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Prüfer der Dissertation: 1. Univ.-Prof. Dr. Matthias Scherer

2. Prof. Dr. Hansjörg Albrecher

Universität Lausanne/Schweiz

3. Prof. Marcos Escobar, Ph.D.

Ryerson University, Toronto/Kanada

Die Dissertation wurde am 02.07.2013 bei der Technischen Universität München

eingereicht und durch die Fakultät für Mathematik am 14.10.2013 angenommen.





Abstract

Im Verlauf der letzten zwei Jahrzehnte sind sowohl Markt- als auch Ausfallrisiken

angestiegen. Als Folge der zunehmenden globalen Vernetzung nimmt außerdem die

Abhängigkeit von Aktienrenditen und Ausfallereignissen zu. Risikomanagement (und

speziell die Risikostreuung) wird deswegen zu einer immer größeren Herausforderung.

Quantitative Modelle, die Firmen helfen, ihre Risiken besser zu analysieren und zu ver-

stehen, werden zunehmend wichtiger. Diese Arbeit leistet einen Beitrag auf dem Gebiet der

sogenannten strukturellen Ausfallmodelle, bei denen ein Ausfall durch die Unterschreitung

einer Ausfallschranke definiert wird. Für zustandsabhängige Sprungdiffusionsmodelle

und zeitveränderte Brown’sche Bewegung wird gezeigt, wie Ausfallwahrscheinlichkeiten

effizient berechnet werden können. Diese Aktienkursmodelle berücksichtigen viele em-

pirisch beobachtete statistische Eigenschaften von Aktien-, Rohstoff- und Kreditmärkten.

Verschiedene Ansätze der Modellierung von Abhängigkeiten zwischen den Ausfallzeiten

werden außerdem diskutiert. Die Ergebnisse der Arbeit haben Relevanz für viele An-

wendungen im Finanz- und Versicherungsbereich. Beispielhaft wird die Bewertung von

Derivaten und das Risikomanagement von Private Equity Transaktionen behandelt.





Abstract

Over the last two decades, default rates as well as market risks have increased sub-

stantially. Furthermore, a consequence of the growing global interlacing is a strong de-

pendence between both individual stock returns and credit events. Risk management –

especially risk diversification – is much more challenging, since. Quantitative models that

assist firms to better analyse, measure, and comprehend the risks they face are required.

This thesis contributes to the growing literature on structural credit risk models, where

the time of default is modeled as a first-exit time, i.e. the first time point a stochastic

process crosses some default boundary. It is shown how first-exit time probabilities can

efficiently be computed for time-changed Brownian motion and regime switching jump-

diffusion models. These models take into account most of the stylized statistical facts of

today’s stock, commodity, and credit markets. Different approaches for the modeling of

dependence between default times are discussed. The results of this thesis are interest-

ing for many applications in financial engineering. We exemplarily treat the pricing of

financial derivatives and the risk management process of Private Equity transactions.
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Chapter 1

Introduction

The current financial crisis has revealed massive deficits in the risk management practices

used in the banking and insurance industry. There is an urgent need for improvements to

avoid or attenuate financial bubbles that result from an inadequate measurement of risks.

Investors in public equity have to cope with at least two major challenges:

• Increasing default risk: Figure 1.1 presents the number of insolvencies (bar graph)

together with the default rate, i.e. the number of insolvencies divided by the total

number of firms (black line) in Germany from 1950 until today. It can be observed

that the number of insolvencies rose from 6 000 in 1980 to 30 000 in 2012. Relative to

the total number of companies the default rate has tripled in the same period. This

observation of an increased default risk is not restricted to the German economy,

similar observations hold for most industrialized countries. It is even more pro-
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Figure 1.1: Number of insolvencies (bar graph) and insolvencies divided by the total number

of firms (black line) in Germany from 1950–2012. (Data source: http://www.destatis.de.)
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nounced for companies that are not quoted on stock markets (the interested reader

is referred to Section 3.2, see also Cochrane [2005]).

• Increasing stock market risk: The increasing riskiness is not only reflected in default

rates, but also in the volatility of public stock markets. Stapf and Werner [2003],

for example, provide evidence for a significant increase of stock and index volatility

in Germany after 1997.

• Increasing dependence: In a globalized world, macroeconomic factors turn out to be

more and more important. Regional crises like the Hongkong banking crisis 1997/98
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Figure 1.2: Average linear pairwise correlation (estimated on one year rolling windows)

of the 5 stock market indices Nikkei (Japan), Hang Seng (China), EuroSTOXX (Europe),

Bovespa (Brasil), and S&P (US) from 1988 to today (top) and of a representative sample

of 20 German stocks from 1996 to today (below). (Data source: Reuters.)
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or the crisis in the US housing market crisis in 2007/08 might quickly spill over to

the worldwide economy, simultaneously affecting companies from completely differ-

ent industries and regions. This is also strongly reflected in the dependence of stock

market returns. Figure 1.2 (top) presents the average pairwise linear correlation1

(estimated based on one year rolling windows) of the 5 stock market indices Nikkei

(Japan), Hang Seng (China), EuroSTOXX (Europe), Bovespa (Brasil), and S&P

(US) from 1988 to today. One observes a persistent and visible increase in the av-

erage correlation from about 0.2 (1988) to 0.4 (2013). This increase in dependence

can also be observed within countries. Taking 20 major German stocks – a represen-

tative sample of the most important German industries – we observe a very similar

evolution of the average pairwise correlation of single stocks (see Figure 1.2 (below)).

Those developments complicate risk diversification and increase the need for a careful

risk management adequately reflecting empirical observations but also taking into account

possibly changing economic environments. Therefore, it is necessary to develop tools and

quantitative models that assist firms to better comprehend the risks they face. In the past

risks and their dependence have often been modeled too simplistic, sometimes leading

to a significant underestimation of risk. This thesis aims to present numerical tools and

quantitative models to estimate default risks and their dependence.

From a theoretical point of view, this thesis further develops so-called structural default

models (see the seminal papers of Merton [1974] and Black and Cox [1976]). Here, the

time of default is modeled as a first-exit time, i.e. the first time point a stochastic process

crosses some threshold level or default boundary. Figure 1.3 gives two examples: While the

company on the left defaults, the company on the right stays solvent during the considered

time horizon. First-exit times have many applications in finance, engineering, and physics.

In this thesis, the focus of such applications is on the pricing of derivatives, credit, and

insurance risk. The structure of the thesis is as follows:

Chapter 2 introduces to the theory of first-exit times. The aim of this chapter is to derive

the two-sided first-exit times for a large variety of stochastic processes. After a literature

review and some basic notation, we first recapitulate the barrier hitting probabilities if the

underlying process is a Brownian motion (Section 2.3). In Section 2.4, we extend those

results to the case of (continuously) time-changed Brownian motion. This result is very

convenient since we are still able to derive the barrier hitting probabilities analytically. We

give several exemplary parameterizations for the time change and discuss the implementa-

1Heuristically speaking, a correlation of 0 indicates that the indices behave as “almost independent”, if

the correlation is 1 their evolution tends to be very similar.
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Figure 1.3: Concept of a structural default model. A company defaults whenever its firm

value (black line) hits the current face vale of debt ( grey line).

tion of the first-exit time probabilities. In Section 2.5, we finally deal with the most general

model class captured in this thesis, namely regime switching jump-diffusion models. In

this generality, the first-exit time probabilities cannot be solved analytically, instead one

has to rely on numerical schemes. In this section, we extend an efficient and unbiased

Monte–Carlo algorithm of Metwally and Atiya [2002] to regime switching parameters and

to the case of two barriers. Finally, our results are compared to its numerical alternatives,

for example finite elements schemes or brute–force Monte–Carlo simulations.

In Chapter 3, the theoretical results in Chapter 2 are applied to the pricing of default-

linked contracts in Finance and Insurance. First, Section 3.1 discusses the pricing of

barrier derivatives. The focus of this section is on derivatives that depend on whether

or not certain thresholds are crossed during the lifetime of the contract (for example

(double) barrier options, digital options, (corridor) bonus certificates). The results on

time-changed Brownian motion have a nice interpretation in Mathematical Finance: The

stochastic clock can be seen as a “measure of activity” or “business clock” and thus takes

into account that calm markets with a low volatility alternate with periods of distress with

a high volatility. Nevertheless, in order to not underestimate especially short term barrier

hitting probabilities, it makes sense to further include jumps to the stock price processes

(see, e.g., Giesecke [2006]). That is why, we adapt the Monte–Carlo algorithms described

in Chapter 2 to the pricing of financial contracts.
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Our first-exit time setting can also be used to explain credit spreads. We apply the concept

of structural credit risk models to the usually very risky asset class Private Equity (PE).

The term “Private” stands for investments that are not listed on stock exchanges, that is

why the main issue of this asset class is the scarcity of available data. Calculating risk

indicators for PE-sponsored companies is considerably more difficult since – in contrast

to public stocks – we rarely observe the company value. We provide a valuation model

that explicitly accounts for the characteristics of PE (i.e. high leverage, high default risk,

scarcity of data,. . . ) and allows us to obtain implied risk measures. Within a coopera-

tion with the Center for Entrepreneurial and Financial Studies, Technische Universität

München (Prof. Dr. Dr. A.-K. Achleitner), we were able to test our results empirically on

a unique PE database. This allowed us to examine the risk of PE transactions over time

and to identify factors that determine the riskiness of a PE transaction.

Finally, Section 3.3 gives a short note on applications of first-exit times in the insurance

industry. Every insurance company has to ensure that its risk reserves are sufficient to

cover the claims of all its policyholder. In the worst case, negative risk reserves lead to a

default of the insurance company.

As discussed earlier in this introduction, it is important for the pricing and risk man-

agement of financial contracts to adequately model the dependence structure. Chapter 4

introduces two possibilities on how to link the univariate processes from Chapter 2. The

first one links them dynamically and thereby defines joint first-exit times. Unfortunately

this approach is not very convenient from a numerical point of view: For high dimensions

one usually has to rely on expensive numerical schemes.

The second one is a copula approach. Here, we abandon the economic interpretation of

linked “trigger processes” and work with a fixed time horizon, i.e. the copula model is

static with respect to time. However, this class is very tractable and works pretty well

when calibrated to empirical data. We apply the copula approach to portfolio credit risk

management and price loan-credit-default-swaps (LCDS) – an extension of credit-default-

swaps (CDS) where the borrower is allowed to redeem the debt at any point in time.

The thesis concludes with a summary of the main results and an acknowledgment.
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To summarize, the main contributions of this thesis are threefold:

• We present analytic expressions for the two-sided first-exit times of continuously

time-changed Brownian motion extending single barrier results by, for example,

Kammer [2007], Hurd [2009], and Hurd and Kuznetsov [2009]. From a numerical

point of view the resulting expressions turn out to be more convenient than the

Fourier integrals by Hurd [2009]. We show how these results can be used to price

barrier derivatives (see Hieber and Scherer [2012], Escobar et al. [2013]).

• We extend the Brownian bridge algorithms of Metwally and Atiya [2002] to

regime switching parameters and two barriers (see Hieber and Scherer [2010],

Fernández et al. [2013]) and show how those algorithms can be adapted to price

many exotic barrier derivatives.

• Finally, we show that – apart from barrier derivatives – our results have many

interesting practical applications. Using a large and unique database on private

equity transactions, we determine drivers of private equity sponsors’ risk appetite

(see Braun et al. [2011]). Furthermore, we propose a portfolio model to price

loan-credit-default-swaps (LCDS) (see Hieber and Scherer [2013]).



Chapter 2

First-exit time probabilities

One- and two-sided exit problems for stochastic processes are classical mathematical prob-

lems with various applications in finance, engineering, biology, and physics. This chapter

presents first-exit time probabilities for a large variety of stochastic processes. First, Sec-

tion 2.1 gives a historic overview on first-exit time results focusing on applications in

Mathematical Finance.

2.1 Motivation and literature review

First-exit time problems first occurred in physics, sequential analysis, and statis-

tics, for example to study irregularly moving particles (see, e.g., Schrödinger [1915],

Darling and Siegert [1953], Feller [1966], Folks and Chhikara [1978]).

Presumably the first time that first-exit time problems were introduced to Mathematical

Finance is the structural default model of Black and Cox [1976]. This seminal paper

monitors a geometric Brownian motion as an “ability-to-pay” process continuously in

time and controls whether it remains above a time-dependent default boundary. If the

threshold is hit, i.e. if the company is unable to pay its obligations, the company defaults,

an approach often referred to as structural credit risk model. For (geometric) Brownian

motion, this approach yields an analytical first-exit time distribution, see also Section 2.3.

Here, the probability of first hitting a lower (or an upper) threshold has extensively been

treated in the literature. Analytical solutions exist for Brownian motion on constant (see,

e.g., Darling and Siegert [1953], Geman and Yor [1996], Pelsser [2000]), on linear (see,

e.g., Kunitomo and Ikeda [1992], Dominé [1996], Hall [1997]), or (at least in sufficient

approximation) on any continuous (see, e.g., Novikov et al. [1999]) barriers. First-exit
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time problems frequently appear in the area of option pricing – for instance – when barrier

options are to be priced (see, e.g., Kunitomo and Ikeda [1992], Geman and Yor [1996],

Bertoin [1998], Lin [1999], Pelsser [2000], Kyprianou [2000], Rogers [2000], Sepp [2004],

and Hurd [2009]). For most stochastic processes a closed-form expression for the first-exit

time probabilities is unknown. The aforementioned case of (geometric) Brownian motion

is a convenient exception. However, financial modeling using (geometric) Brownian motion

(the corresponding model is referred to as Black–Scholes model) is often criticized for its

unrealistic simplicity. Thus, various extensions have been proposed:

• Exponential Lévy models: Lévy processes beyond Brownian motion are jump pro-

cesses with stationary and independent increments. Many examples have been pro-

posed in the literature, for example, CGMY, Variance Gamma, Normal inverse Gaus-

sian, or the Kou model (see, among many others, Merton [1976], Kyprianou [2000],

Cont and Tankov [2003]).

• Stochastic volatility models: In stochastic volatility models, volatility is a time-

dependent stochastic process. Examples are regime switching models, the CEV,

Heston, or Stein–Stein model (see, e.g., Jeanblanc et al. [2009]). A stochastic volatil-

ity can also be introduced by a stochastic time change (see, e.g., Geman et al. [2000],

Carr and Wu [2004], Hurd [2009]).

• Sato models: A possibility to extend Lévy models to inhomogeneous increments are

Sato models (see, e.g., Sato [1991], Carr et al. [2007]).

In this thesis, we mainly work with exponential Lévy models and with stochastic volatility

models relying on a stochastic time change. To this end, as a first step, we replace

calendar time by some suitably increasing stochastic process and show how several first-

exit time results can be generalized to the situation of a continuous time shift (see, e.g.,

Kammer [2007], Hurd [2009], Hieber and Scherer [2012]). In financial applications, the

interpretation of such a time change is a “business clock” or a “measure of economic

activity”. Clark [1973] gave the following motivation: “The different evolutions of price

series on different days is due to the fact that information is available to traders at a

varying rate. On days when no new information is available, trading is slow, and the price

process evolves slowly. On days when new information violates old expectations, trading is

brisk, and the price process evolves much faster”. Geman et al. [2000] examine time series

empirically and show that a time change represents a measure of trading activity. There

exist a large variety of different parameterizations for the “business clock”, for example,

integrated basic affine or shot-noise type processes. For such a specification, the first-exit
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time probabilities turn out to be infinite series of functionals of the Laplace transform

of the time change. Those series are easy to implement and allow for a straightforward

error control. In contrast to Fourier integrals (see, e.g., Hurd [2009]), we avoid possibly

oscillating integrals on the complex plane. Furthermore, a numerical implementation of

the series turns out to be significantly faster than Fourier techniques.

However, a continuous time shift leads to continuous asset processes and thus can-

not explain several empirical observations concerning market returns and its underly-

ing derivative’s prices (see the discussions in, e.g., Chahal and Wang [1997], Das [2002],

Cont and Tankov [2003], Jarrow and Protter [2004]). For example, when used as firm-

value process in structural credit risk models, continuous diffusion implies vanishing credit

spreads for short-dated bonds/CDS (see, e.g., Jones et al. [1984], Giesecke [2006]).

That motivates why, in a second step, we consider jump-diffusion processes. The first-exit

time of jump-diffusions, however, is mathematically challenging. In rare cases, at least

the Laplace transforms of the first-exit times are available. This is the case if the jump

size distribution is phase-type, if it, for example, follows a single- or double-exponential

distribution (see, e.g., Boyarchenko and Levendorskĭi [2002], Kou and Wang [2003]), or if

the jump size distribution is a spectrally one-sided Lévy process (see, e.g., Rogers [2000]).

Those results can often be extended to two barriers, for example, in the double-exponential

jump-diffusion model, see Sepp [2004]. For arbitrary jump-size distributions or extensions

like, for example, state-dependent drift, volatility, and jump size, state of art is to rely on

numerical schemes. The most frequent approaches are recalled in the following:

• Wiener–Hopf factorization: The Laplace transform of the first-exit time prob-

abilities can numerically be computed using the so-called Wiener-Hopf fac-

torization (see, e.g., Kyprianou [2000], Boyarchenko and Levendorskĭi [2002],

Boyarchenko and Levendorskĭi [2012], Mijatović and Pistorius [2013], and the ref-

erences therein).

• PIDE techniques: First-exit time problems result in partial integro-differential equa-

tions (PIDEs) that can be solved numerically (see, e.g., Cont and Voltchkova [2005],

Hilber et al. [2013] and the references therein).

• Monte–Carlo simulation: Another strand of literature focuses on Monte–Carlo

techniques. The straightforward approach of a (brute-force) simulation on a dis-

crete grid has been extended or improved (see, e.g., Metwally and Atiya [2002],

Giesecke and Smelov [2011], Figueroa-López and Tankov [2012], and many others).

(Brute-force) Monte–Carlo simulations exhibit two disadvantages (see, e.g., Zhou [2001a],

Platen and Bruti-Liberati [2010]): First, even for a daily grid, we obtain a significant
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discretization bias. Second, computation time increases rapidly if one has to simulate on

a fine grid. However, there are ways to remove or reduce this bias, especially for jump-

diffusion models. Figueroa-López and Tankov [2012] develop an adaptive discretization

scheme for the simulation of functionals of killed Lévy processes with controlled bias.

Giesecke and Smelov [2011] present an unbiased sampling algorithm applying a technique

called “acceptance/rejection” (see, e.g., von Neumann [1951]). Metwally and Atiya [2002]

provide an unbiased, fast, and accurate alternative based on the so-called “Brownian

bridge technique”. Since the latter approach is one of the main topics of this thesis it

is explained in more detail. In Brownian bridge algorithms, one proceeds as follows:

First, the jump-instants of the process as well as the process immediately before and

after the jump times are simulated. In between these generated points, one has a pure

diffusion with fixed endpoints. Here, the so-called Brownian bridge probabilities provide an

analytical expression for the first-exit time on a given threshold. This simulation technique

turns out to be (1) unbiased and (2) significantly faster than the brute-force Monte–Carlo

simulation. It has various applications in finance and can, for example, be used to derive

efficient algorithms for pricing single barrier options in jump-diffusion models (see, e.g.,

Metwally and Atiya [2002], Ruf and Scherer [2011]) or regime-switching models (see, e.g.,

Hieber and Scherer [2010], Henriksen [2011]).

An extension of the Brownian bridge algorithms to two barriers is possible and has been

considered in, e.g., Shevchenko [2003], Gobet [2009]. We further exploit their ideas mainly

concentrating on three aspects: (1) We extend the model by a regime switching component,

i.e. the diffusion can now switch between a finite number of states with distinct mean and

volatility. This allows us to depart from the assumption of independent increments in

Lévy models. (2) We are able to compute not only the first-exit time probabilities, but

also expectations of arbitrary functionals of the first-exit time. (3) Apart from the barrier

hitting probabilities, we also estimate the probability which one of the two barriers was

hit first. The latter two features are important in many financial applications: In credit

risk, the first-exit time (and not only the first-exit time probability) is vital to adequately

model relevant payment streams. A second barrier allows to model – apart from default –

a second exit event, i.e. an Initial Public Offering (IPO) or an early repayment of debt (see,

e.g., Dobránszky and Schoutens [2008, 2009], Hieber and Scherer [2013]). For some exotic

derivatives, for example corridor bonus certificates, the two thresholds trigger distinct

events and have to be treated separately.

The remaining chapter is organized as follows: After introducing basic notation, various

first-exit time results on Brownian motion are reviewed in Section 2.3. In Section 2.4, it is

shown how those results can be extended to (continuously) time-changed Brownian motion

providing error bounds and details on implementation. For more flexible processes, one
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has to rely on numerical schemes: Section 2.5 presents the Brownian bridge algorithms

to estimate the first-exit time probabilities of regime switching jump-diffusions, extending

results by Metwally and Atiya [2002], Shevchenko [2003], and Gobet [2009]. The chapter

concludes by a numerical example, comparing different models and numerical techniques.

2.2 Definition and notation

Throughout, we work on the probability space (Ω,F ,P), supporting all required stochastic

processes. We consider a stochastic process B = {Bt}t≥0 with initial value B0 = 01.

Assume that there are two constant barriers b < B0 = 0 < a and define the first-exit time

Tab := inf {t ≥ 0 : Bt /∈ (b, a)} , (2.1)

where inf{∅}=∞, T+
ab := {Tab |Tab = Ta,−∞}, T−

ab := ∞ if BTab
≥ a and T+

ab := ∞,

T−
ab := {Tab |Tab = T∞,b} if BTab

≤ b, i.e. if the lower barrier b is hit first, the first-exit

time is Tab = T−
ab; if the upper barrier a is hit first, the first-exit time is Tab = T+

ab.

Theorems, lemmas, and algorithms in this chapter focus on the upper barrier first-exit
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Figure 2.1: Continuous sample path B = {Bt}0≤t≤1 together with the two constant barriers

b < B0 = 0 < a. In this example, the path stays within the corridor (b, a) = (−0.25, 0.20).

time T+
ab. By symmetry (in the case of Brownian motion, one for example has to reverse

the signs of a, b, µ, and B0), the results can (in most cases) similarly be derived for T−
ab.

To demonstrate the first-exit time setting, a sample path together with the two barriers a

1If one is interested in the first-exit time of a process B̃ with B̃0 := x 6= 0 on two constant barriers

b̃ < x < ã, the results in this chapter are still valid if Bt = B̃t − x for all t ≥ 0, a = ã − x, and b = b̃ − x.
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and b is given in Figure 2.1. In the following, we want to derive first-exit time probabilities

for different stochastic processes B on the finite interval [0, T ], where T <∞.

2.3 Brownian motion

The simplest model is a Brownian motion with drift, i.e. the process B satisfies the stochas-

tic differential equation (sde) dBt = µdt + σdWt, where W = {Wt}t≥0 is a standard

Brownian motion, i.e. B has constant drift µ ∈ R and volatility σ > 0.

2.3.1 First-exit time probabilities

The single barrier first-exit time probability is originally due to Schrödinger [1915], a

review is given in Folks and Chhikara [1978]. Lemma 1 recalls this well–known result.

Lemma 1 (Exit time probability for a Brownian motion with drift)

Consider a time to maturity T <∞ and a Brownian motion B with B0 = 0, drift µ ∈ R,

and volatility σ > 0. The first-exit time probability on a constant upper barrier a > B0 = 0

is given by

P(Ta,−∞ ≤ T ) = Φ

(−a+ µT

σ
√
T

)

+ exp

(
2µa

σ2

)

Φ

(−a− µT

σ
√
T

)

, (2.2)

where Φ( · ) denotes the standard normal cumulative distribution function.

Lemma 2 extends this result to two barriers, see also Darling and Siegert [1953]. In the

literature, two parameterizations of those first-exit time probabilities are used, displayed

as representation (a) and (b) in Lemma 2. The connection between the two is possible by

the Jacobi transformation formula (see, e.g., Fernández et al. [2013]).

Lemma 2 (Double exit time probabilities for a Brownian motion with drift)

Consider a time to maturity T <∞ and a Brownian motion B with B0 = 0, drift µ ∈ R,

and volatility σ > 0. Then, there are two representations known for the first-exit time

probabilities on two constant barriers b < B0 = 0 < a.

Representation (a):

P(T+
ab ≤ T ) =

∞∑

n=1

[

exp
(

− µ

σ2
kn−1

)

Φ

(

µT − kn−1 − a

σ
√
T

)

− exp
(

− µ

σ2
(kn − a)

)

Φ

(

µT − kn + a

σ
√
T

)]

+
∞∑

n=1

[

exp
( µ

σ2
(kn + b)

)

Φ

(

−µT − kn−1 − a

σ
√
T

)

− exp
( µ

σ2
kn

)

Φ

(

−µT − kn + a

σ
√
T

)]

,
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P(Tab ≤ T ) =

∞∑

n=−∞

exp
( µ

σ2
kn

)
[

Φ

(

µT + kn − a

σ
√
T

)

− Φ

(

µT + kn − b

σ
√
T

)]

+ exp
( µ

σ2
(kn − a)

)
[

Φ

(

µT − kn + a

σ
√
T

)

− Φ

(

µT − kn−1 + b

σ
√
T

)]

,

where kn := 2n(a−b) and the standard normal cumulative distribution function is denoted

Φ( · ).

