to construct a deterministic w-automaton from a given LTL formula. We extend
the approach of [KE12] (Paper A) for the LTL fragment with only F and G op-
erators to the fragment with X, F, G and U operators where U does not appear
in the scope of any G in the positive normal form. Further, instead of Rabin
automata we produce the respective generalised Rabin automata since these are
directly applicable in probabilistic LTL model checking and LTL synthesis as
we show in [CGK13] (Paper C). The idea of the extension is the following. In
the previous approach, each state of the automaton had two components: (1)
the formula to be currently satisfied, and (2) the current letter read. With the
introduction of X operator, the second component now carries last n steps of
the history where n is the nesting depth of the X operator. This is further vastly
optimised by keeping only an equivalence class of the history with respect to
subformulae occurring in the scope of G operators. Experimental results show
huge improvement for formulae involving combinations of properties dependent
only on suffixes.

103

104

Author’s contribution: 65 %

e design of the extension and the optimisation,

e the proofs of correctness,

design of pseudo-codes,

e experimental evaluation,

writing the paper.

Rabinizer 2:
Small Deterministic Automata for LTL\gu

1,2%

Jan Kietinsky and Ruslan Ledesma Garza'f

! Institut fiir Informatik, Technische Universitit Miinchen, Germany
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. We present a tool that generates automata for LTL(X,F,G,U)
where U does not occur in any G-formula (but F still can). The tool gen-
erates deterministic generalized Rabin automata (DGRA) significantly
smaller than deterministic Rabin automata (DRA) generated by state-
of-the-art tools. For complex properties such as fairness constraints, the
difference is in orders of magnitude. DGRA have been recently shown to
be as useful in probabilistic model checking as DRA, hence the difference
in size directly translates to a speed up of the model checking procedures.

1 Introduction

Linear temporal logic (LTL) is a very useful and appropriate language for speci-
fying properties of systems. In the verification process that follows the automata-
theoretic approach, an LTL formula is first translated to an w-automaton and
then a product of the automaton and the system is constructed and analyzed.
The automata used here are typically non-deterministic Biichi automata (NBA)
as they recognize all w-regular languages and thus also LTL languages. However,
for two important applications, deterministic w-automata are important: proba-
bilistic model checking and synthesis of reactive modules for LTL specifications.
Here deterministic Rabin automata (DRA) are typically used as deterministic
Biichi automata are not as expressive as LTL. In order to transform an NBA
to a DRA, one needs to employ either Safra’s construction (or some other ex-
ponential construction). This approach is taken in PRISM [7] a leading proba-
bilistic model checker, which reimplements the optimized Safra’s construction of
1tl2dstar [4]. However, a straight application of this very general construction
often yields unnecessarily large automata and thus also large products, often too
large to be analyzed.

In order to circumvent this difficulty, one can focus on fragments of LTL. The
most prominent ones are GR(1)—a restricted, but useful fragment of LTL(X,F,G)
allowing for fast synthesis—and fragments of LTL(F,G) as investigated in e.g. [1].
Recently [6], we showed how to construct DRA from LTL(F,G) directly without
NBA. As we argued there, this is an interesting fragment also because it can
express all complex fairness constraints, which are widely used in verification.
We implemented our approach in a tool Rabinizer [3] and observed significant
improvements, especially for complex formulae: for example, for a conjunction
of three fairness constraints 1t12dstar produces a DRA with more than a mil-
ion states, while Rabinizer produces 469 states. Moreover, we introduced a new
type of automaton a deterministic generalized Rabin automaton (DGRA), which

* The author is supported by the Czech Science Foundation, grant No. P202/12/G061.
¥ The author is supported by the DFG Graduiertenkolleg 1480 (PUMA).

105

106

is an intermediate step in our construction, and only has 64 states in the fair-
ness example and only 1 state if transition acceptance is used. In [2], we then
show that for probabilistic model checking DGRA are not more difficult to han-
dle than DRA. Hence, without tradeoff, we can use often much smaller DGRA,
which are only produced by our construction.

Here, we present a tool Rabinizer 2 that extends our method and im-
plements it for LTL\gu a fragment of LTL(X,F,G,U) where U are not in-
side G-formulae (but F still can) in negation normal form. This fragment is
not only substantially more complex, but also practically more useful. Indeed,
with the unrestricted X-operator, it covers GR(1) and can capture properties
describing local structure of systems and is necessary for description of pre-
cise sequences of steps. Further, U-operator allows to distinguish paths de-
pending on their initial parts and then we can require different fairness con-
straints on different paths such as in waitU(answery A¢1)V waitU(answera Adz)
where ¢1, ¢o are two fairness constraints. As another example, consider patterns
for “before”: for “absence” we have Fr — (—pUr), for “constrained chains”
Fr — (p — (-rU(s A =r A =z AX((—r A —z)Ut))))Ur.

Furthermore, as opposed to other tools (including Rabinizer), Rabinizer 2
can also produce DGRA, which are smaller by orders of magnitude for complex
formulae. For instance, for a conjunction of four fairness constraints the con-
structed DGRA has 256 states, while the directly degeneralized DRA is 20736-
times bigger [2]. As a result, we not only obtain smaller DRA now for much
larger fragment (by degeneralizing the DGRA into DRA), but also the power of
DGRA is made available for this fragment allowing for the respective speed up
of probabilistic model checking.

The tool can be downloaded and additional materials and proofs found at
http://www.model.in.tum.de/ kretinsk/rabinizer2.html

? Mg ~ e O
Let us fix a formula ¢ of LTL\gu . We construct an au-

tomaton A(y) recognizing models of . Details can be
found on the tool’s webpage. In every step, A(p) un- / \{b} {a,b}
folds ¢ as in [6], now we also define iUnf(y;Ut) =
Unf(1po) V (Unf (1) AX(1p1U)2)). Then it checks whether @ D ofab} D ofab}
the letter currently read complies with thus generated re-
quirements, see the example on the right for ¢ = aUb. E.g. reading {a} yields
requirement X(aUb) for the next step, thus in the next step we have Unf(aUb)
which is the same as in the initial state, hence we loop.

Some requirements can be checked at a finite time by this unfolding, such as
bU(a A Xb), some cannot, such as GF(a A Xb). The state space has to monitor
the latter requirements (such as the repetitive satisfaction of a A Xb) separately.
To this end, let G, := {Gv¢ € sf(p)} and F, := {F¢ € sf(w) | for some w €
G} where sf(y) denotes the set of all subformulae of ¢. Then Rec := {v |
Gy € G, or Fip € F,} is the set of recurrent subformulae of ¢, whose repeated
satisfaction we must check. (Note that no U occurs in formulae of Rec.) In the
case without the X operator [6, 3], such as with GFa, it was sufficient to record

107

the currently read letter in the states of A(p). Then the acceptance condition
checks whether e.g. a is visited infinitely often. Now we could extend this to keep
history of the last n letters read where n is the nesting depth of the X operator
in ¢. In order to reduce the size of the state space, we rather store equivalence
classes thereof. This is realized by automata. For every & € Rec, we have a finite
automaton B(¢), and A(p) will keep track of its current states.

Construction of B(£): We define a finite automaton B(§) = (Qe, i¢, d¢, Fr)

over ﬁ .

e set Yof states Qe = BT (sf(&)), where BT(S) is the set [}

’ N {a,b}
of positive Boolean functions over S and tt and ff, aVbVX(bAGa) :) 2

— the initial state 7¢ = ¢, . N 0 / \{a},{b},{a, b}

— the final states F; where each atomic proposition has F

or G as an ancestor in the syntactic tree (i.e. no atomic |[p A (Ga)
propositions are guarded by only X’s and Boolean con-

nectiye’s)7 ' ' . /{b}p{am‘a}
— transition relation d¢ is defined by transitions
X — X‘l([v]) for every v C Ap and x ¢ F

i~ for every v C Ap
where x[v] is the functlon x with tt and ff plugged in for atomic propositions

according to v and X~y strips away the initial X (whenever there is one) from
each formula in the Boolean combination x. Note that we do not unfold inner
F- and G-formulae. See an example for £ = a VbV X (b A Ga) on the right.

Construction of A(y): The state space has two components. Beside the com-
ponent keeping track of the input formula, we also keep track of the history
for every recurrent formula of Rec. The second component is then a vector of
length |Rec| keeping the current set of states of each B(¢). Formally, we define
A(p) = (Q,14,9) to be a deterministic finite automaton over X = 24P given by

— set of states Q = BT (sf(p) U Xsf()) x H 29¢ where XS = {Xs| s € S},
£€Rec

— the initial state ¢ = (Unf(p), (§ — {i¢})ecrec);

— the transition function § is defined by transitions

(¥, (Re)eerec) — Wmf(X ™ (¥[])), (9¢(Re,) cee)

On A(y) it is possible to define an acceptance condition such that A(y)
recognizes models of ¢. The approach is similar to [6], but now we have to take
the information of each B(§) into account. We use this information to get look-
ahead necessary for evaluating X-requirements in the first component of A(¢y).
However, since storing complete future look-ahead would be costly, B(&) actually
stores the compressed information of past. The acceptance condition allows then
for deducing enough information about the future.

Further optimizations include not storing states of each B(), but only the
currently relevant ones. E.g. after reading 0 in GFa Vv (b A GFc¢), it is no more
interesting to track if ¢ occurs infinitely often. Further, since only the infinite
behaviour of B(¢) is important and it has acyclic structure (except for the initial
states), instead of the initial state we can start in any subset of states. Therefore,
we start in a subset that will occur repetitively and we thus omit unnecessary
initial transient parts of A(p).

108

3 Experimental results

We compare our tool to 1t12dstar, which yields the same automata as its Java
reimplementation in PRISM. We consider some formulae on which 1tl2dstar
was originally tested [5], some formulae used in a network monitoring project
Liberouter (https://www.liberouter.org/) showing the LTL\ gy fragment is prac-
tically very relevant, and several other formulae with more involved structure
such as ones containing fairness constraints. For results on the LTL(F,G) sub-
fragment, we refer to [3]. Due to [2], it only makes sense to use DGRA and we
thus display the sizes of DGRA for Rabinizer 2 (except for the more complex
cases this, however, coincides with the degeneralized DRA). Here “?” denotes

time-out after 30 minutes. For more experiments, see the webpage.

Formula 1t12d*| R.2
(Fp)U(Gq) 4 3
(Gp)Ugq 5 5
~(pUq) 4 3
G(p — Fq) A (Xp)Uq) vV ~X(pU(p A q)) 19 8
G(q Vv XGp) A G(rVXG—p) 5 14
(GF(p1) AFCp0))) — (Gl(pz A Xpa A1 A Xpr = ((ps) = Xp1)))) s
(91 A XG(=p1)) A (G((Fp2) A (F-p2))) A (p2))) — (((=p2)0

G(=((ps Aps) V (p3 Aps) V (ps Aps) V (pa Aps) V (pa Aps) V (05 Aps))))) 1718
(Xp1 A G((=p1 A Xp1) = X Xp1) A GF-p1 A GFpa A GF-p2) —

(G(ps A pailpa A Xpy — X(p1 V X(=ps V p1)))) 9 7
Fr — (p — (-rU(s A =r A -z AX((—r A —z)Ut))))Ur 6] 5
((GF(a A XXb) VFGDH) AFG(cV (Xa A XXb))) 353 73
GF(XXXa A XXXXDb) A GF(bV Xc) A GF(c A XXa) 2127| 85
(GFaV FGb) A (GFeV FG(dV Xe)) 18176 40
(GF(a A XXc)V FGb) A (GFe vV FG(dV Xa A XXb)) 7 142
aUb A (GFaV FGbH) A (GFeVFGd)VaUc A (GFaV FGd) A (GFeV FGb) 7l 60

References

1. Rajeev Alur and Salvatore La Torre. Deterministic generators and games for LTL

fragments. ACM Trans. Comput. Log., 5(1):1-25, 2004.

2. Krishnendu Chatterjee, Andreas Gaiser, and Jan Kretinsky. Automata with gen-
eralized Rabin pairs for probabilistic model checking and LTL synthesis. In CAV,
pages 559-575, 2013.

3. Andreas Gaiser, Jan Kietinsky, and Javier Esparza. Rabinizer: Small deterministic
automata for LTL(F,G). In ATVA, pages 72-76, 2012.

4. Joachim Klein. Itl2dstar - LTL to deterministic Streett and Rabin automata.
http://www.lt12dstar.de/.

5. Joachim Klein and Christel Baier. Experiments with deterministic omega-automata

for formulas of linear temporal logic. Theor. Comput. Sci., 363(2):182-195, 2006.
6. Jan Kfetinsky and Javier Esparza. Deterministic automata for the (F,G)-fragment
of LTL. In CAV, pages 7-22, 2012.

7. Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification

of probabilistic real-time systems. In CAV, pages 585-591, 2011.

Part 11

Papers on continuous-time
Markovian systems

109

Paper E:

Continuous-Time Stochastic Games with Time-
Bounded Reachability

Tomds Brazdil, Vojtéch Forejt, Jan Kréal, Jan Kretinsky, and Antonin Kucera

This paper has been published in Information and Computation, vol. 224, pages
46-70. Elsevier, 2013. Copyright (©) by Elsevier. [BFKT13]

Summary

Continuous-time Markov decision processes are an established model in oper-
ations research, biology, performance evaluation etc. for modelling either open
systems or closed controllable systems. Modelling open controllable systems
and optimisation of their behaviour requires a game extension. We give such
an extension called continuous-time stochastic games and study its proper-
ties. Firstly, we establish determinacy and non/existence of optimal time-
abstract strategies in these games. Secondly, we extend and optimise the al-
gorithm for time-bounded reachability with e-optimal time-abstract strategies
in the continuous-time Markov decision processes of [BHHKO04] to the setting of
continuous-time stochastic games and analyse its complexity. Thirdly, we give
an algorithm to compute optimal time-abstract strategies.

Author’s contribution: 45 %

e the results and proofs concerning the structure of optimal and e-optimal
strategies,
e the design of parts of the algorithms and the respective proofs of correct-

ness,

111

112

e the analysis of the complexity,

e the extension of the conference paper [BFKT09] (12 pages) to the present
journal paper (25 pages, 39 pages in the preprint version presented here).

Continuous-Time Stochastic Games with
Time-Bounded Reachability™

Tomas Brazdil, Vojtéch Forejt!, Jan Kréal, Jan Kretinsky?*, Antonin Kucera

Faculty of Informatics, Masaryk University, Botanickd 68a, 60200 Brno, Czech Republic

Abstract

We study continuous-time stochastic games with time-bounded reachability ob-
jectives and time-abstract strategies. We show that each vertex in such a game
has a wvalue (i.e., an equilibrium probability), and we classify the conditions
under which optimal strategies exist. Further, we show how to compute e-
optimal strategies in finite games and provide detailed complexity estimations.
Moreover, we show how to compute e-optimal strategies in infinite games with
finite branching and bounded rates where the bound as well as the successors
of a given state are effectively computable. Finally, we show how to compute
optimal strategies in finite uniform games.

Keywords: continuous time stochastic systems, time-bounded reachability,
stochastic games

1. Introduction

Markov models are widely used in many diverse areas such as economics, bi-
ology, or physics. More recently, they have also been used for performance and
dependability analysis of computer systems. Since faithful modeling of com-
puter systems often requires both randomized and non-deterministic choice, a
lot of attention has been devoted to Markov models where these two phenom-
ena co-exist, such as Markov decision processes and stochastic games. The latter

*This is an extended version of FSTTCS’09 paper with full proofs and improved complexity
bounds on the e-optimal strategies algorithm. The work has been supported by Czech Science
Foundation, grant No. P202/10/1469. Jan Kietinsky is a holder of Brno PhD Talent Financial
Aid. Vojtéch Forejt was supported in part by ERC Advanced Grant VERIWARE and a Royal
Society Newton Fellowship.

*Corresponding author, phone no.: +49 89 289 17236 , fax no.: +49 89 289 17207

Email addresses: brazdil@fi.muni.cz (Tomés Brazdil), vojfor@cs.ox.ac.uk
(Vojtéch Forejt), krcal@fi.muni.cz (Jan Krédl), jan.kretinsky@fi.muni.cz
(Jan Kretinsky), kucera@fi.muni.cz (Antonin Kucera)

1Present address: Department of Computer Science, University of Oxford, Wolfson Build-
ing, Parks Road, Oxford, OX1 3QD, UK

2Present address: Institut fir Informatik, Technische Universitdt Miinchen, Boltz-
mannstr. 3, 85748 Garching, Germany

113

114

model of stochastic games is particularly apt for analyzing the interaction be-
tween a system and its environment, which are formalized as two players with
antagonistic objectives (we refer to, e.g., [1, 2, 3] for more comprehensive expo-
sitions of results related to games in formal analysis and verification of computer
systems). So far, most of the existing results concern discrete-time Markov deci-
sion processes and stochastic games, and the accompanying theory is relatively
well-developed (see, e.g., [4, 5]).

In this paper, we study continuous-time stochastic games (CTGs) and hence
also continuous-time Markov decision processes (CTMDPs) with time-bounded
reachability objectives. Roughly speaking, a CTG is a finite or countably infinite
graph with three types of vertices—controllable vertices (boxes), adversarial
vertices (diamonds), and actions (circles). The outgoing edges of controllable
and adversarial vertices lead to the actions that are enabled at a given vertex.
The outgoing edges of actions lead to controllable or adversarial vertices, and
every edge is assigned a positive probability so that the total sum of these
probabilities in each vertex is equal to 1. Further, each action is assigned a
positive real rate. A simple finite CTG is shown below.

3 0.2

0.6

A game is played by two players, (I and ¢, who are responsible for selecting
the actions (i.e., resolving the non-deterministic choice) in the controllable and
adversarial vertices, respectively. The selection is timeless, but performing a se-
lected action takes time which is exponentially distributed (the parameter is the
rate of a given action). When a given action is finished, the next vertex is cho-
sen randomly according to the fixed probability distribution over the outgoing
edges of the action. A time-bounded reachability objective is specified by a set T’
of target vertices and a time bound ¢ > 0. The goal of player [J is to maximize
the probability of reaching a target vertex before time ¢, while player ¢ aims at
minimizing this probability.

Note that events such as component failures, user requests, message receipts,
exceptions, etc., are essentially history-independent, which means that the time
between two successive occurrences of such events is exponentially distributed.
CTGs provide a natural and convenient formal model for systems exhibiting
these features, and time-bounded reachability objectives allow to formalize basic
liveness and safety properties of these systems.

Previous work. Although the practical relevance of CTGs with time-
bounded reachability objectives to verification problems is obvious, to the best
of our knowledge there are no previous results concerning even very basic prop-
erties of such games. A more restricted model of uniform CTMDPs is studied

115

in [6, 7]. Intuitively, a uniform CTMDP is a CTG where all non-deterministic
vertices are controlled just by one player, and all actions are assigned the same
rate. In [6], it is shown that the maximal and minimal probability of reaching
a target vertex before time ¢ is efficiently computable up to an arbitrarily small
given error, and that the associated strategy is also effectively computable. An
open question explicitly raised in [6] is whether this result can be extended to all
(not necessarily uniform) CTMDP. In [6], it is also shown that time-dependent
strategies are more powerful than time-abstract ones, and this issue is addressed
in greater detail in [7] where the mutual relationship between various classes of
time-dependent strategies in CTMDPs is studied. Furthermore, in [8] reward-
bounded objectives in CTMDPs are studied.

Our contribution is twofold. Firstly, we examine the fundamental prop-
erties of CTGs, where we aim at obtaining as general (and tight) results as
possible. Secondly, we consider the associated algorithmic issues. Concrete
results are discussed in the following paragraphs.

Fundamental properties of CTGs. We start by showing that each vertex
v in a CTG with time-bounded reachability objectives has a wvalue, i.e., an
equilibrium probability of reaching a target vertex before time ¢. The value is
equal to sup, inf; P7™(Reach="(T)) and inf, sup, P (Reach='(T)), where o
and 7 range over all time-abstract strategies of player [J and player ¢, and
P77 (Reach="(T)) is the probability of reaching T before time ¢ when starting
in v in a play obtained by applying the strategies o and w. This result holds
for arbitrary CTGs which may have countably many vertices and actions. This
immediately raises the question whether each player has an optimal strategy
which achieves the outcome equal to or better than the value against every
strategy of the opponent. We show that the answer is negative in general, but an
optimal strategy for player ¢ is guaranteed to exist in finitely-branching CTGs,
and an optimal strategy for player [J is guaranteed to exist in finitely-branching
CTGs with bounded rates (see Definition 2.2). These results are tight, which is
documented by appropriate counterexamples. Moreover, we show that in the
subclasses of CTGs just mentioned, the players have also optimal CD strategies
(a strategy is CD if it is deterministic and “counting”, i.e., it only depends on
the number of actions in the history of a play, where actions with the same
rate are identified). Note that CD strategies still use infinite memory and in
general they do not admit a finite description. A special attention is devoted
to finite uniform CTGs, where we show a somewhat surprising result—both
players have finite memory optimal strategies (these finite memory strategies
are deterministic and their decision is based on “bounded counting” of actions;
hence, we call them “BCD”). Using the technique of uniformization, one can
generalize this result to all finite (not necessarily uniform) games, see [9].

Algorithms. We show that for finite CTGs, e-optimal strategies for both
players are computable in [V[2 - |4 - bp® - ((maxR) -t+ln%)2m|+o(l) time,
where |V] and |A] is the number of vertices and actions, resp., bp is the maximum
bit-length of transition probabilities and rates (we assume that rates and the
probabilities in distributions assigned to the actions are represented as fractions

116

of integers encoded in binary), |R| is the number of rates, max R is the maximal
rate, and ¢ is the time bound. This solves the open problem of [6] (in fact, our
result is more general as it applies to finite CTGs, not just to finite CTMDPs).
Actually, the algorithm works also for infinite-state CTGs as long as they are
finitely-branching, have bounded rates, and satisfy some natural “effectivity
assumptions” (see Corollary 5.26). For example, this is applicable to the class
of infinite-state CTGs definable by pushdown automata (where the rate of a
given configuration depends just on the current control state), and also to other
automata-theoretic models. Finally, we show how to compute the optimal BCD
strategies for both players in finite uniform CTGs.
Some proofs that are rather technical have been shifted into Appendix C.

2. Definitions

In this paper, the sets of all positive integers, non-negative integers, rational
numbers, real numbers, non-negative real numbers, and positive real numbers
are denoted by N, Ny, Q, R, RZ°, and R>Y, respectively. Let A be a finite or
countably infinite set. A probability distribution on A is a function f : A — RZ°
such that > 4 f(a) = 1. The support of f is the set of all a € A where
f(a) > 0. A distribution f is Dirac if f(a) = 1 for some a € A. The set of all
distributions on A is denoted by D(A). A o-field over aset) is a set F C 2% that
contains € and is closed under complement and countable union. A measurable
space is a pair (2, F) where € is a set called sample space and F is a o-field
over) whose elements are called measurable sets. A probability measure over a
measurable space (2,) is a function P : F — R=% such that, for each countable
collection { X } ;e of pairwise disjoint elements of 7, P({;c; Xi) = >_;c; P(X4),
and moreover P(Q) = 1. A probability space is a triple (Q, F,P), where (Q, F)
is a measurable space and P is a probability measure over (2, F). Given two
measurable sets X, Y € F such that P(Y) > 0, the conditional probability of
X under the condition Y is defined as P(X | Y) = P(X NY)/P(Y). We say
that a property A C Q holds for almost all elements of a measurable set Y if
PY)>0,ANY € F,and P(ANY |Y) =1.