Representation (b):2

P(T+
ab ≤ T ) =

exp
(
− 2µb

σ2

)
− 1

exp
(
− 2µb

σ2

)
− exp

(
− 2µa

σ2

) + exp
(µa

σ2

)

K∞
T (b), (2.3)

P(Tab ≤ T ) = 1 −
(

exp
(µb

σ2

)

K∞
T (a) − exp

(µa

σ2

)

K∞
T (b)

)

, (2.4)

where

KN
T (k) :=

σ2π

(a− b)2

N∑

n=1

n(−1)n+1

µ2

2σ2 + σ2n2π2

2(a−b)2

exp

(

−
(

µ2

2σ2
+

σ2n2π2

2(a− b)2

)

T

)

sin

(
nπk

a− b

)

.

Proof. A proof of representation (a) is provided in Lin [1999], see also Appendix A.2.

To obtain representation (b), denote by f+
ab(t), f

−
ab(t), and fab(t) the first-exit time

intensities3 corresponding to T+
ab, T

−
ab, and Tab. Their Laplace transforms f̂ab(λ) :=

∫∞
0 exp(−λt)fab(t)dt are derived in Darling and Siegert [1953] as

f̂+
ab(λ) = exp

(µa

σ2

) sinh
(√

µ2+2σ2λ

σ2 b
)

sinh
(√

µ2+2σ2λ

σ2 (b− a)
) , f̂

−
ab(λ) = −f̂+

ba(λ).

From Laplace inversion tables, e.g. Oberhettinger and Badii [1973], p. 295, one obtains

L−1
[
f+
ab

]
(t) =

σ2π

(a− b)2

∞∑

n=1

n(−1)n exp

(

µa

σ2
−
( µ2

2σ2
+

σ2n2π2

2(a− b)2

)

t

)

sin
( nπb

a− b

)

.

Then, the first-exit time probability is P(T+
ab ≤ T ) =

∫ T
0 f+

ab(t)dt. To simplify this ex-

pression, one can use the identity sinh(kx) = 2
π sinh(kπ)

∑∞
n=1

(−1)n+1n
n2+k2 sin(nx) (see, e.g.,

2For µ = 0, the first term in Equation (2.3) has to be replaced by limµ→0
exp
(
− 2µb

σ2

)
−1

exp
(
− 2µb

σ2

)
−exp

(
− 2µa

σ2

) = − b
a−b

.

3Note that we use the term “intensities” instead of “densities”, since there is a non-zero probability that

the upper, respectively lower, barrier is not hit.
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Rottmann [2008], p. 126). If we set x = πb/(a − b), k = ±(a − b)µ/(πσ2), and use that

sinh(−y) = − sinh(y) for all y ∈ R, we find that

exp
(µa

σ2

) πσ2

(a− b)2

∞∑

n=1

(−1)n+1n
µ2

2σ2 + σ2n2π2

2(a−b)2

sin
( nπb

a− b

)

= exp
(µa

σ2

) sinh
(

− bµ
σ2

)

sinh
(

(b−a)µ
σ2

) =
1 − exp

(
− 2µb

σ2

)

exp
(
− 2µb

σ2

)
− exp

(
− 2µa

σ2

) .

Similarly, P(T−
ab ≤ T ) can be derived. The expression for P(T+

ab ≤ T ) + P(T−
ab ≤ T )

= P(Tab ≤ T ) is also displayed in Darling and Siegert [1953]4 and in Dominé [1996].

2.3.2 Brownian bridge probabilities

Due to its convenient mathematical structure, Brownian motion is analytically very

tractable. Consequently, we aim at exploiting this tractability for more complicated pro-

cesses. For this purpose, we need so-called Brownian bridges that later constitute a major

part of the Brownian bridge algorithms in Section 2.5. Therefore, consider a fixed time

interval (ti−1, ti), where 0 ≤ ti−1 < ti < ∞, i ∈ N. Define, conditional on the path values

at the edges of this time interval, i.e. Bti−1 =: xi−1 ∈ (b, a) and Bti =: xi, Brownian bridge

probabilities

BB+
ab(ti−1, ti, xi−1, xi) := P

(
ti−1 < T+

ab < ti |Bti−1 = xi−1, Bti = xi
)
, (2.5)

BB−
ab(ti−1, ti, xi−1, xi) := P

(
ti−1 < T−

ab < ti |Bti−1 = xi−1, Bti = xi
)
, (2.6)

BBab(ti−1, ti, xi−1, xi) := BB+
ab(ti−1, ti, xi−1, xi) +BB−

ab(ti−1, ti, xi−1, xi). (2.7)

For xi−1 /∈ (b, a), we set BB+
ab(ti−1, ti, xi−1, xi) = BB−

ab(ti−1, ti, xi−1, xi) = 0. In the single

barrier case, the Brownian bridge probabilities are surprisingly simple. We find that (see,

e.g., Jeanblanc et al. [2009], p. 240)

lim
b→−∞

BBab(ti−1, ti, xi−1, xi) =







exp
(

− 2(xi−1−a)(xi−a)
σ2(ti−ti−1)

)

, max(xi, xi−1) < a,

1, else.
(2.8)

As in the case of the unconditional first-exit time probabilities, the extension to two barri-

ers yields rapidly sloping infinite series. Again, we provide two different representations for

4Note that the expression in Darling and Siegert [1953], p. 633, contains two typos: π2 has to be replaced

by π and (−1)n by (−1)n+1.
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the probabilities. Representation (a) refers to Anderson [1960]; representation (b) to, e.g.,

Cox and Miller [1965]. The Brownian bridge probabilities for two barriers are presented

in Theorem 1.

Theorem 1 (Brownian bridge probabilities)

Consider a time interval (ti−1, ti), where 0 ≤ ti−1 < ti < ∞, and a Brownian motion

Bt with volatility σ > 0. Assume that xi−1 := Bti−1 ∈ (b, a). Then, there are two

representations for the Brownian bridge probabilities on two constant barriers b < B0 < a.

Representation (a):

For xi := Bti ∈ (b, a) we get

BBab(ti−1, ti, xi−1, xi) =
∞∑

n=−∞

[

exp

(

− 2n(a− b)

σ2(ti − ti−1)

(
xi−1 − xi + n(a− b)

)

)

+ exp

(

− 2
(
xi − na+ (n− 1)b

)(
xi−1 − na+ (n− 1)b

)

σ2(ti − ti−1)

)]

− 1. (2.9)

If xi := Bti ∈ (−∞, a),

BB+
ab(ti−1, ti, xi−1, xi) =

∞∑

n=1

[

exp

(

− 2
(
xi−1 − na+ (n− 1)b

)(
xi − na+ (n− 1)b

)

σ2(ti − ti−1)

)

− exp

(

− 2n(a− b)

σ2(ti − ti−1)

(
xi−1 − xi + n(a− b)

)

)]

. (2.10)

Representation (b):

For xi := Bti ∈ (b, a) we find that

BBab(ti−1, ti, xi−1, xi) := 1 − 2
√

2πσ
√
ti − ti−1

a− b
exp

(

(xi − xi−1)
2

2σ2(ti − ti−1)

)

·
∞∑

n=1

exp

(

− n2π2σ2

2(a− b)2
(ti − ti−1)

)

sin
(nπ(xi−1 − b)

a− b

)

sin
(nπ(xi − b)

a− b

)

. (2.11)

If xi := Bti /∈ (b, a), one of the barriers was hit for sure, i.e. BBab(ti−1, ti, xi−1, xi) = 1.

If xi > a, the probability of hitting the level a first is

BB+
ab(ti−1, ti, xi−1, xi) := 1 −BB+

−b−a(ti−1, ti,−xi−1,−xi). (2.12)
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Proof. For a proof of representation (a), we refer to Anderson [1960]. In a sometimes

more convenient notation the formulas are displayed in Novikov et al. [1999], Remark 2.

For a proof of the expression BBab(ti−1, ti, xi−1, xi), see, e.g., Geman and Yor [1996]. The

connection to the first-exit time probabilities is given in, e.g., Fernández et al. [2013].

Representation (b) is to be found in, e.g., Cox and Miller [1965], Pelsser [2000].

In some applications, we are not only interested in the (conditional) first-exit time prob-

abilities, but also in the time ti−1 < t < ti this first exit event takes place. Therefore, we

denote Brownian bridge first-exit time intensities5 by

g+
ab(t, xi−1, xi) := P

(
T+
ab ∈ dt |Bti−1 = xi−1, Bti = xi

)
, (2.13)

g−ab(t, xi−1, xi) := P
(
T−
ab ∈ dt |Bti−1 = xi−1, Bti = xi

)
. (2.14)

Figure 2.2 gives one numerical example. The intensities indicate the likelihood of a barrier

crossing within the interval (ti−1, ti) = (0, 5). In this example, we observe that this event

is most likely during the first year (0, 1).
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Figure 2.2: The first-exit time intensities g+
ab(t, xi−1, xi) and g−ab(t, xi−1, xi) in the interval

(ti−1, ti) = (0, 5) using the parameters xi−1 = xi = 0, σ = 10%, upper barrier a = ln(1.10),

and lower barrier b = ln(0.85).

Theorem 2 first presents the intensities on one barrier.

5Note that we use the term “intensities” instead of “densities”, since there is a non-zero probability that

the upper, respectively lower, barrier is not hit and thus
∫ ti

ti−1

g+
ab(t, xi−1, xi) dt ≤ 1.
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Theorem 2 (First-exit time intensity I)

Consider a constant barrier a > B0 = 0 and a Brownian bridge Bt with volatility σ > 0.

Assume that xi−1 := Bti−1 < a. For xi := Bti and 0 ≤ ti−1 < t < ti < ∞ we get the

Brownian bridge first-exit time intensity

g+
a,−∞(t, xi−1, xi) =

a− xi−1√
2πσ2y(t− ti−1)

3
2 (ti − t)

1
2

exp

(

− (a− xi)
2

2(ti − t)σ2
− (a− xi−1)

2

2(t− ti−1)σ2

)

,

where y = exp
(

− (xi−xi−1)
2

2σ2(ti−ti−1)

)

/
√
ti − ti−1.

Proof. See, e.g., Feller [1966], Metwally and Atiya [2002], Ruf and Scherer [2011].

Adapting the main ideas by Feller [1966] and Metwally and Atiya [2002], it is possible to

generalize Theorem 2 to two constant barriers b < Bti−1 < a. Theorem 3 presents the

resulting analytical expressions for g+
ab(t, xi−1, xi),

Theorem 3 (First-exit time intensity II)

Consider two constant barriers b < B0 < a and a Brownian motion Bt with volatility

σ > 0. Assume that xi−1 := Bti−1 ∈ (b, a). For xi := Bti and 0 ≤ ti−1 < t < ti < ∞ the

Brownian bridge first-exit time intensity is given by

g+
ab(t, xi−1, xi) =

σ2π

(a− b)2

√
ti − ti−1√
ti − t

exp

(
(xi − xi−1)

2

2σ2(ti − ti−1)
− (xi − a)2

2σ2(ti − t)

)

·
∞∑

n=1

(−1)nn exp

(

− π2n2σ2

2(a− b)2
(t− ti−1)

)

sin
(πn(b− xi−1)

a− b

)

. (2.15)

Proof. See, e.g., Fernández et al. [2013].
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2.4 Time-changed Brownian motion6

Brownian motion is a relatively simple model that enjoys a high level of analytical tractabil-

ity. However, the underlying model assumptions of, for example, constant volatility are

often not justified. One simple way to include a stochastic volatility is to introduce a

stochastic time-scale, i.e. instead of {Bt}t≥0, we consider {BΛt}t≥0 for a suitable time-

change Λ = {Λt}t≥0, independent of B. Λ is assumed to be a (pathwise) continuous and

increasing stochastic process with Λ0 = 0 and limt→∞ Λt = ∞ P-a.s.. The model parame-

ters are usually set such that on average we are back in the situation of Brownian motion,

i.e. E[Λt] = t.

Especially in the context of financial applications, this extension is frequently used for two

reasons: (1) It is still analytically tractable, and (2) the time change allows for an econom-

ically reasonable interpretation as a measure of activity in an economy: On days when no

new information is available, markets are calm and only slightly volatile. If, however, new

and unexpected information arrives, markets move much faster (see, e.g., Clark [1973]).

Several authors worked on first-exit time probabilities for time–changed Brownian motion

on a single barrier. Overbeck and Schmidt [2005] treat the case of a deterministic and

continuous time change. Kammer [2007] extends those results to stochastic and continu-

ous time changes with known density. Time change densities, however, are rarely available

as usually only the Laplace transform of the time change is known (see, e.g., the examples

presented in Section 2.4.2). That motivates why Hurd [2009] presents the first-exit time

probability on one barrier in terms of a Fourier integral.

We extend and improve those existing results in two aspects: First, in contrast to

Overbeck and Schmidt [2005], Kammer [2007], and Hurd [2009], we present first-exit time

probabilities on both an upper and a lower threshold. Second, instead of Fourier integrals,

rapidly converging infinite series for the first-exit time probabilities are derived. Those

series are straightforward to implement and allow for an easy error control. We show that

those infinite series are numerically superior to Fourier integrals (see Section 3.1.4).

Time change models are frequently applied in Finance (see Section 3.1.4, Chapter 3).

For specific parameterizations, it is possible to represent (special cases of) several well-

known asset price models as a continuously time-changed Brownian motion. Some authors

price barrier derivatives analytically for special cases of the stochastic volatility models

of Heston (see, e.g., [Lipton, 2001, p. 235], Carr et al. [2003], Sepp [2006], Götz [2011],

Kiesel and Lutz [2011], Escobar et al. [2011]) and Stein–Stein (see, e.g., Götz [2011]).

6This section is based on: Hieber, P. and Scherer, M. (2012): A note on first-passage times of continuously

time-changed Brownian motion, Statistics and Probability Letters, Vol. 82, No. 1, pp. 165-172.
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The remainder of this section is organized as follows: Section 2.4.1 introduces the theo-

retical results on the first-exit times of time-changed Brownian motion. Several sample

parameterizations for the time change are given in Section 2.4.2. Finally, error bounds to

truncate the infinite series are presented in Section 2.4.3.

2.4.1 Theoretical results

The idea to approach exit problems for (continuously) time-changed Brownian motion is

conceptually surprisingly simple. Conditioned on the time change ΛT , we are back in the

case of Brownian motion (with ΛT as new maturity), a situation that was already solved.

When we integrate out the distribution of ΛT to obtain unconditional probabilities, we ob-

serve that the required quantities can be interpreted as functions of the Laplace transform

of the time change ΛT , for which we exploit the specific structure of representation (b) in

Theorem 1. Fortunately, this Laplace transform is known for most popular specifications

of Λ, see the examples in Section 2.4.2.

As a slight extension of Lemma 1, Theorem 4 presents first-exit time probabilities on a

constant upper barrier a for a continuously time-changed Brownian motion; a result by

Hurd [2009].

Theorem 4 (Exit time probability for a time-changed Brownian motion)

Consider a time-changed Brownian motion BΛt with drift µ ∈ R, volatility σ > 0, initial

value B0 = 0, and a (pathwise) continuous time change Λ, independent of B. Denote

the Laplace transform of ΛT by ϑT (u) := E[exp(−uΛT )], u ≥ 0. The first-exit time on a

constant upper barrier a > B0 = 0 is given by

P(Ta,−∞ ≤ T ) =
1 + exp

(2µa
σ2

)

2

+
2 exp

(µa
σ2

)

π
Re

[
∫ ∞

0

sinh
(
µa
σ2 + iua

)

iu
ϑT

(σ2u2

2
− iuµ

)

du

]

. (2.16)

where Re(x+ iy) = x denotes the real part of the complex number x+ iy, x, y ∈ R.

Proof. See, e.g., Hurd [2009].

This result can be extended to the case of two barriers, following an idea by

Hieber and Scherer [2012]. The advantage of this result is the fact that one avoids the

Fourier integral in Equation (2.16) and can instead rely on a rapidly converging infinite

series. Error bounds to truncate this series are derived in Section 2.4.3.
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Theorem 5 (Double exit time probabilities for a time-changed Brownian motion)

Consider a time-changed Brownian motion BΛt with drift µ ∈ R, volatility σ > 0, initial

value B0 = 0, and a (pathwise) continuous time change Λ, independent of B. Denote the

Laplace transform of ΛT by ϑT (u) := E[exp(−uΛT )], u ≥ 0. Then, we obtain the first-exit

times on two constant barriers b < B0 = 0 < a as 7

P(T+
ab ≤ T ) =

exp
(
− 2µb

σ2

)
− 1

exp
(
− 2µb

σ2

)
− exp

(
− 2µa

σ2

) + exp
(µa

σ2

)

K∞
ΛT

(b), (2.17)

P(Tab ≤ T ) = 1 −
(

exp
(µb

σ2

)

K∞
ΛT

(a) − exp
(µa

σ2

)

K∞
ΛT

(b)
)

, (2.18)

where

KN
ΛT

(k) :=
σ2π

(a− b)2

N∑

n=1

n(−1)n+1

µ2

2σ2 + σ2n2π2

2(a−b)2

ϑT

(
µ2

2σ2
+

σ2n2π2

2(a− b)2

)

sin

(
nπk

a− b

)

.

Proof. Recall from Lemma 2 the first-exit time probabilities of Brownian motion (Λt ≡ t).

Then,

K∞
ΛT

(k) = E

[

E
[
K∞
T̃

(k)
∣
∣ T̃ = ΛT

]]

=
σ2π

(a− b)2

∞∑

n=1

n(−1)n+1

µ2

2σ2 + σ2n2π2

2(a−b)2

E

[

exp

(

−
(
µ2

2σ2
+

σ2n2π2

2(a− b)2

)

ΛT

)]

sin

(
nπb

a− b

)

=
σ2π

(a− b)2

∞∑

n=1

n(−1)n+1

µ2

2σ2 + π2n2σ2

2(a−b)2

ϑT

(
µ2

2σ2
+

π2n2σ2

2(a− b)2

)

sin

(
πnb

a− b

)

.

Note that the first equality holds for continuous time changes only; if there is a jump in

time, one might not observe a barrier crossing (see Remark 1 and Figure 2.3). Hence, this

theory does not generalize to Lévy subordinators.

Remark 1 (Restriction to continuous time-transformations)

Note that Theorem 5 does not hold for discontinuous time-transformations, for example for

Lévy subordinators. If there is a jump in the time transformation Λ, we do not observe the

time-changed Brownian motion on the whole interval [0,ΛT ], see also Figure 2.3. Thus,

the true barrier hitting probabilities in the case of a discontinuous time transformation

are always lower than the expressions given in Theorem 5. To account for this issue

of discontinuous time changes, Hurd [2009] introduces the term first-passage time of

second kind that is in many applications also (economically) reasonable.

7For µ = 0, the first term in Equation (2.17) has to be replaced by limµ→0
exp
(
− 2µb

σ2

)
−1

exp
(
− 2µb

σ2

)
−exp

(
− 2µa

σ2

) = − b
a−b

.
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Figure 2.3: Example of a discontinuous time change. While the original process {Bt}t≥0

(black) hits the barrier, the time-changed process {BΛt}t≥0 (grey) does not. This is not

possible for continuous time changes; then barrier crossings are observed until time ΛT .

2.4.2 Examples

Continuous time transformations can easily be constructed by integrating over a positive

diffusion λ = {λt}t≥0, i.e. ΛT :=
∫ T
0 λtdt, T ≥ 0. Note that suitable models for the

stochastic clock can also be constructed by combining two time changes Λ
(1)
T and Λ

(2)
T ,

i.e. by addition Λ
(1)
T + Λ

(2)
T or subordination Λ

(1)

Λ
(2)
T

. We demonstrate the flexibility of

this approach by four examples, including intensities of CIR-type (Example 1), OU-type

(Example 2), shot-noise-type (Example 3), and regime-switching-type (Example 4).

Example 1 (CIR process)

A popular possibility to construct a continuous, stochastic time change is an integrated

Cox-Ingersoll-Ross (CIR) process as introduced in, e.g., Duffie et al. [2000]. The CIR

process is defined via the sde

dλt = θ(ν − λt)dt+ γ
√

λt dW̃t, λ0 > 0, (2.19)

where θ, ν, and γ are non-negative constants, and {W̃t}t≥0 a one-dimensional Brownian

motion. The Feller condition 2θν > γ2 guarantees that the process is almost surely positive,

see Feller [1951]. The Laplace transform of ΛT :=
∫ T
0 λtdt is given by (see, e.g., Cox et al.

[1985], Dufresne [2001], Albrecher et al. [2007])
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ϑCIR
T (u) := E

[

exp
(

− u

∫ T

0
λtdt

)]

=

(

exp(θT/2)

cosh(̺T ) + θ
2̺ sinh(̺T )

) 2θν

γ2

exp

(

− sinh(̺T )λ0u

̺ cosh(̺T ) + θ
2 sinh(̺T )

)

, (2.20)

where ̺ := 1
2

√

θ2 + 2uγ2. Furthermore, there is an analytical expression for the average

speed of the time change, i.e.

E[ΛT ] =
λ0

θ
− ν

θ
+ νT + exp(−θT )

(

− λ0

θ
+
ν

θ

)

. (2.21)

As a generalization of the CIR process, λ can be modeled as a basic affine process, see,

e.g., Duffie et al. [2000]. This allows for an additional jump component of the intensity

process. Note that the integrated intensity remains continuous in time and the Laplace

transforms of the integrated intensity process are still known.

Example 2 (OU process)

To guarantee the positiveness of λ, we define an integrated Ornstein-Uhlenbeck (OU) pro-

cess via ΛT :=
∫ T
0 λtdt, λt := σ2

t , and

dσt = ξ(σt − κ)dt+ k dWt, σ0 > 0, (2.22)

where ξ, κ, and k are positive constants; {Wt}t≥0 a one-dimensional Brownian motion.

σ = {σt}t≥0 is an arithmetic Ornstein-Uhlenbeck process, with a tendency to revert back

to a long-run average level of κ. The Laplace transform of ΛT :=
∫ T
0 λtdt is given by, see,

e.g., Stein and Stein [1991]

ϑOU
T (u) := E

[

exp
(

− u

∫ T

0
λtdt

)]

= exp
(
L(u)λ2

0/2 +M(u)λ0 +N(u)
)
, (2.23)

where the functions L(u), M(u), and N(u) are given in Appendix A.1. Furthermore

E[ΛT ] =
1

ξ

[(
κ − λ0

)(
1 − exp(−θT )

)
− ξκT

]

. (2.24)

Example 3 (Shot-noise process)

Consider a shot-noise process8 as in Cox and Isham [1980], Dassios and Jang [2003]

λt = λ0 exp(−δt) +
∑

si≤t

Mi exp
(
− δ(t− si)

)
, t ≥ 0, (2.25)

where λ0 > 0 is the initial intensity, δ > 0 the exponential decay rate, {si}i≥1 are the

jump times of a time-homogeneous Poisson process with intensity ψ > 0, and Mi ∼ Exp(ζ)

are exponentially distributed jump sizes. The Laplace transform of the integrated process

8Note that the presented model is not the most general definition of a shot-noise process. It is without

difficulty possible to, for example, change the jump size distribution, see Dassios and Jang [2003].
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Figure 2.4: Sample innovations in the case of Brownian motion (above) compared to

time-changed Brownian motion for a time change ΛT :=
∫ T
0 λtdt. Intensities λ of CIR-

type (second from above, Example 1), OU-type (third from above, Example 2), shot-noise-

type (forth from above, Example 3), and Markov-switching-type (below, Example 4) are

presented.
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ΛT :=
∫ T
0 λtdt is given by9

ϑsnT (u) := E

[

exp
(

− u

∫ T

0
λtdt

)]

= exp

(

− uλ0

δ

(
1 − exp(−δT )

)
− ψT +

ψT + ψ
δ ln

(

1 + u
δζ

(
1 − exp(−δT )

))

1 + u
δζ

)

. (2.26)

The average time change ΛT can be obtained as

E[ΛT ] =
(λ0

δ
− ψ

δ2ζ

)(
1 − exp(−δT )

)
+
ψT

δζ
. (2.27)

Example 4 (Markov-switching model)

A very illustrative way to include stochastic volatility constitute so called Markov-switching

models, proposed by Hamilton [1989]. Here, λt is state dependent and can (only) take

finitely many values. A continuous time Markov chain models the transition between those

values. The continuous time change is then defined via ΛT :=
∫ T
0 λtdt and

λt = kZt , (2.28)

where Z = {Zt}t≥0, Zt ∈ {1, 2, . . . ,M}, is a time-homogeneous Markov chain. An inten-

sity matrix Q0 parameterizes the transition probabilities between the different states of the

Markov chain and π := (P(Z0 = 1),P(Z0 = 2), . . .)′ is the initial distribution on the states.

Chapter 2.5 discusses those type of models in more detail. The Laplace transform of the

time change is then given by (see, e.g., Buffington and Elliott [2002])

ϑms
T (u) := E

[

exp
(

− u

∫ T

0
λtdt

)]

=

〈

exp






Q0T − u







k2
1 0 0

0 k2
2 0

0 0 . . .






T













π1

π2

. . .






,1

〉

. (2.29)

The average stochastic time change is

E[ΛT ] =

〈







k2
1 0 0

0 k2
2 0

0 0 . . .






T exp (Q0T )







π1

π2

. . .






,1

〉

. (2.30)

Figure 2.4 presents sample paths of return processes generated by time-changed Brownian

motion {BΛt}t≥0. Innovations of Brownian motion (above) are compared to the different

9This Laplace transform can be obtained from Dassios and Jang [2003] by introducing exponential jump

sizes ĝ(u) = 1/(1 + u/ζ) in Equation (2.10), p. 79.
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time change models (Examples 1–4). In the case of Brownian motion, return innovations

are independent and identically distributed (i.i.d.), a feature of any Lévy model. In Exam-

ples 1–4, we are able to leave the class of Lévy models; return distributions are no longer

i.i.d. but state-dependent. Here, one observes a stochastic volatility: Calm periods with a

lower volatility alternate with more volatile periods.

There are many other examples of a continuous time change not covered in this the-

sis. Frequently used is the Hull-White model (see, e.g., Hull and White [1987]). This

type of model also occurs as a continuous diffusion limit of GARCH models (see, e.g.,

Klüppelberg et al. [2004], Brockwell et al. [2006]). However, there is no explicit expres-

sion for the characteristic function.

Furthermore, rich volatility structures can be obtained by multi–factor models. An ex-

tension of Examples 1, 2, and 3 to multi–factor models is straightforward and will be

considered in the application to option pricing, see Section 3.1.1.

2.4.3 Error bounds

To implement the probabilities in Lemma 2 and Theorem 5, the infinite series K∞
ΛT

have

to be approximated by finite series KN
ΛT

. Theorem 6 presents corresponding error bounds

if the Laplace transform of the time change is exponentially bounded, i.e. if ϑT (u) ≤
J exp(−Mu), where J,M are positive constants, and if the Laplace transform is bounded

by J∗ exp(−M∗√u), where J∗,M∗ are again positive constants. Then, it is possible to

derive error bounds for all examples presented in Section 2.4.2.

Theorem 6 (Error bounds)

Define the (absolute) computation error of the first-exit time probability P(Tab ≤ T ) by

ǫ :=

∣
∣
∣
∣
P(Tab ≤ T ) −

(

1 −
(

exp
(µb

σ2

)

KN
ΛT

(a) − exp
(µa

σ2

)

KN
ΛT

(b)
))
∣
∣
∣
∣
. (2.31)

For a given precision ǫ > 0, a lower bound for the summation index N ∈ N is required.

(a) If the Laplace transform of the time change is exponentially bounded, i.e. if ϑT (u) ≤
J exp(−Mu), where J,M are positive constants, we find that

N >

√
√
√
√−2(a− b)2

π2σ2M

[

ln

(

π3σ2Mǫ

4(a− b)2J

)

− |µ|max{|a|, |b|}
σ2

]

. (2.32)

(b) If ϑT (u) ≤ J∗ exp(−M∗√u), where J∗,M∗ > 0 are positive constants, then

N > −
√

2(a− b)

πσM∗

[

ln

(

π2σM∗ǫ

4
√

2(a− b)J∗

)

− |µ|max{|a|, |b|}
σ2

]

. (2.33)
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Proof. For part (a), i.e. if ϑT (u) ≤ J exp(−Mu), where J,M are positive constants, we

get from Equation (2.31)

ǫ =

∣
∣
∣
∣
exp

(µb

σ2

)(
K∞

ΛT
(a) −KN

ΛT
(a)
)
− exp

(µa

σ2

)(
K∞

ΛT
(b) −KN

ΛT
(b)
)
∣
∣
∣
∣

(∗)

≤
∣
∣
∣
∣
∣

(

exp
(µb

σ2

)

+ exp
(µa

σ2

)) σ2π

(a− b)2

∞∑

n=N+1

n
σ2n2π2

2(a−b)2

ϑT

(

µ2

2σ2
+

σ2n2π2

2(a− b)2

)∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
exp

( |µ|max{|a|, |b|}
σ2

) 4

π

∞∑

n=N+1

1

n
ϑT

(

σ2n2π2

2(a− b)2

)∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
J exp

( |µ|max{|a|, |b|}
σ2

) 4

π

∫ ∞

N

1

n
exp

(

−M
π2σ2

2(a− b)2
n2

)

dn

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
J exp

( |µ|max{|a|, |b|}
σ2

)4(a− b)2

π3σ2M
exp

(

−M
π2σ2

2(a− b)2
N2

)∣
∣
∣
∣
∣
.

From this, a lower bound for the summation index N is obtained as

N >

√
√
√
√−2(a− b)2

π2σ2M

[

ln

(

π3σ2Mǫ

4(a− b)2J

)

− |µ|max{|a|, |b|}
σ2

]

. (2.34)

For part (b), if ϑT (u) ≤ J∗ exp(−M∗√u), where J∗,M∗ are positive constants, we get

analoguously

ǫ
(∗)

≤
∣
∣
∣
∣
∣
J∗ exp

( |µ|max{|a|, |b|}
σ2

) 4

π

∫ ∞

N

1

n
exp

(

−M∗ πσ√
2(a− b)

n

)

dn

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
J∗ exp

( |µ|max{|a|, |b|}
σ2

)4
√

2(a− b)

π2σM∗
exp

(

−M∗ πσ√
2(a− b)

N

)∣
∣
∣
∣
∣
.

Then,

N > −
√

2(a− b)

πσM∗

[

ln

(

π2σM∗ǫ

4
√

2(a− b)J∗

)

− |µ|max{|a|, |b|}
σ2

]

. (2.35)

The estimation
(∗)

≤ is also an upper bound for the (absolute) computation error of the prob-

abilities P(T−
ab ≤ T ) and P(T+

ab ≤ T ). Thus, the bounds in Equation (2.34), respectively

Equation (2.35), can also be used to truncate the series representations of P(T−
ab ≤ T ) and

P(T+
ab ≤ T ), see also Hieber and Scherer [2012].

Lemma 3 applies the results from Theorem 2.4.3 to the examples in Section 2.4.2, i.e.

if the time change Λ is an integrated CIR process (Example 1), an integrated shot-noise

process (Example 3), or an integrated regime-switching process (Example 4).
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Lemma 3 (Truncating K∞
ΛT

)

Define the (absolute) computation error of P(Tab ≤ T ) by

ǫ :=

∣
∣
∣
∣
P(Tab ≤ T ) −

(

1 −
(

exp
(µb

σ2

)

KN
ΛT

(a) − exp
(µa

σ2

)

KN
ΛT

(b)
))
∣
∣
∣
∣
. (2.36)

To obtain a given precision ǫ > 0, a lower bound for the summation index N ∈ N is. . .

(a) . . . in the case of Brownian motion

N >

√
√
√
√−2(a− b)2

π2σ2T

[

ln

(

π3σ2Tǫ

4(a− b)2

)

− |µ|max{|a|, |b|}
σ2

]

. (2.37)

(b) . . . in Example 1, i.e. an integrated CIR process with parameters (θ, ν, γ, λ0)

N >
(a− b)

πσM∗

(

|µ|max{|a|, |b|}
σ2

+
θ2νT

γ2
− ln

(

ǫπ2σM∗

4
√

2(a− b)

))

, (2.38)

where M∗ := λ0

(
1 − exp(−

√

θ2 + 2γ2T )
)
/
√

θ2 + 2γ2.

(c) . . . in Example 3, i.e. an integrated shot-noise process with parameters (δ, ζ, ψ, λ0)

N >

√
√
√
√−2δ(a− b)2

π2σ2λ0D∗

[

ln

(

π3σ2λ0D∗ǫ

4δ(a− b)2

)

− |µ|max{|a|, |b|}
σ2

]

. (2.39)

where D∗ := 1 − exp(−δT ).

(d) . . . in Example 4, i.e. an integrated regime-switching process with parameters ki,

i ∈ {1, 2, . . . ,M}

N >

√
√
√
√−2(a− b)2

π2λ2σ2T

[

ln

(

π3λ2σ2Tǫ

4(a− b)2

)

− |µ|max{|a|, |b|}
σ2

]

. (2.40)

where λ := mini∈{1,2,...,M} ki.

The same lower bounds hold for the (absolute) computation error of P(T+
ab ≤ T ) and

P(T−
ab ≤ T ).
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Proof. Part (a): In the Gaussian case, i.e. ΛT = T and ϑT (u) = exp(−uT ), we set M = T ,

J = 1.

Part (b): If the time change is an integrated CIR process (Example 1), using that

cosh(̺T/2) + θ/̺ sinh(̺T/2) > cosh(̺T/2) > 1, exp(̺T/2) ≥ exp(−̺T/2), and θ/̺ ≤ 1,

we find that

ϑCIRT (u) =

[

exp(θT/2)

cosh(̺T/2) + θ
̺ sinh(̺T/2)

] 2θν

γ2

exp

(

− u
λ0

̺

2 sinh(̺T/2)

cosh(̺T/2) + θ
̺ sinh(̺T/2)

)

≤ exp

(

θ2νT

γ2

)

exp

(

− u
λ0

√

θ2 + 2uγ2

(
1 − exp

(
−
√

θ2 + 2uγ2T
))

)

≤ exp

(

θ2νT

γ2

)

exp

(

−√
u

λ0
√

θ2 + 2γ2

(
1 − exp

(
−
√

θ2 + 2γ2T
))

)

,

where the last inequality holds for u ≥ 1. We can then apply Theorem 6(b) with M∗ =

λ0

(
1 − exp(−

√

θ2 + 2γ2T )
)
/
√

θ2 + 2γ2, J∗ = exp
(
θ2νT/γ2

)
.

Part (c): If Λ is an integrated shot-noise process, we obtain

ϑsnT (u) ≤ exp
(

− λ0

δ

(
1 − exp(−δT )

)
u
)

,

since ψ
1+ u

δζ

(

T + 1
δ ln

(
1 + u

δζ

(
1 − exp(−δT )

)))

is decreasing for u ∈ [0,∞). From this, we

find that M = λ0

(
1 − exp(−δT )

)
/δ, J = 1.

Part (d): For a regime switching volatility (Example 4), the Laplace transform of the time

change Λ is bounded via

ϑmsT (u) := E

[

exp
(

− u

∫ T

0
λtdt

)]

≤ exp

(

−u
∫ T

0
min

i∈{1,2,...,M}
k2
i dt

)

= exp

(

−u min
i∈{1,2,...,M}

k2
i T

)

.
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2.5 Regime switching jump-diffusion model10

The advantage of the results in Sections 2.3 and 2.4 is the fact that first-exit time proba-

bilities can be computed analytically. The underlying model assumptions (i.e. continuous

diffusion, independent increments) might, however, be unsatisfactory for many applica-

tions. In a structural credit risk model a continuous diffusion implies that firms cannot

default unexpectedly (i.e. by surprise), see, e.g., Giesecke [2006]. If a company is not in

distress, its short-term default probability is zero, therefore its short-term debt should

have zero credit spreads. This assumption is questioned by empirical data: For example

Jones et al. [1984] find that credit spreads on corporate bonds are generally too high to

be matched by a structural credit risk model with continuous diffusion. Another question-

able assumption are independent (and identically distributed) increments. On financial

markets, one observes periods of distress with a persistently higher risk; subsequent daily

returns tend to be dependent.

That is why, the quite general class of regime-switching jump diffusions is introduced in

the following. Since analytical expressions in this general setting are unavailable, efficient

and accurate numerical schemes to obtain the first-exit time probabilities are necessary.

On the probability space (Ω,F ,P), regime-switching jump diffusions are defined via

dBt = µZt dt+ σZt dWt + Y
N

Zt
t

dNZt
t , (2.41)

where Z = {Zt}t≥0 ∈ {1, 2, . . . ,M} is a time-homogeneous Markov chain and W =

{Wt}t≥0 an independent standard Brownian motion. The parameters now depend on

Z: Drift µZt ∈ R, volatility σZt > 0, and time in-homogeneous counting process

NZt = {NZt
t }t≥0, a Poisson process with intensity λZt ≥ 0 at time t. The initial value is

B0 = 0; the jump-sizes Y = {Yi}i≥1 are independent and identically distributed (i.i.d.)

with distribution PY . All processes are mutually independent.

The Markov chain is described by an intensity matrix11 Q0. The entries qij := Q0(i, j) of

this intensity matrix can easily be interpreted: The time spent in state i is exponentially

distributed with intensity −qii > 0. If a state change from the current state i occurs, the

probability of moving to state j 6= i is −qij/qii ≥ 0 (note that, since Q0 is an intensity

matrix, we have that −∑i6=j qij = qii).

10Part of this section is based on the papers: Hieber, P. and Scherer, M. (2010): Efficiently pricing barrier

options in a Markov-switching framework, Journal of Computational and Applied Mathematics, Vol. 235,

pp. 679-685. and Fernández, L.; Hieber, P. and Scherer, M. (2013): Double-barrier first-passage times of

jump-diffusion processes, Monte Carlo Methods and Applications, Vol. 19, No. 2, pp. 107–141.
11An intensity matrix has negative diagonal and non-negative off-diagonal entries. Each row sums up to

zero.
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In this type of model, it is usually difficult to derive analytical expressions for the first-exit

time probability P
(
Tab ≤ T

)
. In rare cases, however, at least a closed-form expression for

the Laplace transform of the first-exit time, i.e.

Ψab(u) := E
[
exp

(
− uTab

)]
(2.42)

is available. This turned out to be possible in the case of exponential jump-diffusion

models, i.e. if the jump-size distribution is either exponential or a mixture of ex-

ponential random variables. Examples include the Cramér-Lundberg model and sin-

gle, double, and hyper-exponential jump-diffusion models (see, e.g., Mordecki [1999],

Rogers [2000], Boyarchenko and Levendorskĭi [2002], Mordecki [2002], Avram et al. [2003],

Kou and Wang [2003], Asmussen et al. [2004], Lewis and Mordecki [2008], Cai [2009],

Cai et al. [2009]). One explanation for the tractability of exponential jump-diffusions

is the fact that exponential jumps can (up to a time change) be embedded in a con-

tinuous diffusion, namely a regime-switching model: Positive or negative exponential

jumps are added as an additional state with zero volatility and positive, respectively neg-

ative, slope (a technique referred to as “fluid embedding”, see, e.g., Asmussen et al. [2004],

Jiang and Pistorius [2008]). Continuous diffusion models turn out to be more tractable

than jump-diffusion models.

We present two popular examples where the Laplace transform of the first-exit time is

still available, both are special cases of the regime-switching jump-diffusion model (2.41).

First, Example 5 introduces the 2-state regime-switching model without jumps.

Example 5 (2-state regime-switching model without jumps)

In a 2-state world, i.e. Zt ∈ {1, 2} for all t ≥ 0, the diffusion part of the process B is

described by the intensity matrix Q0 and two sets of parameters: (µ1, σ1) and (µ2, σ2),

respectively. There are no jumps, i.e. the jump intensity λ is 0. One advantage of this

simple extension of Brownian motion (where Zt ∈ {1} for all t ≥ 0) is the fact that even

a 2-state regime switching model can better capture empirically observed phenomena, see,

for example, Timmermann [2000], Hardy [2001], Fuh et al. [2003]. The Laplace trans-

form of the first-exit time in a 2-state regime switching model was originally derived by

Guo [2001]; in a much more general setting a semi-analytical expression is presented by

Jiang and Pistorius [2008].

Due to its tractability, the double-exponential jump-diffusion model is frequently used in

academia. Example 6 introduces this model class together with the Laplace transform of

the first-exit time as derived in Kou and Wang [2003], Kou et al. [2005]. In this type of

model, mean µZt and volatility σZt are constant, i.e. Zt = 1 for all t ≥ 0.
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Example 6 (Double-exponential jump-diffusion)

One popular possibility to model jump sizes is the double-exponential distribution, see, e.g.,

Kou and Wang [2003]:

PY (dx) = pα⊕e
−α⊕x 1{x≥0}dx+ (1 − p)α⊖e

α⊖x 1{x<0}dx, (2.43)

where 0 ≤ p ≤ 1 is the probability that a jump has positive sign. Upward jumps are

exponentially distributed with parameter α⊕ > 1, downward jumps are exponentially dis-

tributed with parameter α⊖ > 0. Figure 2.5 gives one year of daily sample innovations in

a double-exponential jump-diffusion model.
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Figure 2.5: Sample innovations in a double-exponential jump-diffusion model.

The characteristic function of a double-exponential jump-diffusion model is given by (see,

e.g., Kou and Wang [2003])

ϕT (u, 0) := E
[
exp

(
iuBT

)]
= exp

(
Υ(u)T

)
, (2.44)

where β 6= α⊕, β 6= α⊖, and

Υ(β) :=µ1β +
1

2
σ2

1β
2 + λ

(

pα⊕

α⊕ − β
+

(1 − p)α⊖

α⊖ + β
− 1

)

. (2.45)

The Laplace transform of the first-exit time is given in Theorem 7.

Theorem 7 (First-exit time double-exponential jump-diffusion)

Denote the roots of Υ(β) = u by12 β4,u < −α⊖ < β3,u < 0 < β1,u < α⊕ < β2,u < ∞.

The Laplace transform (see Equation (2.42)) of the first-exit time on an upper barrier

a > B0 = 0, respectively a lower barrier b < B0 = 0, is given by

Ψa,−∞(u) =
β2,u

β2,u − β1,u

α⊕ − β1,u

α⊕
e−β1,ua +

β1,u

β2,u − β1,u

β2,u − α⊕

α⊕
e−β2,ua, (2.46)

Ψ∞, b(u) =
β3,u

β3,u − β4,u

α⊖ + β4,u

α⊖
eβ4,ub − β4,u

β3,u − β4,u

β3,u + α⊖

α⊖
eβ3,ub. (2.47)

12Those roots can be derived in closed-form, see the Appendix of Kou et al. [2005].



32 2.5 Regime switching jump-diffusion model

Proof. See, e.g., Kou and Wang [2003], Kou et al. [2005].

If one writes

Ψ±
ab(u) := E

[
exp

(
− uT±

ab

)]
, (2.48)

this result can be extended to the double barrier case, see Theorem 8.

Theorem 8 (Double barrier first-exit time double-exponential jump-diffusion)

Denote the roots of Υ(β) = u by β4,u < −α⊖ < β3,u < 0 < β1,u < α⊕ < β2,u < ∞.

The Laplace transform (see Equation (2.48)) of the double barrier first-exit times on two

barriers b < B0 = 0 < a is given by

Ψ+
ab(u) = 〈c+, 1〉, Ψ−

ab(u) = 〈c−, 1〉, (2.49)

where 〈 · 〉 denotes the scalar product and 1 a vector of ones of appropriate size. The

vectors c+ and c− are defined via M c+ = m+ and M c− = m−, where

M =










α⊖e
β2,ub

β2,u+α⊖

α⊖e
β1,ub

β1,u+α⊖

α⊖e
β3,ub

β3,u+α⊖

α⊖e
β4,ub

β4,u+α⊖

eβ2,ub eβ1,ub eβ3,ub eβ4,ub

eβ2,ua eβ1,ua eβ3,ua eβ4,ua

α⊕e
β2,ua

β2,u−α⊕

α⊕e
β1,ua

β1,u−α⊕

α⊕e
β3,ua

β3,u−α⊕

α⊕e
β4,ua

β4,u−α⊕










, m+ =









0

0

1

−1









, and m− =









1

1

0

0









.

Proof. See, e.g., Sepp [2004].

The Laplace transforms in Theorems 7 and 8 have to be inverted to yield the first-exit

time probabilities P(T±
ab ≤ T ). Many different algorithms are possible, for example the

Gaver-Stehfest algorithm; a good overview of Laplace inversion algorithms is given in

Abate and Whitt [2006]. Note, however, that some of those algorithms require high-

precision arithmetic and can hardly be implemented using double-precision arithmetic.

If double-precision arithmetic is used, reasonable results can be obtained by numerically

evaluating the integral13

P
(
T±
ab ≤ T

)
=

Ψ±
ab(0)

2
− 1

π

∫ ∞

0
e−iuT

Ψ±
ab(−iu)
iu

du. (2.50)

In the following, a Brownian bridge simulation scheme is introduced. This kind of

algorithm was originally suggested by Metwally and Atiya [2002] for one barrier in a

13Note that the Laplace transforms Ψ±
ab( · ) have to be evaluated for purely imaginary numbers −iu. Thus,

the roots βi,u, for i ∈ {1, 2, 3, 4}, are no longer real, but still form two groups: The real part of β1,u, β2,u

is negative while that of β3,u, β4,u is positive. Then, the results in Theorems 7 and 8 hold; the order

relation β1,u < β2,u is unnecessary since the Laplace transforms are symmetric in β1,u, β2,u.
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jump-diffusion setting. For extensions (i.e. two barriers, regime-dependent parame-

ters) or improvements, see, among others, Gobet [2009], Hieber and Scherer [2010],

Ross and Ghamami [2010], and Fernández et al. [2013]. The idea of this approach is based

on a technique called Conditional Monte–Carlo: First, a skeleton of the process B imme-

diately before and after regime changes and jumps is sampled. Between two successive

gridpoints of this skeleton B is simply a Brownian motion. In this case, conditional exit

probabilities (see the Brownian bridge probabilities in Section 2.3) are known analytically.

In contrast to a brute-force Monte–Carlo simulation on a discrete grid, this approach is

unbiased and (usually) faster.

Section 2.5.1 introduces an algorithm to sample the skeleton of the process immediately

before and after regime changes and jumps. Then, Section 2.5.2 proceeds with the Brow-

nian bridge algorithm.

2.5.1 Skeleton

As a first step, we deal with a jump-diffusion model, i.e. we assume that there is only

one regime (M = 1). Then, Algorithm 1 generates one realization of the path skeleton at

jump instants.

Algorithm 1 (Process skeleton: Jump-diffusion process)

This algorithm generates one realization of jump instants (0, t1, t2,. . . ,tN , T ) and path

values (Bt0, Bt1−, Bt1, Bt2−, . . . , BtN−, BtN , BT−) (shortly) before and after the jumps.

(A) Simulate the number of jumps within [0, T ] as N ∼ Poi(λT ).

(B) Simulate the jump times 0 < t1 < . . . < tN < T . Conditional on N , these jumps are

distributed as order statistics of i.i.d. Uni[0,T] random variables, see, for example,

Sato [1999], p. 17.

(C) Generate two independent series of random variables b1, . . . , bN+1 and y1, . . . , yN ,

independent of N :

bi ∼ N
(
µ(ti − ti−1), σ

2(ti − ti−1)
)

and yi ∼ PY .

(D) Simulate the asset path on the grid of the jump times (set tN+1 = T ):

Bt0 = 0, Bti− = Bti−1 + bi, ∀i ∈ {1, . . . , N + 1},

Bti = Bti− + yi, ∀i ∈ {1, . . . , N}.

(E) Return the jump instants (0, t1, t2,. . . ,tN , T ) together with (B0, Bt1−, Bt1, Bt2−,

. . . , BtN−, BtN , BT−).
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In the general case with multiple regimes (M > 1), we first sample the times of regime

changes according to the intensity matrix Q0 of the generating Markov chain. Within one

regime, we are back in the situation covered by Algorithm 1. Algorithm 2 generates the

skeleton in the general model framework (2.41).

Algorithm 2 (Process skeleton: Multi-regime case)

This algorithm generates one realization of the times of either jumps or regime changes (0,

t1, t2,. . . ,tN , T ) and path values (Bt0, Bt1−, Bt1, Bt2−, . . . , BtN−, BtN , BT−) (shortly)

before and after those instants. It furthermore returns the states (Z0, Zt1, Zt2,. . . ,ZtN ,

ZT ) adopted at those instants.

(A) Use the information provided by the intensity matrix Q0 to generate one realization

of the Markov chain {Zt}t≥0 (The time spent in state i is exponentially distributed

with intensity λ = −qii > 0. If a state change from the current state i occurs, the

probability of moving to state j 6= i is −qij/qii ≥ 0). The times of regime changes in

the interval [0, T ] are denoted {τ1, τ2, . . . , τK}.

(B) Generate the jump instants iteratively in each interval [τj−1, τj ], for j = 1, 2, . . . ,

K + 1. Set τ0 = 0 and τK+1 = T and apply Algorithm 1 for each interval [τj−1, τj ].