In our next definition we introduce continuous-time Markov -chains
(CTMCs). The literature offers several equivalent definitions of CTMCs (see,
e.g., [10]). For purposes of this paper, we adopt the variant where transitions
have discrete probabilities and the rates are assigned to states.

Definition 2.1. A continuous-time Markov chain (CTMC) is a tuple
M= (S,P,R,), where S is a finite or countably infinite set of states, P is
a transition probability function assigning to each s € S a probability distribu-
tion over S, R is a function assigning to each s € S a positive real rate, and p
is the initial probability distribution on S.

If P(s)(s') = x > 0, we write s> s’ or shortly s—s’. A time-abstract
path is a finite or infinite sequence u = wug, uq, ... of states such that u; 1 — u;
for every 1 < i < length(u), where length(u) is the length of u (the length of

117

an infinite sequence is o0). A timed path (or just path) is a pair w = (u,t),
where u is a time-abstract path and ¢ = t1,%9,... is a sequence of positive
reals such that length(t) = length(u). We put length(w) = length(u), and for
every 0 < i < length(w), we usually write w(i) and w|i] instead of u; and ¢;,
respectively.

Infinite paths are also called runs. The set of all runs in M is denoted Run a,
or just Run when M is clear from the context. A template is a pair (u, I), where
U = ug, U1, . . . is a finite time-abstract path and I = Iy, I1, ... a finite sequence of
non-empty intervals in RZ° such that length(u) = length(I)+1. Every template
(u, I) determines a basic cylinder Run(u,I) consisting of all runs w such that
w(i) = u; for all 0 < i < length(u), and w(j] € I, for all 0 < i < length(u) — 1.
To M we associate the probability space (Run,F,P) where F is the o-field
generated by all basic cylinders Run(u,I) and P : F — R20 is the unique
probability measure on F such that

length(u)—2
P(Run(u, 1)) = plug) T[] Plu)luiga) - (¢ R0 — oo ROu (i)
=0

Note that if length(u) = 1, the “big product” above is empty and hence equal
to 1.

Now we formally define continuous-time games, which generalize continuous-
time Markov chains by allowing not only probabilistic but also non-deterministic
choice. Continuous-time games also generalize the model of continuous-time
Markov decision processes studied in [6, 7] by splitting the non-deterministic
vertices into two disjoint subsets of controllable and adversarial vertices, which
are controlled by two players with antagonistic objectives. Thus, one can model
the interaction between a system and its environment.

Definition 2.2. A continuous-time game (CTG) is a tuple G =
(V, A E, (Vo,Vs), P, R) where V is a finite or countably infinite set of vertices,
A is a finite or countably infinite set of actions, E is a function which to every
v € V assigns a non-empty set of actions enabled in v, (Vg, V) is a partition
of V, P is a function which assigns to every a € A a probability distribution on
V, and R is a function which assigns a positive real rate to every a € A.

We require that VN A = 0 and use NV to denote the set VU A. We say that
G is finitely-branching if for each v € V' the set E(v) is finite (note that P(a) for
a given a € A can still have an infinite support even if G is finitely branching).
We say that G has bounded rates if sup,c 4 R(a) < oo, and that G is uniform if
R is a constant function. Finally, we say that G is finite if N is finite.

If Vg or Vi is empty (i.e., there is just one type of vertices), then G is a
continuous-time Markov decision process (CTMDP). Technically, our definition
of CTMDP is slightly different from the one used in [6, 7], but the difference is
only cosmetic. The two models are equivalent in a well-defined sense (a detailed
explanation is included in Appendix B). Also note that P and R associate the
probability distributions and rates directly to actions, not to pairs of V' x A. This

118

is perhaps somewhat non-standard, but leads to simpler notation (since each
vertex can have its “private” set of enabled actions, this is no real restriction).

A play of G is initiated in some vertex. The non-deterministic choice is
resolved by two players, [0 and ¢, who select the actions in the vertices of Vg
and Vi, respectively. The selection itself is timeless, but some time is spent
by performing the selected action (the time is exponentially distributed with
the rate R(a)), and then a transition to the next vertex is chosen randomly
according to the distribution P(a). The players can also select the actions
randomly, i.e., they select not just a single action but a probability distribution
on the enabled actions. Moreover, the players are allowed to play differently
when the same vertex is revisited. We assume that both players can see the
history of a play, but cannot measure the elapsed time.

Let ©® € {00,0}. A strategy for player ® is a function which to each wv €
N*V,, assigns a probability distribution on E(v). The sets of all strategies
for player O and player ¢ are denoted by ¥ and II, respectively. Each pair of
strategies (o, m) € X XxII together with an initial vertex ¢ € V determine a unique
play of the game G, which is a CTMC G(0, 0,) where N* A is the set of states,
the rate of a given wa € N*A is R(a) (the rate function of G(0,0,7) is also
denoted by R), and the only non-zero transition probabilities are between states
of the form wa and wava’ with wa = wava’ iff one of the following conditions
is satisfied:

e v e Vg, d €E®Ww),and z = P(a)(v) - o(wav)(a’) > 0;

e vEVy, da € E(w), and z = P(a)(v) - 7(wav)(a’) > 0.
The initial distribution is determined as follows:

o u(va) = o(d)(a) if v € Vg and a € E(0);

o u(va) =m(0)(a) if v € Viy and a € E(?);

e in the other cases, u returns zero.

Note that the set of states of G(v,0,7) is infinite. Also note that all states
reachable from a state va, where p(va) > 0, are alternating sequences of vertices
and actions. We say that a state w of G(0,0,7) hits a vertex v € V if v is the
last vertex which appears in w (for example, vyaivoas hits vy). Further, we say
that w hits T C V if w hits some vertex of T. From now on, the paths (both
finite and infinite) in G(0, 0, 7) are denoted by Greek letters a, 3, Note that
for every o € Rung(y,o,r) and every i € Nyg we have that a(i) = wa where
wa € N*A.

We denote by R(G) the set of all rates used in G (i.e., R(G) = {R(a) |
a € A}), and by H(G) the set of all vectors of the form i : R(G) — Ny
satisfying >, cr(g) i(r) < oo. When G is clear from the context, we write
just R and H instead of R(G) and H(G), respectively. For every i € H, we
put [i| = Y,z i(r). For every r € R, we denote by 1, the vector of H such
that 1,(r) = 1 and 1,.(') = 0 if ¥ # r. Further, for every wz € N*N we

119

define the vector i,, € H such that i,.(r) returns the cardinality of the set
{j € Ng | 0<j < length(w),w(j) € A, R(w(j)) = r}. (Note that the last
element = of wx is disregarded.) Given i € H and wzr € N*N, we say that
wx matches 1 if 1 = i,,.

We say that a strategy 7 is counting (C) if 7(wv) = 7(w'v) for all v € V and
w,w’ € N* such that i,, = i,,. In other words, a strategy 7 is counting if the
only information about the history of a play w which influences the decision of
T is the vector i,,. Hence, every counting strategy 7 can be considered as a
function from H x V to D(A), where 7(i, v) corresponds to the value of 7(wv) for
every wv matching i. A counting strategy 7 is bounded counting (BC) if there
is k € N such that 7(wv) = 7(w'v) whenever length(w) > k and length(w') > k.
A strategy 7 is deterministic (D) if T(wv) is a Dirac distribution for all wv.
Strategies that are not necessarily counting are called history-dependent (H),
and strategies that are not necessarily deterministic are called randomized (R).
Thus, we obtain the following six types of strategies: BCD, BCR, CD, CR, HD,
and HR. The most general (unrestricted) type is HR, and the importance of the
other types of strategies becomes clear in subsequent sections.

In this paper, we are interested in continuous-time games with time-bounded
reachability objectives, which are specified by a set T'C V of target vertices and
a time bound t € R>°. Let v be an initial vertex. Then each pair of strategies
(0,7) € ¥ x II determines a unique outcome P27 (Reach='(T)), which is the
probability of all & € Rung(y,q,) that visit T' before time ¢ (i.e., there is i € Ny
such that «(7) hits T and Z;;E alj] <t). The goal of player O is to maximize
the outcome, while player ¢ aims at the opposite. In our next definition we
recall the standard concept of an equilibrium outcome called the value.

Definition 2.3. We say that a vertex v € V' has a value if

sup inf PO (Reach="(T)) = inf sup PJ™(Reach=!(T))

ocex mell m€ll se5
If v has a value, then val(v) denotes the value of v defined by the above equality.

The existence of val(v) follows easily by applying the powerful result of Martin
about weak determinacy of Blackwell games [11] (more precisely, one can use
the determinacy result for stochastic games presented in [12] which builds on
[11]). In Section 3, we give a self-contained proof of the existence of wval(v),
which also brings further insights used later in our algorithms. Still, we think
it is worth noting how the existence of val(v) follows from the results of [11, 12]
because the argument is generic and can be used also for more complicated
timed objectives and a more general class of games over semi-Markov processes
[4] where the distribution of time spent by performing a given action is not
necessarily exponential.

Theorem 2.4. FEvery vertex v € V' has a value.

Proof. Let us consider an infinite path of G initiated in v, i.e., an infinite se-
quence vg, g, V1, a1,... where vog = v and a; € E(v;), P(a;)(vi41) > 0 for all

120

i € Ng. Let f be a real-valued function over infinite paths of G defined as
follows:

e If a given path does not visit a target vertex (i.e., v; € T for all i € Ny),
then f returns 0;

e otherwise, let 7 € Ny be the least index such that v; € T. The function f
returns the probability P(Xo+- - -+ X;_1 < t) where every X, 0 < j <1,
is an exponentially distributed random variable with the rate R(a;) (we
assume that all X; are mutually independent). Intuitively, f returns the
probability that the considered path reaches v; before time t.

Note that f is Borel measurable and bounded. Also note that every run in a
play G(v,o,7) initiated in v determines exactly one infinite path in G (the time
stamps are ignored). Hence, f determines a unique random variable over the
runs in G(v, o,) which is denoted by f&7. Observe that f&™ does not depend
on the time stamps which appear in the runs of G(v,0,7), and hence we can
apply the results of [12] and conclude that

3 f]E g, — 3 f E o,T
sup inf B[] Jnf sup B[]

where E[fZ7] is the expected value of f2™. To conclude the proof, it suffices to
realize that Pg’“(ReachSt(T)) = E[f7]. O

Since values exist, it makes sense to define e-optimal and optimal strategies.

Definition 2.5. Let ¢ > 0. We say that a strategy o € ¥ is an e-optimal
maximizing strategy in v (or just e-optimal in v) if

inf P (Reach='(T)) > wval(v) —e

mell
and that a strategy w € II is an e-optimal minimizing strategy in v (or just
g-optimal in v) if

Sup’Pg’”(ReachSt(T)) < wal(v)+¢
ogEY

A strategy is e-optimal if it is e-optimal in every v. A strategy is optimal in v
if it is O-optimal in v, and just optimal if it is optimal in every v.

3. The Existence of Values and Optimal Strategies

In this section we first give a self-contained proof that every vertex in a
CTG with time-bounded reachability objectives has a value (Theorem 3.6).
The argument does not require any additional restrictions, i.e., it works also for
CTGs with infinite state-space and infinite branching degree. As we shall see,
the ideas presented in the proof of Theorem 3.6 are useful also for designing
an algorithm which for a given € > 0 computes e-optimal strategies for both

121

players. Then, we study the existence of optimal strategies. We show that
even though optimal minimizing strategies may not exist in infinitely-branching
CTGs, they always exist in finitely-branching ones. As for optimal maximizing
strategies, we show that they do not necessarily exist even in finitely-branching
CTGs, but they are guaranteed to exist if a game is both finitely-branching and
has bounded rates (see Definition 2.2).

For the rest of this section, we fix a CTG G = (V, A,E, (V, Vy), P, R), a set
T C V of target vertices, and a time bound ¢ > 0. Given i € H where [i| > 0,
we denote by F; the probability distribution function of the random variable
Xi=Y,cr s X" where all X" are mutually independent and each X"
is an exponentially dlstrlbuted random variable with the rate r (for reader S
convenience, basic properties of exponentially distributed random variables are
recalled in Appendix A). We also define Fp as a constant function returning 1
for every argument (here 0 € H is the empty history, i.e., |0] = 0). In the special
case when R is a singleton, we use Fy to denote Fj such that i(r) = ¢, where r
is the only element of R. Further, given ~ € {<,<,=} and k € N, we denote
by 77{,7’”(Reachf’;C (T')) the probability of all o € Rung(y, 4, that visit T' for the
first time in the number of steps satisfying the constraint ~ & and before time ¢
(i.e., there is i € Ny such that i = min{j | a(j) hits T} ~ k and >°} _Oa[] <t).

We first restate Theorem 2.4 and give its constructive proof.

Theorem 3.6. Fvery vertex v € V has a value.

Proof. Given 0 € ¥, m € II, j € H, and u € V, we denote by P?7(u,j) the
probability of all runs a € Rung(y,s,x) such that for some n € Ny the state a(n)
hits 7" and matches j, and for all 0 < j < n we have that «(j) does not hit 7.
Then we introduce two functions A, B : H x V — [0, 1] where

A(i,v) = sup inf Fiyj(t) - P7™(v,]))
cex mell
jer
i = inf F; - P
B(i,v) s Z +5(t (v,3)

Clearly, it suffices to prove that A = B, because then for every vertex v € V' we
also have that A(0,v) = B(0,v) = val(v). The equality A = B is obtained by
demonstrating that both A and B are equal to the (unique) least fixed point of a
monotonic function V : (H x V — [0,1]) — (H x V — [0,1]) defined as follows:
for every H: H xV — [0,1], i € H, and v € V we have that

Fi(t) veT
V(H)(5.0) = § sup,cey Yoy P@)(w) - Hi+ Iy w) v e Vo\T
infaeE(v) ZueV P(a)(u) . H(i +]-R(a)a u) v e VQ \ T

Let us denote by p) the least fixed point of V. We show that uV = A = B.
The inequality A < B (where < is the standard pointwise order) is obvious and
follows directly from the definition of A and B. Hence, it suffices to prove the
following two assertions:

122

1. By the following claim we obtain u) =< A.
Claim 3.7. A is a fixed point of V.

2. For every ¢ > 0 there is a CD strategy m. € II such that for every i € H
and every v € V we have that

sup Z Fii(t) - P77 (v,j) < pV(v)+e
UGZJGH

from which we get B < pV.

The strategy 7. can be defined as follows. Giveni € H and v € V4, we put
7e(i,v)(a) = 1 for some a € Asatistying >, . P(a)(u)-uV(i+1g(a),u) <
pV(i,v) + 57 We prove that 7. indeed satisfies the above equality. For
every o € ¥, every i € H, every v € V and every k > 0, we denote

=3 Filt)- Pol(w,j)

jeH
i<k

Here 7.[i] is the strategy obtained from m. by 7 [i](j,) := 7w (i + j, w).

The following claim then implies that R7(i,v) = limg_o R7(i,v) <
wV(i,v) +e.
Claim 3.8. Forevery o € X, k> 0,i€ H,v eV, e >0, we have

Ri(iv) < pV(i, +ZZ|I+J

Both Claim 3.7 and 3.8 are purely technical, for proofs see Appendix C.1. [

It follows directly from Definition 2.3 and Theorem 3.6 that both players
have e-optimal strategies in every vertex v (for every € > 0). Now we examine
the existence of optimal strategies. We start by observing that optimal strategies
do not necessarily exist in general.

Observation 3.9. Optimal minimizing and optimal maximizing strategies in
continuous-time games with time-bounded reachability objectives do not neces-
sarily exist, even if we restrict ourselves to games with finitely many rates (i.e.,
R(G) is finite) and finitely many distinct transition probabilities.

Proof. Consider a game G = (V,A,E, (Vq,Vs),P,R), where V = {v; | i €
No} U {start, down}, A = {a;,b; | i € N} U{c,d}, E(start) = {a; | i € N},
E(v;)) = {b;} for all i € N, E(vg) = {c}, E(down) = {d}, P(a;)(v;) = 1,
P(c)(vg) = 1, P(d)(down) = 1, and P(b;) is the uniform distribution that
chooses down and v;_; for all i € N, and R assigns 1 to every action. The
structure of G is shown in Figure 1 (the partition of V into (Vg, V) is not
fixed yet, and the vertices are therefore drawn as ovals). If we put Vg = V,
we obtain that sup,cy, P (Reach™=" ({down})) = 3232, (& Fyy1(1)) where

123

a1 @ a@ as@ a; @

N T
R R SO SO SO

Cdown_i——+9d

Figure 1: Optimal strategies may not exist.

is the trivial strategy for player {. However, there is obviously no optimal
maximizing strategy. On the other hand, if we put Vi, = V, we have that
™

inf e PO, (Reach="({vg})) = 0 where o is the trivial strategy for player],
but there is no optimal minimizing strategy. O

However, if G is finitely-branching, then the existence of an optimal mini-
mizing CD strategy can be established by adapting the construction used in the
proof of Theorem 3.6.

Theorem 3.10. If G is finitely-branching, then there is an optimal minimizing
CD strategy.

Proof. Tt suffices to reconsider the second assertion of the proof of Theorem 3.6.
Since G is finitely-branching, the infima over enabled actions in the definition
of V are actually minima. Hence, in the definition of 7., we can set ¢ = 0 and
pick actions yielding minimal values. Thus the strategy 7. becomes an optimal
minimizing CD strategy. 0

Observe that for optimal minimizing strategies we did not require that G
has bounded rates. The issue with optimal maximizing strategies is slightly
more complicated. First, we observe that optimal maximizing strategies do not
necessarily exist even in finitely-branching games.

Observation 3.11. Optimal mazximizing strategies in continuous-time games
with time-bounded reachability objectives may not exist, even if we restrict our-
selves to finitely-branching games.

Proof. Consider a game G = (V, A,E, (Vg,Vy),P,R), where V = Vg = {v;,u; |
i € No} U {win,lose}; A = {a;,b;,end; | i € No} U{w,l}, E(win) = {w},
E(lose) = {¢}, and E(v;) = {a;,b;}, E(u;) = {end;} for all i € No; R(w) =
R(¢) = 1, and R(a;) = R(b;) = 2%, R(end;) = 2¢*! for all i € Ng; P(w)(win) =
P(¢)(lose) =1, and for all i € Ny we have that P(a;)(viy1) = 1, P(b;)(w;) = 1,

124

al az
o—» o— 02 *— —e
21 22 2i—1 21

[vo]
I blIzl bQIQQ biIQi
-

endg end, @ 22 ends @ 23

’ wm ’ lose ’ wm lose ‘ ’ win ‘ ’ lose ‘

Figure 2: Optimal maximizing strategies may not exist in finitely-branching games.

and P(end;) is the distribution that assigns r; to win and 1 —r; to lose, where
r; is the number discussed below. The structure of G is shown in Figure 2 (note
that for clarity, the vertices win and lose are drawn multiple times, and their
only enabled actions w and ¢ are not shown).

For every k € N, let i, € H be the vector that assigns 1 to all » € R such that
r < 2% and 0 to all other rates. Let us fix t € Q and ¢ > £ such that F}, (t) > ¢
for every k € N. Note that such ¢ and ¢ exist because the mean value associated
to Fj, is Zf:o 1/2% < 2 and hence it suffices to apply Markov inequality For
every j > 0, we fix some r; € Q such that ¢ — 2% <K,) r<q— 21+1 It is
easy to check that r; € [0, 1], which means that the function P is well-defined.

We claim that sup,cy, PJ ”(Reach "*({win})) = ¢ (where 7 is the
trivial strategy for player 0) but there is no strategy o such that
ng(ReachSt({wm})) = q. The first part follows by observing that player O
can reach win within time ¢ with probability at least ¢ — 2% for an arbitrarily
large j by selecting the actions ao, . ..,a;—1 and then b;. The second part follows
from the fact that by using b;, the probability of reaching win from vy becomes
strictly less than g, and by not selecting b; at all, this probability becomes equal
to 0. O

Observe that again the counterexample is a CTMDP. Now we show that if G
is finitely-branching and has bounded rates, then there is an optimal maximizing
CD strategy. First, observe that for each k € Ny

sup inf PU”(Reach ‘(7)) = inf supP”’T(Reach<k()) = V" (zero)(0,v)
cex mell me€ll ey
(1)

where V is the function defined in the proof of Theorem 3.6,
zero: HxV —[0,1] is a constant function returning zero for every ar-
gument, and 0 is the empty history. A proof of Equality 1 is obtained
by a straightforward induction on k. We use valk(v) to denote the

125

k-step value defined by Equality 1, and we say that strategies o € X
and 7 € II are k-step optimal if for all v € V, m € II, and o € ¥ we have
infren ng’“(ReachEZ(T)) = SUp,cyx Pg’”k(ReachE};(T)) = wval*(v). The
existence and basic properties of k-step optimal strategies are stated in our
next lemma.

Lemma 3.12. If G is finitely-branching and has bounded rates, then we have
the following:

1. For alle > 0, k > (supR)te? —Ine, 0 € X, 7 € II, and v € V we have
that

PI™(Reach='(T)) —e < Pg’”(Reachgc(T)) < PT™(Reach='(T))

2. For every k € N, there are k-step optimal BCD strategies o, € ¥ and
m, € IL. Further, for all e > 0 and k > (supR)te? — Ine we have that
every k-step optimal strategy is also an e-optimal strategy.

Proof. See Appendix C.2. O

If G is finitely-branching and has bounded rates, one may be tempted to
construct an optimal maximizing strategy o by selecting those actions that
are selected by infinitely many k-step optimal BCD strategies for all £ € N
(these strategies are guaranteed to exist by Lemma 3.12 (2)). However, this is
not so straightforward, because the distributions assigned to actions in finitely-
branching games can still have an infinite support. Intuitively, this issue is
overcome by considering larger and larger finite subsets of the support so that
the total probability of all of the infinitely many omitted elements approaches
zero. Hence, a proof of the following theorem is somewhat technical.

Theorem 3.13. If G is finitely-branching and has bounded rates, then there is
an optimal mazximizing CD strategy.

Proof. For the sake of this proof, given a set of runs R C Rung(p,q,x), We
denote P?™(R) the probability of R in G(0,0,m). For every k € N we fix a
k-step optimal BCD strategy o}, of player [J (see Lemma 3.12). Let us order
the set R of rates into an enumerable sequence 71,75 ... and the set V into
an enumerable sequence vy,vy.... We define a sequence of sets of strategies
YOIy DIy D as follows. We put I'g = {0, | £ € N} and we construct
T, to be an infinite subset of I';_; such that we have o(i,v,) = ¢’(i, v,,) for all
0,0/ € Ty, all n < £ and all i € H such that |i|] < ¢ and i(r;) = 0 whenever
j > L. Note that such a set exists since I'y_1 is infinite and the conditions above
partition it into finitely many classes, one of which must be infinite.

Now we define the optimal strategy o. Let i € H and v, € V, we choose a
number £ such that ¢ > [i|, £ > n and i(j) = 0 for all j > ¢ (note that such ¢
exists for any i € H and v, € V). We put o(i,v,) = o’(i,v,) where o’ € T'y.
It is easy to see that o is a CD strategy, it remains to argue that it is optimal.
Suppose the converse, i.e. that it is not e-optimal in some v;, for some € > 0.

126

Let us fix k satisfying conditions of part 1 of Lemma 3.12 for 7. For each

a € A there is a set B, C V such that V' \ B, is finite and P(a)(B,) <

+. For all strategies ¢’ and 7’ and all k we have that Pg/’“'(Uf’gl’”/) < 5
where Uiv’a/’”/ is the set of all runs of G(v,¢’,7’) that do not contain any state
of the form wpag...a;—1v;a; where v; € B,, ,. As a consequence we have
P (O, U;”U,’W() < £. In the sequel, we denote U"7 ™ = N, Uf’ol’w/ and
we write just U instead of U”?™ if v, o and & are clear from the context.