Inside the intervals, the diffusion has mean µZτj−1
and volatility σZτj−1

; the jumps

have intensity λZτj−1
.

(C) Arrange the times of regime changes {τ1, τ2, . . . , τK} and all the jump instants ob-

tained in Step (B) in ascending order and denote them by (t1, t2,. . . , tN ).

(D) Return the instants (0, t1, t2,. . . ,tN , T ) together with (B0, Bt1−, Bt1, Bt2−, . . . ,

BtN−, BtN , BT−) and (Z0, Zt1, Zt2,. . . ,ZtN , ZT ).

2.5.2 Brownian bridge algorithm

Being able to sample the skeleton of the process at jump instants and at times of regime

changes, we are now able to introduce the idea of conditional Monte–Carlo. Brownian

bridge algorithms first sample the skeleton by Algorithm 1 or 2, respectively. Conditional

on the skeleton, the exit probability of this sample can be computed analytically using the

Brownian bridge probabilities from Theorem 1. This procedure is also demonstrated in

Figure 2.6. In the following, the Brownian bridge algorithm on a constant upper barrier

a is presented (Algorithm 3). In Algorithm 4, those results are extended to two barriers.
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One barrier

Algorithm 3 estimates the first-exit time probabilities P(Ta,−∞ ≤ T ) together with the

process at time T , BT . The original idea is by Metwally and Atiya [2002]; it was extended

to regime switching models by Hieber and Scherer [2012].
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Figure 2.6: Visualization of the Brownian bridge algorithm. The upper graph shows the

skeleton generated by Algorithm 2. Two jumps (t1 = 0.4 and t2 = 0.7) and no regime

change occur in the considered time interval. Conditional on the skeleton, the Brownian

bridge probabilities yield the barrier hitting probabilities.
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Algorithm 3 (Brownian bridge technique 1)

This algorithm samples the first-exit time probability P(Ta,−∞ ≤ T ). To this end, the

number of simulation runs K, the constant upper barrier a > B0, and the parameters that

describe the process B are required. As a second output, the algorithm generates a K × 2

matrix whose columns contain for each simulation run the conditional probability of hitting

the barrier and the realized final path value.

(1) Repeat Steps (A)–(C) for each simulation run k ∈ {1, . . . ,K}.

(A) Simulate the skeleton according to Algorithm 2.

(B) If either Bti−1 or Bti−, i ∈ {1, 2, . . . , N + 1}, are above or equal to the barrier

a, the process reaches the upper barrier and BB(k) = 0. Return to Step (1) and

increase the simulation run k by 1.

(C) For xi−1 := Bti−1 < a and xi := Bti− < a, calculate the conditional exit

probabilities

℘i = exp
(

− 2(a− xi−1)(a− xi)

σ2(ti − ti−1)

)

, i ∈ {1, 2, . . . , N + 1}.

Set BB(k) =
∏N+1
i=1 (1 − ℘i). Return to Step (1) and increase the simulation

run k by 1.

(2) Estimate the unconditional quantities in question via the sample mean of all condi-

tional quantities over all runs, i.e.

P(Ta,−∞ ≤ T ) ∼= 1

K

K∑

k=1

BB(k),

and return a K × 2 matrix with rows
(
BB(k), BT (k)

)
, k ∈ {1, . . . ,K}.

Algorithm 3 is unbiased and converges almost surely (a.s.) to the first-exit time probability

P(Ta,−∞ ≤ T ) in a regime switching jump-diffusion model.

Theorem 9 (Unbiasedness and a.s. convergence)

Algorithm 3 generates unbiased first-exit time probabilities and converges almost surely to

the first-exit time probability of a regime switching jump-diffusion model, i.e.

1

K

K∑

k=1

BB(k)
K→∞−−−−→ P(Ta,−∞ ≤ T ) (a.s.).
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Proof. Using the tower property of conditional expectation, the first-exit time probability

P(Ta,−∞ ≤ T ) can be expressed as the expectation of a conditional expectation. The inner

conditional expectation is taken with respect to the skeleton sampled by Algorithm 2, i.e.

we need (1) the time to maturity T and times of jumps or state changes (t1, t2,. . . ,tN ), (2)

the current state on this random grid (Z0, Zt1 , Zt2 ,. . . ,ZtN , ZT ), and (3) the path values

(B0, Bt1−, Bt1 , Bt2−, . . . , BtN−, BtN , BT−). Combined:

F∗ := σ
{
N ; 0 < t1 < . . . < tN < T ;Zt0 , . . . , ZtN ;B0, b1, . . . , bN+1, y1, . . . , yN

}
,

where we denote t0 := 0, tN+1 := T , and the evolution in the diffusion parts by bi :=

Bti− − Bti−1 , for i ∈ {1, 2, . . . , N + 1} and in the jump parts by yi := Bti − Bti−, for

i ∈ {1, 2, . . . , N}.

Integrating out the random variables in F∗ and taking conditional expectations yields

P(Ta,−∞ ≤ T ) = E

[

E
[
1{Ta, −∞≤T}

∣
∣F∗

]]

=
∞∑

n=0

Q(N = n)

(
∫

(t1,...,tn)
∈(0,T )n

∫

(b1,...,bn+1)
∈(−∞,∞)n+1

∫

(y1,...,yn)
∈(−∞,∞)n

E
[
1{Ta, −∞≤T}

∣
∣F∗

]
n∏

i=1

P(dyi)

·
n∏

i=0

ϕ
(
bi+1;µZti

(ti+1 − ti), σ
2
Zti

(ti+1 − ti)
)
dbi+1 dGn(t1, . . . , tn)

)

,

where ϕ(x;µ, σ2) denotes the probability density function of a normal distribution with

mean µ and variance σ2 and Gn is the (conditional) distribution of the location of jumps

and state changes (given that N = n, i.e. the number of state changes and jumps totals

n). The inner conditional expectation can be computed explicitly, i.e.

E
[
1{Ta, −∞≤T}

∣
∣F∗

]
= 1{I 6=0}

I∏

i=0

(1 − ℘i) = BB(k),

where I := min(i ∈ {0, . . . , n+1} : Bti− ≥ a or Bti ≥ a), min(∅) := 0, denotes the index of

the first barrier crossing during one of the state changes or jumps {t0, . . . , tn, tn+1 = T}.
The probability of defaulting within the interval (ti, ti+1) is given by ℘i. In Step (1)

of Algorithm 3, in each simulation run k ∈ {1, . . . ,K}, the value BB(k) is generated.

This is achieved by simulating all random quantities defining F∗. Then, the first-exit time

probability is evaluated (without discretization bias) conditional on this information. Note

that specific values for Q(N = n) and Gn are not required, as long as one can simulate the

required random variables without bias (which is simple, see Algorithm 2). All simulation

runs being independent, the generated realizations BB(k) are independent and identically

distributed (i.i.d.).
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Additionally, using the above results, it holds that

E[BB(k)] = E

[

E
[
1{Ta, −∞≤T}

∣
∣F∗

]]

= P(Ta,−∞ ≤ T ), ∀k,

Var
(
BB(k)

)
≤ E

[
BB(k)2

]
≤ 1 <∞.

The stated convergence is then implied by the Law of Large Numbers. The same result

was obtained in the case of jump-diffusion models by Ruf and Scherer [2011] and in the

case of regime-switching models by Hieber and Scherer [2010].

Two barriers

Algorithm 3 can be extended to two barriers, i.e. we introduce in the following the Brow-

nian bridge algorithms that allow to efficiently estimate two–sided exit probabilities of

regime switching jump-diffusion processes. Again, the idea is to sample first the skeleton

of the process immediately before and after regime changes and jumps (according to Algo-

rithm 1 or 2, respectively). Between two successive instants, we have a Brownian motion;

a process that allows us to get the (conditional) barrier hitting probabilities in closed-form

(see the results in Theorem 1).

Algorithm 4 extends Algorithm 3 to two barriers and estimates P(Tab ≤ T ), following

Gobet [2009]. Note that the algorithm by Gobet [2009] does not distinguish which one of

the two barriers is hit first.

Algorithm 4 (Brownian bridge technique 2)

This algorithm samples the first-exit time probability P(Tab ≤ T ). To this end, the number

of simulation runs K, the constant barriers b < B0 < a, and the parameters that describe

the process B are required. As a second output, the algorithm generates a K × 2 matrix

whose columns contain for each simulation run the conditional probability of hitting the

barriers and the realized final path value.

(1) Repeat Steps (A)–(C) for each simulation run k ∈ {1, . . . ,K}.

(A) Simulate the skeleton according to Algorithm 2.

(B) If the skeleton Bti−1 or Bti−, i ∈ {1, 2, . . . , N+1}, does not stay withing the cor-

ridor (b, a), we set BB(k) = 0. Return to Step (1) and increase the simulation

run k by 1.

(C) For xi−1 = Bti−1 and xi = Bti−, calculate for i ∈ {1, 2, . . . , N + 1} the condi-

tional exit probabilities
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℘i =

∞∑

n=−∞

[

exp

(

− 2n(a− b)

σ2(ti − ti−1)

(
xi−1 − xi + n(a− b)

)

)

+ exp

(

− 2
(
xi − na+ (n− 1)b

)(
xi−1 − na+ (n− 1)b

)

σ2(ti − ti−1)

)]

− 1.

Set BB(k) =
∏N+1
i=1 (1 − ℘i). Return to Step (1) and increase the simulation

run k by 1.

(2) Estimate the unconditional quantities in question via the sample mean of all condi-

tional quantities over all runs, i.e.

P(Tab ≤ T ) ∼= 1

K

K∑

k=1

BB(k),

and return a K × 2 matrix with rows
(
BB(k), BT (k)

)
, k ∈ {1, . . . ,K}.

Algorithm 4 is also unbiased; the results in Theorem 9 can easily be adapted to the case

of two barriers.

Remark 2 (Stochastic volatility)

We can also combine the stochastic volatility results from Section 2.4 with the Brownian

bridge algorithm, i.e. we can in the most general setting simulate the first-exit time proba-

bilities of a regime switching jump-diffusion model with stochastic volatility introduced by

a continuous time change Λ.

The main idea is the following: If the interval [ti−1, ti] is continuously transformed to

[ti−1, ti−1 + Λti−ti−1 ], Equation (2.11) in Theorem 1 is the Brownian bridge probability

conditional on the time change ti = ti−1 + Λti−ti−1. This allows us to slightly modify the

Brownian bridge algorithms: When generating the skeleton in Algorithm 1 or 2, in each

time step we first sample from the distribution of the time change Λti−ti−1 and then replace

ti by ti−1 + Λti−ti−1.

For continuously time-changed Brownian motion, the transition density function is known

analytically, see, e.g., Escobar et al. [2013]. The transition density function describes

the probability density that B starts at xi−1 := Bti−1, survives until time ti > ti−1, and

ends up in xi := Bti−. In the Black–Scholes model, this density is given by (see, e.g.,

Cox and Miller [1965], Pelsser [2000])

2e
µ

2σ2 xi−1

a− b

∞∑

n=1

e
−

(

µ2

2σ2 + n2π2

2(a−b)2

)

(ti−ti−1)
e

µ

2σ2 xi sin

(
nπ(x− b)

a− b

)

sin

(
nπ(y − b)

a− b

)

. (2.51)
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If the interval [ti−1, ti] is continuously transformed to [ti−1, ti−1 + Λti−ti−1 ], (2.51) is the

transition density conditional on the time change ti = ti−1 + Λti−ti−1. If this time change

has Laplace transform ϑT (u) := E[exp(−uΛT )], u ≥ 0, we find that

E

[

e
−

(

µ2

2σ2 + n2π2

2(a−b)2

)

(ti−ti−1)
∣
∣
∣ ti = ti−1 + Λti−ti−1

]

= ϑti−ti−1

(
µ2

2σ2
+

n2π2

2(a− b)2

)

and can obtain the transition density of continuously time-changed Brownian motion

2e
µ

2σ2 xi−1

a− b

∞∑

n=1

ϑti−ti−1

(
µ2

2σ2
+

n2π2

2(a− b)2

)

e
µ

2σ2 xi sin

(
nπ(x− b)

a− b

)

sin

(
nπ(y − b)

a− b

)

.

In many cases, however, one is also interested in the direction of the exit, i.e. in case

of a barrier crossing in the question which barrier was hit first. Since the probability

of hitting the upper (respectively the lower) barrier are obviously not independent (a

path can hit both barriers in the interval [0, T ]), this case is more complicated. For

notational convenience, a simplified notation is necessary: We set t0 = 0 and abbreviate

the conditional exit probabilities in the time intervals (ti−1, ti), i ∈ N, by P+
i−1,i and P−

i−1,i

and the conditional survival probability by Pi−1,i, i.e.

P+
i−1,i :=BB+

ab(ti−1, ti, Bti−1 , Bti−), P−
i−1,i := BB−

ab(ti−1, ti, Bti−1 , Bti−), (2.52)

Pi−1,i := 1 −
(
P+
i−1,i + P−

i−1,i

)
. (2.53)

We note from Theorem 1 that we define Pi−1,i = 0 if Bti− /∈ (b, a). The exit and survival

probabilities sum up to one, i.e. P+
i−1,i + P−

i−1,i + Pi−1,i = 1. Further, denote on the

interval [0, ti) the cumulated conditional probabilities

Pi :=
i∏

k=1

Pk−1,k, P+
i :=

i∑

k=1

Pk−1 BB
+
ab(tk−1, tk, Btk−1

, Btk−). (2.54)

Algorithm 5 proceeds iteratively on the intervals (ti−1, ti], for i ∈ {1, 2, . . . , N + 1}. Step

1(B), part (a–c), returns the exit probability in the diffusion part (ti−1, ti). Then, part

(d) verifies, whether there is a barrier crossing due to a jump at time ti. The algorithm

estimates the first-exit time probabilities P(T+
ab ≤ T ), P(Tab ≤ T ) together with the process

at time T , BT , following Fernández et al. [2013].
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Algorithm 5 (Brownian bridge technique 3)

This algorithm estimates the first-exit time probabilities P(T+
ab ≤ T ) and P(Tab ≤ T ). To

this end, the number of simulation runs K, the barriers a and b, and the parameters that

describe the process B are required. As a second output, the algorithm generates a K × 3

matrix whose columns contain for each simulation run the conditional probability of hitting

the upper barrier, the conditional probability that the path stays within the corridor (b, a),

and the realized final path value.

(1) Repeat Steps (A)–(C) for each simulation run k ∈ {1, . . . ,K}14, then continue with

Step (2).

(A) Simulate the skeleton according to Algorithm 2.

(B) Compute the conditional barrier crossing probabilities between the grid points.

Set P0 := 1 and repeat Steps (a)–(d) for each time step i ∈ {1, . . . , N + 1}.
(a) Compute the probabilities

P+
i−1,i = BB+

ab(ti−1, ti, Bti−1 , Bti−),

Pi−1,i = 1 − P+
i−1,i −BB−

ab(ti−1, ti, Bti−1 , Bti−),

and obtain Pi = Pi−1 Pi−1,i, P+
i = P+

i−1 + Pi−1 P+
i−1,i.

(b) ∗ If Bti− /∈ (b, a), set BB+(k) = P+
i , BB(k) = 0 and go to (C).

∗ If Bti− ∈ (b, a), continue with Step (c).

(c) If i = N + 1, set BB+(k) = P+
N+1, BB(k) = PN+1 and go to (C), else

continue with Step (d).

(d) Check whether a barrier crossing occurs due to a jump.

∗ If Bti > a, set BB+(k) = Pi + P+
i , BB(k) = 0 and go to (C).

∗ If Bti < b, set BB+(k) = P+
i , BB(k) = 0 and go to (C).

∗ If Bti ∈ (b, a), return to Step (B).

(C) Set BT (k) = BtN+1−, return to Step (1), increase the simulation run k by 1.

(2) Estimate the unconditional quantities in question via the sample mean of all condi-

tional quantities over all runs, i.e.

P(T+
ab ≤ T ) ∼= 1

K

K∑

k=1

BB+(k), P(T−
ab ≤ T ) ∼= 1 − 1

K

K∑

k=1

BB+(k) − 1

K

K∑

k=1

BB(k),

and return a K × 3 matrix with rows
(
BB+(k), BB(k), BT (k)

)
, k ∈ {1, . . . ,K}.

14In the kth simulation run the quantities BB+(k) (conditional probability of hitting the upper barrier) and

BB(k) (conditional probability of surviving within the corridor (b, a)), and the final asset value BT (k)

are sampled.
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2.5.3 Functionals of the first-exit time

Algorithm 6 additionally estimates expectations of functionals of the first-exit time T+
ab.

This is an important requirement to, for example, price certain credit products that contain

default risk and thus often depend on the time of default. Algorithm 6 works exemplary on

an interval (ti−1, ti), where both Bti−1 and Bti− are known and {Bt}ti−1<t<ti is a Brownian

motion. It is straightforward to include this idea into the Brownian bridge algorithms 3,

4, or 5 and sample expectations of functionals on the first-exit time of regime-switching

jump-diffusions. As an input, the Brownian bridge probability BB+
ab(ti−1, ti, xi−1, xi) (see

Equation (2.8) or (2.10)) and the first-exit time intensity g+
ab(t, xi−1, xi) (see Theorem 3)

are needed. The estimation algorithm then proceeds as follows: It first draws the first-exit

time uniformly on the interval (ti−1, ti). To account for the different likelihood of default

over time (see, e.g., Figure 2.2), an importance sampling weight p(k) is introduced that

weights the sampled functionals according to the first-exit time intensities.

Algorithm 6 (Estimating functionals of the first-exit time)

This algorithm estimates E
[
h(T+

ab)
∣
∣ ti−1 < T+

ab < ti, Bti−1 = xi−1, Bti− = xi
]

for an

integrable functional h( · ) and a Brownian motion {Bt}ti−1<t<ti. As an input the interval

(ti−1, ti) as well as the process at endpoints xi−1 := Bti−1 and xi := Bti− are required.

(1) Repeat Steps (A)–(B) for each simulation run k ∈ {1, . . . ,K}.

(A) Draw a random variable U ∼ Uni[0,1] and set w := BB+
ab(ti−1, ti, xi−1, xi).

(B) Set T+
ab(k) = ti−1 +

(
ti − ti−1

)
U ,

p(k) = g+
ab

(
T+
ab(k), xi−1, xi

) ti − ti−1

w
.

(2) Return the weighted mean over all samples in question, i.e.

E
[
h(T+

ab)
∣
∣ ti−1 < T+

ab < ti, Bti−1 = xi−1, Bti− = xi
] ∼= 1

K

K∑

k=1

p(k)h
(
T+
ab(k)

)
.

Algorithm 6 can also be integrated into the Brownian bridge algorithms 3, 4, and 5, see

Fernández et al. [2013]. Algorithm 6 is unbiased, see Theorem 10.



2 First-exit time probabilities 43

Theorem 10 (Unbiasedness of Algorithm 6)

Consider an integrable functional h( · ). Then, Algorithm 6 returns an unbiased estimate

of E
[
h(T+

ab)
∣
∣ ti−1 < T+

ab < ti, Bti−1 = xi−1, Bti− = xi
]
.

Proof. For U ∼ Uni[0,1] and w := BB+
ab(ti−1, ti, xi−1, xi), we find that

E
[
p(k)h

(
T+
ab(k)

)]

=

∫ 1

0

(
ti − ti−1

)
g+
ab

(

ti−1 +
(
ti − ti−1

)
u, xi−1, xi

)

w
h
(

ti−1 +
(
ti − ti−1

)
u
)

du

=
1

w

∫ ti

ti−1

h(t) g+
ab

(
t, xi−1, xi

)
dt

= E
[
h(T+

ab)
∣
∣ ti−1 < T+

ab < ti, Bti−1 = xi−1, Bti− = xi
]
.

An alternative to the presented algorithm uses acceptance/rejection techniques to sample

from the (conditional) first-exit time density, see, e.g., Ross and Ghamami [2010].

2.6 Numerical examples

In the following, we compare the different models and numerical techniques presented so

far.

Time-changed Brownian motion

We consider a Brownian motion with zero drift and unit volatility, time–changed by an

independent time change Λ, i.e. we consider the process

dBt = dWΛt . (2.55)

To be able to compare different stochastic volatility models (see the parameterizations in

Examples 1 to 4), Table 2.1 presents parameter sets that are standardized, i.e. the average

time change E[Λ1] is identical.

First, we want to examine the effect of stochastic volatility. Therefore, Table 2.2 presents

survival probabilities P(Tab > T ) for different threshold levels (b, a) using the parameter

sets in Table 2.1. To achieve highly accurate prices with an acceptable absolute error

(ǫ = 1e–08), the rapidly converging series from Theorem 5 are truncated following the
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model {λt}t≥0 parameters
√

E[Λ1]

Brown. motion λt = σ2 ∈ R σ = 21.0% 21.0%

Example 1 CIR (θ, ν, γ, λ0) = (0.0050, 0.0441, 0.1000, 0.0441) 21.0%

Example 2 OU (ξ,κ, k, λ0) = (0.2000, 0.0420, 0.100, 0.0484) 21.0%

Example 3 shot-noise (δ, ζ, ψ, λ0) = (0.3000, 4.7000, 0.1000, 0.0400) 21.0%

Example 4 reg.-switching (k1, k2, λ1, λ2, Z0) = (0.228, 0.050, 0.5, 1.0, 1) 21.0%

Table 2.1: Exemplary parameter set used to compare the different models and techniques.

The intensities {λt}t≥0 define the time change ΛT :=
∫ T
0 λtdt of a Brownian motion.

error bounds in Section 2.4.3. One of the series can be computed within fractions of

seconds (i.e. 4ms). As we will see later on, this approach is significantly faster than

alternatives, i.e. Fourier techniques (see Section 3.1.4 for a detailed comparison).

Brownian motion Time-changed Brownian motion

Example 1 Example 2 Example 3 Example 4

a = −b = 0.1 00.55% 01.35% 03.27% 01.64% 03.92%

a = −b = 0.2 32.67% 34.88% 36.09% 40.97% 35.82%

a = −b = 0.3 69.38% 70.05% 67.30% 74.75% 69.66%

a = −b = 0.5 96.54% 96.03% 91.47% 96.03% 95.84%

Table 2.2: Survival probability P(Tab > T ) for different threshold levels (b, a) examining

the effect of stochastic volatility. We compare Example 1 (ΛT is integrated CIR process),

Example 2 (ΛT is integrated OU process), Example 3 (ΛT is integrated shot-noise process),

Example 4 (ΛT is integrated regime-switching process). The parameters are taken from

Table 2.1, the time horizon is T = 1.

From the results in Table 2.2, we observe that an increase in stochastic volatility does not

necessarily decrease the survival probability. Surprisingly, we realize in this example that

stochastic volatility tends to increase the survival probability.

As a second step, we want to compare the analytical results in Theorem 5 to its numer-

ical alternatives. To this end, we use the time change model with a regime switching

intensity (Example 4). This allows us to compare the results to the Brownian bridge al-

gorithm (Section 2.5.2). Furthermore, a finite elements scheme is implemented (see, e.g.,
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the guideline in the Appendix of Kim et al. [2008]). Last, we compare the results to a

brute-force Monte–Carlo simulation on a grid. Table 2.3 presents survival probabilities

P(Tab > T ) for different threshold levels (b, a) using the parameter set in Table 2.1. The

numerical algorithms are compared according to accuracy (Theorem 5 provides us with

the true probabilities) and computation time. For the two simulation schemes (Brownian

bridge algorithm and brute-force Monte–Carlo), 95% confidence intervals are in the range

of 0.01%, therefore the unsystematic error is negligible.

true value Brownian bridge Finite elements Monte–Carlo

P(Tab > T ) time P(Tab > T ) time P(Tab > T ) time

a = −b = 0.1 03.92% 03.92% 09s 03.92% 0.1s 04.38% 1min

a = −b = 0.2 35.82% 35.81% 11s 35.80% 0.2s 37.45% 3min

a = −b = 0.3 69.66% 69.67% 13s 69.64% 0.3s 70.73% 4min

a = −b = 0.5 95.84% 95.84% 13s 95.84% 0.5s 96.06% 4min

Table 2.3: Survival probability P(Tab > T ) for different threshold levels (b, a) comparing

the Brownian bridge algorithm (left) to a finite element scheme (middle, △t = 1e–03,

△p = 1e–02), and a brute-force Monte–Carlo simulation (right, 106 simulation runs,

mesh 1/250 years). The true value was computed using the time-change representation

(see Example 4 and Theorem 5). The chosen parameters of the regime switching model

are (k1, k2, λ1, λ2) = (0.2280, 0.0500, 0.5, 1.0), T = 1, P(Z0 = 1) = 1, B0 = 0. The given

computation time was calculated using Matlab on a 2.4 GHz PC.

We observe that the brute-force Monte–Carlo suffers from a significant discretization bias.

In contrast, the Brownian bridge algorithm is unbiased and – since one does not need to

simulate on a fine grid – several times faster. By far the best technique are the closed–

form results using the rapidly converging series from Theorem 5 (computed in fractions

of seconds). However, one has to be aware that the model class of continuously time–

changed Brownian motion covered by Theorem 5 is limited. If one wants to, for example,

include jumps, one has to rely on numerical schemes. In this case, the Brownian bridge

algorithm is the most flexible technique and can easily be adapted to different model

classes. Finite elements schemes are equally flexible but can, especially if we are working

on single barrier exit probabilities and jumps, become computationally more challenging.

Furthermore, they suffer from a discretization bias.
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Double exponential jump-diffusion

In Tables 2.4 and 2.5, we now compute the (upper) barrier first hitting time probabilities

P(Ta,−∞ ≤ T ), respectively P(T+
ab ≤ T ), for different threshold levels (b, a), this time us-

ing a double-exponential jump-diffusion model (see Example 6 for an introduction). The

double-exponential jump-diffusion model has the advantage that one can compare the re-

sults to the analytical expression by Kou and Wang [2003] (Table 2.4, single barrier case)

and Sepp [2004] (Table 2.5, double barrier case). If one wants to depart from the assump-

tion of exponential jumps, for example to include heavy tailed jump size distributions, one

usually has to rely on numerical schemes.

Kou,Wang [2003] Brownian bridge Monte–Carlo

P(Ta,−∞ ≤ T ) P(Ta,−∞ ≤ T ) time P(Ta,−∞ ≤ T ) time

a = 0.1, b→ −∞ 68.37% 68.37% 10s 66.68% 03min

a = 0.2, b→ −∞ 47.45% 47.46% 12s 46.26% 02min

a = 0.3, b→ −∞ 33.08% 33.08% 14s 32.29% 02min

a = 0.5, b→ −∞ 16.39% 16.40% 14s 16.04% 02min

Table 2.4: Upper barrier first-exit time probability P(Ta,−∞ ≤ T ) for different thresh-

old levels a comparing the Brownian bridge algorithm (left) to the analytic expression

by Kou and Wang [2003] (true value, see also Theorem 7), and a brute-force Monte–

Carlo simulation (right, 106 simulation runs, mesh 1/250 years). The true value is given

by the Kou and Wang [2003] results. The chosen parameters of the double-exponential

jump-diffusion model are (λ, α⊕, α⊖, µ1, σ1) = (2, 5, 5, 0, 0.2), T = 1, B0 = 0. The given

computation time was calculated using Matlab on a 2.4 GHz PC.

Again, in both Tables 2.4 and 2.5, we observe that the brute-force Monte–Carlo simulation

suffers from a discretization bias and is significantly slower than the Brownian bridge

algorithm. The Brownian bridge algorithm is very accurate, already 106 simulation runs

guarantee reliable probabilities on the first 3–4 digits. The computation time can be

further accelerated: First, a parallelization of Monte–Carlo simulations can very easily be

implemented. Secondly, there are variance reduction techniques to further (significantly)

accelerate the algorithm (see, e.g., Joshi and Leung [2007], DiCesare and McLeish [2008],

Ross and Ghamami [2010] on the single barrier algorithm).

To summarize the results on the comparison of the different numerical techniques

to estimate first-exit time probabilities, Table 2.6 presents the main advantages and
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Sepp [2004] Brownian bridge Monte–Carlo

P(T+
ab ≤ T ) P(T+

ab ≤ T ) time P(T+
ab ≤ T ) time

a = −b = 0.1 49.89% 49.89% 13s 49.80% 04min

a = −b = 0.2 42.92% 42.92% 14s 42.02% 03min

a = −b = 0.3 31.85% 31.85% 15s 31.10% 03min

a = −b = 0.5 16.25% 16.25% 15s 15.92% 02min

Table 2.5: Upper barrier first-exit time probability P(T+
ab ≤ T ) for different threshold

levels (b, a) comparing the Brownian bridge algorithm (left) to a brute-force Monte–Carlo

simulation (right, 106 simulation runs, mesh 1/250 years). The true value is given by the

Sepp [2004] results (see also Theorem 8). The chosen parameters of the double-exponential

jump-diffusion model are (λ, α⊕, α⊖, µ1, σ1) = (2, 5, 5, 0, 0.2), T = 1, B0 = 0. The given

computation time was calculated using Matlab on a 2.4 GHz PC.

disadvantages. The techniques considered are

MC: Brute-force Monte–Carlo.

BB: Brownian bridge algorithm.

FE: Finite elements, PIDE technique.

TC: Time change representation.

LI: Laplace inversion (e.g. Kou,Wang [2003], Sepp [2004]).

First, one major advantage of the Monte–Carlo simulations and the finite elements scheme

(MC, BB, FE) is their flexibility to adapt to different jump size distributions or to, for

example, state-dependent or stochastic volatility. For the two analytical techniques (TC,

LI) this is only possible up to a certain degree. Yet, the latter two methods are usually

significantly faster than the Monte–Carlo simulations or the finite elements scheme. One

big disadvantage of the brute-force Monte–Carlo simulation (MC) and the finite elements

scheme (FE) is an often significant discretization bias.

As a final remark, it is important to stress that there is not one uniformly superior tech-

nique; depending on the model and on the specific problem (i.e. non-constant barriers,

state-dependent volatility), an apparently inefficient technique might be more suitable.
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MC ⊕ Very flexible; easy to implement.

⊖ Very slow.

⊖ Leads to a discretization error.

BB ⊕ Very flexible; easy to implement.

⊕ Fast for reasonably small jump intensities.

⊕ Unbiased.

FE ⊕ Very flexible; easy to implement.

⊕ Usually fast.

⊖ Leads to a discretization error.

TC ⊕ Very easy to implement.

⊕ Extremely fast; very high accuracy.

⊕ Unbiased.

⊖ Only applicable for (continuously) time-changed Brownian motion.

LI ⊕ Very fast.

⊖ Only available for specific jump size distributions.

⊖ Implementation can be challenging, as Laplace inversion is known to be

⊖ an ill-posed problem.

Table 2.6: Summary of advantages and disadvantages of the most frequently used tech-

niques to obtain first-exit time probabilities.



Chapter 3

Default–linked contracts in

Finance and Insurance

The aim of this chapter is to show how the theoretical results from Chapter 2 can be used

for the pricing and risk management of default–linked contracts in Finance and Insurance.

Section 3.1 introduces to the field of option pricing which has earned a lot of attention

since the seminal paper of Black and Scholes [1973]. For this result, Myron Scholes was

awarded the Nobel Prize in Economics (The Sveriges Riksbank Prize in Economic Sciences

in Memory of Alfred Nobel) in 1997. The focus of this section is on barrier contracts, i.e.

contracts that depend on whether or not a stock price stays within certain boundaries.

This allows us to use the first-exit time results from Chapter 2.

The second part of this chapter (Section 3.2) deals with the usually very risky asset class

Private Equity (PE). Since the term “Private” stands for investments that are not listed on

stock exchanges, the main issue of this asset class is the scarcity of available data. Calcu-

lating risk indicators for PE-sponsored companies is considerably more difficult compared

to publicly listed, and therefore continuously or at least frequently valued, companies.

This leads to serious difficulties if one wants to quantify the risks inherent in PE transac-

tions. We provide a valuation model that explicitly accounts for the characteristics of PE

(i.e. high leverage, high default risk, scarcity of data,. . . ) and allows us to obtain implied

risk measures. Within a cooperation with the Center for Entrepreneurial and Financial

Studies, Technische Universität München (Prof. Dr. Dr. A.-K. Achleitner), we were able

to test our results empirically on a unique PE database. This allowed us to examine the

risk of PE transactions over time and to identify factors that determine the riskiness of a

PE transaction.
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Finally, Section 3.3 gives a short note on applications of first-exit times in the insurance

industry. Here, any insurance company has to ensure that its risk reserves are sufficient

to cover the claims of all its policyholders. In the worst case, negative risk reserves lead

to a default of the insurance company.

3.1 Pricing barrier derivatives

The simplest and most popular financial model, named Black–Scholes model (see

Black and Scholes [1973]) assumes that the stock price process evolves as a geometric

Brownian motion. Risk-free interest rate rt = r ∈ R and volatility σ > 0 do not vary

over time, i.e. the stock price process S = {St}t≥0 is given by the stochastic differential

equation (sde)

dSt
St

= r dt+ σ dWt, S0 > 0 . (3.1)

Apart from the stock, one can invest in a risk-free bank account Bt := exp(rt). Note

that (by an application of a standard theorem in Mathematical Finance – Itô’s Lemma)

the stock price process S can also be written as an exponential of a Brownian motion

with drift µ = r − σ2/2 and volatility σ, i.e. St = S0 exp(Bt). This provides us with the

connection to all the results in Chapter 2: We are now able to apply first-exit times to the

pricing of financial contracts.

In model (3.1), many financial contracts can be priced analytically, a fact that is rare at

least for complex (i.e. path-dependent) payoff schemes. The most frequently and liquidly

traded options on exchanges are (vanilla) call options. If the stock price at maturity T

stays above a given strike KT := K0 exp(
∫ T
0 rtdt), the option holder receives (ST −KT ),

otherwise the option expires worthless. Under the risk-neutral measure Q, this option is

priced as

CK(S0, T ) :=
1

BT
EQ,S0

[
max(ST −KT , 0)

]
,

where we denote EQ,x[ · ] := EQ[ · |S0 = x]. In the Black–Scholes model, (vanilla) call

options with strike KT were first priced by the seminal paper Black and Scholes [1973] as

CK(S0, T ) = S0 Φ
(
d1

)
−K0 Φ

(
d1 − σ

√
T
)
,

where d1 :=
(
ln(S0/K0) + σ2T/2

)
/
(
σ
√
T
)
. Due to their popularity and liquidity, call

options are often used to calibrate financial models (see, e.g., Section 3.1.3).
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In Section 3.1.1, we expand the Black–Scholes model to stochastic volatility by introducing

a (continuous) stochastic time change. If this time change is independent of W , we are

still able to price many complex derivatives.

Barrier derivatives are among the most liquidly traded over-the-counter (OTC) products.

Their payout depends on whether the underlying crosses some prespecified level(s) until

the maturity of the contract. If the final payoff depends on an upper and a lower thresh-

old (contracts termed “double barrier derivatives”), barrier products constitute a simple

possibility to obtain a long/short position in volatility.

Closed-form prices for barrier derivatives were first obtained in the Black–Scholes model;

the single barrier pricing formulas can be referred to, for example, Black and Cox [1976]

or Reiner and Rubinstein [1991]. Later, those results were extended to (stochastic and

local) volatility models that fulfill certain symmetry conditions in the return distribution

(see, e.g., Derman et al. [1994], Carr et al. [1998], Dupont [2002], Carr and Lee [2009],

Carr et al. [2011]). Related to this work, several authors price barrier derivatives analyt-

ically (for example by fast Fourier techniques (FFT)) for special cases of the stochastic

volatility models of Heston (see, e.g., [Lipton, 2001, p. 235], Carr et al. [2003], Sepp [2006],

Kammer [2007], Escobar et al. [2011]) and Stein–Stein (see, e.g., Götz [2011]). Those ex-

tensions allow to include important stylized facts that are criticized in the Black–Scholes

model: (1) volatility varies over time (stochastic volatility) and (2) implied volatility de-

pends on the strike price (smile feature).

The contribution of this section is as follows:

• We review existing results on the pricing and risk management of double barrier

derivatives under stochastic volatility and present an alternative and simple proof

for the price of double barrier derivatives based on the reflection principle. We aim at

providing a reader friendly recipe on pricing and statistically hedging double barrier

derivatives under stochastic volatility. We provide a toolbox of (single and multi-

factor) stochastic volatility models that allow to price barrier derivatives in closed-

form, an aspect that has not been the prime focus of earlier works. Examples include

single and multi-factor CIR-type stochastic volatility (which is the type of volatility

used in Heston [1993], Schöbel and Zhu [1999], Christoffersen et al. [2009]), or the

Stein and Stein [1991] model. Jump processes for the volatility are also discussed,

an idea that was applied in the Barndorff-Nielsen and Shephard [2001] model.

• We show that the existing results based on fast Fourier pricing (FFT) techniques

can significantly be improved in terms of computational efficiency. Double barrier

derivatives can (in the same stochastic volatility setting) be priced by rapidly con-
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verging infinite series, following the ideas presented in Section 2.4. In contrast to

Fourier techniques, this result avoids the integration over contours of the complex

plane and is (in all examples we considered) faster than FFT.

Increasingly popular and numerically demanding tasks like the pricing and risk manage-

ment of large portfolios of barrier derivatives or their calibration to over-the-counter prices

(see, e.g., Carr and Crosby [2010] and Kilin [2011]) have flagged the need for fast and re-

liable numerical techniques. Closed-form prices for barrier derivatives in (special cases

of) several well-known models can be used as a benchmark to assess the performance of

other numerical techniques or as a control variate for variance reduction in Monte–Carlo

simulations.

3.1.1 Stochastic volatility model

On the probability space (Ω,F ,Q), we consider – as an extension of the Black–Scholes

model in Equation (3.1) – the stock price process

dSt
St

= rt dt+ σt dWt, S0 > 0, (3.2)

whereW = {Wt}t≥0 is a standard Brownian motion, {σt}t≥0 > 0 the (stochastic) volatility,

independent of W , and {rt}t≥0 the (deterministic) risk-less interest rate1. The processes

satisfy the regularity conditions
∫ t
0 |rs| ds < ∞ and EQ

[ ∫ t
0 σ

2
s ds

]
< ∞ for all t ≥ 0. We

define a (lower) barrier Dt = D0 exp(
∫ t
0 rsds) and an (upper) barrier Pt = P0 exp(

∫ t
0 rsds),

where D0 < S0 < P0.

Still, one can invest in a bank account Bt := exp(
∫ t
0 rs ds). Similar to Chapter 2, the

first-exit time is denoted by2

TP,D := inf
{
t ≥ 0 |St /∈ (Dt, Pt)

}
, (3.3)

where inf{∅}=∞. Besides, T+
P,D := TP,D, T

−
P,D := ∞ if STP,D

= PTP,D
and T−

P,D := TP,D,

T+
P,D := ∞ if STP,D

= DTP,D
, i.e. if the upper barrier is hit first, we set T+

P,D := TP,D; if

the lower barrier is hit first, we set T−
P,D := TP,D.

For a given maturity T , we want to price financial contracts, for example call,

digital, and barrier options or exotic derivatives like bonus certificates.

1A comment on generalizations to stochastic interest rates is given in Remark 3.
2In contrast to Chapter 2, we are now working with a geometric Brownian motion S instead of the Brownian

motion B. The relation to Chapter 2 is simple: The first-exit time TP,D is the same as the first-exit time

Tab from Chapter 2 if one works on the process B := {ln(St/S0)}t≥0 with barriers a := ln(P/S0) and

b := ln(D/S0).
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• Digital options depend on the whole path of the underlying security S. For a strike

KT ∈ [DT , PT ], the holder receives 1{ST>KT } at maturity T , if the underlying stays

above a given barrierD = {Dt}t≥0 (single barrier contract) or within a given corridor

(Dt, Pt) (double barrier contract) until maturity T , and 0 otherwise. They are not

publicly traded but range amongst the most liquidly traded over-the-counter (OTC)

derivatives (see, e.g., Carr and Crosby [2010]). Single, respectively double, barrier

contracts are priced as

IK
(
S0;D,T

)
:=

1

BT
EQ,S0

[
1{T∞,D>T}

]
, IK

(
S0;D,P, T

)
:=

1

BT
EQ,S0

[
1{TP,D>T}

]
.

• Barrier options are another popular path-dependent exotic option. If the underlying

stays above a given barrier D = {Dt}t≥0 (single barrier contract) or within a given

corridor (Dt, Pt) (double barrier contract) until maturity T , the holder receives the

payoff of a (vanilla) call option. Else, the option expires worthless. Due to this

additional feature, barrier options are cheaper than (vanilla) call options. They can

be priced as

DOCK
(
S0;D,T

)
:=

1

BT
EQ,S0

[
1{T∞,D>T} max(ST −KT , 0)

]
,

DOCK
(
S0;D,P, T

)
:=

1

BT
EQ,S0

[
1{TP,D>T} max(ST −KT , 0)

]
.

• Bonus certificates constitute one example of a rather exotic derivative that is rarely

traded on exchanges. It is, however, possible to hedge this kind of derivative by a

portfolio of some of the aforementioned standard products. For a given bonus level

LT := L0 exp(
∫ T
0 rtdt) ≥ DT , the holder receives the maximum of this bonus level

and the stock price at maturity ST if the stock price stays above a given barrier

D = {Dt}t≥0 until maturity T . If the barrier is hit, the payoff at time T equals the

stock price ST . Its (risk-neutral) price is written as

BOL(S0;D,T ) :=
1

BT
EQ,S0

[
1{T∞,D>T} max(ST , LT ) + 1{T∞,D≤T} ST

]
.

This is, of course, not a complete list of available contracts. However, many complex

derivatives can (similar to the example on bonus certificates) be replicated by call, digital,

or barrier options. In the following, we want to concentrate on so-called barrier contracts,

i.e. derivatives that depend on whether or not {St}t≥0 crosses the thresholds D = {Dt}t≥0

or P = {Pt}t≥0 (we have that the initial stock price S0 ∈ (D0, P0)). Examples include the

aforementioned digital options, barrier options, and bonus certificates.
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We consider contracts X
g(ST )
D,P (S0) whose payoff is g(ST ) (where EQ[g(ST )] <∞) if none of

the barriers D or P is hit until maturity T (and 0 otherwise). The price of those contracts

is in the double barrier version given by

X
g(ST )
D,P (S0) :=

1

BT
EQ,S0

[
1{TP,D>T} g(ST )

]
. (3.4)

A special case are single barrier contracts, i.e.

X
g(ST )
D,∞ (S0) :=

1

BT
EQ,S0

[
1{T∞,D>T} g(ST )

]
. (3.5)

Black–Scholes model

In the Black–Scholes model, we obtain a closed-form pricing formula for (single) digital

options (see, e.g., Schrödinger [1915], Black and Cox [1976], Folks and Chhikara [1978])

IK
(
S0;D,T

)
=

1

BT

[

Φ

(
ln(S0/K0) − σ2T/2

σ
√
T

)

− S0

D0
Φ

(
ln(D2

0/(S0K0)) − σ2T/2

σ
√
T

)]

.

Further, (single) barrier options are priced as (see, e.g., Reiner and Rubinstein [1991])

DOCK(S0;D,T ) = CK
(
S0, T

)
− S0

D0
CK
(
D2

0/S0, T
)
.

Remarkably, the path dependent barrier options can be replicated by a portfolio of (vanilla)

call options. This is also possible for more complex payoffs like double barrier options or

bonus certificates, see the following.

Stochastic clock

There are many ways to parameterize the stochastic volatility model (3.2). This sec-

tion discusses some of the most famous examples that are used by both practitioners

and academics. These include the CIR-type stochastic volatility, which is the type of

volatility used in the Heston [1993] or Christoffersen et al. [2009] model. If the volatility

follows an Ornstein–Uhlenbeck (OU) process, this results in the Stein and Stein [1991]

model. Jump processes for the volatility are discussed, an idea that was applied in the

Barndorff-Nielsen and Shephard [2001] model. Finally, we consider a regime-switching

volatility, i.e. the volatility jumps between a finite set of discrete values.

We explicitly discuss richer volatility structures including multiple risk factors. Multi-

factor models have become very popular in modeling short rates where it is widely accepted
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that one factor is not sufficient to capture the time and cross-sectional variation in the

term structure; however, their application has only recently reached the area of option

pricing (see, e.g., Christoffersen et al. [2009]).

Example 7 first presents the Heston-type stochastic volatility model.

Example 7 (Heston-type stochastic volatility)

The Heston [1993] model has been introduced as

dSt
St

= rt dt+
√
vt dWt, S0 > 0, (3.6)

dvt = θ(ν − vt)dt+ γ
√
vt dW̃t, v0 > 0,

where θ, ν, and γ are non-negative constants; {W̃t}t≥0 and {Wt}t≥0 one-dimensional

Brownian motions with correlation ρ. The Feller condition, see Feller [1951], 2θν > γ2

guarantees that the process is almost surely positive. The characteristic function of the

log-asset price of the Heston model is given by, see Heston [1993], Albrecher et al. [2007],

Rollin et al. [2011]

ϕT (u, S0) = E
[
eiu ln(ST )

]
= exp

(

iu ln(S0) + iu

∫ T

0
rt dt

)

·
(

exp(θT/2)

cosh(̺T/2) + ξ
̺ sinh(̺T/2)

) 2θν

γ2

exp

(

−v0
̺

(iu+ u2) sinh(̺T/2)

cosh(̺T/2) + ξ
̺ sinh(̺T/2)

)

, (3.7)

where ̺ :=
√

(θ − γρiu)2 + γ2(iu+ u2) and ξ := θ − γρui. The special case ρ = 0 is

considered in, e.g., Ball and Roma [1994], [Lipton, 2001, p. 235], Carr et al. [2003], Sepp

[2006], Kammer [2007], Escobar et al. [2011], and Pistorius and Stolte [2012].

It is possible to model the variance as a linear combination of several independent CIR

processes. The two factor case is considered, in, e.g., Götz [2011], Kiesel and Lutz [2011],

Escobar and Götz [2012], see also Section 4.1.

If the volatility is of OU-type, we obtain the Stein and Stein [1991] stochastic volatility

model (later extended by Schöbel and Zhu [1999]), see Example 8.
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Example 8 (Stein–Stein model)

Stein and Stein [1991] introduce the following stochastic volatility model

dSt
St

= rt dt+ σt dWt, S0 > 0, (3.8)

dσt = ξ(σt − κ)dt+ k dW̃t, σ0 > 0,

where ξ, κ, and k are positive constants; {W̃t}t≥0 and {Wt}t≥0 independent one-

dimensional Brownian motions. In this model, the volatility is governed by an arithmetic

Ornstein–Uhlenbeck process with a tendency to revert back to a long-run average level

of κ. The characteristic function of the log-asset price is given by, see, for example,

Stein and Stein [1991]

ϕT (u) = E
[
eiu ln(ST )

]
= exp

(

iu ln(S0) + iu

∫ T

0
rt dt

)

· exp
(

L
(
(iu+ u2)/2

)
σ2

0/2 +M
(
(iu+ u2)/2

)
σ0 +N

(
(iu+ u2)/2

))

, (3.9)

where the functions L(u), M(u), and N(u) are defined in Appendix A.1.

Similar to the Heston model, Exercise 8 can be extended to several risk factors, allowing

for richer volatility structures.

Jumps in the volatility process have also become stylized facts, see – among many others

– Naik [1993], Barndorff-Nielsen and Shephard [2001], and Eraker et al. [2003]. While a

jump in returns has no impact on the future distribution of returns, jumps in volatility are

highly persistent. Barndorff-Nielsen and Shephard [2001] assume that (external) shocks

lead to a sudden increase in volatility. Then, volatility gradually returns to its original

level (see Example 9). Those kind of processes are also popular in insurance applications,

see, for example, Dassios and Jang [2003].

Example 9 (Jumps in the volatility)

Barndorff-Nielsen and Shephard [2001] propose a stochastic volatility model with jumps in

the volatility process:

dSt
St

= rt dt+
√
vt dWt, S0 > 0, (3.10)

vt = v0 exp(−δt) +
∑

si≤t

Mi exp
(
− δ(t− si)

)
,

where v0 > 0 is the initial variance, δ > 0 the exponential decay rate, {si}∞i=1 are the jump

times of a time-homogeneous Poisson process with intensity ψ > 0, and Mi are the jump
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sizes with distribution G(y), y > 0. The characteristic function of the log-asset price is

given by, see, for example, Dassios and Jang [2003]

ϕT (u, S0) = E
[
eiu ln(ST )

]
= exp

(

iu ln(S0) + iu

∫ T

0
rt dt−

(iu+ u2)v0
2δ

(
1 − exp(−δT )

)
)

· exp

(

− ψ

∫ T

0

[

1 − ĝ

(

(iu+ u2)

2δ

(
1 − exp(δ(T − t))

)

)]

dt

)

, (3.11)

where ĝ(u) :=
∫∞
0 exp(−uy) dG(y) is the Laplace transform of the jump size distribution

G(y), y > 0. Special cases include, for example, Exp(ζ)-distributed jumps for a parameter

ζ > 0, i.e. ĝ(u) = 1/(1 + u/ζ). For applications in insurance or finance see, for example,

Cox and Isham [1980], Dassios and Jang [2003].

Another simple parameterization of model (3.2) is a regime switching volatility. In Exam-

ple 10, the volatility jumps between finitely many states.