Let W be the set of histories of the form wvgag...v;_1a;_1v; where i < k,
V) = Vin, and for all 0 < j < i we have a; € E(v;), P(a;)(viy;) > 0 and
Vi1 & B,,. We claim that there is m > n s.t. o, is i—optimal and satisfies
o(w) = opm(w) for all w € W. To see that such a strategy exists, observe that
W is finite, which means that there is a number ¢ such that £ < ¢ and for
all w € W, there is no v; in w such that ¢ > ¢ and whenever a is in w, then
R(a) = r; for i < £. Now it suffices to choose arbitrary §-optimal strategy
om € Ty.

One can prove by induction on the length of path from v;, to T that the
following equality holds true for all .

Py ™ (Reach4(T) \ U) = P (ReachZ4(T) \ U)

Finally, we obtain

gggP;v:(Reachgg(T)\U) = gleiﬁlquif’“(Reachéi(T)\U)
€
> min P (ReachZ!, (T)\U) — =
> minPin" (Reach,, (T)\U) - 4
€
> min P (ReachS! (T)) — =
2 min P (Reachs,, (1) - 5
e ¢
> wval(vip) — 13 > val(vi,) — €
which means that o is e-optimal in v;,,. O

4. Optimal Strategies in Finite Uniform CTGs

In this section, we restrict ourselves to finite uniform CTGs, i.e.
R(a) =r >0 for all a € A. The histories from H are thus vectors of length
1, hence we write them as integers. We prove that both players have optimal
BCD strategies in such games. More precisely, we prove a stronger statement
that there are optimal strategies that after some number of steps eventually
behave in a stationary way. A CD strategy 7 is stationary if 7(h,v) depends
just on v for every vertex v. Besides, for a CD strategy 7, a strategy 7[h] is
defined by 7[h](h/,v) = 7(h 4+ h’,v). Further, recall that bp is the maximum
bit-length of the fractional representation of transition probabilities.

Theorem 4.14. In a finite uniform CTG, there exist optimal CD strategies
o€X, mell and k € N such that o[k] and w[k] are stationary; in particular, o

127

and 7 are optimal BCD strategies. Moreover, 2z'f ag{l transition probabilities are
rational then one can choose k = rt(1 4 207 1AV,

We then also show that this result is tight in the sense that optimal BCD
strategies do not necessarily exist in uniform CTGs with infinitely many states
even if the branching is finite (see Observation 4.23). In Section 5, we use these
results to design an algorithm which computes the optimal BCD strategies in
finite uniform games. Further, using the method of uniformization where a
general game is reduced to a uniform one, the results can be extended to general
(not necessarilly uniform) finite games, see [9].

Before proving the theorem we note that the crucial point is to understand
the behaviour of optimal strategies after many (i.e. k) steps have already been
taken. In such a situation, not much time is left and it turns out that in such
a situation optimal strategies optimize the probability of reaching T in as few
steps as possible. This motivates the central definition of greedy strategies.
Intuitively, a greedy strategy optimizes the outcome of the first step. If there
are more options to do so, it chooses among these options so that it optimizes
the second step, etc.

Definition 4.15. For strategies 0 € ¥ and w € II and a vertex v, we define a
—
step reachability vector PI™ = (”Pgm(Reachifo(T)))ieNo.

— =]
greedy if for every v, mingey; P9 = max, ey mingen P9 ™ where the optima®
are considered in the lexicographical order. Similarly, a strategy = € Il is greedy

A strategy o € ¥ is

. =g . g ’
if max,ex PY™ = ming e max,ex P3™ for every v.
We prove the theorem as follows:

1. Optimal CD strategies are guaranteed to exist by Theorem 3.10 and The-
orem 3.13.

2. For every optimal CD strategy 7, the strategy 7[k| is greedy (see Proposi-
tion 4.16).

3. There exist stationary greedy strategies (see Proposition 4.21). Let 7, be
such a strategy. Then for an optimal strategy 7, the strategy 7 defined by

*(h, v) T(h,v) ifh <k
T) = .
Tq(h,v) otherwise

is clearly BCD and also optimal. Indeed, all greedy strategies guarantee
the same probabilities to reach the target. (This is clear by definition,
since their step reachability vectors are the same.) Therefore, we can
freely interchange them without affecting the guaranteed outcome.

3We can use optima instead of extrema as the optimal strategies obviously exist in finite
discrete-time (with the time bound being infinite) games even when the number of steps is
fixed.

128

Proposition 4.16. Let 7 be an optimal strategy. Then there is k € N such that
T[k] is greedy. Moreover, if all transition probabilities are rational then one can
choose k = rt(1 + Qb”'|A|2"V|3),

In order to prove the proposition, we relax our definition of greedy strategies.
A strategy is greedy on s steps if the greedy strategy condition holds for the
step reachability vector where only first s elements are considered. A strategy 7
is always greedy on s steps if for all i € Ny the strategy 7[i] is greedy on s steps.
We use this relaxation of greediness to prove the proposition as follows. We
firstly prove that every optimal strategy is always greedy on |E| := _ _, [E(v)]
steps (by instantiating Lemma 4.17 for s = |E| < |A] - |V|) and then Lemma
4.18 concludes by proving that being always greedy on |E| steps guarantees
greediness.

Lemma 4.17. For every s € N there is § > 0 such that for every optimal CD
strategy T the strategy T[rt(1 + 1/0)] is always greedy on s steps. Moreover, if
all transition probabilities are rational, then one can choose § = 1/2bp'|v|"E|'S.

Proof. We look for a § such that for every optimal strategy o € ¥ if o[h] is not
greedy on s steps then h < k, where k = rt(1 + 1/§). Let thus o be an optimal
CD strategy and s € N. For o[h] that is not greedy on s steps there is i < s, a
vertex v and a strategy ¢* such that

: Bolhl,x s Dot
Geh 7o)< Qe 7o),
and for all j <4 _ _
(inf PP = (inf PI ™).
well J mell J

This implies that there is i < s such that infrenPJ ™ (ReachS{°(T)) —

infren Pg[h]’ﬁ(Reachéfo(T)) is positive. Since the game is finite there is a fixed
§ > 0 such that difference of this form is (whenever it is non-zero) greater
than § for all deterministic strategies o and ¢*, v € V and i < s. Moreover,
if all transition probabilities are rational, then § can be chosen to be 1/M?,
where M is the least common multiple of all probabilities denominators. In-
deed, P77 (Reach<:°(T)) is clearly expressible as £/M? for some ¢ € Ny. Since
there are at most |V| - |E| probabilities, we have § > 1/20PIVI-[El-s,

We define a (not necessarily counting) strategy & that behaves like o, but
when h steps have been taken and v is reached, it behaves as o*. We show that
for h > k this strategy ¢ would be an improvement against the optimal strategy
o. There is clearly an improvement at the h + ith step provided one gets there
on time, and this improvement is at least 5. Nonetheless, in the next steps there
may be an arbitrary decline. Altogether due to optimality of o

0> infren PY ™ (Reach= (T)) — inf et PJ™ (Reach="(T)) >
> infren PP (45 0) - [Furs(t) -6 = Frsia () 1] = (+)

129

where P77 (A, v) is the probability that after h steps we will be in v. We need
to show that the inequality 0 > () implies h < k. We use the following key
argument that after taking sufficiently many steps, the probability of taking
strictly more than one step before the time limit is negligible compared to the
probability of taking precisely one more step, i.e. that for alln > k = rt(14+1/0)

we have
Fn+1(t) < Fn—O—l(t)
Fa(t) F(t) = Faa(t)
As Foii(t) = Yoo, e (rt)" " /(n + 4)!, this is proved by the following:

<6

Foq(t) :i n!(rt)? - i (rt)" rt
(

_ 5
Fn(t) — Fura (1) (n+1)! nb1)y ntlort

i=1
This argument thus implies A + ¢ < k, hence we conclude that indeed h < k.
The minimizing part is dual. O

The following lemma concludes the proof of the proposition.
Lemma 4.18. A strategy is greedy iff it is always greedy on |E| steps.

Proof. We need to focus on the structure of greedy strategies. Therefore, we
provide their inductive characterization. Moreover, this characterization can be
easily turned into an algorithm computing all greedy strategies.

W.l.o.g. let us assume that all states in T' are absorbing, i.e. the only tran-
sitions leading from them are self-loops.

Algorithm 1 computes which actions can be chosen in greedy strategies. We
begin with the original game and keep on pruning inoptimal transitions until
we reach a fix-point. In the first iteration, we compute the value Ry (v) for each
vertex v, which is the optimal probability of reaching T" in one step. We remove
all transitions that are not optimal in this sense. In the next iteration, we
consider reachability in precisely two steps. Note that we chose among the one-
step optimal possibilities only. Transitions not optimal for two-steps reachability
are removed and so forth. After stabilization, using only the remaining “greedy”
transitions thus results in greedy behavior.

Claim 4.19. A strategy is always greedy on s steps iff it uses transitions from
E; only (as defined by Algorithm 1).

In particular, a strategy 7 is always greedy on |E| steps iff it uses transitions
from Eg| only. For the proof of Claim 4.19 see Appendix C.3.

Claim 4.20. A strategy is greedy iff it uses transitions from Eg| only.

The proof of Claim 4.20 now follows easily. Since the number of edges is fi-
nite, there is a fix-point E,, = E,, 1, moreover, n < |E|. Therefore, any strategy
using E g only is by Claim 4.19 always greedy on s steps for all s € No, hence
clearly greedy. On the other hand, every greedy strategy is in particular always
greedy on |E| steps and thus uses transitions from Eg| only again by Claim 4.19.
This concludes the proof of the Lemma and thus also of Proposition 4.16. [

130

Algorithm 1 computing all greedy edges

1 ifveT,
RO(U)Z{

0 otherwise.

Ripi(a) = Y P(a)(u) - Ri(u)

ueV

Rit1(v) = max,eg, (v) i+1(a) if v € Vo,
e Mingeg, (v) Riv1(a) otherwise.

Eit1(v) = Ei(v) N {a| Rit1(a) = Ri+1(v)}

We now move on to Proposition 4.21 that concludes the proof of the theorem.

Proposition 4.21. There are greedy stationary strategies o4 € ¥ and mg € IL.
Moreover, the strategies o4 and 7y are computable in polynomial time.

Proof. The complexity of Algorithm 1 is polynomial in the size of the game
graph as the fix-point is reached within |E| steps. And as there is always a
transition enabled in each vertex (the last one is trivially optimal), we can
choose one transition in each vertex arbitrarily and thus get a greedy strategy
(by Claim 4.20) that is stationary. O

Corollary 4.22. In a finite uniform game with rational trzanszgfz‘on probabili-
ties, there are optimal strategies T such that T[rt(1 4 20P1AIVIN s a greedy
stationary strategy.

A natural question is whether Theorem 4.14 and Corollary 4.22 can be ex-
tended to infinite-state uniform CTGs. The question is answered in our next
observation.

Observation 4.23. Optimal BCD strategies do not necessarily exist in uniform
infinite-state CTGs, even if they are finitely-branching and use only finitely
many distinct transition probabilities.

Proof. Consider a game G = (V,AE, (Vg,V),P,R) where V = Vg =
{vi,ui,ﬂi,di I NS No} @] {down}, A = {ai,hati,bari,l;i,l;i | 1 € NO},
E(v;) = {a;}, E(us) = {bar;, hat;}, BE(a;) = {b;}, and E(a;) = {b;} for all
1 € Ng. P is defined as follows:

e P(ap) is the uniform distribution on {vg,v1,up}, P(a;) is the uniform
distribution on {u;,v;41} for i > 0,

. P(h,atz)(al) =1 and P(barl)(al) =1fori>0,

131

down down down down

Figure 3: Optimal BCD strategies may not exist in infinite uniform games.

e P(by)(tp) = 1, and P(b;)(@;—1) = 1 for i > 0,

e P(b;) is the uniform distribution on {@;_1, down} for i > 1.

We set R(a) = 1 for all @ € A. The structure of G is shown in Figure 3. Observe
that player [0 has a real choice only in states u;.
We show that if the history is of the form voapvias ... v;a;u; (where i € Np),

the optimal strategy w.r.t. reaching @y within time ¢ = 1 must choose the action
bar;. We need to show that Fb;5(1) > 2% - Fyi12(1), i.e. that % < 212
for infinitely many is. This follows by observing that for ¢ > 0

22+2()_Z] 2+2y1! <ZJ 21+2]! <(21+3)+Z

Frivs(1) 307250 il @i+3)! k=0

1 .
@iy <Zts<2T

On the other hand, from Lemma 4.17 one can deduce that for all 7 there is

j > i such that any optimal strategy must choose hat; if the history is of the

form (voao)jvlal ... v;a;u;. Thus no strategy with counting bounded by k € N
can be optimal as one can choose 7 > i > k.

O

5. Algorithms

Now we present algorithms which compute e-optimal BCD strategies in
finitely-branching CTGs with bounded rates and optimal BCD strategies in
finite uniform CTGs. In this section, we assume that all rates and distributions
used in the considered CTGs are rational.

5.1. Computing e-optimal BCD strategies

For this subsection, let us fix a CTG G = (V, A,E, VO, V), P,R), aset T C
V' of target vertices, a time bound ¢ > 0, and some ¢ > 0. For simplicity, let us

132

Algorithm 2 Compute the function C

{1%* phase: compute the approximations of Fj(t) and P}
for all vectors i € H, where |i| < k do
compute a number ¢;(t) > 0 such that W < (%)
for all actions a € A and vertices u € V do
compute a floating point representation p(a)(u) of P(a)(u) satisfying
\P(a)gi)*p(a)(u)\ < (g)QkH_
(a)(w) —\2
{24 phase: compute the functions R and C in a bottom up manner}
for all vector lenghts j from k& down to 0 do
for all vectors i € H of length |i| = j do
for all vertices v € V do
if v € T then
R(i,v) « 4(t)
else if |i| = k then
R(i,v) <0
else if v € Vg then
R(i,v) += max,cg(v) Yyev P(a)(u) - R(i + 1r(q), ©)
C(i,v) < a where a is the action that realizes the maximum above
else if v € V, then
R(i,v) < mingep() 2yev P(a)(u) - R(i+ 1g(a), u)
C(i,v) < a where a is the action that realizes the minimum above

20i|+1

first assume that G is finite; as we shall see, our algorithm does not really depend
on this assumption, as long as the game is finitely-branching, has bounded
rates, and its structure can be effectively generated (see Corollary 5.26). Let
k = (max R)te* —In(5). Then, due to Lemma 3.12, all k-step optimal strategies
are $-optimal. We use the remaining § for numerical imprecisions.

We need to specify the e-optimal BCD strategies 0. € ¥ and 7. € II on
the first k steps. For every i € H, where |i|] < k, and for every v € V, our
algorithm computes an action C(i,v) € E(v) which represents the choice of the
constructed strategies. That is, for every i € H, where |i| < k, and for every
v € Vg, we put o.(i,v)(C(i,v)) = 1, and for the other arguments we define o,
arbitrarily so that o. remains a BCD strategy. The strategy n. is induced by
the function C in the same way.

The procedure to compute the function C' is described in Algorithm 2. For
computing C(i,v) it uses a family of probabilities R(i,u) of reaching T from u
before time ¢ in at most k — |i| steps using the strategies o. and 7. (precisely,
using the parts of strategies o. and m. computed so far) and assuming that the
history matches i. Actually, our algorithm computes the probabilities R(i, u)
only up to a sufficiently small error so that the actions chosen by C are “suffi-
ciently optimal” (i.e., the strategies o. and 7. are e-optimal, but they are not
necessarily k-step optimal for the k chosen above).

Lemma 5.24. The strategies 0. and w. are e-optimal.

133

Proof. See Appendix C.4. O

Assuming that the probabilities P(a)(u) and rates are given as fractions with
both numerator and denominator represented in binary with length bounded by
bp, a complexity analysis of the algorithm reveals the following.

Theorem 5.25. Assume that G is finite. Then for every € > 0 there are e-

optimal BCD strategies o. € ¥ and ©. € 1 computable in time |V |* - |A] - bp? -
2|RI4+0O(1)

(maxR)-t+1Ini) .
Proof. We analyze the complexity of Algorithm 2. We start with 15* phase.
Recall that k = (maxR)te* + Ini. (Here we use ¢ instead of £/2 as this
difference is clearly absorbed in the O-notation.)

We approximate the value of Fj(t) to the relative precision (¢/2) as fol-
lows. According to [13], the value of Fj(t) is expressible as >, . ¢re”"". First,
@r here is a polynomial in ¢ and can be precisely computed using polynomi-
ally many (in |i| < k and |R|) arithmetical operations on integers with length
bounded by bp+In k+Int. Hence the computation of ¢, as a fraction can be done
in time bp? - k°M - |R|®M) and both the numerator and the denominator are of
length bp-kCM). |R\O(1). We approximate this fraction with a floating point rep-
resentation with relative error (¢/4)%*+1. This can be done in linear time w.r.t.
the length of the fraction and kIn 1, hence again in the time bp®- kO™ . |R|OD).
Secondly, according to [14], the floating point approximation of e~ with the
relative error (e/4)**! can be computed in time less than quadratic in kln L.
Altogether, we can compute an (g/2)?**+1-approximation of each F;(t) in time
IR| - bp? - kO |RIOM) = pp? . k) . |R|OM), This procedure has to be re-
peated for every i € H, where |i| < k. The number of such i’s is bounded by
(‘RLHC) < O(k®1). So computing all (¢/2)**!-approximations ¢;(t) of values
Fi(t) can be done in time O(kI®!) - bp? - KOW) . |R|CM) C pp? . kIRITOM),

Using a similar procedure as above, for every a € A and u € V', we compute
the floating point approximation p(a)(u) of P(a)(u) to the relative precision
(¢/2)?**1 in time linear in bp-k1In L. So the first phase takes time bp? EIRITOM)
A |V] - O(bp - kn L) C V] - |A[bp? - kIRI+OM).

In 2°¢ phase, the algorithm computes the table R and outputs the results
into the table C'. The complexity is thus determined by the product of the table
size and the time to compute one item in the table. The size of the tables is
(RE) - V| < OKIRL- V).

The value of R(i, u) according to the first case has already been computed in
15¢ phase. To compute the value according to the third or fourth case we have to
compare numbers whose representation has at most bp?-kRITOM) 4 k. pp -k ln(%)
bits. To compute R(i,v), we need to compare |A| such sums of |V| numbers.
So the 2" phase takes at most time O(EIRI - |V|) - |V]-|A]| - bp? - KRHOM) C
[V|? - |A] - bp? - E2RIHOQ),

Altogether, the overall time complexity of Algorithm 2 is bounded by

1 2|R|4+0O(1)
V[[A] - bp? - BHRITOW = V12| A - bp? - ((maxR)t +In E)

2k+1

O

134

Note that our algorithm needs to analyze only a finite part of G. Hence, it
also works for infinite games which satisfy the conditions formulated in the next
corollary.

Corollary 5.26. Let G be a finitely-branching game with bounded rates and let
v € V. Assume that the vertices and actions of G reachable from v in a given
finite number of steps are effectively computable, and that an upper bound on
rates is also effectively computable. Then for every ¢ > 0 there are effectively
computable BCD strategies 0. € ¥ and w. € Il that are e-optimal in v.

Proof. By Lemma 3.12, there is & € N such that all k-step optimal strategies are

S-optimal. Thus we may safely restrict the set of vertices of the game G to the
set Vieacn Of vertices reachable from v in at most & steps (i.e. for all v/ € Viegen,
there is a sequence vg...vx € V* and ag ...ap € A* such that, vg = v, v, = v/,
a; € E(v;) for all 0 < i <k and P(a;)(viy1) > 0 for all 0 < i < k). Moreover,
for every action a € A which is enabled in a vertex of V.., there is a finite set
B, of vertices such that 1 — % .5 P(a)(u) < 5. We restrict the domain of
P(a) to B, by assigning the probability 0 to all vertices of V' \ B, and adding
the probability 1 — 3 p P(a)(u) to an arbitrary vertex of B,. Finally, we
restrict the set of vertices once more to the vertices reachable in k steps from v
using the restricted P. Then the resulting game is finite and by Theorem 5.25
there is an £-optimal BCD strategy o’ in this game. Now it suffices to extend
¢’ to a BCD strategy o in the original game by defining, arbitrarily, its values
for vertices and actions removed by the above procedure. It is easy to see that

o is an e-optimal BCD strategy in G. O

5.2. Computing optimal BCD strategies in uniform finite games

For the rest of this subsection, we fix a finite uniform CTG G =
(V,AE,(Vg,Vy),P,R) where R(a) = r > 0 for all a« € A. Let k =
rt(1 4 202147 IVI) (see Corollary 4.22).

The algorithm works similarly as the one of Section 5.1, but there are also
some differences. Since we have just one rate, the vector i becomes just a number
i. Similarly as in Section 5.1, our algorithm computes an action C(i,v) € E(v)
representing the choice of the constructed optimal BCD strategies 0,4, € > and
Tmin € 1. By Corollary 4.22, every optimal strategy can, from the k-th step
on, start to behave as a fixed greedy stationary strategy, and we can compute
such a greedy stationary strategy in polynomial time. Hence, the optimal BCD
strategies 0,4 and T, are defined as follows:

o (120) = {C(z,v) ifi <k; Ty 0) = {C(z,v) iti <k;

og(v) otherwise. mg(v) otherwise.

To compute the function C, our algorithm uses a table of symbolic representa-
tions of the (precise) probabilities R(i,v) (here i < k and v € V) of reaching T
from v before time ¢ in at most k — i steps using the strategies 0,4, and T,
and assuming that the history matches 1.

135

The function C' and the family of all R(i,v) are computed (in a bottom up
fashion) as follows: For all 0 < ¢ < k and v € V we have that

F;(t) ifoeT

Z;io Fiyj(t) - Py (ReachZ5°(T)) ifogTandi=%k
MaXaeE(v) Y yey P(a)(u) - R(i+1,u) ifveVg\Tandi<k
mingcg) Yyey Pla)(u) - R+ 1,u) ifveVo\Tandi <k

R(i,v) =

For all i < k and v € V| we put C(i,v) = a where a is an action maximizing
or minimizing), ., P(a)(u) - R(i + 1,u), depending on whether v € Vg or
v € Vo, respectively. The effectivity of computing such an action (this issue is
not trivial) is discussed in the proof of the following theorem.

Theorem 5.27. The BCD strategies 0 pmar and T, are optimal and effectively
computable.

Proof. We start by showing that 0,4, and m,,;, are optimal. Let us denote by
Yy (resp. II;) the set of all CD strategies o € ¥ (resp. m € II) such that for
all w e Vg (u € V) and ¢ > k we have o(i,u) = o4(u), which is a stationary
greedy strategy. By Corollary 4.22, for every v € V we have

_ . o, <t _ . o, <t
val(v) = max min PI™(Reach="(T)) = nin max P (Reach="(T))

Recall that given a CD strategy 7 and ¢ > 0, we denote by 7[i] a strategy
obtained from 7 by 7[i](j,u) = 7(i + j,u). Let us denote

P77 (i,v) =3 Fipj(t) - P (ReachZ5°(T))
j=0

For every ¢ > 0 we put

val(i,v) = max min P”7(i,v) = min max P”™(i,v)
ocex, welly, nelly, o€Xy

Given i > 0 and w € II, we define

K™ (i,v) := P7me=™ (4, v)
Similarly, given ¢ € ‘H and o € ¥, we define

K (i,v) := P7™mn (4, v)

Using this fomulation, the optimality of 0,4, and 7, is proven in the
following claim.