Example 10 (Regime switching volatility)

A very simple way to include stochastic volatility are so-called Markov-switching models,

proposed by Hamilton [1989]. Then, the volatility σ is state dependent and can (only) take

finitely many values. A Markov chain models the transition between those values. We set

dSt
St

= rt dt+ σZt dWt, S0 > 0, (3.12)

where Z = {Zt}t≥0, Zt ∈ N0 ∈ {1, 2, . . . ,M} is a time-homogeneous Markov chain. An

intensity matrix Q0 models the transition between the different states of the Markov chain.

The characteristic function of the log-asset price is then given by

ϕT (u, S0) := E
[
eiu ln(ST )

]
= exp

(

iu ln(S0) + iu

∫ T

0
rt dt

)

·
〈

exp






Q0T −







1
2σ

2
1u

2 0 . . .

0 1
2σ

2
2u

2 . . .

. . . . . . . . .






T






π, 1

〉

, (3.13)

where π := (Q(Z0 = 0),Q(Z0 = 1), . . .)′ is the initial distribution on the states, 〈 · 〉 denotes

the scalar product, and exp( · ) the matrix exponential.

In the following, closed-form prices for barrier contracts in the stochastic volatility frame-

work (3.2) are presented. To obtain those results, the assumption of independence between

return and volatility observations is vital. Only this assumption allows us to derive prices

that do not depend on the whole path of the underlying security. In more general settings,

one has to rely on (possibly computationally challenging) numerical algorithms (see, e.g.,
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Griebsch and Wystup [2011] or Section 2.5). In the following sections, we provide two

approaches to price the single and double barrier contracts:

• Fourier pricing : According to Carr et al. [1998], Carr and Madan [1999], and

Raible [2000] digital and call options can efficiently be priced by fast Fourier trans-

form (FFT) methods. Barrier contracts can in framework (3.2) (often) be replicated

by portfolios of (vanilla) call and digital options (see, e.g., Carr and Lee [2009]).

• Time-change representation: The model class (3.2) can be represented as a time-

changed Brownian motion. Following the ideas in Section 2.4, this allows us to price

double barrier contracts by rapidly converging infinite series.

Fourier pricing

Before considering the more complicated case of barrier contracts, the concept of fast

Fourier pricing – as developed in Carr and Madan [1999] and Raible [2000] – is introduced.

If the characteristic function of the log-asset price ϕT (u, S0) := E
[
eiu ln(ST )

]
is known,

for a given strike KT := K0 exp(
∫ T
0 rt dt), closed-form expressions for (1) the price of

a (vanilla) call option CK(S0, T ) and (2) the probability of exceeding the strike price

at maturity QS0(ST > KT ) are available (see Lemma 4). The presented integrals can

efficiently be evaluated using fast Fourier techniques (see, e.g., Carr and Madan [1999]

and Raible [2000]).

Lemma 4 (Fast Fourier pricing (FFT))

Consider the stochastic volatility model (3.2). The price of a (vanilla) call option is given

by

CK(S0, T ) =
1

BT
e−α ln(KT )

π

∫ ∞

0
Re

[

e−iu ln(KT ) ϕT
(
u− (1 + α)i, S0

)

α2 + α− u2 + i(2α+ 1)u

]

du, (3.14)

where Re(x + iy) = x denotes the real part of a complex number x + iy, where x, y ∈ R.

ϕT (u, S0) = E
[
eiu ln(ST )

]
is the characteristic function of ln(ST ). The damping factor

α > 0 is usually chosen in the interval [1, 2]; for a more detailed discussion, we refer to

Carr and Madan [1999]. The probability of exceeding the strike price at maturity is

QS0(ST > KT ) =
1

2
+

1

π

∫ ∞

0
Re

[

e−iu ln(KT /S0) ϕT
(
u− i, S0

)

iuϕT (−i, S0)

]

du, (3.15)

where Qx( · ) := Q( · |S0 = x).

Theorem 11 presents the price of a barrier contract in the stochastic volatility model (3.2).

We provide an intuitive proof in the Appendix showing that Girsanov’s theorem and the
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reflection principle can still be applied in the present framework. Using slightly more

general assumptions, this result is given in Carr and Lee [2009].

Theorem 11 (Barrier contracts I)

In model (3.2), consider a lower barrier D = {Dt}t≥0 and an upper barrier P = {Pt}t≥0

with D0 < S0 < P0. In this setting, derivatives with payoff 1{TP,D>T} g(ST ) (where

EQ[g(ST )] <∞) can be priced.

(a) In the single barrier case this price is given by

X
g(ST )
D,∞ (S0) =

1

BT

(

EQ,S0

[

1{ST>DT } g(ST )
]

− S0

D0
EQ,D2

0/S0

[

1{ST>DT } g (ST )
]
)

. (3.16)

(b) In the double barrier case this price is given by

X
g(ST )
D,P (S0) =

1

BT

∞∑

n=−∞

Dn
0

Pn0

(

E
Q,S

(2n)
0

[

1{ST∈(DT ,PT )} g(ST )
]

− S0

D0
E

Q,S
(2n−1)
0

[

1{ST∈(DT ,PT )} g(ST )
]
)

, (3.17)

where S
(2n)
0 := S0P

2n
0 /D2n

0 and S
(2n−1)
0 := P 2n

0 /(D2n−2
0 S0), n ∈ Z.

Note that the expectations do not depend on the whole path {St}t≥0 of the secu-

rity, but on the integrated quantities ST = S0 exp
( ∫ T

0 (rt − σ2
t /2) dt +

∫ T
0 σt dWt

)
,

DT = D0 exp(
∫ T
0 rt dt), and PT = P0 exp(

∫ T
0 rt dt).

Proof. See, for example, Carr and Lee [2009]. An alternative proof using the reflection

principle is presented in Appendix A.2.

We now give some explicit payoffs g(ST ) to apply the results of Theorem 11. Example 11

deals with (double) digital options, Example 12 with (double) barrier options, and, finally,

Example 13 with bonus certificates.

Example 11 ((Double) digital options)

Consider the stochastic volatility model (3.2). Recall that a digital option with strike KT :=

K0 exp(
∫ T
0 rt dt) ∈ [DT , PT ] pays 1{ST>KT } at maturity T if the security stays within the

corridor (Dt, Pt) until T . In the single barrier case (i.e. P0 → ∞, g(ST ) = 1{ST>KT }),

Theorem 11(a) yields

IK(S0;D,T ) =
1

BT

[

QS0

(
ST > KT

)
− S0

D0
QD2

0/S0

(
ST > KT

)]

. (3.18)
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In the general case, we obtain from Theorem 11(b) that

IK(S0;D,P, T ) =
1

BT

∞∑

n=−∞

Dn
0

Pn0

(

Q
S

(2n)
0

(
ST ∈ (KT , PT )

)
− S0

D0
Q
S

(2n−1)
0

(
ST ∈ (KT , PT )

))

,

where S
(2n)
0 := S0P

2n
0 /D2n

0 and S
(2n−1)
0 := P 2n

0 /(D2n−2
0 S0), n ∈ Z. The probabilities

Q·( · ) can be evaluated using FFT, see Lemma 4. In the Black–Scholes model (which is

the special case rt ≡ r ∈ R, σt ≡ σ > 0 , for all t ≥ 0), digital options were priced

by, for example, Schrödinger [1915], Darling and Siegert [1953], Black and Cox [1976],

Folks and Chhikara [1978], Geman and Yor [1996], Lin [1999].

Example 12 ((Double) barrier options)

Consider the stochastic volatility model (3.2). Recall that a barrier option with strike

KT := K0 exp(
∫ T
0 rt dt) ∈ [DT , PT ] pays max(ST−KT , 0) (call option) or max(KT−ST , 0)

(put option) at maturity T if the security stays within the corridor (Dt, Pt) until T . In

the single barrier case (i.e. P0 → ∞), we distinguish barrier call options (payoff function

g(ST ) = max(ST −KT , 0)) and barrier put options (g(ST ) = max(KT − ST , 0)).

Theorem 11(a) then yields

DOCK(S0;D,T ) = CK
(
S0, T

)
− S0

D0
CK
(
D2

0/S0, T
)
, (3.19)

DOPK(S0;D,T ) = PK
(
S0, T

)
− S0

D0
PK
(
D2

0/S0, T
)

= DOCK(S0;D,T ) + (K0 − S0) −
S0

D0
(K0 − S0), (3.20)

where PK(S0, T ) := CK(S0, T ) − S0 +K0. Call options are priced by FFT, see Lemma 4.

The case 0 ≤ K0 ≤ D0 can be treated similarly. The price of double barrier options with

conditional payoff function g(ST ) = max(ST −KT , 0) in Theorem 11(b), is

DOCK(S0;D,P, T ) =
Dn

0

Pn0

∞∑

n=−∞

[

CK
(
S

(2n)
0 , T

)
− CP

(
S

(2n)
0 , T

)
+ (P0 −K0) IP

(
S

(2n)
0 ;P, T

)

− S0

D0

(

CK
(
S

(2n−1)
0 , T

)
− CP

(
S

(2n−1)
0 , T

)
+ (P0 −K0) IP

(
S

(2n−1)
0 ;P, T

)) ]

,

where S
(2n)
0 := S0P

2n
0 /D2n

0 and S
(2n−1)
0 := P 2n

0 /(D2n−2
0 S0), n ∈ Z. In the Black–Scholes

model, prices for double barrier options have – for different parameterizations – been pre-

sented in the literature (see, e.g., Geman and Yor [1996], Lin [1999], Pelsser [2000]). The

presented equations, however, often tend to be rather complicated and usually lack the in-

tuitive (and for replication very convenient) interpretation as a portfolio of infinitely many

call options.
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Example 13 (Bonus certificates)

Consider the stochastic volatility model (3.2). For a barrier D = {Dt}t≥0 and a given

bonus level LT := L0 exp(
∫ T
0 rt dt) ≥ DT , the payoff at maturity T is given by

payoff(T ) =







max(ST , LT ), T∞,D > T,

ST , else.
(3.21)

Bonus certificates are an example of a rather exotic derivative, nevertheless, they are

(especially in Germany) frequently traded. Remarkably, most of these exotic products with

complicated payoff features can be replicated by (vanilla) call, digital, or barrier options.

In the present case, we find that

BOL(S0;D,T ) =
1

BT
EQ,S0

[

1{T∞,D>T} max(ST , LT ) + 1{T∞,D≤T}ST

]

=
1

BT
EQ,S0

[

1{T∞,D>T} max(0, LT − ST ) + ST

]

=
1

BT
EQ,S0

[
ST
]
+X

max(0,LT−ST )
D,∞ (S0) = S0 +DOPL(S0;D,T ).

Since we are able to price call options (see, e.g., Lemma 4) and barrier put options (see,

e.g., Example 12) by FFT, this result allows us to price bonus certificates.

Time change representation

For the discounted stock price process S̃ = {S̃t}t≥0 := {St/Bt}t≥0, representations as a

time-changed Brownian motion are available. The time-change representations are in-

teresting from a numerical point of view: They allow for fast converging infinite series

(instead of Laplace or Fourier inversions) for the prices of barrier contracts.

We represent S̃ as a time-changed geometric Brownian motion GΛt , i.e.

dGt
Gt

= dWt, G0 := S0 > 0 . (3.22)

The time change Λ = {Λt}t≥0 is a (pathwise) continuous and increasing stochastic process

with Λ0 = 0 and limt→∞ Λt = ∞ Q-a.s., independent of G. If the Laplace transform of ΛT

is known, it is denoted by ϑT (u) := E
[
exp

(
− uΛT

)]
. Then, the characteristic function

of ln(S̃t)
(
=ln(GΛt)

)
is given by ϕ̃T (u, S0) = exp(iu ln(S0)) · ϑT

(
(iu + u2)/2

)
(see, e.g.,

Equation (2.3) in Hurd [2009]).

Now, barrier contracts can be priced by rapidly converging infinite series. In contrast

to Theorem 11 where one had to compute two Fourier integrals per term, Theorem 12

presents infinite series where each term is just a single evaluation of the Laplace transform
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of the time change. This allows for a faster computation and an easier control of the

truncation error (error bounds for digital options are given in, for example, Section 2.4

or Hieber and Scherer [2012]). Theorem 12 presents prices for barrier contracts that pay

g(ST ) at maturity T if the security stays within the corridor (Dt, Pt) until T .

Theorem 12 (Barrier contracts II)

Consider a time-changed geometric Brownian motion GΛt with a (pathwise) continuous

time-change Λ, independent of G. Denote by ϑT (u) := E[exp(−uΛT )], u ≥ 0, the Laplace

transform of ΛT . Then, the price of a derivative with payoff 1{TP,D>T} g(ST ) (where

EQ[g(ST )] <∞) is given by

X
g(ST )
D,P

(
S0

)
=

1

BT
2e

x
2

a− b

∞∑

n=1

ϑT

(
1

8
+

n2π2

2(a− b)2

)

sin

(
nπ(x− b)

a− b

)

Zg(ST )
n , (3.23)

with Z
g(ST )
n :=

∫ a
b e

− y
2 sin

(
nπ(y−b)
a−b

)

g(ey)dy, x := ln(S0), a := ln(P0), and b := ln(D0).

Proof. The transition density function fab(T, y) describes the probability density that the

logarithmic stock price process {ln(St)}t≥0 starts at x := ln(S0), survives until time T ,

and ends up in y := ln(ST ). In the Black–Scholes model, this density is given by (see, e.g.,

Cox and Miller [1965], Pelsser [2000])3

fab(T, y) =
2e

x
2

a− b

∞∑

n=1

e
−
(

1
8
+ n2π2

2(a−b)2

)

T
e−

y
2 sin

(
nπ(x− b)

a− b

)

sin

(
nπ(y − b)

a− b

)

.

In the Black–Scholes model, we then find that the price of a barrier contract with payoff

1{TP,D>T} g(ST ) at maturity T is given by

BS
g(ST )
D,P (S0) :=

1

BT

∫ a

b
fab(T, y) g(e

y) dy

=
1

BT
2e

x
2

a− b

∞∑

n=1

e
−
(

1
8
+ n2π2

2(a−b)2

)

T
sin

(
nπ(x− b)

a− b

)(∫ a

b
e−

y
2 sin

(
nπ(y − b)

a− b

)

g(ey)dy

)

.

If the interval [0, T ] is continuously transformed to [0,ΛT ], the latter expression is the

price of a barrier contract conditional on the time change T = ΛT . If this time-change has

Laplace transform ϑT (u) := E[exp(−uΛT )], u ≥ 0, we can conclude that

E

[

E

[

e
−
(

1
8
+ n2π2

2(a−b)2

)

T
∣
∣
∣T = ΛT

]
]

= ϑT

(
1

8
+

n2π2

2(a− b)2

)

3Note that {ln(Gt)}t≥0 is a Brownian motion with drift −1/2 and unit volatility. The density function

fab(T, y) is an application of Equation (2) in Pelsser [2000] using that µ = −1/2 and σ = 1.
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and then obtain the price of barrier contracts on time-changed geometric Brownian motion

X
g(ST )
D,P (S0) =

1

BT
2e

x
2

a− b

∞∑

n=1

ϑT

(
1

8
+

n2π2

2(a− b)2

)

sin

(
nπ(x− b)

a− b

)

·
(∫ a

b
e−

y
2 sin

(
nπ(y − b)

a− b

)

g(ey)dy

)

.

The result in Theorem 12 can also be used to price options on one barrier. Therefore,

the upper barrier is set to a very high value (i.e. P0 = 100 · S0) that guarantees that

the probability of hitting the upper barrier is negligible (i.e. smaller than 1e–16). In our

numerical examples (see Section 3.1.4), this approach is still significantly faster than FFT

techniques.

Theorem 13 is a first application of Theorem 12 to price (double) digital options.

Theorem 13 (Double digital options II)

Consider a time-changed geometric Brownian motion GΛt with a (pathwise) continuous

time change Λ, independent of G. Denote by ϑT (u) := E[exp(−uΛT )], u ≥ 0, the Laplace

transform of ΛT . If the strike price is written as KT := K0 exp(
∫ T
0 rt dt) ∈ [DT , PT ], the

price of a double digital option with payoff 1{TP,D>T ;ST>KT } at maturity T is given by

IK
(
S0;D,P, T

)
=

1

BT
2e

x
2

a− b

∞∑

n=1

ϑT

(
1

8
+

n2π2

2(a− b)2

)

sin

(
nπ(x− b)

a− b

)

Zg(ST )
n ,

where

Zg(ST )
n =

e−
a
2
nπ(−1)n+1

a−b + e−
k
2

(
1
2 sin

(nπ(k−b)
a−b

)
+ nπ

a−b cos
(nπ(k−b)

a−b

))

1
4 + n2π2

(a−b)2

,

x := ln(S0), k := ln(K0), a := ln(P0), and b := ln(D0).

Proof. From Theorem 12, we can conclude that

Zg(ST )
n =

∫ a

b
e−

y
2 sin

(
nπ(y − b)

a− b

)

g(ey)dy =

∫ a

k
e−

y
2 sin

(
nπ(y − b)

a− b

)

dy

=
e−

y
2

1
4 + n2π2

(a−b)2

(

−1

2
sin

(
nπ(y − b)

a− b

)

− nπ

a− b
cos

(
nπ(y − b)

a− b

))
∣
∣
∣
∣
∣

a

k

=
e−

a
2
nπ(−1)n+1

a−b + e−
k
2

(
1
2 sin

(
nπ(k−b)
a−b

)

+ nπ
a−b cos

(
nπ(k−b)
a−b

))

1
4 + n2π2

(a−b)2

.
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In the special case k = b, this is a result derived in Hieber and Scherer [2012]4, i.e.

Zg(ST )
n =

e−
a
2
nπ(−1)n+1

a−b + e−
k
2
nπ
a−b

1
4 + n2π2

(a−b)2

.

The same idea can now be used to price (double) barrier options. Theorem 14 builds on

a representation of the Black–Scholes price of a double barrier option that is rarely used

in the literature, see, for example, Pelsser [2000].

Theorem 14 (Double barrier options II)

Consider a time-changed Brownian motion GΛt with a (pathwise) continuous time change

Λ, independent of G. Denote the Laplace transform of ΛT by ϑT (u) := E[exp(−uΛT )],

u ≥ 0. If the strike price is denoted KT := K0 exp(
∫ T
0 rt dt) ∈ [DT , PT ], the price of a

double barrier option with payoff 1{TP,D>T}(ST −KT )+ is given by

DOCK(S0;D,P, T ) =
2e

x
2

a− b

∞∑

n=1

ϑT

(
1

8
+

n2π2

2(a− b)2

)

sin

(
nπ(x− b)

a− b

)

Zg(ST )
n , (3.24)

where

Zg(ST )
n =

2nπ
a−b(−1)n+1 sinh

(
a−k

2

)
− sin

(
nπ(k−b)
a−b

)

e−
k
2

(
1
4 + n2π2

(a−b)2

) , x := ln(S0), k := ln(K0), a := ln(P0),

and b := ln(D0).

Proof. Applying the results from Theorem 12, we obtain

Zg(ST )
n =

∫ a

b
e−

y
2 sin

(
nπ(y − b)

a− b

)

g(ey)dy =

∫ a

k
e−

y
2 sin

(
nπ(y − b)

a− b

)
(
ey − ek

)
dy

=

e
y
2 +ek−

y
2

2 sin
(
nπ(y−b)
a−b

)

−
nπ
(

e
y
2 −ek−

y
2

)

a−b cos
(
nπ(y−b)
a−b

)

1
4 + n2π2

(a−b)2

∣
∣
∣
∣
∣

a

k

=

nπ(−1)n+1

a−b

(

e
a
2 + ek−

a
2

)

− e
k
2 sin

(
nπ(k−b)
a−b

)

1
4 + n2π2

(a−b)2

=

2nπ(−1)n+1

a−b sinh
(
a−k

2

)
− sin

(
nπ(k−b)
a−b

)

e−
k
2

(
1
4 + n2π2

(a−b)2

) .

4Using that sin
(

nπ(x−b)
a−b

)
= (−1)n sin

(
nπ(x−a)

a−b

)
, one obtains the results in Hieber and Scherer [2012],

Theorem 2 (µ = −1/2, σ = 1, a generalization to µ ∈ R and σ > 0 is straightforward).
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In the case of Brownian motion (ΛT = T ) this pricing result is given in, for example,

Pelsser [2000].

Remark 3 (Stochastic interest rates)

If necessary, it is possible to include stochastic interest rates in the model framework (3.2)

while still keeping the analytical tractability. If {rt}t≥0 is independent of W = {Wt}t≥0 and

{σt}t≥0, this is straightforward: 1/BT must simply be replaced by EQ[1/BT ]. Dependence

between {rt}t≥0 and {σt}t≥0 can be introduced as follows: rt := γt−ρ∗ σ2
t , where {γt}t≥0 is

independent of W = {Wt}t≥0 and {σt}t≥0. The correlation parameter ρ∗ ∈ R can be used

to include either a positive or a negative dependence between volatility and interest rates.

The results in Theorems 13 and 14 can rather easily be modified; ϑT
(

1
8 + n2π2

2(a−b)2

)
then

changes to ϑT
(

1
8 + n2π2

2(a−b)2
+ ρ∗

)
. The Fourier pricing results can also easily be adapted.

Remark 4 (Error bounds)

Similar to Section 2.4.3, one can derive error bounds to truncate the infinite series in

Theorems 11 and 12. The interested reader is referred to Escobar et al. [2013].

3.1.2 Regime switching jump-diffusion model

In Section 2.5, we have worked with first-exit times of Brownian motion with jumps. This

process, however, allows for negative values and is thus not a reasonable model for a

stock price process. For t ≥ 0, we assume that there exists a risk-neutral measure Q and

write the stock price process (under the risk-neutral measure Q) as the exponential of a

jump-diffusion process, i.e.

St := S0 exp(Bt) = S0 exp
(∫ t

0
rsds− δt− 1

2

∫ t

0
σ2
Zs
ds+

∫ t

0
σZs dWs +

N
Zt
t∑

i=1

Yi

)

, (3.25)

where {rt}t≥0 denotes the risk-free interest rate and δZt the expected relative price change

due to the jumps given by δZt := λZt

(
EQ[exp(Y1)]−1

)
. The other parameters and processes

are defined as in Section 2.5, i.e. Z = {Zt}t≥0 ∈ {1, 2, . . . ,M} is a time-homogeneous

Markov chain, W = {Wt}t≥0 a standard Brownian motion. Some parameters now depend

on Z: volatility σZt > 0, and time in-homogeneous counting process NZt = {NZt
t }t≥0, a

Poisson process with intensity λZt ≥ 0 at time t. The initial value is S0 > 0. The jump-

sizes Y = {Yi}i≥1 are i.i.d. with distribution PY . All processes are mutually independent.

Examples of popular jump size distributions are given in Examples 14 and 15.
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Example 14 (Normal jump-diffusion)

The simplest jump size distribution is a normally distributed jump size, a model suggested

by Merton [1976] and thus also referred to as Merton jump-diffusion model. Jump sizes Yi

in this specification of model (3.25) are normally distributed, i.e. Yi ∼ N (β, γ2) for β ∈ R

and γ > 0. Then, the drift adjustment due to the jumps is given by δ = exp(β+γ2/2)−1.

Example 15 (Double-exponential jump-diffusion)

One popular possibility to model jump sizes is the double-exponential distribution, see, for

example, Kou and Wang [2003]:

PY (dx) = pα⊕e
−α⊕x1{x≥0}dx+ (1 − p)α⊖e

α⊖x1{x<0}dx, (3.26)

where 0 ≤ p ≤ 1 is the probability that jumps have positive sign. Upward jumps are

exponentially distributed with parameter α⊕ > 1, downward jumps are exponentially dis-

tributed with parameter α⊖ > 0. In this model, we find that δ := λ
(
EQ[exp(Y1)] − 1

)

= λ
(
pα⊕/(α⊕ − 1) + (1 − p)α⊖/(α⊖ + 1) − 1

)
.

3.1.3 Model calibration5

This section discusses the calibration of the stock price models to vanilla call option prices.

Call options are the most liquidly traded derivatives; that is why one is able to obtain

reliable prices for various underlyings, strikes, and maturities. In the following, we use a

call option data set on the German stock index DAX obtained on 06/02/20126. The evo-

lution of the stock index until that date is displayed in Figure 3.1; June 2012 corresponds

to calm and slightly rising stock markets with a rather low stock price volatility.

The dataset consists of 658 call option prices CK(S0, T ) together with the corresponding

strike KT , maturity T , and LIBOR rate rT . Some statistics are presented in Table 3.1.

In Section 3.1, Theorem 4, we showed that the price of a call option can efficiently be

obtained from the characteristic function ϕT (u, S0) of its log-asset price via fast Fourier

Pricing (see, e.g., Carr and Madan [1999], Raible [2000]), i.e.

ĈK(S0, T ) =
1

BT
e−α ln(KT )

π

∫ ∞

0
Re

[

e−iu ln(KT ) ϕT
(
u− (1 + α)i, S0

)

α2 + α− u2 + i(2α+ 1)u

]

du,

where Re(x+ iy) = x denotes the real part of a complex number x+ iy, for x, y ∈ R. The

damping factor α > 0 is usually chosen in the interval [1, 2]. To calibrate the model, we

use an error functional to compare the model prices Ĉ
(i)
K (S0, T ) to the dataset C

(i)
K (S0, T )

5I want to thank Wim Schoutens (KU Leuven) for fruitful discussions on model calibration during his

lecture Recent Developments in Financial Engineering (TUM, 2012/13).
6Data source: Reuters.
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Figure 3.1: Evolution of the German stock index DAX from 01/01/2000 to 06/02/2012.

(Data source: Reuters.)

minimum average maximum

maturity T (in years) 0.11 1.19 4.86

strike KT 2 200 6 109 12 000

LIBOR rate rT 0.684% 1.330% 2.409%

call price CK(S0, T ) 0.20 1 340.65 4 820.71

Table 3.1: Description of the call option dataset C
(i)
K (S0, T ), for i = 1, 2, . . . , 658. The

data set consists of vanilla calls on DAX obtained on 06/02/2012 (on that day DAX closed

at S0 = 6 764.83). (Data source: Reuters.)

(for i = 1, 2, . . . , 658) described in Table 3.1. There are many possible choices for this

error functional, we choose the relative mean squared error, i.e.

ǫ :=

√
√
√
√E

[(

ĈK(S0, T ) − CK(S0, T )

CK(S0, T )

)2 ]

. (3.27)

For our dataset, this error functional is estimated as

ǫ ≈

√
√
√
√ 1

658

658∑

i=1

(

Ĉ
(i)
K (S0, T ) − C

(i)
K (S0, T )

C
(i)
K (S0, T )

)2

.

Table 3.2 summarizes the calibration results together with the relative mean squared error

ǫ for different models, i.e. the Black–Scholes model, the stochastic volatility models of

Heston, Stein–Stein, Barndorff-Nielsen-Shephard (BNS), and regime-switching-type (see

Examples 7–10), and the double-exponential jump-diffusion model (D.–Exp.).
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model parameters ǫ

B.–S. σ = 20.7330% 0.06238

Heston (ρ = 0) (θ, ν, γ, v0) = (31.8692, 0.0436, 2.3695, 0.0449) 0.06193

Heston (ρ < 0) (θ, ν, γ, ρ, v0) = (13.7270, 0.0441, 1.1438,−0.9813, 0.0476) 0.04191

Stein–Stein (ξ, k,κ, σ0) = (0.0428, 0.3379, 0.0010, 0.0866) 0.06532

BNS (δ, ζ, ψ, v0) = (0.0071, 1.5423, 0.0164, 0.0419) 0.05248

Reg.–sw. (k1, k2, λ1, λ2, Z0) = (0.2185, 0.1764, 0.2601, 0.0262, 1) 0.06073

D.–Exp. (σ, λ, p, α⊖, α⊕) = (0.2015, 0.0528,≈0, 6.5296,≈1) 0.06049

Table 3.2: Calibration results of different models using the parameter set described in

Table 3.1. The examples include the Black–Scholes model (B.–S.), the stochastic volatility

models of Heston, Stein–Stein, Barndorff-Nielsen-Shephard (BNS), and regime-switching-

type (see Examples 7–10), and the double-exponential jump-diffusion model (D.–Exp.).

The relative mean squared error ǫ of the calibrated parameter set is given.

The best calibration results and a significant improvement relative to the Black–Scholes

model (B.–S.) were obtained by the Heston stochastic volatility model. For the double-

exponential jump-diffusion model, the calibration results indicate that positive jumps are

not significant. This reduces the number of parameters by 2 (α⊖ and p are no longer

necessary) and we are back in the (single) exponential jump-diffusion model. Figures 3.2

and 3.3 further visualize the calibration performance. A representative sample of call

option prices (denoted by “◦”) is compared to the model prices (denoted by “+”). On the

given data set one observes that – compared to the Black–Scholes model (ǫ = 0.06238) –

the exponential jump-diffusion model (ǫ = 0.06049) and the BNS model (ǫ = 0.05248) do

only lead to hardly visuable, minor improvements in the calibration performance. However

– as one can see in Figure 3.3 – the Heston model (ǫ = 0.04191) provides a significantly

better fit, especially for the long-dated contracts. The Heston model is – in contrast to

any Lévy model – flexible enough to fit a term structure of option prices. This is even

more important in turbulent periods of rapidly changing economic conditions. Although

the Black–Scholes model seems to perform pretty well on this data set, one has to be aware

that call options are not path-dependent: The effects of jumps or stochastic volatility tend

to diminish over time. Those effects, however, come into play if one is interested in the

pricing or risk management of, for example, barrier derivatives or Asian options, where

path behavior significantly influences the option price.

In the following, we are examining this effect on the prices of barrier derivatives. Having
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calibrated different stock price models to the same dataset allows us to assess the effect

of stochastic volatility and jumps on exotic option prices.
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Figure 3.2: Calibration results for the Black–Scholes (top), the double-exponential jump

diffusion model (Example 7, middle), and the Barndorff-Nielsen-Shephard model (Example

9, below). Observed market data is denoted by a “◦”, model prices by a “+”.
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Figure 3.3: Calibration results for the Heston model (Example 7). Observed market data

is denoted by a “◦”, model prices by a “+”. Compared are the calibration results if the

correlation between stock price process and volatility is ρ = 0 (above) and ρ < 0 (below).
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3.1.4 Numerical examples

This section uses the parameters calibrated in Section 3.1.3 to price several financial

contracts. We consider both stochastic volatility models and the regime switching jump-

diffusion model.

Stochastic volatility model

In this section, we give a numerical example comparing the FFT technique to the analytical

expressions using the time change representation of the different models. We compare

the results of the one-factor stochastic volatility models, i.e. the Heston and Stein–Stein

model, with regard to accuracy and computation time. First, we price digital options.

The corresponding pricing formulas are to be found in Example 11 (FFT technique) and

Theorem 13 (time change representation). To apply the double barrier result presented in

Theorem 13, the upper barrier a := ln(P0) is set to 10σ
√
T , a value that guarantees that

the probability of hitting the upper barrier is negligible, i.e. it is smaller than 1e–16. Apart

from that, the infinite series has to be truncated. Error bounds for this truncation are

easy to obtain, see, for example, Section 2.4.3 in Chapter 2 or Hieber and Scherer [2012].

In our parameter sets, N = 90 terms turned out to be enough to obtain an acceptable

relative pricing error.

Table 3.3 gives the results for different parameter sets in the Black–Scholes, the Heston,

and the Stein–Stein model. We aim at relative pricing errors below 1e–04. If the time

change representation is used, a higher accuracy of 1e–12 comes at almost no additional

computational cost. In the stochastic volatility models, the true value is computed using

the time change representation with a = 20σ
√
T and N = 200. The Black–Scholes model

is also displayed, since in this model the more convenient closed-form expression allows us

to assess the numerical results. If we aim at an accuracy of at least 1e–04 – in all models

and over all the considered parameter sets – we find that the time change representation

is about 30–40 times faster than FFT. This is mainly due to the fact that the Laplace

transform of the time change has to be evaluated only N = 90 times for the time-change

representation, whereas a reasonably small error in the FFT technique requires several

thousand evaluations of the characteristic function. This explains why the benefit of

the time-change representation is even higher if more complex or multi-factor stochastic

volatility models are used.

For double digital options, the pricing formulas are presented in Example 11 (FFT tech-

nique) and in Theorem 13 (time-change representation). The advantage of the FFT tech-

nique is the fact that call and digital options with different strikes can be evaluated simulta-

neously (see, e.g., Carr and Madan [1999]); a fact that is very convenient when evaluating
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Black–Scholes analytic expression FFT true value

ÎK(S0;D,T ) rel. err. time ÎK(S0;D,T ) rel. err. time IK(S0;D,T )

D0 = 70 85.4538614262 1e–16 0.21ms 85.4540057263 4e–06 16.1ms 85.4538614262

D0 = 80 65.2422276006 1e–16 0.23ms 65.2419573588 2e–06 28.8ms 65.2422276006

D0 = 85 50.5441995528 1e–16 0.17ms 50.5440955283 7e–06 16.7ms 50.5441995528

D0 = 90 33.9336338323 1e–16 0.16ms 33.9338704798 7e–06 18.6ms 33.9336338323

Heston analytic expression FFT true value

Black–Scholes ÎK(S0;D,T ) rel. err. time ÎK(S0;D,T ) rel. err. time IK(S0;D,T )

D0 = 70 83.4866936948 3e–12 0.32ms 83.4868068129 4e–06 19.2ms 83.4866936948

D0 = 80 63.5749107489 2e–12 0.23ms 63.5746700119 2e–06 15.3ms 63.5749107489

D0 = 85 49.3197017223 2e–12 0.19ms 49.3196000374 7e–06 15.5ms 49.3197017223

D0 = 90 33.1719456729 2e–12 0.19ms 33.1721774368 8e–06 15.3ms 33.1719456729

Stein–Stein analytic expression FFT true value

Black–Scholes ÎK(S0;D,T ) rel. err. time ÎK(S0;D,T ) rel. err. time IK(S0;D,T )

D0 = 70 80.9824899941 1e–08 1.06ms 80.9861054076 4e–06 36.5ms 80.9824899941

D0 = 80 66.3518973059 1e–08 1.58ms 66.3550405414 2e–06 33.8ms 66.3518973059

D0 = 85 54.7171462441 2e–08 2.15ms 54.7199452215 8e–06 33.2ms 54.7171462441

D0 = 90 39.3047684487 3e–08 3.30ms 39.3074778522 8e–06 33.2ms 39.3047684487

Table 3.3: Prices ÎK(S0;D,T ) of digital options in the Black–Scholes model (top, σ = 20.7330%), the Heston model (middle, v0 = 0.0449,

θ = 31.8692, ν = 0.0436, γ = 2.3695, ρ = 0), and the Stein–Stein model (below, σ0 = 0.0866, ξ = 0.0428, k = 0.3379, κ = 0.0010) calculated

by the analytic expression (left column, N = 90, P0 = exp(10σ
√
T ), see Theorem 13) and by FFT (middle column, see Example 11). The true

value IK(S0;D,T ) (right column) was calculated using N = 200 and P0 = exp(20σ
√
T ) in the analytic expression. The remaining parameters

are S0 = 100, K0 = D0, rt = 5%, and T = 1. Relative errors of both approaches are given. The computation time was calculated using Matlab

on a 2.4 GHz PC.
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Black–Scholes analytic expression FFT true value

ÎK(S0;D,P, T ) rel. err. time ÎK(S0;D,P, T ) rel. err. time IK(S0;D,P, T )

D0 = S2
0/P0 = 70 78.6855519230 1e–16 0.05ms 78.6852820842 9e–07 9.4ms 78.6855519230

D0 = S2
0/P0 = 80 41.5744313561 1e–16 0.05ms 41.5739282389 5e–06 9.4ms 41.5744313561

D0 = S2
0/P0 = 85 16.1877599654 1e–16 0.05ms 16.1876865090 6e–06 9.3ms 16.1877599654

D0 = S2
0/P0 = 90 01.0147035461 1e–16 0.05ms 01.0148621094 2e–02 7.5ms 01.0147035460

Heston analytic expression FFT true value

ÎK(S0;D,P, T ) rel. err. time ÎK(S0;D,P, T ) rel. err. time IK(S0;D,P, T )

D0 = S2
0/P0 = 70 75.3471981471 1e–16 0.22ms 75.3468975875 6e–06 14.5ms 75.3471981471

D0 = S2
0/P0 = 80 39.1239528894 1e–16 0.18ms 39.1235007244 5e–06 19.8ms 39.1239528894

D0 = S2
0/P0 = 85 15.8845258917 1e–16 0.22ms 15.8844268925 6e–06 21.1ms 15.8845258917

D0 = S2
0/P0 = 90 01.5861960239 1e–16 0.25ms 01.5864097410 9e–04 20.0ms 01.5861960239

Stein–Stein analytic expression FFT true value

ÎK(S0;D,P, T ) rel. err. time ÎK(S0;D,P, T ) rel. err. time IK(S0;D,P, T )

D0 = S2
0/P0 = 70 71.6800212987 1e–16 0.88ms 71.6805943479 6e–06 34.6ms 71.6800212987

D0 = S2
0/P0 = 80 47.3929219824 1e–16 0.97ms 47.3926883220 5e–06 37.1ms 47.3929219824

D0 = S2
0/P0 = 85 30.1576540576 1e–16 0.94ms 30.1574472013 6e–06 35.4ms 30.1576540576

D0 = S2
0/P0 = 90 11.8689869073 1e–16 0.84ms 11.8696009918 1e–03 37.3ms 11.8689869073

Table 3.4: Prices ÎK(S0;D,P, T ) of double digital options in the Black–Scholes model (top, σ = 20.7330%), the Heston model (middle,

v0 = 0.0449, θ = 31.8692, ν = 0.0436, γ = 2.3695, ρ = 0), and the Stein–Stein model (below, σ0 = 0.0866, ξ = 0.0428, k = 0.3379, κ = 0.0010)

calculated by the analytic expression (left column, N = 20, see Theorem 13) and by FFT (middle column, N = 20, see Example 11). The

true value IK(S0;D,P, T ) (right column) was calculated using N = 200 in the analytic expression. The remaining parameters are chosen as

S0 = 100, K0 = D0, rt = 5%, and T = 1. Relative errors of both approaches are given. The computation time was calculated using Matlab on a

2.4 GHz PC.
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ˆDOCK(S0; ·) rel. err. time ˆDOCK(S0; ·) rel. err. time DOCK(S0; ·)
D0 = S2

0/P0 = 70 23.6056655769 1e–16 0.06ms 23.6057715409 3e–06 5.83ms 23.6056655769

D0 = S2
0/P0 = 80 08.3148862712 1e–16 0.05ms 08.3146985451 9e–06 5.16ms 08.3148862712

D0 = S2
0/P0 = 85 02.4281639948 1e–16 0.04ms 02.4281272887 3e–05 4.79ms 02.4281639948

D0 = S2
0/P0 = 90 00.1014703546 1e–16 0.03ms 00.1015431731 2e–07 4.81ms 00.1014703546

Heston analytic expression FFT true value

ˆDOCK(S0; ·) rel. err. time ˆDOCK(S0; ·) rel. err. time DOCK(S0; ·)
D0 = S2

0/P0 = 70 22.6041594441 1e–16 0.20ms 22.6042456846 6e–08 12.9ms 22.6041594441

D0 = S2
0/P0 = 80 07.8247905779 1e–16 0.11ms 07.8246194160 9e–07 13.4ms 07.8247905779

D0 = S2
0/P0 = 85 02.3826788838 1e–16 0.10ms 02.3826396395 2e–05 13.1ms 02.3826788838

D0 = S2
0/P0 = 90 00.1586196024 1e–16 0.10ms 00.1586977412 3e–03 13.1ms 00.1586196024

Stein–Stein analytic expression FFT true value

ˆDOCK(S0; ·) rel. err. time ˆDOCK(S0; ·) rel. err. time DOCK(S0; ·)
D0 = S2

0/P0 = 70 21.5040063896 1e–16 0.79ms 21.5040360517 5e–06 32.7ms 21.5040063896

D0 = S2
0/P0 = 80 09.4785843965 1e–16 0.66ms 09.4784818990 9e–06 32.7ms 09.4785843965

D0 = S2
0/P0 = 85 04.5236481086 1e–16 0.73ms 04.5235861827 6e–06 32.8ms 04.5236481086

D0 = S2
0/P0 = 90 01.1868986907 1e–16 0.70ms 01.1870464365 2e–02 35.8ms 01.1868986907

Table 3.5: Prices ˆDOCK(S0;D,P, T ) of double barrier options in the Black–Scholes model (top, σ = 20.7330%), the Heston model (middle,

v0 = 0.0449, θ = 31.8692, ν = 0.0436, γ = 2.3695, ρ = 0), and the Stein–Stein model (below, σ0 = 0.0866, ξ = 0.0428, k = 0.3379, κ = 0.0010)

calculated by the analytic expression (left column, N = 20, see Theorem 14) and by FFT (middle column, see Example 12). The true value

IK(S0;D,P, T ) (right column) was calculated using N = 200 in the analytic expression. The remaining parameters are chosen as S0 = 100,

K0 = D0, rt = 5%, and T = 1. Relative errors of both approaches are given. Computation time was calculated using Matlab on a 2.4 GHz PC.
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the series from Example 11. Table 3.4 presents the price estimates together with both

computation time and relative error in the Black–Scholes model (top), the Heston model

(middle), and the Stein–Stein model (below). Again, we aim at an accuracy (in terms of

the relative error) of 1e–04. In the two barrier case, the advantage of the time change

representation is more significant than in the single barrier case. Since the upper barrier

is not set to infinity, N = 20 terms in the series representation (Theorem 13) are sufficient

to obtain a very high accuracy. The results in Table 3.4 show that the computation time

for the time change representation is now 50–100 times faster than the FFT technique.

Although the FFT technique is now also an infinite series of call options (truncated at

N = 20), its computation time is about the same as in the single barrier case since digital

options with different strikes can be computed simultaneously.

The same holds for double barrier options. The pricing formulas are given in Example 12

(FFT technique) and Theorem 14 (time change representation). Table 3.5 presents the

pricing results together with both computation time and relative error in the Black–Scholes

model (top), the Heston model (middle), respectively the Stein–Stein model (below). Aim-

ing at a relative pricing error of less than 1e-04, the analytic expression resulting from the

time change representation turns out to be superior to the FFT technique, this time being

about 100 times faster. A higher precision in the time change representation – which

is, for example, important for at the money barriers – comes at almost no additional

computational cost.

Regime switching jump-diffusion model

Having analyzed the effect of stochastic volatility on digital and barrier option prices, we

can now do the same in jump-diffusion models. Here, we concentrate on numerical schemes

instead of analytic expressions, i.e. we further analyze the Brownian bridge algorithms from

Chapter 2. Apart from the greater flexibility in our stock price model (i.e. we can include

jumps), the Brownian bridge technique has another big advantage: The algorithms can

easily be adapted to exotic payoff structures and can thus be used to price, for example,

(step) double barrier options or (corridor) bonus certificates. The calibration to a single

call option dataset in Section 3.1.3 allows us to compare the option prices in models with

and without jumps.

Digital first-touch options

First, we again deal with digital first-touch options. Options of this form provide a building

block for more complex derivatives; for more details see, for example, Section 3.1.1 or

Boyarchenko and Levendorskĭi [2002].
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As before, digital first-touch options pay 1 at maturity T if the stock price crosses (a)

specific threshold(s). The owner of an up-and-in (respectively down-and-in) contract

receives 1 if the upper barrier P = {Pt}t≥0 (respectively lower barrier D = {Dt}t≥0) is hit

first. If the underlying remains within the corridor (Dt, Pt), the option expires worthless.

Under the risk-neutral measure Q, the up-and-in option can be priced as

I+
K(S0;D,P, T ) := exp

(

−
∫ T

0
rtdt

)

Q(T+
P,D ≤ T ) . (3.28)

Similarly, the price of a down-and-in option is given by

I−K(S0;D,P, T ) := exp

(

−
∫ T

0
rtdt

)

Q(T−
P,D ≤ T ) . (3.29)

Example 16 (Digital first-touch options)

First, in order to compare the results to the stochastic volatility models (i.e. Table 3.4)

Table 3.6 compares the prices IK(S0;D,P, T ) of digital first-touch options in a double-

exponential jump-diffusion model obtained by the standard Monte–Carlo simulation on a

discrete grid to the Brownian bridge algorithm (Algorithm 1). Then, Table 3.7 examines

the similar case of (upper barrier) first-touch option prices I+
K(S0;D,P, T ). The param-

eters considered in the simulations are: rt = 5%, σ = 20.15%, p = 0, α⊖ = 6.5296, and

T = 1 (expiration date of the contract). Furthermore, we set D0 = 90, S0 = 100, and

P0 = S2
0/D0.

In the standard Monte–Carlo algorithm, we use 250, respectively 1000, discretization steps.

According to the expected number of jumps per year λ, we consider the scenarios “Black-

Scholes” (λ = 0), “Low” (λ = 0.1), “Middle” (λ = 0.2), and “High” (λ = 0.5). We chose

double-exponential jump diffusions as this allows us to compare the results to the Laplace

transforms of the first-exit time as presented in Kou and Wang [2003], Sepp [2004]. Note

that it is very easy to change the jump-size distribution in a Brownian bridge algorithm,

whereas it often requires new theoretical results if one is interested in analytical solutions

for the Laplace transform of the first-exit times.

From Table 3.7, we conclude that the Brownian bridge algorithm is significantly faster than

the brute–force Monte–Carlo simulation on a discrete grid. Furthermore, the Brownian

bridge algorithm is unbiased and thus leads to prices that are close to the exact prices by

Sepp [2004]. There are ways to further accelerate this algorithm: First, a parallelization of

Monte–Carlo simulations can very easily be implemented. Secondly, there are many vari-

ance reduction techniques to accelerate the algorithm (see, e.g., Joshi and Leung [2007],

DiCesare and McLeish [2008], Ross and Ghamami [2010] on the single barrier algorithm).
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Black–Scholes △t = 1/250 △t = 1/1000 true value

ÎK(S0;D,P, T ) rel. err. time ÎK(S0;D,P, T ) rel. err. time IK(S0;D,P, T )

D0 = S2
0/P0 = 70 78.69 ± 0.01 3e–04 2.2s 78.68 ± 0.00 7e–05 18.2s 78.6856

D0 = S2
0/P0 = 80 41.57 ± 0.01 1e–04 2.2s 41.57 ± 0.00 1e–04 17.9s 41.5744

D0 = S2
0/P0 = 85 16.18 ± 0.01 5e–04 2.2s 16.21 ± 0.00 1e–04 17.8s 16.1878

D0 = S2
0/P0 = 90 01.01 ± 0.01 5e–03 2.2s 01.01 ± 0.00 1e–04 17.5s 01.0147

D.–Exp. (λ = 0.1) △t = 1/250 △t = 1/1000 true value

ÎK(S0;D,P, T ) rel. err. time ÎK(S0;D,P, T ) rel. err. time IK(S0;D,P, T )

D0 = S2
0/P0 = 70 72.68 ± 0.05 7e–04 2.5s 72.62 ± 0.01 7e–05 19.1s 72.6253

D0 = S2
0/P0 = 80 36.68 ± 0.05 6e–04 2.5s 36.65 ± 0.01 1e–04 18.8s 36.6552

D0 = S2
0/P0 = 85 13.99 ± 0.05 7e–03 2.5s 14.02 ± 0.01 1e–04 18.8s 14.0238

D0 = S2
0/P0 = 90 00.87 ± 0.05 8e–03 2.5s 00.86 ± 0.01 1e–03 18.3s 00.8630

D.–Exp. (λ = 0.5) △t = 1/250 △t = 1/1000 true value

ÎK(S0;D,P, T ) rel. err. time ÎK(S0;D,P, T ) rel. err. time IK(S0;D,P, T )

D0 = S2
0/P0 = 70 23.16 ± 0.05 2e–03 3.0s 23.22 ± 0.02 5e–04 23.2s 23.2082

D0 = S2
0/P0 = 80 07.03 ± 0.05 7e–03 3.0s 07.08 ± 0.02 7e–05 22.7s 07.0805

D0 = S2
0/P0 = 85 02.24 ± 0.05 2e–03 3.0s 02.28 ± 0.02 1e–04 22.6s 02.2831

D0 = S2
0/P0 = 90 00.12 ± 0.05 1e–03 3.0s 00.12 ± 0.02 1e–03 22.3s 00.1224

Table 3.6: Prices ÎK(S0;D,P, T ) of double digital options in the Black–Scholes model (top, σ = 20.7330%), the Double-exponential jump diffu-

sion model D.–Exp. (middle, σ = 20.15%, p = 0, α⊖ = 6.5296) estimated using the Brownian bridge algorithm. The true value IK(S0;D,P, T )

(right column) was calculated using 108 simulation runs. The remaining parameters are chosen as S0 = 100, K0 = D0, rt = 5%, and T = 1.