Claim 5.28. Let i < k and v € V. We have

7{161%19 K™ (i,v) = R(i,v) = (Ijlé%};K (i,v) (2)

R(i,v) = val(i,v) (3)

136

Proof. We start by proving the equation (2). If v € T, then K™(i,v) =
K°(i,v) = F;(t) = R(4,v). Assume that v € T. We proceed by induction
onn =k —i. Forn =0 we have

K™(i,v) = K?(i,v) = P?™ (i,v) = R(i,)

Assume the claim holds true for n and consider n + 1. If v € Vg and
Omaz (1,0)(b) = 1,

min K™ (i,v) = min P(b)(u)- K™(i + 1,u)

well, melly

I
w
=
=
=
+
J—‘
£

ueV
= max P(a)(u) - R(i + 1,u)
a€E(v)
ueV
= R(i,v)
and
max K7 (i,v) = max o(i,v)(a Pa)(u) - K°(i+1,u
e K760) = e 33 o(0)@) 32 P K70+ 1
= max P(a)(u) - max K°(i+ 1,u)
a€E(v) e oEY,

For u € Vi, the proof is similar.
Now the equation (3) follows easily:

R(i,v) = min K™ (i,v) < max min P7"(i,v) =

well, oeX, mell,
min max P77 (i,v) < max K7 (i,v) = R(i,)

O

This proves that 0,,4; and m,,;, are optimal.

Effective computability of omaez and . We show how to compute the ta-
ble C(i,v). Assume that we have already computed the symbolic repre-
sentations of the values R(i + 1,u) for all w € V. Later we show that

137

> e Firy (1) "™ (ReachZ5°(T)) can effectively be expressed as a linear com-
bination of transcendental numbers of the form e where c is algebraic. There-
fore, each difference of the compared numbers can effectively be expressed as a
finite sum Y j nje‘sf where the 7; and §; are algebraic numbers and the §;’s are
pairwise distinct. Now it suffices to apply Lemma 2 of [15] to decide whether
the difference is greater than 0, or not.

It remains to show that Z;io Fiyj(t) - Py (ReachZ5°(T)) is effectively
expressible in the form _, n;e%. Consider a game G’ obtained from G by
adding new vertices v1,...,v; and new actions a,...,a;, setting E(v;) = {a;}
for 1 < j < i, and setting P(a;)(v) = 1, and P(a;)(vj41) = 1for 1 < j <4
(intuitively, we have just added a simple path of length i from a new vertex
v1 to v). We put R(a;) = r for 1 < j < i. As the strategies o, and 7, are
stationary, they can be used in G’ (we just make them select a; in v;).

Since v; € T for all 1 < j <7 we obtain

Pyoma (Reach=' Z Fj(t) - PJo™ (ReachZ3°(T)) =
7=0
Z Fii(t) . PJaT (Reach_lﬂ Z Fir(t)-Pgems (ReaCh<OO (1))

As o, and 7w, are stationary, the chain G'(v1,0,4,7,) can be treated as a
finite continuous time Markov chain. Therefore we may apply results of [13] and
obtain the desired form of Py (Reach="(T)), and hence also of Z?io Fip;(t)-

PJo" (ReachZ5°(T)). O

6. Conclusions, Future Work

We have shown that vertices in CTGs with time bounded reachability objec-
tives have a value, and we classified the subclasses of CTGs where a given player
has an optimal strategy. We also proved that in finite uniform CTGs, both
players have optimal BCD strategies. Finally, we designed algorithms which
compute e-optimal BCD strategies in finitely-branching CTGs with bounded
rates, and optimal BCD strategies in finite uniform CTGs.

There are at least two interesting directions for future research. First, we
can consider more general classes of strategies that depend on the elapsed time
(in our setting, strategies are time-abstract). In [6], it is demonstrated that
time-dependent strategies are more powerful (i.e., can achieve better results)
than the time-abstract ones. However, this issue is somewhat subtle—in [7], it
is shown that the power of time-dependent strategies is different when the player
knows only the total elapsed time, the time consumed by the last action, or the
complete timed history of a play. The analog of Theorem 3.6 in this setting
is examined in [16]. In [17] e-optimal time-dependent strategies are computed
for CTMDPs. Second, a generalization to semi-Markov processes and games,
where arbitrary (not only exponential) distributions are considered, would be
desirable.

[1]

[14]

[15]

[16]

138

W. Thomas, Infinite games and verification, in: Proceedings of CAV 2003,
Vol. 2725 of LNCS, Springer, 2003, pp. 58-64.

E. Grddel, W. Thomas, T. Wilke, Automata, Logics, and Infinite Games,
no. 2500 in LNCS, Springer, 2002.

I. Walukiewicz, A landscape with games in the background, in: Proceedings
of LICS 2004, IEEE, 2004, pp. 356-366.

M. Puterman, Markov Decision Processes, Wiley, 1994.
J. Filar, K. Vrieze, Competitive Markov Decision Processes, Springer, 1996.

C. Baier, H. Hermanns, J.-P. Katoen, B. Haverkort, Efficient computa-
tion of time-bounded reachability probabilities in uniform continuous-time
Markov decision processes, TCS 345 (2005) 2—-26.

M. Neuhédufler, M. Stoelinga, J.-P. Katoen, Delayed nondeterminism in
continuous-time Markov decision processes, in: Proceedings of FoSSaCS
2009, Vol. 5504 of LNCS, Springer, 2009, pp. 364-379.

C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, Reachability in
continuous-time Markov reward decision processes, in: E. Graedel, J. Flum,
T. Wilke (Eds.), Logic and Automata: History and Perspectives, Vol. 2 of
Texts in Logics and Games, Amsterdam University Press, 2008, pp. 53-72.

M. Rabe, S. Schewe, Optimal time-abstract schedulers for CTMDPs and
Markov games, in: A. D. Pierro, G. Norman (Eds.), QAPL, Vol. 28 of
EPTCS, 2010, pp. 144-158.

J. Norris, Markov Chains, Cambridge University Press, 1998.

D. Martin, The determinacy of Blackwell games, JSL 63 (4) (1998) 1565—
1581.

A. Maitra, W. Sudderth, Finitely additive stochastic games with Borel
measurable payoffs 27 (1998) 257-267.

S. Amari, R. Misra, Closed-form expressions for distribution of sum of
exponential random variables, IEEE transactions on reliability 46 (1997)
519-522.

R. P. Brent, Fast multiple-precision evaluation of elementary functions,
Journal of the ACM 23 (1976) 242-251.

A. Aziz, K. Sanwal, V. Singhal, R. Brayton, Model-checking continuous-
time Markov chains, ACM Trans. on Comp. Logic 1 (1) (2000) 162-170.

M. Rabe, S. Schewe, Finite optimal control for time-bounded reachability
in CTMDPs and continuous-time Markov games, CoRR abs/1004.4005.

139

[17] M. R. NeuhduBer, L. Zhang, Time-bounded reachability probabilities in
continuous-time Markov decision processes, in: QEST, IEEE Computer
Society, 2010, pp. 209-218.

140

Appendix A. Exponentially Distributed Random Variables

For reader’s convenience, in this section we recall basic properties of expo-
nentially distributed random variables.

A random variable over a probability space (2, F, P) is a function X : Q@ — R
such that the set {w € | X (w) < ¢} is measurable for every ¢ € R. We usually
write just X~c to denote the set {w € Q| X(w) ~ ¢}, where ~ is a compar-
ison and ¢ € R. The ezpected value of X is defined by the Lebesgue integral
fweﬂ X(w)dP. A function f : R — R2Yis a density of a random variable X if for
every ¢ € R we have that P(X <c) f f(z) dz. If a random variable X has a
density function f, then the expected Value of X can also be computed by a (Rie-
mann) integral [~z f(z) dz. Random variables X, Y are independent if for all
¢, d € R we have that P(X<cNY <d) = P(X<c)-P(Y<d). If X and YV are inde-
pendent random variables with density functions fx and fy, then the random
variable X +Y (defined by X +Y (w) = X(w) + Y() has a density function
f which is the convolution of fx and fy, i.e., f(z f_) fy(z —x) de.

A random variable X has an emponentml dzstrzbutwn with rate X\ if
P(X <c)=1—e? for every ¢ € RZ%. The density function fy of X is then
defined as fx(c) = Ae ¢ for all ¢ € RZ%, and fx(c) = 0 for all ¢ < 0. The
expected value of X is equal to ffooo - Ae Mdr =1/\.

Lemma A.29. Let M = (S,P,R,p) be a CTMC, j € Ny, t € R2°, and
g, ... ,uj € S. Let U be the set of all runs (u, s) where u starts with uo, ..., u;
and Y1_,s; <t . We have that

PU) = Fi(t) - u(uo) - [] P(ue) (uesr)

£=0

where 1 assigns to every rate r the cardinality of the set {k | R(ux) =r,0 <k <
i}
Proof. By induction on j. For j = 0 the lemma holds, because we P(U) = u(ug)
by definition.

Now suppose that j > 0 and the lemma holds for all £ < j. We denote by

UL the set of all runs (u,s) where u starts with ug, ..., u; and Zf:o s; =t
We have that

PU) = /7? P(uj_1)(u;) - e Ru-1)-(=2) gy
B /Fl_lR(“j—l) <HPW U1 >P(UJ 1)(wy) - e Rui-1)-(t=2) o
0
j—1
=0 0
j—1

= () [[Pue)(uen) O

£=0

141

Appendix B. A Comparison of the Existing Definitions of CTMDPs

As we already mentioned in Section 2, our definition of CTG (and hence also
CTMDP) is somewhat different from the definition of CTMDP used in [6, 7].
To prevent misunderstandings, we discuss the issue in greater detail in here and
show that the two formalisms are in fact equivalent. First, let us recall the
alternative definition CTMDP used in [6, 7].

Definition B.30. A CTMDP is a triple M = (S, A,R), where S is a finite or
countably infinite set of states, A is a finite or countably infinite set of actions,
and R : (S x A x S) — R20is a rate matriz.

A CTMDP M = (S, A,R) can be depicted as a graph where S is the set of
vertices and s — s’ is an edge labeled by (a,7('27ri)ff R(s,a,s’) = r > 0. The
conditional probability of selecting the edge s — s’, under the condition that
the action a is used, is defined as r/R(s,a), where R(s,a) = > ..+ 7. The
time needed to perform the action a in s is exponentially distributed with the
rate R(s,a). This means that M can be translated into an equivalent CTG
where the set of vertices is S, the set of actions is

{(s,a) | s € S,a € A,R(s,a,s’) > 0 for some s’ € S}

where the rate of a given action (s,a) is R(s,a), and P((s,a))(s’) =
R(s,a,s")/R(s,a). This translation also works in the opposite direction (as-
suming that V = Vg or V. = V4,). To illustrate this, consider the following
CTG:

0.2

An equivalent CTMDP (in the sense of Definition B.30) looks as follows:

c,0.4; a,0.6

¢, 3.6; a,2.1

¢,3.6; b,3

142

However, there is one subtle issue regarding strategies. In [6, 7], a strategy
(controller) selects an action in every vertex. The selection may depend on the
history of a play. In [6, 7], it is noted that if a controller is deterministic, then the
resulting play is a CTMC. If a controller is randomized, one has to add “inter-
mediate” discrete-time states which implement the timeless randomized choice,
and hence the resulting play is not a CTMC, but a mixture of discrete-time
and continuous-time Markov chains. In our setting, this problem disappears,
because the probability distribution chosen by a player is simply “multiplied”
with the probabilities of outgoing edges of actions. For deterministic strategies,
the two approaches are of course completely equivalent.

Appendix C. Technical Proofs

Appendiz C.1. Proofs of Claim 3.7 and Claim 3.8
Claim 3.7. A is a fized point of V.

Proof. If v € T, we have
A(i,v) = sup inf Fi(t) = V(A)(i,v)
cex mell
Assume that v € T. Given a strategy 7 € X UIIl and a € A, we denote by 7¢
a strategy defined by 7%(wu) := 7(vawu). Note that sup, ¢y, infrerr P77 (-,) =
SUp, ¢y, infrert P77 (-,) for any a € A.

Ifvelg,
V(A)i,v) = sup > P(a)(u)-sup inf ZF1+1R(a>+J(t) P77 (u, j)
a€E(©) oy cex mell
= sup d(a) P(a) sup 1nf F1+1 i) - PO (u,§)
= sup sup inf d P(a Fitig,+i() - PO (u,))
dED(E(v)) 0€S TFEH uezv JEZ?—‘ R(a)TJ

= sup sup inf d(a P(a)(u) Fiyi(t) - P (u,§ — 1Rr(a))
deD(E(v)) cex TEIl 74 Z;/ Z ! @

j(R(a))>O

= sup 1I€1fl_I Z P(a Z Fii(t) .potm (u,j — 1R(a))

oENTEN eA uev jeH

i(R(a))>0

= sup 1161%2 Z Fiy(t ZP .pt (u,j — 1R(a))

oERTEN A jen uev

iR (a))>
= sup inf ZF,ﬂ Z (@) Y P(a)(u)- P7"™ (u,j — 1r(a)
cEXTE j a€A ueV
j(R(a))>0

= sup inf ZF”‘J VP7™(v,])

cex mell

143

inf S P SR £) - PP (u,j
2 (a)(u) - S}ég;g Z o+ () - P77 (u,)

inf Z d(a) Z P(a)(u) - sup inf ZF1+1R(a)+J(t) P77 (u,)

deD(E(v)) eA v sey mEll
inf sup inf d P(a n () - P77 (u,]
dED(E(U))UeETrEH 7;/ J;; 1+1R<a>+J (u,J)

ol oy 2k 3) 3 Pla R () - P (u,
D ety 125 2 () Y P(a)(u) Y Freagsi(t) - P77 (u.)

ueV JEH
sup inf inf d P Fio-(t) - PJaJr” u, i1 .
oex dED(E(v)) mell £ 7;/ J%; i3 (t) (4,§ — 1R(a))
i(R(a))>0
o Hel% (@)Y Pla)(u) Y Fs(t)- P70 (] — 1r(a)
ceX ™ eV e
Jj(R(a))>0
sup inf Yo Y Fut) w)(@) Y Pla)(u) P7 (uj ~ 1r)
ceX ™ ac€A JEH wev
J(R(a))>0
A LNCID SIS TR
cenTE = =
J(R(a))>0
sup inf Fi;(t)P7™ (v,]
aeg mell Z}; l+‘] (‘])

Claim 3.8. For everyoc € X, k>0,ie H,veV, >0, we have

Ry (1,v) < pV(,

H'Mw

Proof. For v € T we have

RE(i,v) = Fi(t) = pV(i,v)

Assume that v € T. We proceed by induction on k. For k£ = 0 we have

Ri(i,v) =0 < pV(iv)

144

For the induction step, first assume that v € Vo \ T

Rg(LU) — Z Z P Rk 1(+ 1R(a)7u>
acE(v) ucV
k

< Y o)) Pla)(u)- | pV(+ 1), u) Z olil+J

acE(v) ueV j=2

k 3
= Z ZP) -V (i+ 1R(a), u) +ZQ +3j
a€E(v) ueV J=2

k
. €
< Vet g
Jj=

Finally, assume that v € V, \ T, and let a € A be the action such that

7e(L,v)(a) =1

RiG,v) = > Pla)(w) R, (i + Ira), u)
ueV
k
< > P pV(i+ 1r(a), u) Z
ueV :2
k
= (ZP) - uV(i i+ 1R(a),u >+
ueV =2
- k
< pV(i, T Z
j=2
Fooe
< uV(i,v)+22m+j O
j=1

Appendiz C.2. Proof of Lemma 3.12

Lemma 3.12. If G is finitely-branching and has bounded rates, then we have
the following:

1. Foralle >0, k > (supR)te? —Ine, 0 € &, 7 € II, and v € V we have
that

PI™(Reach='(T)) —e < Pg’”(Reachgc(T)) < PT™(Reach='(T))
2. For every k € N, there are k-step optimal BCD strategies o* € ¥ and

7% € II. Further, for all ¢ > 0 and k > (supR)te?> — Ine we have that
every k-step optimal strategy is also an c-optimal strategy.

145

Proof. ad 1. Let us fix a rate r = supR. It suffices to see that (here, the
random variables used to define F; have rate r)

Y PLT(ReachS,(T)) < DD Falt) - PIT(ReachS(1)

n=k+1 n=k+1
< >0 Fin(t) PY7(ReachS(T))
n=k+1
o0
= Fipa(t)- Z P (ReachZ°(T))
n=k+1
< Frqa(t)

which is less than € for k > rte? —Ine by the following claim.
Claim C.34. For every € € (0,1) and n > rte? — Ine we have F,(t) < ¢.

Proof.
n—1 i ') i
F,t)y=1—¢" Z % =e "t Z (%) = (x)
i=0 i=n

By Taylor’s theorem for e” = >">° 3;—, and Lagrange form of the remainder we
get

n n
(Tt) ert — (Tt) — (**)

—rt
(¥)<e n! n!

By Stirling’s formula n! ~ /n(n/e)" we get

() <) <)

)< | —) <|=) <|- =¢

n e e

by assumptions. O

ad 2. We proceed similarly as in the proof of Theorem 3.6 (we also use some
notation of the proof of Theorem 3.6). Recall that given 0 € ¥, 7 € II, j € H,
and u € V, we denote by P77 (u,j) the probability of all runs o € Rung(u,o,r)
such that for some n € Ny the state a(n) hits T and matches j, and for all
0 < j < n we have that a(j) does not hit T.

Given (o,m) € ¥ x II, i € H such that |i| < k, and v € V, we define

Pa’ﬂ'(i,v) = Z Fi+j(t) 'PJ’W(U,j)
JeEH
i1 <k~ il

the probability of reaching T" from v before time ¢ in at most k — |i| steps using
the strategies o and 7 and assuming that the history matches i.

To define the CD strategies of and 7% we express the value
SUp,ey; infren P27 (i,v) (= infrensup,es, P77 (1,v), see below) using the fol-
lowing recurrence.

146

Given i € H, where |i| < k, and v € V', we define

Fi(t) foeT

0 if v T and [i| =k
MAT aeB(v) Yoyey P(@)(w) - R(i+ 1g(),u) ifve Vo\T and [i| <k
MiNGeR () Youey P(@) () - R+ 1g(q),u) ifve Vo \T and |i| <k

For v ¢ T and |i| < k we define ¢*(i,v) and 7*(i,v) in the following way. If
v € Vo, we put o (i,v)(a) = 1 for some action a which realizes the maximum
in the definition of R(i,v). Similarly, if v € Vi, we put 7% (i,v)(a) = 1 for some
action a which realizes the minimum in the definition of R(i,v). For |i] > k and
v € V we define o (i,v) and ¥ (i, v) arbitrarily so that o* and 7% remain BCD.

For every CD strategy 7 € X UII and i € H, we denote by 7[i] the strategy
obtained from 7 by 7[i](j, u) := 7(i + j, u).

Given 7 € I1, i € H where |i| < k, and v € V, we define

Z7(i,v) == P77 (i p)
Similarly, given o € 3, i € H where |i| < k, and v € V, we define
Z°(i,v) := P (4, v)

We prove the following claim.
Claim C.35. Let i € H, where |i| < k, and v € V. Then

R(i,v) = ;Ielfn Z™(i,v) (C.1)
= 2161;2) Z°(i,v) (C.2)
= 3161;2) ;rel% P77 (i,v) (C.3)
= 71I€1fH 316112) P77 (i,v) (C.4)

In particular, the strategies o and 7% are k-step optimal because P (0,v) =
PI™(Reach=! (T)).

Proof. First, if v € T, then for all (o,7) € X x II we have P°™(i,v) = Fi(t) =
R(i,v). Assume that v € T. We proceed by induction on n = k — |i|. Forn =0
we have P%™(i,v) = 0 = R(i,v). Assume the lemma holds for n, we show that
it holds also for n + 1.

We start by proving the equation (C.1). Using the notation of the proof of
Theorem 3.6, given a strategy 7 € Y UII and a € A, we denote by 7% a strategy
defined by 7*(wu) := 7(vawu).

147

If v € Vg and o®(i,v)(b) = 1,

inf Z7(1,0) = inf > P(B)(u)- 2" (i+ 1rp), u)

well WEHueV
= > PO)(w)- inf Z" (i+ 1rp),u)
ueV e
=Y _PO)(u) - inf Z™(i+ 1g(), u)
ueV e
=Y P®)(u)- R(i+1re)v)
ueV
= max P(a)(u) - RG+ 1r(a),u
g 3 P(O)(0) R+ I
= R(i,v)
IfueVy,
inf 27(5,0) = inf 37 w(0)(@) 3 Pla)(w) - 27 (4 I,)
acE(v) ueV
= inf d(a P(a)(u) - inf Z™ (i+1 o), U
ey, 22 A PO i 27+ D
= mi P ~inf Z7(1 + 1r(a),
) D P 27)
= min P(a)(u) - R(i+ 1g(q),u
Jin, 3 P@(W) - Rli+ no.)
= R(i,v)

The equation (C.2) can be proved in a similar manner.
The claim follows from the following

R. :.fZﬂ—. < .fpo-’ﬂ—' <
()= T, 27000 = sup Jof P77 0o) =

< inf sup P7"(i,v) < sup Z7(i,v) = R(i,v)
el gex cERD
O

The rest of the lemma is easily obtained from 1. as follows. Let ¢ > 0 and
consider k > (supR)te? — Ine. Then 1. implies that the value R(0,v) of the
k-step game initiated in v satisfies val(v) — e < R(0,v) < wval(v). Therefore all
k-step optimal strategies are e-optimal. O

Appendiz C.3. Proof of Claim 4.19

148

Claim 4.19. A strategy is always greedy on s steps iff it uses transitions from
E; only (as defined by Algorithm 1).

Proof. For the ‘if” direction, we prove by induction on n that

max min (7_3)0’”) = min (36’”) = max (ﬁgﬁ)

oes rell v (1,...,n) rell v (1,...,n) s v (1,...,n)
for all strategies ¢ € ¥ and 7 € II that use edges from E,, only. It is sufficient
to prove that

(max min 7_5”’”) w R, (v) 2 1nin (33’”)

ceEY mell Y In rell n

for every strategy & € X that uses edges from E,, only. (The minimizing part is
dual.) The case n = 0 is trivial. Now consider n + 1. For v € Vg \ T,

(min 7_55’”)%1 = Z (0, v)(u)(min 7_55[1]’”)”

mell eV mell
by IH (2) and Ep 1y CE, = > 0(0,v)(u) - Rn(u)
ueVvV
o uses E,4q only = max P(a)(u) - Rp(u) = (%)

a€E, (v) o

by IH (1) = ag}lai)((v) P(a)(u) - (glggfrnelﬁl ﬁz,ﬂ-)n
ueV

—
by IH = P . in Pom
I = s 2 PO (i P,

= (maxmin ?U’”)
cex nenl Y /ntl
where A, (v) is the set of all edges going from v that any strategy always greedy
on n steps can choose. l.e. it is the desired abstractly defined set of greedy
edges, which is equal to the computed set E, (v) by the induction hypothesis.
Since (x) = R,+1(v), the equality with the first and the last expression proves
the claim. Similarly for v € Vo \ T,

(7 e = ity L PO (g P,
by IH (2) and E,41 CE, = aer;}inrb)) €VP(a)(u) - Ry (u)
by IH for the minimizing part = aergir%v) 6VP(a)(u) R,(u) = (xx)
by TR () = min 3P (maxmin P57),
by IH for the minimizing part = aEHX,i;}((v) 2 P(a)(u) - (glg%(gne%l 35”)71

(in P77)
= | maxmin ’
sey mell v /ntl

149

where (%x) = R,11(v). The case with v € T is trivial as states in T are
absorbing.

We prove the “only if” direction by contraposition. If a strategy 7 uses a
transition ¢ € E \ E; in v then there is ¢ < s such that a has been cut off in
the ith step. Therefore a did not realize the i steps optimum (equal to R;(v)).
Hence 7 is not greedy on n steps. O

Appendiz C.4. Proof of Lemma 5.24

Lemma 5.24. The strategies 0. and 7. are c-optimal.

Proof. We use some notation of the proof of Theorem 3.6. Recall that given
ceX mell je H, and u € V, we denote by P>™(u,j) the probability of
all runs @ € Rung(y o, such that for some n € Ny the state a(n) hits 7" and
matches j, and for all 0 < j < n we have that «(j) does not hit 7.

Given (o,7) € ¥ x II, i € H, where |i| < k, and v € V, we define

Pom(iv) = Y Fiy(t)- P77 (v,))
JeEH
i <k—li|
the probability of reaching T from v before time ¢ in at most k — |i| steps using
the strategies o and 7 and assuming that the history already matches i. We
have shown in the proof of Claim C.35 that for every i € H, where |i| < k, and
v € V, the value

max min P”(i,v) = min max P7™ (i, v)
ocx well mell oex

is equal to R(i,v) defined by the following equations:

Ei(t) ifoeT
Riiv) = 0 ifogT and |i| = k
T MaxXqeg(v) Yopey P(@) (W) - R(i+ 1g(),u) ifveVo\T and [i| <k

minaeE(v) ZuEV P(a)(u) - R(1+ 1R(a)7 u) ifveVo\T and |i| <k

Note that P77 (0,v) = Pg’“(ReachEZ(T)) and thus R(0,v) = val®(v), the k-
step value in v.

Note that assuming l;(t) = Fi(¢) for all i € H satisfying |i| < k, we would
obtain that each R(i,v) is precisely R(i,v) and hence that o. and 7. are k-step
optimal strategies.

Let us allow imprecisions in the computation of /;(¢t). We proceed as fol-

lows: First we show, by induction, that each value R(i,v) approximates the

value R(i,v) with relative error (%)QMH (Claim C.38 below). From this we get,

also by induction, that both min,cy P77 (i,v) and max, ey P%™ (i,v) approx-

imate R(i,v) with relative error (%)2I1H—1 as well (Claim C.39 below). In other

words, 0. and 7. are $-optimal strategies in the k-step game. Together with the

assumptions imposed on k we obtain that o, and m. are e-optimal strategies.
2n+1

€) .

For n > 0, we denote by err,, the number (§

150

Claim C.38. For alli € H and v € V we have

(I—erry)-RG,v) < R(,v) < (1+erry) - R(i,0)

Proof. If v € T, then R(i,v) = Fi(t) and R(i,v) = l;(t), and the inequality
follows from the definition of /;(¢). Assume that v ¢ T. We proceed by induction
onn =k — |i|. For n =0 we have R(i,v) = 0 = R(i,v). Assume the inequality
holds for any v and i € H such that |i| = k —n. Let us consider i € H such that
lii=k—n—1andveV.Ifve Vg we have

R(i,v) = max p(a)(u) - R(i+ 1r(a),u)
< max P(a)(u) - (1 + err41) - RA+ 1ra), u) - (1 + errjji1)

_ (1+err|i\+1)2'aglggf,) P(a)(u) - R(i+ 1r(a), u)
ucV

(14 erryy) - R(i,v)

IN

and, similarly,

R(i,v) > (1 —erry) - R(i,v)

For v € Vi the proof is similar.
O

We denote by Ycop and Ilgop the sets of all CD strategies of 3 and I, respec-
tively. Recall that given a strategy 7 € Ycp Ullgp and i € 'H, we denote by
7[i] the strategy obtained from 7 by 7[i](j, v) := 7(1 + j, u).

Given i € H and 7 € I, we define

K™ (i,v) := Poellmlil(j o)
Similarly, given i € H and o € X, we define

K (@i,v) := Polilmll(j)
Claim C.39. Let i € H, where |i| < k, and v € V. We have

min K™ (i,v) > R(i,v) - (1 — errp)

nellep
max K(i,v) < R(i,v)- (1 + erryy)
o€Xcp
Proof. If v € T, then K™(i,v) = K°(i,v) = Fi(t) and R(i,v) = l;(t), and
similarly as above, the result follows from the definition of ;(¢). Assume that
v & T. We proceed by induction on n := k — |i|. For n = 0 we have 0 =
K™(i,v) = K°(i,v) = R(i,u). Assume the lemma holds true for n and consider

151

n+1. If v e Vg and o.(i,v)(b) = 1,

min K™(i,v) = min Y P(b)(u) K™ (i+ lrg), u)

wellep wellep eV
—ZP . mln K™(i+ 1g),u)
ueV ep
> Z P + 1R(b)7) (67”’/’|i|+1)
ueV
>3 p(b)(w) Rt gy u) Sl
> P u) - ' R(b)» !
= 1+ errjij41 ®) 1+ errji41
1—errji41
=Ri,v) ———
(i) (14 errjj+1)?
_ L —errji+1
> R(G,v)- (1 —erry ———
(i) (lil+1) (1+ errppys1)?
> R(i,v) - (1 — erry)
and
KJ = P 1 a)s
2, KO0 v) = e (@) > P (i Irow)
aEE(v) uevV
— P max K7 (i + 1r(a),
o0y 2 PO e KOGt Ay)
< max P(a)(u) - R(i + 1r(a),w) - (1 + errjij41)
a€E(u) ueV
< R(i,u)- (1+ erry).
For u € Vi, the proof is similar. O

This proves that o. and 7. are e-optimal, since the absolute error is smaller
than the relative error as the probabilities are at most 1. O

152

Paper F:

Verification of Open Interactive Markov Chains

Tomds Brdzdil, Holger Hermanns, Jan Krédl, Jan Kretinsky, and Vojtéch Rehdk

This paper has been published in Deepak D’Souza, Telikepalli Kavitha and
Jaikumar Radhakrishnan (eds.): Proceedings of IJARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2012, December 15-17, 2012, Hyderabad, India. LIPIcs, vol. 18, pages
474-485. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012. Copyright
© by Tomas Brazdil, Holger Hermanns, Jan Krédl, Jan Kietinsky, Vojtéch
Rehak. [BFK*09]

Summary

Interactive Markov chains are a slight extension of the widespread continuous-
time Markov decision processes. Their main advantage is compositionality,
which facilitates hierarchical design and analysis of systems. However, the anal-
ysis of interactive Markov chains has so far been limited to closed controllable
systems or open, but uncontrollable systems. We provide a framework for anal-
ysis and optimisation of controllable systems operating in an unknown environ-
ment. This in turn enables compositional verification of separate components
of the system. We give an algorithm computing the optimal guarantee to reach
a given state within a given time bound when the system is composed with
an unknown IMC environment, provided the system has at each moment only
internal or only synchronising actions available. In such a case the time com-
plexity of the analysis is the same as for the earlier analysis of closed systems.

153

154

Author’s contribution: 35 %

e co-design of the framework in the group discussions,
e writing most of the paper (excluding Section 5),
e discussing the proofs,

e writing the proofs concerning the reduction of the problem to the game
setting.

Verification of Open Interactive Markov Chains

Tomas Brazdil', Holger Hermanns?, Jan Kréal', Jan Kietinsky!:3,
and Vojtéch Rehak!

1 Faculty of Informatics, Masaryk University, Czech Republic
{brazdil,krcal, jan.kretinsky,rehak}@fi.muni.cz

2 Saarland University — Computer Science, Saarbriicken, Germany
hermanns@cs.uni-saarland.de

3 Institut fiir Informatik, Technical University Munich, Germany

—— Abstract

Interactive Markov chains (IMC) are compositional behavioral models extending both labeled
transition systems and continuous-time Markov chains. IMC pair modeling convenience - owed
to compositionality properties - with effective verification algorithms and tools - owed to Markov
properties. Thus far however, IMC verification did not consider compositionality properties, but
considered closed systems. This paper discusses the evaluation of IMC in an open and thus
compositional interpretation. For this we embed the IMC into a game that is played with the
environment. We devise algorithms that enable us to derive bounds on reachability probabilities
that are assured to hold in any composition context.

1998 ACM Subject Classification D.4.8 Performance

Keywords and phrases IMC, compositional verification, synthesis, time bounded reachability,
discretization

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

With the increasing complexity of systems and software reuse, component based develop-
ment concepts gain more and more attention. In this setting developers are often facing the
need to develop a component with only partial information about the surrounding compo-
nents at hand, especially when relying on third-party components to be inter-operated with.
This motivates verification approaches that ensure the functionality of a component in an
environment whose behavior is unknown or only partially known. Compositional verification
approaches aim at methods to prove guarantees on isolated components in such a way that
when put together, the entire system’s behavior has the desired properties based on the
individual guarantees.

The assurance of reliable functioning of a system relates not only to its correctness, but
also to its performance and dependability. This is a major concern especially in embed-
ded system design. A natural instantiation of the general component-based approach in the
continuous-time setting are interactive Markov chains [24]. Interactive Markov chains (IMC)
are equipped with a sound compositional theory. IMC arise from classical labeled transition
systems by incorporating the possibility to change state according to a random delay gov-
erned by some negative exponential distribution. This twists the model to one that is running
in continuous real time. State transitions may be triggered by delay expirations, or may be
triggered by the execution of actions. By dropping the new type of transitions, labeled tran-
sition systems are regained in their entirety. By dropping action-labeled transitions instead,
one arrives at one of the simplest but also {Iggst widespread class of performance and de-

156

pendability models, continuous-time Markov chains (CTMC). IMC have a well-understood
compositional theory, rooted in process algebra [3], and are in use as semantic backbones
for dynamic fault trees [6], architectural description languages [5, 8], generalized stochastic
Petri nets [25] and Statemate [4] extensions, and are applied in a large spectrum of practical
applications, ranging from networked hardware on chips [15] to water treatment facilities [21]
and ultra-modern satellite designs [16].

In recent years, various analysis techniques have been proposed [18, 27, 23, 26, 34, 19]
for IMC. The pivotal verification problem considered is that of time-bounded reachability. It
is the problem to calculate or approximate the probability that a given state (set) is reached
within a given deadline. However, despite the fact that IMC support compositional model
generation and minimization very well, the analysis techniques considered thus far are not
compositional. They are all bound to the assumption that the analyzed IMC is closed,
i.e. does not depend on interaction with the environment. Technically, this is related to
the maximal-progress assumption governing the interplay of delay and action execution of
an IMC component: Internal actions are assumed to happen instantaneously and therefore
take precedence over delay transitions while external actions do not. External actions are
the process algebraic means for interaction with other components. Remarkably, in all the
published IMC verification approaches, all occurring actions are assumed to be internal
(respectively internalized by means of a hiding operator prior to analysis).

In this paper, we instead consider open IMC, where the control over external actions is
in the hands of and possibly delayed by an environment. The environment can be thought
of as summarizing the behavior of one or several interacting components. As a consequence,
we find ourselves in the setting of a timed game, where the environment has the (timed)
control over external actions, while the IMC itself controls choices over internal actions. The
resulting game turns out to be remarkably difficult, owed to the interplay of timed moves
with external and internal moves of both players.

Concretely, assume we are given an IMC C which contains some internal non-deterministic
transitions and also offers some external actions for synchronization to an unknown envi-
ronment. Our goal is to synthesize a scheduler controlling the internal transitions which
maximizes the probability of reaching a set G of goal states, in time T" no matter what and
when the environment E decides to synchronize with the external actions. The environment
E ranges over all possible IMC able to synchronize with the external actions of C.

To get a principal understanding of the complications faced, we need to consider a
restricted setting, where C does not enable internal and external transitions at the same
state. We provide an algorithm which approximates the probability in question up to a
given precision € > 0 and also computes an e-optimal scheduler. The algorithm consists of
two steps. First, we reduce the problem to a game where the environment is not an IMC
but can decide to execute external actions at non-deterministically chosen time instances.
In a second step, we solve the resulting game on C using discretization. Our discretization is
based on the same approach as the algorithm of [34]. However, the algorithm as well as its
proof of correctness is considerably more complicated due to presence of non-deterministic
choices of the player controlling the environment. We finally discuss what happens if we
allow internal and external transitions to be enabled at the same time.

Example. To illustrate the concepts by an exam-
ple application, we can consider a variant of the fault- left 1o kbone Light
tolerant workstation cluster [22] depicted on the right. S
The overall system consists of two sub-clusters connected : switch
via a backbone; each of them contains N workstations.

157

Any component can fail and then needs to be repaired to become operational again. There
is a single repair unit (not depicted) which must take decisions what to repair next when
multiple components are failed. The entire system can be modelled using the IMC composi-
tion operators [22], but we are now also in the position to study a partial model, where some
components, such as one of the switches, are left unspecified. We seek for the optimal repair
schedule regardless of how the unknown components are implemented. We can answer ques-
tions such as: “What is the worst case probability to hit a state in which premium service is
not guaranteed within T time units?” with premium service only being guaranteed if there
are at least N operational workstations connected to each other via operational switches.

Our contribution. We investigate the problem of compositionally verifying open IMC.
In particular, we introduce the problem of synthesizing optimal control for time-bounded
reachability in an IMC interacting in an unknown environment, provided no state enables
internal and external transition. Thereafter, we solve the problem of finding e-optimal
schedulers using the established method of discretization, give bounds on the size of the
game to be solved for a given € and thus establish upper complexity bound for the problem.
Complete proofs and further relevant details can be found in the full version [10].

Related work. Model checking of open systems has been proposed in [28]. The synthesis
problem is often stated as a game where the first player controls a component and the
second player simulates an environment [31]. There is a large body of literature on games
in verification, including recent surveys [1, 13]. Stochastic games have been applied to
e.g. concurrent program synthesis [33] and for collaboration strategies among compositional
stochastic systems [14]. Although most papers deal with discrete time games, lately games
with stochastic continuous-time have gained attention [7, 30, 9, 11]. Some of the games
we consider in the present paper exploit special cases of the games considered in [7, 11].
However, both papers prove decidability only for qualitative reachability problems and do
not discuss compositionality issues. Further, while systems of [30, 9] are very similar to ours,
the structure of the environment is fixed there and the verification is thus not compositional.
The same holds for [32, 20], where time is under the control of the components.

The time-bounded reachability problem for closed IMC has been studied in [23, 34] and
compositional abstraction techniques to compute it are developed in [26]. In the closed
interpretation, IMC have some similarities with continuous-time Markov decision processes,
CTMDP. Algorithms for time-bounded reachability in CTMDP and corresponding games
are developed in [2, 9, 30]. A numerically stable algorithm for time-bounded properties for
CTMDP is developed in [12].

2 Interactive Markov Chains

In this section, we introduce the formalism of interactive Markov chains together with the
standard way to compose them. After giving the operational interpretation for closed sys-
tems, we define the fundamental problem of our interest, namely we define the value of
time-bounded reachability and introduce the studied problems.

We denote by N, Ny, Rsg, and R>(the sets of natural numbers, natural numbers with
zero, positive real numbers and non-negative real numbers, respectively.

» Definition 1 (IMC). An interactive Markov chain (IMC) is a tuple C = (S, Act”, <, ~~, sg)
where S is a finite set of states, Act” is a finite set of actions containing a designated internal
action T, sg € S is an initial state,

— C S x Act™ x S is an interactive transition relation, and

~ C S xRy x S is a Markovian transition relation.

158

Elements of Act := Act™ \ {7} are called external actions. We write s<*t whenever
(s,a,t) € —, and further succ.(s) = {t € S | Ja € Act : <5t} and suce,(s) = {t € S |
s<t}. Similarly, we write s<%¢ whenever (s, A,t) € ~» where X is called a rate of the
transition, and succp(s) = {t € S | IA : s<5¢}. We assume w.lo.g. that for each pair
of states s and ¢, there is at most one Markovian transition from s to t. We say that an
external, or internal, or Markovian transition is available in s if succ.(s) # 0, or succ,(s) # 0,
or succys(s) # 0, respectively.

We also define a total exit rate function E : § — R>o which assigns to each state the
sum of rates of all outgoing Markovian transitions, i.e. E(s) = >_ . A where the sum is
zero if succyy(s) is empty. Furthermore, we define a probability matrix P(s,t) = M/E(s) if
PR t; and P(s,t) = 0, otherwise.

IMC are well suited for compositional modeling, where systems are built out of smaller
ones using composition operators. Parallel composition and hiding operators are central to
the modeling style, where parallel components synchronize using shared action, and further
synchronization can be prohibited by hiding (i.e. internalizing) some actions. IMC employ
the maximal progress assumption: Internal actions take precedence over the advance of
time [24].

» Definition 2 (Parallel composition). For IMC C; = (57, Act],<1,~+1,801) and Co =
(Sa, Act], <o, ~a, 509) and a synchronization alphabet A C Actq N Actg, the parallel com-
position Cy |4 Cq is the IMC C; = (57 X Sz, Act] U Act], <, ~, (S01, S02)) where — and ~-
are defined as the smallest relations satisfying

51 <5 s and sp <% s, and a € A implies (s1, s2) <& (s, 55),

s1<5 s and a € A implies (s1,82) <> (8], s2) for each sg € Sa,

sa3<5 sh and a € A implies (s1,82) <> (s1, s) for each s; € S,

515 s} implies (s1, s2) 2 (s], s2) for each sy € Sy, and

595 sh implies (s1, s2) 2 (s1,s5) for each s; € Si.

» Definition 3 (Hiding). For an IMC C = (S, Act™, <, ~,sg) and a hidden alphabet A C
Act, the hiding C\ A is the IMC (S, Act™ \ A, —',~>,s9) where <’ is the smallest relation
satisfying for each s<% s’ that a € A implies s<’s’, and a ¢ A implies 5<% 's’.

The analysis of IMC has thus far been restricted to closed IMC [18, 27, 23, 26, 34,
19]. In a closed IMC, external actions do not appear as transition labels (i.e. — C S x
{r} x S). In practice, this is achieved by an outermost hiding operator \ Act closing the
composed system. Non-determinism among internal 7 transitions is resolved using a (history-
dependent) scheduler o [34].

Let us fix a closed IMC C = (S, Act™, <, ~, 59). The IMC C under a scheduler o moves
from state to state, and in every state may wait for a random time. This produces a run
which is an infinite sequence of the form sgtg s1t1 - -- where s, is the n-th visited state and
t, is the time spent there. After n steps, the scheduler resolves the non-determinism based
on the history h = sgto-- - Sn_1tn_1 Sn as follows.

» Definition 4 (Scheduler). A scheduler! for an IMC C = (S, Act™, <, ~~, 59) is a measur-
able? function o : (S x R>0)* x S — S such that for each history h = s tg sy - -+ s, with
succ, (s,) # 0 we have o(h) € succ, (s,). The set of all schedulers for C is denoted by &(C).

1 For the sake of simplicity, we only consider deterministic schedulers in this paper.
2 More precisely, a_l(s) is measurable in the product topology of the discrete topology on S and the
Borel topology on Rx>q.

159

The decision of the scheduler o(h) determines ¢,, and s, as follows. If succ,(s,) # 0,
then the run proceeds immediately, i.e. in time ¢,, := 0, to the state s,,+1 := o(h). Otherwise,
if suce,(s,) = 0, then only Markovian transitions are available in s,. In such a case, the
run moves to a randomly chosen next state s,41 with probability P(s,, s,+1) after waiting
for a random time ¢,, chosen according to the exponential distribution with the rate E(s,,).

One of the fundamental problems in verification and performance analysis of continu-
ous-time stochastic systems is the time-bounded reachability. Given a set of goal states
G C S and a time bound T' € R>q, the value of time-bounded reachability is defined as
Supses(c) Pe [OSTG] where Pg [OSTG} denotes the probability that a run of C under the
scheduler o visits a state of G before time T". The pivotal problem in the algorithmic analysis
of IMC is to compute this value together with a scheduler that achieves the supremum. As
the value is not rational in most cases, the aim is to provide an efficient approximation
algorithm and compute an e-optimal scheduler. The value of time-bounded reachability can
be approximated up to a given error tolerance € > 0 in time O(|S|?-(A\T)?/e) [29], where X is
the maximal rate of C, and the procedure also yields an e-optimal scheduler. We generalize
both the notion of the value as well as approximation algorithms to the setting of open IMC,
i.e. those that are not closed, and motivate this extension in the next section.

3 Compositional Verification

In this section we turn our attention to the central questions studied in this paper. How
can we decide how well an IMC component C performs (w.r.t. time-bounded reachability)
when acting in parallel with an unknown environment? And how to control the component
to establish a guarantee as high as possible?

Speaking thus far in vague terms, this amounts to finding a scheduler ¢ for C which
maximizes the probability of reaching a target set G before T' no matter what environment
E is composed with C. As we are interested in compositional modeling using IMC; the
environments are supposed to be IMC with the same external actions as C (thus resolving
the external non-determinism of C). We also need to consider all resolutions of the internal
non-determinism of E as well as the non-determinism arising from synchronization of C and
E using another scheduler . So we are interested in the following value:

sup inf P[G is reached in composition of C and E before T using o and 7.

o E,m

Now, let us be more formal and fix an IMC C = (S, Act”, <, ~»,sg). For a given envi-
ronment IMC E with the same action alphabet Act™, we introduce a composition

C(E) = (C lae B)\Act

where all open actions are hidden, yielding a closed system. Note that the states of C(E)
are pairs (c, e) where ¢ is a state of C and e is a state of E. We consider a scheduler o of
C and a scheduler 7 of C(E) respecting o on internal actions of C. We say that 7 respects
o, denoted by m € S(C(E), o), if for every history h = (co,€0) to - - - tn—1(cn,€n) of C(E) the
scheduler 7 satisfies one of the following conditions:

m(h) = (¢, e) where ¢, Lcand e, Se (7 resolves synchronization)

W(f)) = (Cn7 6) where e, e (7T chooses a move in the environment)

m(h) = (o(be), en) where be = coto - -tp—1¢, (7 chooses a move in C according to o).

Given a set of goal states G C S and a time bound T' € R>(, the value of compositional

160

time-bounded reachability is defined as

su inf Pz <Tqg *
22, iy, T v
where ENV denotes the set of all IMC with the action alphabet Act”™ and Gg = G x Sg where
SE is the set of states of E. As for the closed IMC, our goal is to efficiently approximate this
value together with a maximizing scheduler. Before we present an approximation algorithm
based on discretization, we illustrate some of the effects of the open system perspective.
Example. The figure on the right depicts
an IMC on which we approximate the value (x)
for T = 2 and G = {done}. From the initial
state do, the system may go randomly either B
to the target done or to fail. Concurrently, the L _ j
external action interrupt may switch the run to e
the state ?, where the scheduler o chooses between two successors (1) the state fast allowing
fast but risky run to the target and (2) the state fix that guarantees reaching the target but
takes longer time. The value (x) is approximately 0.47 and an optimal scheduler goes to fix
only if there are more than 1.2 minutes left. Note that the probability of reaching the target
in time depends on when the external action interrupt is taken. The most “adversarial”

environment executes interrupt after 0.8 minutes from the start.

Results. We now formulate our main result concerning efficient approximation of the
value of compositional time-bounded reachability. In fact, we provide an approximation
algorithm for a restricted subclass of IMC defined by the following two assumptions:

» Assumption 1. FEach cycle contains a Markovian transition.

This assumption is standard over all analysis techniques published for IMC [18, 27, 23, 26,
34, 19]. It implies that the probability of taking infinitely many transitions in finite time,
i.e. of Zeno behavior, is zero. This is a rather natural assumption and does not restrict the
modeling power much, since no real system will be able to take infinitely many transitions
in finite time anyway. Furthermore, the assumed property is a compositional one, i.e. it is
preserved by parallel composition and hiding.

» Assumption 2. Internal and external actions are not enabled at the same time, i.e. for
each state s, either succe(s) = 0 or succ,(s) = 0.

Note that both assumptions are met by the above mentioned example. However, Assump-
tion 2 is not compositional; specifically, it is not preserved by applications of the hiding
operator. A stronger assumption would require the environment not to trigger external
actions in zero time after a state change. This is indeed implied by Assumption 2 which
basically asks internal transitions of the component to be executed before any external ac-
tions are taken into account.® In fact, the reverse precedence cannot be implemented in real
systems, if internal actions are assumed to be executed without delay. Any procedure imple-
mented in C for checking the availability of external actions will involve some non-zero delay
(unless one resorts to quantum effects). From a technical point of view, lifting Assumption 2
makes the studied problems considerably more involved; see Section 6 for further discussion.

3 To see this one can construct a weak simulation relation between a system violating Assumption 2 and
one satisfying it, where any state with both internal and external transitions is split into two: the first
one enabling the internal transitions and a new 7 to the second one only enabling the external ones.

161

» Theorem 5. Let ¢ > 0 be an approzimation bound and C = (S, Act™,—,~, s9) be an
IMC satisfying Assumptions 1 and 2. Then one can approzimate the value of compositional
time-bounded reachability of C up to € and compute an e-optimal scheduler in time O(|S|* -
(AT)?/e), where X is the mazimal rate of C and T is the reachability time-bound.

In the remainder of the paper, we prove this theorem and discuss its restrictions. First,
we introduce a new kind of real-time games, called CE games, that are played on open
IMC. Then we reduce the compositional time-bounded reachability of C to time-bounded
reachability objective in the CE game played just on the component C (see Proposition 6).
In Section 5, we show how to reduce, using discretization, the time-bounded reachability
in CE games to step-bounded reachability in discrete-time stochastic games (see Proposi-
tion 8), that in turn can be solved using simple backward propagation. Finally, we show,
in Proposition 9, how to transform optimal strategies in the discretized stochastic games to
e-optimal schedulers for C.

4 Game of Controller and Environment

In order to approximate (), the value of compositional time-bounded reachability, we turn
the IMC C into a two-player controller-environment game (CE game) G. The CE game
naturally combines two approaches to real-time systems, namely the stochastic flow of time
as present in CTMC with the non-deterministic flow of time as present in timed automata.
The game G is played on the graph of an IMC C played by two players: con (controlling the
component C) and env (controlling/simulating the environment). In essence, con chooses
in each state with internal transitions one of them, and env chooses in each state with
external (and hence synchronizing) transitions either which of them should be taken, or a
delay t. € Rsg. Note that, due to Assumption 2, the players control the game in disjoint
sets of states, hence G is a turn-based game. The internal and external transitions take zero
time to be executed once chosen. If no zero time transition is chosen, the delay t. determined
by env competes with the Markovian transitions, i.e. with a random time sampled from
the exponential distribution with the rate E(s). We consider time-bounded reachability
objective, so the goal of con is to reach a given subset of states G before a given time T,
and env opposes it.

Formally, let us fix an IMC C = (S, Act™, <, ~~, 59) and thus a CE game G. A run of G is
again an infinite sequence sgtp s1t1 - -+ where s, € S is the n-th visited state and ¢,, € R>g
is the time spent there. Based on the history sgtg - - - t,_1 S, went through so far, the players
choose their moves as follows.

If suce, (s,) # 0, the player con chooses a state s, € suce,(sy,).

Otherwise, the player env chooses either a state s, € succ.(s,), or a delay t. € Rs.

(Note that if succ,(s,) = (0 only a delay can be chosen.)

Subsequently, Markovian transitions (if available) are resolved by randomly choosing a target
state sy according to the distribution P(s,,) and randomly sampling a time ¢,; according
to the exponential distribution with rate E(s,). The next waiting time ¢,, and state s,41
are given by the following rules in the order displayed.

If suce, (s,) # 0 and s, was chosen, then ¢, =0 and s,41 = s;.

If s, was chosen, then ¢, = 0 and s, 11 = Se.

If t. was chosen then:

if succpr(s,) = 0, then t, = ¢, and s, 11 = sp;
if t, < tpr, then ¢, = te and s,41 = Sp;
if tpr < te, then t,, = tp; and sp41 = sy

162

According to the definition of schedulers in IMC, we formalize the choice of con as a
strategy o : (S X R>g)* x .S — S and the choice of env as a strategy 7 : (S x R>g)* x S —
S URsp. We denote by ¥ and II the sets of all strategies of the players con and env,
respectively. In order to keep CE games out of Zeno behavior, we consider in IT only those
strategies of the player env for which the induced Zeno runs have zero measure, i.e. the sum
of the chosen delays diverges almost surely no matter what con is doing.

Given goal states G C S and a time bound T' € R>q, the value of G is defined as

. o, <T
sup inf 75" [0="C] (%)
where ’Pg’ﬂ [(}STG] is the probability of all runs of G induced by ¢ and 7 and reaching
a state of G before time T. We now show that the value of the CE game coincides with the
value of compositional time-bounded reachability. This result is interesting and important
as it allows us to replace unknown probabilistic behaviour with non-deterministic choices.

» Proposition 6. (x) = (xx), i.e.

sup inf Prg [OSTGE] = sup inf Pg’ﬂ[OSTG]
ses(o) Eepny sex mell

Proof Idea. We start with the inequality (%) > (xx). Let 0 € ¥ (= &(C)) and let us fix an
environment E together with a scheduler 7 € &(C(E), o). The crucial observation is that
the purpose of the environment E (controlled by 7) is to choose delays of external actions
(the delay is determined by a sequence of internal and Markovian actions of E executed
before the external action), which is in fact similar to the role of the player env in the CE
game. The only difference is that the environment E “chooses” the delays randomly as
opposed to deterministic strategies of env. However, using a technically involved argument,
we show how to get rid of this randomization and obtain a strategy ' in the CE game
satisfying Pg™ [0=7G] < PFp, [0=7G).

Concerning the second inequality (%) < (xx), we show that every strategy of env can
be (approximately) implemented using a suitable environment together with a scheduler
. The idea is to simulate every deterministic delay, say ¢, chosen by env using a random
delay tightly concentrated around ¢ (roughly corresponding to an Erlang distribution) that
is implemented as an IMC. We show that the imprecision of delays introduced by this
randomization induces only negligible alteration to the value. <

5 Discretization

In this section we show how to approximate the value (xx) of the CE game up to an arbitrarily
small error € > 0 by reduction to a discrete-time (turn-based) stochastic game A.

A stochastic game A is played on a graph (V,+—) partitioned into Vo Vi W V. A play
starts in the initial vertex vy and forms a run vgvy - - - as follows. For a history vg - - - v;, the
next vertex v;41 satisfying v; +— v;41 is determined by a strategy ¢ € ¥ A of player OJ if
v; € Vg and by a strategy m € IIa of player ¢ if v; € V. Moreover, v; 41 is chosen randomly
according to a fixed distribution Prob(v;) if v; € V5. For a formal definition, see, e.g., [17].

Let us fix a CE game G and a discretization step § > 0 that divides the time bound 7T into
N € N intervals of equal length (here 6 = T/N). We construct a discrete-time stochastic
game A by substituting each state of G by a gadget of one or two vertices (as illustrated in
Figure 1).* Intuitively, the game A models passing of time as follows. Each discrete step

4 We assume w.l.o.g. that (1) states with internal transitions have no Markovian transitions available and

163

/'51 ya /32 VSI
ogllRe o=aNC

S2 52 52

S4

{ $ { {

1—p 51
51 Q V\eﬂs&‘ s1 — <s>/) s1

e M T s

© o N
S2 2) 82 % S2
’%q

Figure 1 Four gadgets for transforming a CE game into a discrete game. The upper part
shows types of states in the original CE game, the lower part shows corresponding gadgets in
the transformed discrete game. In the lower part, the square-shaped, diamond-shaped and circle-
shaped vertices belong to Vo, Vi and Vo, respectively. Binary branching is displayed only in order
to simplify the figure.

“takes” either time 6 or time 0. Each step from a vertex of V(- takes time J whereas each step
from vertex of Vo UV, takes zero time. The first gadget transforms internal transitions into
edges of player [taking zero time. The second gadget transforms Markovian transitions
into edges of player () taking time d where the probability p is the probability that any
Markovian transition is taken in G before time 6. The third gadget deals with states with
both external and Markovian transitions available where the player ¢ decides in vertex s in
zero time whether an external transition is taken or whether the Markovian transitions are
awaited in S for time 0. The fourth gadget is similar, but no Markovian transition can occur
and from 5 the play returns into s with probability 1.
Similarly to (x) and (%), we define the value of the discrete-time game A as

sup inf PLT[0%=NG] (% %)
cexp TEIA
where PX” [Oﬁ% S G’] is the probability of all runs of A induced by ¢ and 7 that reach
G before taking more than NN steps from vertices in V(. According to the intuition above,
such a step bound corresponds to a time bound N -§ =T.
We say that a strategy is counting if it only considers the last vertex and the current count
#. of steps taken from vertices in V. We may represent it as a function V' x{0,..., N} — V
since it is irrelevant what it does after more than N steps.

» Lemma 7. There are counting strategies optimal in (xxx). Moreover, they can be computed
together with (x x %) in time O(N|V|?).

We now show that the value (x * %) of the discretized game A approximates the value
(xx) of the CE game G and give the corresponding error bound.

(2) every state has at least one outgoing transition.This is no restriction since (1) Markovian transitions
are never taken in such states and (2) any state without transitions can be endowed with a Markovian
self-loop transition without changing the time-bounded reachability.

164

» Proposition 8 (Error bound). For every approximation bound € > 0 and discretization
step § < g/(N°T) where A = maxses E(s), the value (x * x) induced by § satisfies

(k%) < (xx) < (k%) +e.

Proof Idea. The proof is inspired by the techniques for closed IMC [29]. Yet, there are
several new issues to overcome, caused mainly by the fact that the player env in the CE
game may choose an arbitrary real delay ¢, > 0 (so env has uncountably many choices).
The discretized game A is supposed to simulate the original CE game but restricts possible
behaviors as follows: (1) Only one Markovian transition is allowed in any interval of length
. (2) The delay t. chosen by player ¢ (which simulates the player env from the CE game)
must be divisible by 6. We show that none of these restrictions affects the value.

ad (1) As pointed out in [29], the probability of two or more Markovian transitions occurring in
an interval [0, 6] is bounded by (A\§)?/2 where A = max s E(s). Hence, the probability
of multiple Markovian transitions occurring in any of the discrete steps of A is < e.

ad (2) Assuming that at most one Markovian transition is taken in [0,6] in the CE game,
we reduce the decision when to take external transitions to minimization of a linear
function on [0,], which in turn is minimized either in 0, or §. Hence, the optimal choice
for the player env in the CE game is either to take the transitions immediately at the
beginning of the interval (before the potential Markovian transition) or to wait for time
d (after the potential Markovian transition). <

Finally, we show how to transform an optimal counting strategy o : V'x{0,...,N} -V

in the discretized game A into an e-optimal scheduler 7@ in the IMC C. For every p =
S0 tO “ Sp—1ln_18n We put E(p) = J(Sna [(to +...+ tnfl)/a—l)

» Proposition 9 (c-optimal scheduler). Let € > 0, A be a corresponding discrete game, and
7 be induced by an optimal counting strategy in A, then

< s T ST
() = Eelréva Pee) [O GE] te
r€6(C(E),7)

This together with the complexity result of Lemma 7 finishes the proof of Theorem 5.

6 Summary, Discussion and Future Work

We discussed the computation of maximal timed bounded reachability for IMC operating in
an unknown IMC environment to synchronize with. All prior analysis approaches considered
closed systems, implicitly assuming that external actions do happen in zero time. Our
analysis for open IMC works essentially with the opposite assumption, which is arguably
more realistic. We have shown that the resulting stochastic two-player game has the same
extremal values as a CE-game, where the player controlling the environment can choose
exact times. The latter is approximated up to a given precision by discretization and the
resulting control strategy translated back to a scheduler of the IMC achieving the bound.

Finally, we argue that lifting Assumption 2 makes
analysis considerably more involved as the studied game ’
may contain imperfect information and concurrent de- 4’@ @
cisions. Let us illustrate the problems on an example.
Consider an IMC depicted on the right. This IMC vio-
lates Assumption 2 in its state no. Let us fix an arbitrary environment E (Controlled by

m) and a scheduler o. Since internal transitions of E take zero time, the environment must
spend almost all the time in states without internal transitions. Hence, E is almost surely

165

in such a state when ? is entered. Assume F is in a state with the (external) action a
being available. The scheduler ¢ wins if he chooses the internal transition to yes since the
synchronizing transition a is then taken immediately, and fails if he chooses to proceed to
no, as a (reasonable) scheduler 7 will now force synchronization on action a. If, otherwise,
on entering state 7, F is in a state without the action a being available, the scheduler o
fails if he chooses yes because a (reasonable) environment never synchronizes, and wins if he
chooses no since the environment F cannot immediately synchronize and the 7 transition
is taken. Note that the scheduler o cannot observe whether a is available in the current
state of E. As this is crucial for the further evolution of the game from state ?, the game is
intrinsically of imperfect information.

We conjecture that solving even this special case of imperfect information games is
PSPACE-hard. Yet, the complexity might only increase in the number of internal transitions
that can be taken in a row. For systems, where a bound on the length of internal transition
sequences can be assumed, this problem would then still be feasible.

Acknowledgement

The work has been supported by the Czech Science Foundation, grant No. P202/12/P612
(T. Brazdil, J. Kietinsky and V. Rehdk) and No. 102/09/H042 (J. Kréal) and by the DFG
as part of the SFB/TR 14 AVACS, by the DFG/NWO project ROCKS, and by the EU FP7
project MEALS, grant agreement no. 295261. (H. Hermanns).

—— References

1 K. Apt and E. Gréadel, editors. Lectures in Game Theory for Computer Scientists. Cam-
bridge, 2011.

2 C. Baier, H. Hermanns, J.-P. Katoen, and B.R. Haverkort. Efficient computation of time-
bounded reachability probabilities in uniform continuous-time Markov decision processes.
Theor. Comp. Sci., 345(1):2-26, 2005.

3 J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra. Elsevier,
2001.

4 E. Bode, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R. Pulungan, J. Rakow,
R. Wimmer, and B. Becker. Compositional dependability evaluation for STATEMATE.
IEEE Trans. on Soft. Eng., 35(2):274-292, 2009.

5 H. Boudali, P. Crouzen, B.R. Haverkort, M. Kuntz, and M. I. A. Stoelinga. Architectural
dependability evaluation with Arcade. In Proc. of DSN, pages 512-521. IEEE, 2008.

6 H. Boudali, P. Crouzen, and M. Stoelinga. A rigorous, compositional, and extensible
framework for dynamic fault tree analysis. IEEE Trans. on DSC, 7(2):128-143, 2010.

7 P. Bouyer and V. Forejt. Reachability in stochastic timed games. In Proc. of ICALP,
volume 5556 of LNCS, pages 103—114. Springer, 2009.

8 M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, and M. Roveri. Safety,
dependability and performance analysis of extended AADL models. The Computer Journal,
54(5):754-775, 2011.

9 T. Bréazdil, V. Forejt, J. Krcal, J. Kietinsky, and A. Kucera. Continuous-time stochastic
games with time-bounded reachability. In Proc. of FSTTCS, volume 4 of LIPIcs, pages
61-72. Schloss Dagstuhl, 2009.

10 T. Brazdil, H. Hermanns, J. Kréal, J. Kietinsky, and V. Rehék. Verification of open
interactive markov chains. Technical Report FIMU-RS-2012-04, Faculty of Informatics
MU, 2012.

11 T. Brazdil, J. Kréél, J. Kfetinsky, A. Kudera, and V. Rehdk. Stochastic real-time games
with qualitative timed automata objectives. In Proc. of CONCUR, volume 6269 of LNCS,
pages 207-221. Springer, 2010.

166

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

P. Buchholz and I. Schulz. Numerical Analysis of Continuous Time Markov Decision pro-
cesses over Finite Horizons. Computers and Operations Research, 38:651-659, 2011.

K. Chatterjee and T.A. Henzinger. A survey of stochastic w-regular games. J. Comput.
Syst. Sci., 78(2):394-413, 2012.

T. Chen, V. Forejt, M.Z. Kwiatkowska, D. Parker, and A. Simaitis. Automatic verification
of competitive stochastic systems. In Proc. of TACAS, volume 7214 of LNCS, pages 315—
330. Springer, 2012.

N. Coste, H. Hermanns, E. Lantreibecq, and W. Serwe. Towards performance prediction
of compositional models in industrial GALS designs. In Proc. of CAV, volume 5643, pages
204-218. Springer, 2009.

M.-A. Esteve, J.-P. Katoen, V.Y. Nguyen, B. Postma, and Y. Yushtein. Formal correctness,
safety, dependability and performance analysis of a satellite. In Proc. of ICSE. ACM and
IEEE press, 2012.

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1996.

H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A toolbox for the con-
struction and analysis of distributed processes. In Proc. of CAV, volume 4590 of LNCS,
pages 158-163. Springer, 2007.

D. Guck, T. Han, J.-P. Katoen, , and M.R. Neuhdufer. Quantitative timed analysis of
interactive markov chains. In NFM, volume 7226 of LNCS, pages 8-23. Springer, 2012.
E.M. Hahn, G. Norman, D. Parker, B. Wachter, and L. Zhang. Game-based abstraction
and controller synthesis for probabilistic hybrid systems. In QEST, pages 6978, 2011.
B.R. Haverkort, M. Kuntz, A. Remke, S. Roolvink, and M.I.A. Stoelinga. Evaluating repair
strategies for a water-treatment facility using Arcade. In Proc. of DSN, pages 419-424, 2010.
H. Hermanns and S. Johr. Uniformity by construction in the analysis of nondeterministic
stochastic systems. In DSN, pages 718-728. IEEE Computer Society, 2007.

H. Hermanns and S. Johr. May we reach it? Or must we? In what time? With what
probability? In Proc. of MMB, pages 125-140. VDE Verlag, 2008.

H. Hermanns and J.-P. Katoen. The how and why of interactive Markov chains. In Proc.
of FMCO, volume 6286 of LNCS, pages 311-337. Springer, 2009.

H. Hermanns, J.-P. Katoen, M. R. Neuhdufler, and L. Zhang. GSPN model checking despite
confusion. Technical report, RWTH Aachen University, 2010.

J.-P. Katoen, D. Klink, and M. R. Neuhdufler. Compositional abstraction for stochastic
systems. In Proc. of FORMATS, volume 5813 of LNCS, pages 195-211. Springer, 2009.
J.-P. Katoen, 1.S. Zapreev, E.M. Hahn, H. Hermanns, and D.N. Jansen. The ins and outs
of the probabilistic model checker MRMC. Performance Evaluation, 68(2):90-104, 2011.
O. Kupferman and M. Vardi. Module checking. In CAV, volume 1102 of LNCS, pages
75-86. Springer, 1996.

M.R. NeuhduBer. Model checking nondeterministic and randomly timed systems. PhD
thesis, University of Twente, 2010.

M.N. Rabe and S. Schewe. Finite optimal control for time-bounded reachability in CTMDPs
and continuous-time Markov games. Acta Informatica, 48(5-6):291-315, 2011.

P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Proceedings
of the IEEE, 77(1), 1989.

J. Sproston. Discrete-time verification and control for probabilistic rectangular hybrid
automata. In QEST, pages 79-88, 2011.

P. Cerny, K. Chatterjee, T.A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative
synthesis for concurrent programs. In CAV, pages 243-259, 2011.

L. Zhang and M.R. Neuhdufler. Model checking interactive Markov chains. In Proc. of
TACAS, volume 6015 of LNCS, pages 53-68. Springer, 2010.

Paper G:

Compositional Verification and Optimization of
Interactive Markov Chains

Holger Hermanns, Jan Krédl, and Jan Kretinsky

This paper has been published in Pedro R. D’Argenio and Herndan Melgratti
(eds.): Proceedings of Concurrency Theory, 24th International Conference,
CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Lecture Notes
in Computer Science. Copyright (© by Springer-Verlag. [BHK'12]

Summary

Interactive Markov chains are a slight extension of the widespread continuous-
time Markov decision processes. Their main advantage is compositionality,
which facilitates hierarchical design and analysis of systems. However, analysis
of interactive Markov chains has so far been limited to closed controllable sys-
tems or open, but uncontrollable systems. The first step towards the analysis of
controllable systems operating in an unknown environment is taken in [BHK12]
(Paper F). However, the environment considered there is completely unknown
and the systems under consideration are structurally limited. Here we lift the
assumption on the systems, introduce a framework for specifying environments
(or generally IMC) and give an algorithm for time-bounded reachability when
the system under analysis operates in an unknown environment conforming to
a given specification. The specifications are given as modal continuous time
automata—a modal extension of time-automata-like framework where we em-
ploy continuous time constraints instead of hard constant guards. This enables
the first truly compositional verification and assume-guarantee reasoning in the
stochastic continuous-time setting.

167

168

Author’s contribution: 60 %

e design of the specification framework of modal continuous time automata,
e group discussions of the problem,

e writing most of the paper (excluding Section 6),

e discussing the proofs,

e writing most of the proofs concerning the reduction of the problem to the
game setting.

Compositional Verification and Optimization
of Interactive Markov Chains*

Holger Hermanns!, Jan Kréal?, and Jan Kietinsky?3

! Saarland University — Computer Science, Saarbriicken, Germany
2 Faculty of Informatics, Masaryk University, Czech Republic
3 Institut fiir Informatik, Technical University Munich, Germany

Abstract. Interactive Markov chains (IMC) are compositional behavioural
models extending labelled transition systems and continuous-time Markov
chains. We provide a framework and algorithms for compositional veri-
fication and optimization of IMC with respect to time-bounded proper-
ties. Firstly, we give a specification formalism for IMC. Secondly, given

a time-bounded property, an IMC component and the assumption that
its unknown environment satisfies a given specification, we synthesize a
scheduler for the component optimizing the probability that the property

is satisfied in any such environment.

1 Introduction

The ever increasing complexity and size of systems together with software reuse
strategies naturally enforce the need for component based system development.
For the same reasons, checking reliability and optimizing performance of such
systems needs to be done in a compositional way. The task is to get useful
guarantees on the behaviour of a component of a larger system. The key idea
is to incorporate assumptions on the rest of the system into the verification
process. This assume-guarantee reasoning is arguably a successful divide-and-
conquer technique in many contexts [MC81,AH96, HMPO1].

In this work, we consider a continuous-time stochastic model called interac-
tive Markov chains (IMC). First, we give a language for expressing assumptions
about IMC. Second, given an IMC, an assumption on its environment and a
property of interest, we synthesize a controller of the IMC that optimizes the
guarantee, and we compute this optimal guarantee, too.

Interactive Markov chains are behavioural models of probabilistic sys-
tems running in continuous real time appropriate for the component-based ap-
proach [HK09]. IMC have a well-understood compositional theory rooted in pro-
cess algebra, and are in use as semantic backbones for dynamic fault trees,

* The work has received support from the Czech Science Foundation, project
No. P202/12/G061, from the German Science Foundation DFG as part of
SFB/TR 14 AVACS, and by the EU FP7 Programme under grant agreement no.
295261 (MEALS) and 318490 (SENSATION).

169

170

architectural description languages, generalized stochastic Petri nets and State-
mate extensions, see [HK09] for a survey. IMC are applied in a large spectrum
of practical applications, ranging from water treatment facilities [HKR'10] to
ultra-modern satellite designs [EKNT12].

IMC arise from classical labelled transition systems by
incorporating the possibility to change state according to H @
a random delay governed by a negative exponential dis-
tribution with a given rate, see transitions labelled 1, 2 @
and 3 in the figure. Apart from delay expirations, state
transitions may be triggered by the execution of internal @%
(1) actions or external (synchronization) actions. Internal
actions are assumed to happen instantaneously and therefore take precedence
over delay transitions. External actions are the process algebraic means for in-
teraction with other components, see a in the figure. By dropping the delay
transitions, labelled transition systems are regained in their entirety. Dropping
action-labelled transitions instead yields continuous-time Markov chains — one
of the most used performance and reliability models.

The fundamental problem in the analysis of IMC is that of time-bounded
reachability. It is the problem to approximate the probability that a given set of

states is reached within a given deadline. We illustrate the compositional setting
of this problem in the following examples.

Examples. In the first example, consider the IMC C from above and an
unknown environment £ with no assumptions. Either £ is initially not ready to
synchronize on the external action a and thus one of the internal actions is taken,
or £ is willing to synchronize on a at the beginning. In the latter case, whether
T or a happens is resolved non-deterministically. Since this is out of control of
C, we must assume the worst case and let the environment decide which of the
two options will happen. For more details on this design choice, see [BHK'12].
If there is synchronization on a, the probability to reach goal within time t = 1.5
is 1 —e~2* = 0.95. Otherwise, C is given the choice to move to u or v. Naturally,
v is the choice maximizing the chance to get to goal on time as it has a higher
rate associated. In this case the probability amounts to 1 — e™3* ~ 0.99, while if
u were chosen, it would be only 0.78. Altogether, the guaranteed probability is
95% and the strategy of C is to choose v in init.

The example depicted on the right req - resp
illustrates the necessity of assump- —
L T b

tions on the environment: As it is, the
environment can drive the component
to state ret and let it get stuck there by not synchronising on resp ever. Hence
no better guarantee than 0 can be derived. However, this changes if we know
some specifics about the behaviour of the environment: Let us assume that we
know that once synchronization on req occurs, the environment must be ready
to synchronise on resp within some random time according to, say, an exponen-
tial distribution with rate 2. Under this assumption, we are able to derive a
guarantee of 95%, just as in the previous example.

171

Observe the form of the time constraint we imposed in the last example:
“within a random time distributed according to Exp(2)” or symbolically < gep(2) -
We call this a continuous time constraint. If a part of the environment is e.g. a
model of a communication network, it is clear we cannot impose hard bounds
(discrete time constraints) such as “within 1.5” as in e.g. a formula of MTL
O<1.5¢. Folklore tells us that messages might get delayed for longer than that.
Yet we want to express high assurance that they arrive on time. In this case
one might use e.g. a formula of CSL Prs.95(0<1.5¢). However, consider now a
system with two transitions labelled with resp in a row. Then this CSL formula
yields only a zero guarantee. By splitting the time 1.5 in halves, the respective
Pr>o77(0<0.75¢) yields only the guarantee 0.772 = 0.60. The actual guarantee
0.80 is given by the convolution of the two exponential distributions and as such
can be exactly obtained from our continuous time constraint ¢ <gap(2)¢-

Our contribution is the following:

1. We introduce a specification formalism to express assumptions on continuous-
time stochastic systems. The novel feature of the formalism are the continu-
ous time constraints, which are vital for getting guarantees with respect to
time-bounded reachability in IMC.

2. We incorporate the assume-guarantee reasoning to the IMC framework. We
show how to synthesize e-optimal schedulers for IMC in an unknown en-
vironment satisfying a given specification and approximate the respective
guarantee.

In our recent work [BHK™12] we considered a very restricted setting of the
second point. Firstly, we considered no assumptions on the environment as the
environment of a component might be entirely unknown in many scenarios. Sec-
ondly, we were restricted to IMC that never enable internal and external tran-
sitions at the same state. This was also a severe limitation as this property is
not preserved during the IMC composition process and restricts the expressivity
significantly. Both examples above violate this assumption. In this paper, we lift
the assumption.

Each of the two extensions shifts the solution methods from complete in-
formation stochastic games to (one-sided) partial observation stochastic games,
where we need to solve the quantitative reachability problem. While this is unde-
cidable in general, we reduce our problem to a game played on an acyclic graph
and show how to solve our problem in exponential time. (Note that even the
qualitative reachability in the acyclic case is PSPACE-hard [CD10].)

Related work. The synthesis problem is often stated as a game where the
first player controls a component and the second player simulates an environ-
ment [RW89]. Model checking of open systems, i.e. operating in an unknown
environment, has been proposed in [KV96]. There is a body of work on assume-
guarantee reasoning for parallel composition of real-time systems [TAKB96, HMPO1].
Lately, games with stochastic continuous-time have gained attention, for a very
general class see [BF09]. While the second player models possible schedulers of
the environment, the structure of the environment is fixed there and the veri-

172

fication is thus not compositional. The same holds for [Spr11,HNP*11], where
time is under the control of the components.

A compositional framework requires means for specification of systems. A
specification can be also viewed as an abstraction of a set of systems. Three
valued abstractions stemming from [LT88] have also been applied to the timed
setting, namely in [KKLWOT7] to continuous-time Markov chains (IMC with no
non-determinism), or in [KKN09] to IMC. Nevertheless, these abstractions do
not allow for constraints on time distributions. Instead they would employ ab-
stractions on transition probabilities. Further, a compositional framework with
timed specifications is presented in [DLL*12]. This framework explicitly allows
for time constraints. However, since the systems under consideration have non-
deterministic flow of time (not stochastic), the natural choice was to only allow
for discrete (not continuous) time constraints.

Although IMC support compositional design very well, analysis techniques
for IMC proposed so far (e.g. [KZHT11,KKN09,ZN10,GHKN12] are not com-
positional. They are all bound to the assumption that the analysed IMC is a
closed system, i.e. it does not depend on interaction with the environment (all
actions are internal). Some preliminary steps to develop a framework for syn-
thesis of controllers based on models of hardware and control requirements have
been taken in [Marll]. The first attempt at compositionality is our very recent
work [BHK'12] discussed above.

Algorithms for the time-bounded reachability problem for closed IMC have
been given in [ZN10,BS11,HH13] and compositional abstraction techniques to
compute it are developed in [KKN09]. In the closed interpretation, IMC have
some similarities with continuous-time Markov decision processes. For this for-
malism, algorithms for time-bounded reachability are developed in [BHKH05,BS11].

2 Interactive Markov Chains

In this section, we introduce the formalism of interactive Markov chains together
with the standard way to compose them. We denote by N, R, and R>(the
sets of positive integers, positive real numbers and non-negative real numbers,
respectively. Further, let D(S) denote the set of probability distributions over
the set S.

Definition 1 (IMC). An interactive Markov chain (IMC) is a quintuple C =
(S, Act™, <, ~~, sg) where S is a finite set of states, Act” is a finite set of actions
containing a designated internal action 7, so € S is an initial state,

— — C S x Act™ x S is an interactive transition relation, and
— ~» C S xRy xS is a Markovian transition relation.

Elements of Act := Act™ \ {7} are called external actions. We write s<*¢
whenever (s,a,t) € —, and s 2 t whenever (s,A\,t) € ~» where A is called a rate
of the transition. We say that an external action a, or internal 7, or Markovian
transition is available in s, if s <% t, s <> t or s < ¢ for some ¢ (and \), respectively.

173

IMC are well suited for compositional modelling, where systems are built
out of smaller ones using standard composition operators. Parallel composition
la over a synchronization alphabet A produces a product of two IMC with
transitions given by the rules

(PC1) (s1,82) <% (s}, 5h) for each s1 <% s} and sy <% sh and a € A,
(PC2, PC3) (s1,52) <% (s}, s2) for each s; <= s} and a ¢ A, and symmetrically,
(PC4, PC5) (s1,52)~ (s, s5) for each s; <> s}, and symmetrically.

Further, hiding \ A an alphabet A, yields a system, where each s<% s’ with
a ¢ Ais left as it is, and each s <% s’ with a € A is replaced by internal s <> s'.
Hiding \\ Act thus yields a closed IMC, where external actions do not appear
as transition labels (i.e. — C S x {7} x S). A closed IMC (under a scheduler
o, see below) moves from state to state and thus produces a run which is an
infinite sequence of the form sty syt 82+ where s,, is the n-th visited state
and t,, is the time of arrival to s,. After n steps, the scheduler resolves the non-
determinism among internal 7 transitions based on the path p = sty - tn Sn.

Definition 2 (Scheduler). A scheduler of an IMC C = (S, Act™, —,~, 50)
is a measurable function o : (S x R>g)* x S — D(S) such that for each path
p=50t1 81 tn Sy with s, having T available, o(p)(s) > 0 implies s, <> s. The
set of all schedulers for C is denoted by &(C).

The decision of the scheduler o(p) determines t,+1 and s,y; as follows. If s,
has available 7, then the run proceeds immediately, i.e. at time ¢,41 :=t,, to a
state $,,4+1 randomly chosen according to the distribution o(p). Otherwise, only
Markovian transitions are available in s,. In such a case, after waiting for a
random time ¢ chosen according to the exponential distribution with the rate
R(spn) = angy A, the run moves at time t,,11 := t,, + ¢ to a randomly chosen

next state sn}l with probability A/r where s, 2 Sn+1. This defines a probability
space (Runs, F, Pg) over the runs in the standard way [ZN10].

3 Time-Bounded Reachability

In this section, we introduce the studied problems. One of the fundamental
problems in verification and performance analysis of continuous-time stochastic
systems is time-bounded reachability. Given a closed IMC C, a set of goal states
G C S and a time bound T' € R>¢, the value of time-bounded reachability is de-
fined as sup,cg ey PE [0=TG] where PZ[O=TG] denotes the probability that a
run of C under the scheduler o visits a state of G before time 7. We have seen an
example in the introduction. A standard assumption over all analysis techniques
published for IMC [KZH'11,KKN09,ZN10,GHKN12] is that each cycle contains
a Markovian transition. It implies that the probability of taking infinitely many
transitions in finite time, i.e. of Zeno behaviour, is zero. One can e-approximate
the value and compute the respective scheduler in time O(\2>T?/e) [ZN10] re-

cently improved to O(/A3T3/e) [HH13].

174

For an open IMC to be put in parallel with an unknown environment, the
optimal scheduler is computed so that it optimizes the guarantee against all
possible environments. Formally, for an IMC C = (C, Act™, <, ~,¢p) and an
environment IMC £ with the same action alphabet Act”, we introduce a compo-
sition C|€ = (C |lact £)\Act where all open actions are hidden, yielding a closed
system. In order to compute guarantees on C|€ provided we use a scheduler o
in C, we consider schedulers 7 of C|€ that respect o on the internal actions of C,
written m € &,(C|E); the formal definition is below. The value of compositional
time-bounded reachability is then defined in [BHKT12] as

sup inf PZ [OSTG]
ree(@) EEPNY,)

where ENV denotes the set of all IMC with the action alphabet Act™ and e
is the set of runs that reach G in the first component before T. Now 7 respects
o on internal actions of C if for every path p = (co,e0)t1- - tn(cn,en) of C|E
there is p € [0, 1] such that for each internal transition ¢, <> c of C, we have
w(p)(c,en) = p-o(pc)(c). Here pe is the projection of p where o can only see the
path of moves in C and not in which states £ is. Formally, we define observation
of a path p = (co,e0)t1 - tn(cn,en) as pc = coty -+ - tpc, where each maximal
consecutive sequence ¢;c; - --tjc; with ¢, = ¢; for all ¢ < k < j is rewritten to
t; c;. This way, o ignores precisely the internal steps of £.

3.1 Specifications of environments

In the second example in the introduction, without any assumptions on the envi-
ronment only zero guarantees could be derived. The component was thus indis-
tinguishable from an entirely useless one. In order to get a better guarantee, we
introduce a formalism to specify assumptions on the behaviour of environments.

Ezample 1. In the mentioned example, if we knew that after an occurrence of req
the environment is ready to synchronize on resp in time distributed according to
Exp(3) or faster, we would be able to derive a guarantee of 0.26. We will depict

this assumption as shown below.

resp req req

The dashed arrows denote may transitions, ,\’* ,\’* y

which may or may not be available, whereas ”O req O < Exp(3) O
the full arrows denote must transitions, which

the environment is ready to synchronize on. Full 1 _y J

arrows are further used for time transitions. resp

N

Although such a system resembles a timed automaton, there are several fun-
damental differences. Firstly, the time constraints are given by probability dis-
tributions instead of constants. Secondly, there is only one clock that, moreover,
gets reset whenever the state is changed. Thirdly, we allow modalities of may
and must transitions. Further, as usual with timed or stochastic specifications,
we require determinism.

175

Definition 3 (MCA syntax). A continuous time constraint is either T or of
the form < d with< € {<, >} and d a continuous distribution. We denote the set
of all continuous time constraints by CTC. A modal continuous-time automaton
(MCA) over X' is a tuple S = (Q, qo, --+, —,~>), where

— @ is a non-empty finite set of locations and gy € @ is an initial location,

— —,--+: @ X X — @Q are must and may transition functions, respectively,

satisfying — C --»,
— ~:Q — CTC x Q is a time flow function.

We have seen an example of an MCA in the previous example. Note that upon
taking req from the first state, the waiting time is chosen and the waiting starts.
On the other hand, when req self-loop is taken in the middle state, the waiting
process is not restarted, but continues on the background independently.(") We
introduce this independence as a useful feature to model properties as “response
follows within some time after request” in the setting with concurrently running
processes. Further, we have transitions under T corresponding to “> 07, mean-
ing there is no restriction on the time distribution except that the transition
takes non-zero time. We formalize this in the following definition. With other
respects, the semantics of may and must transitions follows the standards of
modal transition systems [LT88].

Definition 4 (MCA semantics). An IMC & = (E, Act™, <, ~>, eg) conforms
to an MCA specification S = (Q, qo, --+,—,~), written £ = S, if there is
a satisfaction relation R C E X @Q containing (eg,qo) and satisfying for each
(e,q) € R that whenever

1. ¢ -5 ¢ then there is some e <% e’ and if, moreover, ¢ # ¢’ then ¢'Rq’,
e<% e’ then there is (unique) q -2 ¢ and if, moreover, ¢ # ¢’ then ¢'Rq,
e e then €' Rq,
q < q' then for every IMC C and every scheduler m € &(Cle),®) there is a
random variable Stop : Runs — Rsq on the probability space (Runs, F, Pg‘e)
such that
— if ctc is of the form > d then the cumulative distribution function of
Stop is point-wise X cumulative distribution function of d (there are no
constraints when ctc =T), and
— for every run p of Cle under w, either a transition corresponding to syn-

™ tede

chronization on action a with q N q' # q is taken before time Stop(p),
or
o the state (c,e’) visited at time Stop(p) satisfies €' Rq’, and
o for all states (¢, e) wvisited prior to that, whenever
(a) ¢ == ¢ then there is e<% ¢,
(b) e<% e’ then there is q --» .
The semantics of S is the set [S] ={€ € IMC | € |= S} of all conforming IMC.
() This makes no difference for memoryless exponential distributions, but for all other

distributions it does.
) Here e stands for the IMC € with the initial state e.

176

Ezample 2. We illustrate this definition. Consider the

MCA on the right above specifying that a is ready and

b will be ready either immediately after taking a or AQLOé;OD b
within the time distributed according to the Erlang _a/v
distribution Er(3,1), which is a convolution of three

Exp(1) distributions. The IMC below conforms to this specification (here, Stop ~
Er(2,1) can be chosen). However, observe that it would not conform, if there
was no transition under a from the middle to the right state. Satisfying the
modalities throughout the waiting is namely required by the last bullet of the
previous definition.

3.2 Assume-Guarantee Optimization

We can now formally state what guarantees on time-bounded reachability we
can derive provided the unknown environment conforms to a specification S.
Given an open IMC C, a set of goal states G C C and a time bound T' € Ry,
the value of compositional time-bounded reachability conditioned by an MCA S
is defined as

= inf Fel0sTG
T
€6, (C\é‘)

In this paper, we pose a technical assumption on the set of schedulers of C.
For some clock resolution § > 0, we consider only such schedulers o that take
the same decision for any pair of paths ¢yt ... t,c, and cot] . .. ¢, ¢, with ¢; and
t; equal when rounded down to a multiple of § for all 1 < ¢ < n. This is no
practical restriction as it is not possible to achieve arbitrary resolution of clocks
when implementing the scheduler. Observe this is a safe assumption as it is not
imposed on the unknown environment.

We consider specifications S where distributions have differentiable density
functions. In the rest of the paper we show how to approximate vs(C) for such S.
Firstly, we make a product of the given IMC and MCA. Secondly, we transform
the product to a game. This game is further discretized into a partially observable
stochastic game played on a dag where the quantitative reachability is solved.
For full proofs, see [HKK13].

4 Product of IMC and Specification

In this section, we first translate MCA S into a sequence of IMC (S;);en. Second,
we combine the given IMC C with the sequence (S;);en into a sequence of product
IMC (C x 8;)ien that will be further analysed. The goal is to reduce the case
where the unknown environment is bound by the specification to a setting where
we solve the problem for the product IMC while quantifying over all possible
environments (satisfying only a simple technical assumption discussed at the end
of the section), denoted ENV’. The reason why we need a sequence of products

177

instead of one product is that we need to approximate arbitrary distributions
with more and more precise and detailed hyper-Erlang distributions expressible
in IMC. Formally, we want to define the sequence of the products C x S; so that

Uproduct(C X S;) 1= Supc Sei]fjllfl\// 73(WCX&-)IS [QSTG]
7€6(0) e, (Cxs))lE)

approximates the compositional value:

Theorem 1. For every IMC C and MCA S, vs(C) = Im Vproduet (C X S;).

1— 00

Note that in vproduct, o is a scheduler over C, not the whole product C x S,
Constructing a product with the specification intuitively corresponds to adding
a known, but uncontrollable and unobservable part of the environment to C. We
proceed as follows: We translate the MCA S into a sequence of IMC S; and then
the product will be defined as basically a parallel composition of C and S;.

There are two steps in the translation of S to §;. Firstly, we deal with the
modal transitions. A may transition under a is translated to a standard external
transition under a that has to synchronize with ¢ in both C and £ simultane-
ously, so that the environment may or may not let the synchronization occur.
Further, each must transition under a is replaced by an external transition, that
synchronizes with a in C, but is hidden before making product with the environ-
ment. This way, we guarantee that C can take a and make progress no matter if
the general environment £ would like to synchronize on a or not.

Formally, the must transitions are transformed into special “barred” tran-
sitions that will be immediately hidden in the product C x &; as opposed to
transitions arising from may transitions. Let Act = {a | a € Act} denote a fresh
copy of the original alphabet. We replace all modal transitions as follows

a a

— whenever ¢ --+ r set =,
o _

— whenever ¢ — 7 set g<5 7.

The second step is to deal with the tiémed transitions, especially with the
constraints of the form <t d. Such a transition is, roughly speaking, replaced by
a phase-type approximation of d. This is a continuous-time Markov chain (an
IMC with only timed transitions) with a sink state such that the time to reach
the sink state is distributed with d’. For any continuous distribution d, we can
find such d’ arbitrarily close to d.

Ezxample 3. Consider the following MCA on the left. It specifies that whenever
ask is taken, it cannot be taken again for at least the time distributed by Er(2, A)
and during all that time, it is ready to synchronize on answer. This specifies
systems that are allowed to ask, but not too often, and whenever they ask, they
must be ready to receive (possibly more) answers for at least the specified time.

() Here we overload the notation &, ((C x S;)|€) introduced for pairs in a straightfor-
ward way to triples, where o ignores both the second and the third components.

178

answer

answer answer answer

> Er(2 A) Now

After performing the first step of replacing the modal transitions as described
above, we proceed with the second step as follows. We replace the timed tran-
sition with a phase-type, e.g. the one represented by the IMC in the middle.
Observe that while the Markovian transitions are taken, answer must still be
available. Hence, we duplicate the corresponding self-loops on all the new states.
Further, since the time constraint is of the form >, getting to the state (g,0)
does not guarantee that we already get to the state r. It can possibly take longer.
To this end, we connect the states (¢,0) and r by a special external action Now.
Since this action is synchronized with & € ENV’, the environment can block the
progress for arbitrarily long time. Altogether, we obtain the IMC on the right.
In the case of “<” condition, we would instead add the Now transition from
each auxiliary state to the sink, which could instead shorten the waiting time.

When constructing S;, we replace each distribution d with its hyper-Erlang
phase-type approximation d; with ¢ branches of lengths 1 to ¢ and rates v/ in
each branch. For formal description, see [HKK13]. Formally, let Now ¢ ActUAct
be a fresh action. We replace all timed transitions as follows:

N
— whenever q NK r such that g # r set ¢ byl T,

— whenever ¢ "4 1 where the phase-type d; corresponds to a continuous-time
Markov chain (IMC with only timed transitions) with the set of states D,
the initial state I and the sink state 0, then

1. identify the states ¢ and 1,

for every u € D and q&>q7 set u <% u,

for every € D and q¢<% p with p # g, set %%wp,

if = <, then 1dent11\}/ r and 0, and set u <— 7 for each u € D,

if = >, then set 0 — 7.

Ol W

Intuitively, the new timed transitions model the delays, while in the “<” case,
the action Now can be taken to speed up the process of waiting, and in the
“>” case, Now can be used to block further progress even after the delay has
elapsed.

The product is now the parallel composition of C and S;, where each action a
synchronizes with a and the result is immediately hidden. Formally, the product
C x &S is defined as C ||PC6_ &, where ||PC6__ is the parallel composition

. o . MActUACct ActUAct
with one additional axiom:

(PC6) s1<% 4 and s <% sb, implies (51, 52) < (s, 55),

saying that a synchronizes also with a and, in that case, is immediately hidden
(and any unused @ transitions are thrown away).

179

The idea of Now is that it can be taken in arbitrarily short, but non-zero
time. To this end, we define ENV’ in the definition of vpoquct (C X S;) to denote
all environments where Now is only available in states that can be entered by
only a Markovian transition. Due to this requirement, each Now can only be
taken after waiting for some time.

5 Controller-Environment Games

So far, we have reduced our problem to computing lim; . Vproduct(C X S;).
Note that we are still quantifying over unknown environments. Further, the
behaviour of each environment is limited by the uncontrollable stochastic flow of
time caused by its Markovian transitions. This setting is still too difficult to be
solved directly. Therefore, in this section, we reduce this setting to one, where
the stochastic flow of time of the environment (limited in an unknown way) is
replaced by a free non-deterministic choice of the second player.

We want to turn the product IMC C x §; into a two-player controller—
environment game (CE game) G;, where player con controls the decisions over
internal transitions in C; and player env simulates the environment including
speeding-up/slowing-down S using Now transitions. In essence, con chooses in
each state with internal transitions one of them, and env chooses in each state
with external (and hence synchronizing) transitions either which of them should
be taken, or a delay d € Rs ¢ during which no synchronization occurs. The inter-
nal and external transitions take zero time to be executed if chosen. Otherwise,
the game waits until either the delay d elapses or a Markovian transition occurs.

This is the approach taken in [BHK*12] where no specification is considered.
However, there is a catch. This construction is only correct under the assump-
tion of [BHK™12] that there are no states of C with both external and internal

transitions available. a
Ezample 4. Consider the IMC C on the right (for A X 2
instance with a trivial specification not restrict- HCDHCiD T
ing the environment). Note that there are both T \"H
internal and external actions available in no. a

As 7 transitions take zero time, the environment £ must spend almost all
the time in states without 7. Hence, when ? is entered, £ is almost surely in
such a state e. Now 7 form ? is taken and £ cannot move to another state when
yes/no is entered. Since action a either is or is not available in e, the environment
cannot choose to synchronize in no and not to synchronize in yes. As a result,
the environment “commits” in advance to synchronize over a either in both
yes and no or in none of them. Therefore, in the game we define, env cannot
completely freely choose which external transition is/is not taken. Further, note
that the scheduler of C cannot observe whether a is currently available in &,
which intrinsically induces imperfect information.

In order to transfer these “commitments” to the game, we again make use
of the compositionality of IMC and put the product C x S; in parallel with an
IMC Commit and then define the game on the result.

180

[)7
e
The action alphabet of Commit is Act U H/) \ge

{Now, Change} and the state space is 24" U — _—
{commit, now?} (in the figure, Act = {a}; for 1 Chan® T Now
formal description, see [HKK13]). State A C
Act corresponds to £ being committed to the set of currently available actions

A. Thus A<% commit for each a € A. This commitment must be respected until

the state of £ is changed: either (1) by an external transition from the commit-
ment set (which in Commit leads to the state commit where a new commitment

is immediately chosen); or (2) by a Change transition (indicating the environ-
ment changed its state due to its Markovian transition).

The game G; is played on the arena (C XS || actuf{Now} Commit) AN (Act U {Now})
with its set of states denoted by G;. Observe that external actions have either
been hidden (whenever they were available in the commitment), or discarded
(whenever not present in the current commitment). The only external action
that remains is Change. The game G; is played as follows. There are two types
of states: immediate states with some 7 transitions available and timed states
with no 7 available. The game starts in vg = (co, go, commit).

— In an immediate state v, = (¢, g, €), con chooses a probability distribution
over transitions corresponding to the internal transitions in C (if there are
any). Then, env either approves this choice (chooses v') and v,,41 is chosen
randomly according to this distribution, or rejects this choice and chooses a
T transition to some v,4; such that the transition does not correspond to
any internal transitions of C. Then the game moves at time ¢,.1 = t, to
Un41-

— In a timed state v, = (¢, ¢, €), env chooses a delay d > 0. Then Markovian
transitions (if available) are resolved by randomly sampling a time ¢ accord-
ing to the exponential distribution with rate R(v,) and randomly choosing
a target state v,4+1 where each v, 2 v is chosen with probability A/R(v,,).

o Ift < d, g, moves at time tn—i—l =t,+1tto Un+1, (Markovian transition wins)
e else G; moves at time t,11 = t, + d to (¢, g, now?). (€ takes Change)

This generates a run wvgtivit:---. The set (G x Rx¢)* x G; of prefixes of
runs is denoted Histories(G). We formalize the choice of con as a strategy
o : Histories(G;) — D(G;). We further allow the env to randomize and thus
his strategy is 7 : Histories(G;) — D({v'} UG;) UD(Rs(). We denote by X and
1T the sets of all strategies of the players con and env, respectively.

Since con is not supposed to observe the state of the specification and the
state of Commit, we consider in X only those strategies that satisfy o(p) =
o(p'), whenever observations of p and p’ are the same. Like before, the observa-
tion of (co, qo,€0)t1 - tn(Cn, Gn, en) € Histories(G) is a sequence obtained from
cot1 -+ -tpcy, by replacing each maximal consecutive sequence t;c¢; ---t; ¢; with
all ¢ the same, by t; ¢;. This replacement takes place so that the player cannot
observe transitions that do not affect C. Notice that now &(C) is in one-to-one
correspondence with Y. Further, in order to keep CE games out of Zeno be-
haviour, we consider in IT only those strategies for which the induced Zeno runs

181

have zero measure, i.e. the sum of the chosen delays diverges almost surely no
matter what con is doing. The wvalue of G; is now defined as
vg, := sup inf PIT[OST@E
gs Sl aen 9 [0="G]
where Pg;ﬂ [OSTG} is the probability of all runs of G; induced by ¢ and 7 and

reaching a state with the first component in G before time 7. We now show that
it coincides with the value of the ith product:

Theorem 2. For every IMC C, MCA S, i € N, we have vg, = Vproduct(C X S;).

This result allows for approximating vs(C) through computing vg,’s. How-
ever, from the algorithmic point of view, we would prefer approximating vs(C)
by solving a single game G whose value vg we could approximate directly. This is
indeed possible. But first, we need to clarify, why the approximation sequence S;
was crucial even in the case where all distributions of S are already exponential.

Consider the MCA on the right and a conforming en- 0 b
vironment &, in which a is available iff b becomes available Ly S E
within 0.3 time units. If Player env wants to simulate this _, Xp(l@
behaviour, he needs to know how long the transition to r is
going to take so that he can plan his behaviour freely, only sticking to satisfying
the specification. If we translate Exp(1) directly to a single Markovian transi-
tion (with no error incurred), env knows nothing about this time as exponential
distributions are memoryless. On the other hand, with finer hyper-Erlang, he
knows how long the current branch of hyper-Erlang is roughly going to take. In
the limit, he knows the precise waiting time right after coming to q.

To summarize, env is too weak in G;, because it lacks the information about
the precise time progress of the specification. The environment needs to know
how much time is left before changing the location of S. Therefore, the game
G is constructed from G; by multiplying the state space with R>(where we
store the exact time to be waited. After the product changes the state so that
the specification component switches to a state with 0 d constraint, this last
component is overwritten with a number generated according to d. This way, the
environment knows precisely how much time is left in the current specification
location. This corresponds to the infinitely precise hyper-Erlang, where we at the
beginning randomly enter a particular branch, which is left in time with Dirac
distribution. For more details, see [HKK13].

Denoting the value of G by vg := sup inf Pg"[0=TG], we obtain:

cexy mell

Theorem 3. For every IMC C and MCA S, we have vg = lim vg, .
71— 00

6 Approximation using discrete-time PO games

In this section, we briefly discuss the approximation of vg by a discrete time turn-
based partial-observation stochastic game A. The construction is rather stan-
dard; hence, we do not treat the technical difficulties in great detail (see [HKK13]).

182

We divide the time bound T into N intervals of length x = T//N such that the
clock resolution § (see Section 3.2) satisfies § = n« for some n € N.

1. We enhance the state space with a counter i € {0,..., N} that tracks that
1 - Kk time has already elapsed. Similarly, the R>g-component of the state
space is discretized to k-multiples. In timed states, time is assumed to pass
exactly by k. In immediate states, actions are assumed to take zero time.

2. We let at most one Markovian transition occur in one step in a timed state.

3. We unfold the game into a tree until on each branch a timed state with
i = N is reached. Thereafter, A stops. We obtain a graph of size bounded
by b=N'IGl where b is the maximal branching and G is the state space of G.

Let Y4 and ITa denote the set of randomized history-dependent strategies of
con and env, respectively, where player con observes in the history only the
first components of the states, i.e. the states of C, and the elapsed time |i/n]
up to the precision 6. Then va = sup,c s, infrem, PR" (OG) denotes the value
of the game A where P37 (0G) is the probability of the runs of A induced by
o and w and reaching a state with first component in G. Let b be a constant
bounding (a) the sum of outgoing rates for any state of C, and (b) densities and
their first derivative for any distribution in S.

Theorem 4. For every IMC C and MCA S, vg is approximated by va:

|Ug —UA| < IOR(bT)2 ln%.
A strategy o* optimal in A defines a strategy (10x(bT)? In %)—optz'mal nG. Fur-
ther, va and o* can be computed in time polynomial in |A|, hence in time 20019D

The proof of the error bound extends the technique of the previous bounds
of [ZN10] and [BHK™12]. Its technical difficulty stems from partial observa-
tion and from semi-Markov behaviour caused by the arbitrary distributions in
the specification. The game is unfolded into a tree in order to use the result
of [KMvS94]. Without the unfolding, the best known (naive) solution would be
a reduction to the theory of reals, yielding an EXPSPACE algorithm.

7 Summary

We have introduced an assume-guarantee framework for IMC. We have consid-
ered the problem to approximate the guarantee on time-bounded reachability
properties in an unknown environment £ that satisfies a given assumption. The
assumptions are expressed in a new formalism, which introduces continuous time
constraints. The algorithmic solution results from Theorems 1 to 4:

Corollary 1. For every IMCC and MCA S and e > 0, a value v and a scheduler
o can be computed in exponential time such that |vs(C) —v| < e and o is e-
optimal in vs(C).

In future work, we want to focus on identifying structural subclasses of IMC
allowing for polynomial analysis.

183

Acknowledgement We thank Tomas Brézdil and Vojtéch Rehsk for fruitful
discussions and for their feedback.

References

[AHO6]
[BF09)]

[BHK"12]

R. Alur and T.A. Henzinger. Reactive modules. In LICS, pages 207-218,
1996.

P. Bouyer and V. Forejt. Reachability in stochastic timed games. In Proc.
of ICALP, volume 5556 of LNCS, pages 103—114. Springer, 2009.

T. Brazdil, H. Hermanns, J. Kréal, J. Kfetinsky, and V. Rehédk. Verification
of open interactive markov chains. In FSTTCS, pages 474-485, 2012.

[BHKHO05] C. Baier, H. Hermanns, J.-P. Katoen, and B.R. Haverkort. Efficient com-

[BS11]

[CD10]

[DLL*12]

[EKNT12]

putation of time-bounded reachability probabilities in uniform continuous-
time Markov decision processes. Theor. Comp. Sci., 345(1):2-26, 2005.

P. Buchholz and I. Schulz. Numerical Analysis of Continuous Time Markov
Decision processes over Finite Horizons. Computers and Operations Re-
search, 38:651-659, 2011.

K. Chatterjee and L. Doyen. The complexity of partial-observation parity
games. In LPAR (Yogyakarta), pages 1-14, 2010.

A. David, K.G. Larsen, A. Legay, M.H. Mgller, U. Nyman, A.P. Ravn,
A. Skou, and A. Wasowski. Compositional verification of real-time systems
using ECDAR. STTT, 14(6):703-720, 2012.

M.-A. Esteve, J.-P. Katoen, V.Y. Nguyen, B. Postma, and Y. Yushtein. For-
mal correctness, safety, dependability and performance analysis of a satel-
lite. In Proc. of ICSE. ACM and IEEE press, 2012.

[GHKN12] D. Guck, T. Han, J.-P. Katoen, and M.R. Neuhaufler. Quantitative timed

[HH13]
[HKO09]
[HKK13]

[HKR*10]

[HMPO1]

[HNP*11]

analysis of interactive Markov chains. In NFM, volume 7226 of LNCS, pages
8-23. Springer, 2012.

H. Hatefi and H. Hermanns. Improving time bounded computations in
interactive Markov chain. In FSEN, 2013. to appear.

H. Hermanns and J.-P. Katoen. The how and why of interactive Markov
chains. In FMCO, volume 6286 of LNCS, pages 311-337. Springer, 2009.
H. Hermanns, J. Kr¢él, and J. Kfetinsky. Compositional verification and
optimization of interactive markov chains. CoRR, abs/1305.7332, 2013.
B.R. Haverkort, M. Kuntz, A. Remke, S. Roolvink, and M.I.A. Stoelinga.
Evaluating repair strategies for a water-treatment facility using Arcade. In
Proc. of DSN, pages 419-424, 2010.

T.A. Henzinger, M. Minea, and V.S. Prabhu. Assume-guarantee reasoning
for hierarchical hybrid systems. In HSCC, pages 275-290, 2001.

E.M. Hahn, G. Norman, D. Parker, B. Wachter, and L. Zhang. Game-
based abstraction and controller synthesis for probabilistic hybrid systems.
In QEST, pages 69-78, 2011.

[KKLWO07] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction

[KKN09)

[KMvS94]

for continuous-time Markov chains. In CAV, pages 311-324, 2007.

J.-P. Katoen, D. Klink, and M.R. Neuh&dufler. Compositional abstraction
for stochastic systems. In FORMATS, pages 195211, 2009.

D. Koller, N. Megiddo, and B. von Stengel. Fast algorithms for finding
randomized strategies in game trees. In STOC, pages 750-759, 1994.

184

[KV96]

[KZHT11]

(LTSS
[Marl1]
[MC81]
[RW89)]
[Spri1]
[TAKBYG6]

[ZN10]

O. Kupferman and M. Vardi. Module checking. In CAV, volume 1102 of
LNCS, pages 75-86. Springer, 1996.

J.-P. Katoen, 1.S. Zapreev, E.M. Hahn, H. Hermanns, and D.N. Jansen.
The ins and outs of the probabilistic model checker MRMC. Performance
Evaluation, 68(2):90-104, 2011.

K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages
203-210, 1988.

J. Markovski. Towards supervisory control of interactive Markov chains:
Controllability. In ACSD, pages 108-117, 2011.

J. Misra and K. Mani Chandy. Proofs of networks of processes. IEEE
Trans. Software Eng., 7(4):417-426, 1981.

P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1), 1989.

J. Sproston. Discrete-time verification and control for probabilistic rectan-
gular hybrid automata. In QEST, pages 79-88, 2011.

S. Tasiran, R. Alur, R.P. Kurshan, and R.K. Brayton. Verifying abstractions
of timed systems. In CONCUR, pages 546-562, 1996.

L. Zhang and M.R. Neuh&ufler. Model checking interactive Markov chains.
In Proc. of TACAS, volume 6015 of LNCS, pages 53-68. Springer, 2010.

Part 111

Auxiliary materials

185

Appendix H

Beyond Markov chains

The requirements (F), (M) and (H) of Section 2.1 are very realistic since the
systems we have discussed are (1) typically controlled by finite programs with
finite memory, and (2) often operating in environments where the random be-
haviour depends only on the current state of the system (or equivalently, finitely
many recent states). Nonetheless, the requirements do restrict possible applica-
tions. For instance, consider a thermo-regulator in a room. If we want to check
properties concerning the real-valued temperature, it needs to be captured in
the states. And even if we satisfy (F') by abstracting the temperature values into
e.g. intervals, (M) and (H) do not hold. Indeed, the temperature in the next
moment depends also on the current derivative of the temperature, not only on
its current value. Since we cannot store the real-valued derivation in the state,
all requirements would only hold if we stored a precise finite abstraction of the
derivation in the state. For non-linear behaviour, every abstraction yielding a
Markov chain only approximates the original system. Note that using a more
general modelling framework such as (non-linear) hybrid systems often leads to
undecidability [ACHH92] of the problems we are interested in.

Further features that Markov chains fail to capture are general distributions
on waiting and awaiting more events in parallel. Consider cooking meat and
potatoes both happening in 15 to 18 minutes from the start. If the meat is
done, the state is changed as only potatoes are being cooked. However, now
the waiting time for potatoes is not between 15 and 18 minutes, but definitely
less than 3. This behaviour is inherently non-Markovian, but it can again be
approximated by a Markov chain using e.g. the phase type methods [Kom12].
More general framework of generalised semi-Markov processes can be employed,
but again the analysis becomes significantly harder.

187

188 APPENDIX H. BEYOND MARKOV CHAINS

Appendix I

Quantitative analysis
overview

We now give a concise overview of the model checking results for systems
of Figure 2.2, i.e. for non-stochastic, discrete-time stochastic and continuous-
time stochastic systems each of which is considered in its deterministic, non-
deterministic and game form, denoted 0, 1, and 2, respectively, according to
the number of players. We consider model checking non-stochastic systems
with respect to reachability, LTL and CTL, stochastic systems with respect
to their probabilistic (both qualitative and quantitative) extensions, and fi-
nally we consider quantitative continuous-time specifications. These are time-
bounded reachability (TBR), deterministic timed automata (DTA), and contin-
uous stochastic logic (CSL). For better readability, we display the complexity
of the respective algorithms in the tables below.

Table I.1: Non-stochastic analysis

| 0 1 2
reachability NL NL P
LTL P PSPACE 2-EXP
CTL P P P

Non-stochastic analysis
While reachability for LTS can be solved by graph reachability, for games the
attractor construction is used. Checking CTL can be done inductively, hence

in linear time w.r.t. the length of the formula [CES83]. Further, CTL and LTL

189

190 APPENDIX I. QUANTITATIVE ANALYSIS OVERVIEW

collapse when interpreted over a single run. However, checking LTL becomes
more expensive for LTS and games. For LTS, a Biichi automaton for a formula
¢ exponential in |¢| is constructed, but only on the fly yielding a PSPACE
algorithm [VWB86]. However, the search through the state space of the product
of the LTS and the automaton is only linear in the size of the LTS. In contrast,
solving the LTL game [PR89] requires to construct a deterministic w-automaton
for ¢, e.g. a deterministic Rabin automaton (the reason for this is explained in
Chapter 3). This automaton requires up to doubly exponential space (and has
exponentially many pairs) and then the respective game must be solved on the
product. This solution can be computed in time polynomial in the product and
exponential in the number of Rabin pairs, hence altogether doubly exponential

in |g].

Table 1.2: Qualitative stochastic analysis

| 0 1 2
reachability P P P
PLTL PSPACE 2-EXP 3-NEXPnNco-3-NEXP
PCTL P EXP ?

Table 1.3: Quantitative stochastic analysis

| 0 1 2
reachability P P NPNco-NP
PLTL 2-EXP 2-EXP 3-NEXPnNco-3-NEXP
PCTL P undecidable undecidable

Stochastic analysis

Qualitative reachability in the > 0 case is almost the same as the non-stochastic
reachability. However, in the = 1 case it requires a decomposition to strongly
connected components for MC and maximum end-component (MEC) decom-
position for MDP and followed by > 0 reachability analysis of the resulting
graph. In the quantitative case, linear equalities must be solved for MC, lin-
ear programming for MDP and strategy iteration is used in games to obtain
(deterministic and positional) strategies.

For probabilistic (qualitative) interpretation of LTL, [CY88] gives (1) an al-
gorithm for MC, which modifies the chain step by step and works in time
exponential in |¢|, and (2) an algorithm for MDP, where a deterministic (or
“almost-deterministic”) w-automaton is constructed (doubly exponential in |¢]|)
and the product is examined by MEC decomposition, for details see Chapter 3
and Paper D. In both cases, the complexity w.r.t. the system size is only poly-
nomial. For the quantitative LTL on MDP, we only need to solve quantitative

191

reachability on the MEC decomposition. In order to analyse stochastic games,
one can transform the product with the Rabin automaton into a stochastic par-
ity game by the exponential last appearance record construction, and then solve
the latter in NPNco-NP [CJHO04]. For deterministic strategies (choosing only
Dirac distribution) the problem is shown to be in 3-EXP [BGL104].

For PCTL over MC, only qualitative/quantitative reachability computations are
iterated for all subformulae. For qualitative PCTL, synthesis for MDP is shown
to be in EXP in [BFKO08] even though the strategies may require infinite memory.
On the other hand, for quantitative PCTL the problem is undecidable [BBFKO06]
even for fragments not requiring infinite memory. However, the decidability of
the qualitative PCTL over games remains open. It has been proven (ibid.)
that infinite memory is needed. The largest qualitative fragment know to be
decidable contains only F=1, F>? and G=! operators (ibid.).

Finally, note that this analysis also applies to continuous-time systems by simply
ignoring the timing. This is done by ignoring the rates R.

Table 1.4: Continuous-time analysis

[0 1 2
TBR decidable approximable approximable
DTA approximable 7 ?
CSL decidable ? ?

Continuous-time analysis

The qualitative analysis of continuous-time systems can safely ignore the con-
tinuous timing aspect as the exponential distribution is positively supported on
[0,00). However, the results in quantitative analysis are much less encouraging.
The main difficulty with computing exact probabilities is caused by the irra-
tionality and transcendence of e, which is omnipresent due to the exponential
distribution on the waiting times. Time-bounded reachability can be expressed
and computed as an expression of the form) ¢; - €™ where the sum is finite and
gi,7; are rational [ASSB96]. The comparison of such a sum to a rational num-
ber is decidable using the Lindemann-Weierstrass theorem, hence quantitative
reachability and CSL model checking is decidable (ibid.). However, apart from
that not much is known to be decidable. In [BHKT12] (Paper E) we show that
time bounded reachability is decidable for games, but only when schedulers ig-
noring the times in the histories are taken into account—so called time-abstract
strategies.

As a result, approximations are usually considered instead. Algorithms for the
time-bounded reachability problem have first been given in the time-abstract
setting where strategies only take into account the sequence of the states visited,
but not the times. The first one is for CTMDP [BHHKO04] further extended to

192 APPENDIX I. QUANTITATIVE ANALYSIS OVERVIEW

games [BHK'12, RS10]. Later, strategies taking time into account have been
considered and polynomial algorithms for CTMDP and IMC (easily extensible
to games) have been given in [ZN10, NZ10] and improved in [BS11, HH13]. For
more details, see Chapter 4. This yields algorithms for model checking CSL of
IMC/CTMDP [ZN10] where the formulae are not nested. If nesting is allowed
then approximability is not known and depends on whether TBR is decidable.
Finally, objectives given by DTA and their approximability have been considered
in [CHKMO09].

Satisfiability Let us further mention another problem for logics, namely the
satisfiability problem, i.e. the problem whether there exists a model satisfy-
ing a given formula. It is important especially for logics capable of expressing
game arenas of non-deterministic programs as strategy synthesis for these pro-
grams can then be encoded into satisfiability. The satisfiability problem for
LTL and its variants is PSPACE-complete [SC85], for CTL [EH82] and quali-
tative PCTL [HS84, BFKKO08] it is EXP-complete, and for quantitative PCTL
decidability of this problem remains open [BFKKO08, HPW10].

Appendix J

Note on copyrights

According to the Consent to Publish in Lecture Notes in Computer Science with
Springer-Verlag GmbH, the author of the thesis is allowed to include Papers A-D
and G in the thesis:

Author retains the right to use his/her Contribution for his/her fur-
ther scientific career by including the final published paper in his/her
dissertation or doctoral thesis provided acknowledgement is given to
the original source of publication.

For more information, please see the copyright form electronically accessible at
ftp.springer.de/pub/tex/latex/llncs/LNCS-Springer_Copyright_Form.pdf

According to the Journal Publishing Agreement with Elsevier B.V., the author
of the thesis is allowed to include Paper E in the thesis:

The Retained Rights include the right to use the Preprint or Ac-
cepted Author Manuscript for Personal Use, Internal Institutional
Use and for Permitted Scholarly Posting, the right to use the Pub-
lished Journal Article for Personal Use and Internal Institutional
Use.

where “Personal Use” is defined as follows:

Use by an author in the author’s classroom teaching (including dis-
tribution of copies, paper or electronic), distribution of copies to
research colleagues for their personal use, use in a subsequent com-
pilation of the author’s works, inclusion in a thesis or dissertation,
preparation of other derivative works such as extending the arti-
cle to book-length form, or otherwise using or re-using portions or
excerpts in other works (with full acknowledgement of the original
publication of the article).

193

194 APPENDIX J. NOTE ON COPYRIGHTS

For more information on this and on the copyright, please visit the webpage
http://www.elsevier.com/copyright

According to the rules for publishing in LIPIcs (Leibniz International Pro-
ceedings in Informatics) with Schloss Dagstuhl Leibniz-Zentrum fiir Informatik
GmbH, the author of the thesis is allowed to include Paper F in the thesis:

All publication series follow the concept of OpenAccess, i.e., the
articles are freely available online for the reader and the rights are
retained by the author.

For more information, please see http://www.dagstuhl.de/publikationen/

	final.pdf
	Introduction
	Interactive Markov Chains
	Compositional Verification
	Game of Controller and Environment
	Discretization
	Summary, Discussion and Future Work