Relative errors of both approaches are given. The computation time was calculated using Matlab on a 3.1 GHz PC.
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Black-Scholes Jump-diffusion

λ = 0 Low (λ = 0.1) Middle (λ = 0.2) High (λ = 0.5)

StdMC(△ = 1/250) Î+
K(S0;D,P, T ) 42.37 ± 0.08 33.58 ± 0.08 25.83 ± 0.08 9.86 ± 0.08

rel. bias 4.6% 3.8% 1.7% 0.3%

runtime 47.2s 46.1s 45.0s 41.7s

StdMC(△ = 1/1000) Î+
K(S0;D,P, T ) 43.43 ± 0.03 34.28 ± 0.03 25.98 ± 0.08 9.87 ± 0.04

rel. bias 2.2% 1.8% 1.3% 0.2%

runtime 185.6s 183.8s 179.4s 161.7s

Brownian Bridge Î+
K(S0;D,P, T ) 44.41 ± 0.02 34.91 ± 0.02 26.45 ± 0.03 9.89 ± 0.03

rel. bias 0.0% 0.0% 0.0% 0.0%

runtime 18.1s 19.3s 14.3s 30.1s

I+
K(S0;D,P, T ) 44.43 34.87 26.45 9.88

Table 3.7: Prices I+
K(S0;D,P, T ) and confidence intervals at the confidence level α = 90% of (upper barrier) digital first-touch

options for different jump intensities λ. We compare the standard Monte–Carlo simulation on a discrete grid with mesh 1/250,

respectively 1/1000, to the Brownian bridge algorithm (Algorithm 5) using 106 simulation runs. The exact value of the option was

estimated by inverting the Laplace transforms presented by, for example, Sepp [2004]. The table additionally presents the bias and

runtime for each algorithm. The relative bias is the relative difference between the expected simulated value E[Î+
K(S0;D,P, T )] divided

by the true value I+
K(S0;D,P, T ) of the option. The computation time was calculated using Matlab 2012a on a 3.1 GHz PC.
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Figure 3.4: Bias of (upper barrier) digital first-touch option prices I+
K(S0;D,P, T ).

We compare the standard Monte–Carlo simulation on a discrete grid with mesh △t ∈
{1e–01, 1e–02, 1e–03, 1e–04, 1e–05} to the Brownian bridge algorithm (Algorithm 5) us-

ing 106 simulation runs. The jump intensity is λ = 2; the same parameters as in Table

3.7 are used. The relative bias is the relative difference between the expected simulated

value E
[
Î+
K(S0;D,P, T )

]
divided by the true value I+

K(S0;D,P, T ) of the option.
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Figure 3.4 further examines the discretization bias of the two algorithms. Note that the dis-

cretization bias in the standard Monte–Carlo simulation is still considerably high even for

1000 discretization steps (△t = 1e–03). The Brownian bridge technique returns unbiased

price estimates.

Furthermore, we can now assess the effect of stochastic volatility and jumps on barrier

option prices. Already a jump intensity of λ = 0.1 (which corresponds to a one-year jump

probability of 1 − exp(0.1) ≈ 9.5%) leads to about 10% lower barrier option prices (see

Table 3.6). The effect of stochastic volatility is smaller; it affects option prices by – on

average – 5% (see Table 3.4). The advantage of the Brownian bridge simulation is its

flexibility – not only regarding to the stock price model – but also with respect to payoff

streams of financial contracts. The Brownian bridge algorithm can easily be adapted to

price exotic derivatives like step double barrier options or corridor bonus certificates.

(Step) Double barrier options

Double barrier options are very popular over-the-counter (OTC) derivatives and are fre-

quently embedded in a variety of structured products. The holder receives the payoff of

a standard call or put option if the stock price stays within a corridor (Dt, Pt) over the

lifetime of the option (and receives 0 otherwise). For an investor, this standard contract

is often not suitable: Following his risk aversion, his hedging requirements, or his mar-

ket views, the investor might want to change the barrier level over time. For instance,

he/she might want to widen the corridor (Dt, Pt) over time (a contract often referred to

as “expanding tunnel”). A large range of exotic products aim at providing this additional

flexibility, i.e. step double barrier options (the barriers are piecewise constant) or window

double barrier options (the barriers can only be observed during certain time intervals).

Many different names were created for those type of contracts, i.e. “hot-dog-option”, “wed-

ding cakes”, or “onion options”, for a more detailed review of traded contracts, we refer to

Guillaume [2003, 2010]. Analytical pricing formulas for such products tend to become ex-

tremely complicated (this is already true for simple examples in the Black–Scholes model,

see, e.g., the Appendix of Guillaume [2010]) and are not flexible enough to adapt to many

exotic payoff streams.

In the following, we introduce step double barrier options formally. For certain observation

points t0 = 0 < t1 < . . . < tn = T , the barrier of an n-step double barrier option is constant

over the intervals [ti−1, ti], for i = 1, 2, . . . , n. Denoting those ranges by [D
(i)
t , P

(i)
t ], a step

double barrier option has the same payoff as a standard call or put if the underlying asset

has stayed within the thresholds (D
(i)
t , P

(i)
t ) until the maturity of the contract.
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Black-Scholes Jump-diffusion

λ = 0 Low (λ = 0.1) Middle (λ = 0.2) High (λ = 0.5)

StdMC(△ = 1/250) ˆDOCK(S0;D,P, T ) 20.33 ± 0.02 14.77 ± 0.02 8.61 ± 0.01 0.46 ± 0.05

rel. bias 3.4% 2.3% 2.1% 1.4%

runtime 43.0s 42.4s 40.0s 36.1s

StdMC(△ = 1/1000) ˆDOCK(S0;D,P, T ) 19.97 ± 0.01 14.59 ± 0.01 8.54 ± 0.01 0.47 ± 0.04

rel. bias 1.6% 1.0% 0.9% 0.6%

runtime 171.1s 169.2s 159.5s 144.2s

Brownian Bridge ˆDOCK(S0;D,P, T ) 19.65 ± 0.01 14.42 ± 0.01 8.48 ± 0.01 0.47 ± 0.02

rel. bias 0.0% 0.0% 0.0% 0.0%

runtime 27.4s 30.7s 33.5s 32.3s

DOCK(S0;D,P, T ) 19.65 14.41 8.46 0.47

Table 3.8: Prices ˆDOCK(S0;D,P, T ) and confidence intervals at the confidence level α = 90% of two-step double barrier options

for different jump intensities λ. We compare the standard Monte–Carlo simulation on a discrete grid with mesh 1/250, respectively

1/1000, to the Brownian bridge algorithm (Algorithm 5) using 106 simulation runs. The exact value of the option is considered to

be the one obtained by 108 simulation runs using the Brownian bridge pricing algorithm. The table additionally presents the bias

and runtime for each algorithm. The bias is the (relative) difference between the expected simulated value E[ ˆDOCK(S0;D,P, T )]

and the true value DOCK(S0;D,P, T ) of the option. The computation time was calculated using Matlab 2012a on a 3.1 GHz PC.
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Example 17 (Step double barrier options)

We consider a two-step double barrier option, i.e. an “expanding tunnel” with t1 = 1,

[D
(1)
0 , P

(1)
0 ] = [60, 140] and [D

(2)
0 , P

(2)
0 ] = [50, 150]. The strike price at T = t2 = 2 is

K0 = 70. The other parameters are chosen as in Example 16, i.e. rt = 5%, σ = 20.15%

and S0 = 100. Again, we use a double-exponential jump-diffusion model with p = 0 and

α⊖ = 6.5296. According to the expected number of jumps per year λ, we consider the

scenarios “Black-Scholes” (λ = 0), “Low” (λ = 0.1), “Middle” (λ = 0.2), and “High”

(λ = 0.5). Table 3.8 compares the prices of two-step double barrier options obtained by the

standard Monte–Carlo simulation on a discrete grid and the Brownian bridge algorithm

(Algorithm 5). Pricing this type of exotic options analytically tends – even for the case of

a double-exponential jump size distribution – to be very tedious and also computationally

challenging. In the Black–Scholes model, closed-form prices for two-step double barrier

options are available (see the Appendix of Guillaume [2010]). The advantage of both

Monte–Carlo algorithms presented in Table 3.8 is the fact that they are very flexible,

easy to implement, and can easily be adapted to different payoff streams or jump-size

distributions. The Brownian bridge algorithm is moreover both unbiased and faster than

the standard Monte–Carlo simulation.

Corridor bonus certificates

Corridor bonus certificates provide the largest payoff if the stock price stays within a given

corridor (Dt, Pt) during the lifetime of the contract and thus offer the possibility to bet on

sideways markets. On different underlying assets, they are emitted by all major banks7.

The payoff of a corridor bonus certificate depends on the market value of the underlying

at the expiration date T , the first-exit time events on the two barriers D and P , and on an

initially specified “fixed amount” FT = F0 exp(
∫ T
0 rtdt). One distinguishes the following

two cases:

• If the stock prices stays within the corridor (Dt, Pt), then the owner of the certificate

receives the fixed amount FT at maturity T .

• If the stock price reaches one of the barriers, the payoff depends on the stock price

ST at the expiration date of the certificate.

df

7Note that there exist different kinds of corridor bonus certificates with slightly different payoff structures.

As an example, Société Générale emitted several certificates (e.g. ISIN: DE000SG12BS9).
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More precisely, we get the following payoff:

payoff(T ) =







FT if TP,D > T,

min(ST , FT ) if T−
P,D ≤ T ,

max
(
min(2S0 − ST , FT ), 0

)
if T+

P,D ≤ T .

Note that if the upper barrier is hit, the certificate converts into a short position in the

underlying S. In most standard contract specifications the resulting loss is bounded by

the initial investment. Under the risk-neutral measure Q, the price of corridor bonus

certificates conditional on T−
P,D, T+

P,D, and ST is given by

BF (S0;D,P, T ) := exp

(

−
∫ T

0
rtdt

)

EQ

[
payoff(T )

]

= exp

(

−
∫ T

0
rtdt

)

EQ

[

EQ

[
payoff(T )

∣
∣T−

P,D, T
+
P,D, ST

]]

= exp

(

−
∫ T

0
rtdt

)

EQ

[

FT
(
1 − 1{T+

P,D≤T} − 1{T−
P,D≤T}

)

+ 1{T+
P,D≤T} max(min(2S0 − ST , FT ), 0) + 1{T−

P,D≤T} min(ST , FT )
]

. (3.30)

This can be estimated using the triplets
(
BB+(k), BB(k), BT (k)

)
from Algorithm 5.

Example 18 (Corridor bonus certificates)

Table 3.9 estimates the prices of corridor bonus certificates using Algorithm 5.

Black-Scholes Jump-diffusion

λ = 0 Low (λ = 0.1) Middle (λ = 0.2) High (λ = 0.5)

D0 = S2
0/P0 = 70 105.98 ± 0.00 104.97 ± 0.02 103.97 ± 0.04 101.02 ± 0.07

D0 = S2
0/P0 = 80 092.61 ± 0.00 091.76 ± 0.01 090.90 ± 0.03 088.45 ± 0.07

D0 = S2
0/P0 = 85 086.20 ± 0.00 085.65 ± 0.02 085.12 ± 0.04 083.94 ± 0.07

D0 = S2
0/P0 = 90 085.23 ± 0.00 084.96 ± 0.02 084.70 ± 0.04 083.57 ± 0.07

Table 3.9: Prices of corridor bonus certificates B̂F (S0;D,P, T ) using Algorithm 5 for

different jump size distributions (parameters α⊕ = 6.5296 and p = 0) and jump size

intensities λ. We choose S0 = 100, rt = 5%, T = 1, σ = 20.15%, and F0 = 120. The

results have been obtained in a simulation with 106 trajectories. 90% confidence intervals

are given.
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Credit risk

Another frequent application of first-exit times are structural credit risk models. The idea

behind those models is to define default as a consequence of insufficient asset values, with

the result that bonds can be priced as an option on the company’s assets S. One con-

siders two possibilities that the bond spread payments cease: First, the company defaults

as soon as S falls below some prespecified level D = {Dt}t≥0. Second, due to, for exam-

ple, the company’s desire to upgrade its credit rating or due to an initial public offering

(IPO), the bond might be repaid earlier. This event is triggered as soon as S crosses an

upper barrier P = {Pt}t≥0, see, for example, Downing et al. [2005], Gabaix et al. [2007],

Dobránszky and Schoutens [2008].

The price of a defaultable bond with nominal value 1 and maturity T that pays (contin-

uous) interest at a rate d and can (at any time) be recalled by the bond holder is then

priced as

Bond Price = Nominal + Interest, (3.31)

Nominal = exp
(

−
∫ T

0
rtdt

)

Q(TP,D > T )

Nominal = + EQ

[

R exp
(

−
∫ T−

P,D

0
rtdt

)

1{T−
P,D≤T} + exp

(

−
∫ T+

P,D

0
rrdt

)

1{T+
P,D≤T}

]

,

Interest = EQ

[ ∫ min(TP,D,T )

0
d exp

(

−
∫ t

0
rsds

)

dt
]

Nominal =
d

r

(

1 − exp
(

−
∫ T

0
rtdt

))

Q(TP,D > T )

+ EQ

[ ∫ T+
P,D

0
d exp

(

−
∫ t

0
rsds

)

dt 1{T+
P,D≤T}

]

︸ ︷︷ ︸

early repayment in T+
P,D

+ EQ

[ ∫ T−
P,D

0
d exp

(

−
∫ t

0
rsds

)

dt 1{T−
P,D≤T}

]

︸ ︷︷ ︸

default in T−
P,D

,

where {rt}t≥0 is the risk-free interest rate and R ∈ [0, 1] the recovery rate in case of default.

This price depends on the first-exit times T+
P,D, T−

P,D and can thus be computed using

Algorithm 6. This concept of structural credit risk models is also applied in the following

Section 3.2 in an empirical study on the asset class Private Equity (PE).
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3.2 The risk appetite of Private Equity (PE) sponsors8

Investments that belong to the asset class Private Equity (PE) are equity holdings on

operating companies that are not publicly traded on a stock exchange. In this section,

we want to empirically investigate the risks inherent in PE transactions and identify key

determinants of deal-level risks chosen.

Due to the illiquidity and opaqueness of the PE business (see, among many others,

Ljungqvist and Richardson [2003]), the main problem in PE risk management lies in the

scarcity of available data. Market valuations of enterprise and equity values can hardly be

observed or appropriately calculated over the holding period of the PE sponsor (i.e. the

time span between purchasing and selling the target company). However, the (observable)

fluctuation in a value is fundamental to the calculation of risk – for example measured

via the standard deviation. Consequently, calculating risk indicators for PE-sponsored

companies is considerably more difficult compared to for publicly listed companies.

In contrast to most previous studies focusing on systematic risks excluding unsystematic

risk factors (see, e.g., Franzoni et al. [2012], Groh and Gottschalg [2009]), we want to

explicitly measure idiosyncratic (transaction level) risk. Both systematic and unsystematic

risks are obviously inherent in single PE investments as it is usually impossible to fully

diversify PE funds that often embrace less than 20 investments (see, e.g., Lossen [2006]).

In this context, Axelson et al. [2009] propose the convincing theoretical argument that the

typical compensation structure of PE funds gives PE firms an incentive to undertake risky

but unprofitable investments. The basic idea of their theory is that PE sponsors as gen-

eral partners (GPs) participate in the success of transactions through their compensation

scheme. Their downside risk in case of failure, however, is limited and mainly borne by

the investors of their fund, the so called limited partners (LPs). This situation resembles

a call option for the PE firm as it faces a strong upside potential if the investment turns

out to be successful, but the lion’s share of downside risk is borne by their investors.

This call option-like valuation is in the literature referred to as a structural model or a real

option valuation (see also the Introduction of this thesis). The option-like valuation for

highly leveraged firms is empirically supported (see, e.g., Green [1984], Arzac [1996]). One

example – the Merton model – assumes constant debt and allows for no default during

8This section is joint work with Prof. Dr. Reiner Braun and Dr. Nico Engel from the Center for En-

trepreneurial and Financial Studies, Technische Universität München (Prof. Dr. Dr. Ann-Kristin Achleit-

ner) and Prof. Dr. Rudi Zagst and is based on the paper: Braun, R.; Engel, N.; Hieber, P. and Zagst,

R. (2011): The Risk Appetite of Private Equity Sponsors, Journal of Empirical Finance, Vol. 18, No. 5,

pp. 815-832. The empirical analyses were carried out by Dr. Nico Engel.
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the lifetime of the transaction. This is, however, a too simplistic model for buyouts.

Buyouts are characterized by substantial debt redemptions after the transaction entry

and a continuous default risk (see, e.g., Groh et al. [2008]). There are several extensions

of the Merton model that allow for more realistic assumptions:

• Ho and Singer [1984] present a two-step extension that allows for two redemption

payments during the lifetime of the PE transaction. Groh et al. [2008] apply this

model to price leveraged buyouts (LBOs).

• Black and Cox [1976], Geske [1979] as well as Brockman and Turtle [2003] see equity

as a (path dependent) option that allows for continuous default.

Both approaches still do not incorporate the central characteristics of the PE business

model mentioned above. The first one does not allow for continuous default while the

second one usually either assumes constant debt or neglects the fact that debt usually

does not decrease to zero at the end of the investment horizon. Groh et al. [2008] is

one of the rare studies explicitly dealing with unsystematic risks associated with buyout

investments. We capitalize on the basic ideas of Groh et al. [2008] and combine them with

the continuous default assumption of, for example, Black and Cox [1976], Geske [1979],

and Brockman and Turtle [2003]. We think that this is more adequate in the context

of PE as it allows for continuous default and redemption payments during the holding

period. Based on our model, we calculate deal-specific implied asset and equity risk.

These risks represent the ex-ante assumptions (i.e. at investment entry) of the PE sponsor

regarding the expected volatility of the company/enterprise value (asset risk) and equity

value (equity risk). The latter represents the risk appetite of a PE sponsor since it can be

interpreted as the intentionally chosen risk level from the perspective of the PE sponsor,

given a certain willingness of banks to provide leverage.

The remainder of this section is organized as follows: In Section 3.2.1, we introduce the

structural model to value PE transactions. After a data description in Section 3.2.2, we

show how the structural model can be used to obtain an implied volatility as a measure

of the risk inherent in a single PE transaction. The empirical results on a PE database

are discussed in Section 3.2.3. The aim of this study is to identify risk factors of PE

transactions. For more details, we also refer to Braun et al. [2011].

3.2.1 Structural default model

This section presents the structural default model for pricing PE transactions. With

the help of this model, one is able to calculate an implied volatility, using deal specific
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information on time horizon, debt and equity prices, average recovery rates, and on quoted

risk-free rates and bond spreads.

We follow Ho and Singer [1984] and use the following assumptions for a firm value model

listed below:

(1) The firm’s capital structure consists of a single equity and a single debt layer.

(2) The yield curve is flat and non-stochastic.

(3) Until the maturity of the debt, the firm’s investment decisions are known.

(4) The firm does not pay dividends and does not make any other contributions to

shareholders.

(5) Amortization payments are fixed in the indentures.

(6) Amortization payments are financed with new equity.

(7) Default occurs when the firm (enterprise) value S falls below the face value of debt

D. In this case, the debt holders have the right to take control over the firm and the

shareholders need to forfeit the buyout company’s assets to the lenders costlessly.

As in Section 3.1, Equation (3.1), the firm’s assets S = {St}t≥0 are modeled as a geometric

Brownian motion (GBM) with drift r ∈ R and volatility σ > 0. While it is mathematically

possible to relax most of the given assumptions, the limited availability and level of detail

of PE data makes it practically difficult (if not impossible) to calibrate more complicated

models with many parameters. The resulting use of standard deviation as a risk measure

turned out to be sufficient in the context of highly leveraged investments. In the related

case of hedge funds, Eling and Schuhmacher [2005, 2007] show that the use of different risk-

adjusted performance measures (with changing assumptions with regard to the underlying

return distribution) does not change the ranking between different investments. This even

holds true if the return distribution significantly deviates from a normal distribution. For

those reasons we stay at this level of simplification.

The face value of debt D = {Dt}t≥0 bears continuous interest at a rate of c. The debt

holders receive a continuous rate λ that consists of (part of) the interest payments plus

a potential amortization payment. Both c and λ are assumed to be constant over time.

Thus, the face value of debt at time t is given by

Dt = D0 e
(c−λ)t, D0 > 0 . (3.32)
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Figure 3.5: A sample private equity transaction with parameters S0 = 1.0, D0 = 0.8,

T = 5.3, σ = 18.2%, r = 5.0%, c = 8.0%, λ = 13.4%. Two samples of the firm value path

(black line) were generated using Monte–Carlo simulation. The company defaults as soon

as its value hits the current face vale of debt ( grey line).

As in Chapter 2, the first-exit time is written as

T∞,D := inf{t ≥ 0 : St ≤ Dt} . (3.33)

Figure 3.5 displays the two possible outcomes of a sample PE transaction9. While on

the right-hand side, the company value (black line) stays above the face value of debt

(grey line) until maturity T , the black path on the left-hand side hits the face value of

debt and the company defaults. The default time is the first-exit time T∞,D as defined in

Equation (3.33).

As already mentioned, the debt holders receive the redemption payments of the continuous

rate λ until the company either defaults or matures in T . Apart from those redemption

payments, the debt holders demand the remaining debt as soon as the transaction is

terminated. If the company defaults, they receive DT∞,D
times a recovery rate R ∈ [0, 1]

at time T∞,D, else the remaining debt DT in T . Figure 3.6 displays the payments to the

debt holders for the two possible cases of default (left) and no default (right) and using

the same sample transaction as in Figure 3.5.

A well-known result is the continuous barrier hitting probability in the presented contin-

uous setting, see also Equation (2.2) in Chapter 2. Lemma 5 summarizes the main finding.

9We randomly picked one transaction from our data set.
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Figure 3.6: Payments to the debt holders in case of default ( left) and no default ( right).

The chosen parameters are the same as in Figure 3.5, the recovery rate R is 62%.

Lemma 5 (Barrier hitting probability GBM)

Let S denote a geometric Brownian motion (GBM) with drift r ∈ R and volatility σ > 0,

starting at S0 > D0. The barrier level is Dt = D0 e
(c−λ)t, d := ln(D0/S0) is the logarithm

of the initial leverage ratio. The survival probability

Q(T∞,D > T ) = Q
(
St > Dt, for all t ∈ [0, T ]

)
,

abbreviated by Φd,µ,σ(T ), simplifies to

Φd,µ,σ(T ) := Φ

(−d+ µT

σ
√
T

)

− exp

(
2µd

σ2

)

Φ

(
d+ µT

σ
√
T

)

, (3.34)

where µ := r − c + λ − σ2/2, Φ( · ) denotes the standard normal cumulative distribution

function, and ln( · ) the natural logarithm.

Proof. Lemma 1 in Chapter 2 displays the upper barrier default probability. The lower

barrier survival probability is a straightforward corollary to this result.

If we continuously test for default, the total value of debt VD(0) can be priced using

results on structural credit risk models. For an introduction and more details see, for

example, Schönbucher [2003]. VD(0) is seen as a coupon bond with initial face value D0
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and continuous redemption payments λDtdt. Then10,

VD(0) =

[∫ T

0
e−rtλDt dt+ e−rTDT

]

Q(T∞,D > T )

+

∫ T

0

[∫ s

0
e−rtλDt dt+Re−rsDs

]

dQ(T∞,D ≤ s) , (3.35)

where dQ(T∞,D ≤ s) is the first-exit time density (see Lemma 5). Equation (3.35) implies

that default can occur at any time during the holding period [0, T ]. Equation (3.35) con-

sists of the survived (first term) and defaulted (second term) firm value paths. Those terms

contain the discounted redemption payments
∫ min(T∞,D;T )
0 e−rtλDtdt plus the discounted

remaining debt value at maturity (e−rTDT ) or at default (Re−rT∞,DDT∞,D
).

Theorem 15 gives an analytic expression for the bond in Equation (3.35).

Theorem 15 (Pricing the face value of debt)

The total value of debt VD(0) can, under the risk-neutral measure Q with the risk-free

interest rate r, be priced as

VD(0) = −D0
λ

c− r − λ
+D0 e

(c−r−λ)T c− r

c− r − λ
Φd,µ,σ(T )

+D0 e
−

d(µ̃−µ)

σ2

(

R+
λ

c− r − λ

)
(
1 − Φd,µ̃,σ(T )

)
, (3.36)

where the notation is the same as in Lemma 5, µ := r − c + λ − σ2/2, d := ln(D0/S0),

µ̃ :=
√

µ+ 2(c− r − λ)σ2, and λ 6= c− r.

Proof. It holds that

∫ min(T∞,D;T )

0
e−rtλDt dt = D0

∫ min(T∞,D;T )

0
e(c−r−λ)tλ dt

= D0
λ

c− r − λ

(
e(c−r−λ)min(T∞,D;T ) − 1

)
.

Equation (3.35) can then be written as

VD(0) =

[

D0
λ

c− r − λ

(
e(c−r−λ)T − 1

)
+ e−rTDT

]

Q(T∞,D > T )

+

∫ T

0

[

D0
λ

c− r − λ

(
e(c−r−λ)s − 1

)
+Re−rsDs

]

dQ(T∞,D ≤ s)

10VD(0) is the general formula for the market price of defaultable debt. Note that in the case of λ > c, the

face value of debt increases over time, while it decreases for λ < c. Also note that the spread c is a par

spread; at the closing of the transaction it is set such that D0 = VD(0).
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= −D0
λ

c− r − λ
+D0 e

(c−r−λ)T c− r

c− r − λ
Q(T∞,D > T )

+D0

(

R+
λ

c− r − λ

)∫ T

0
e(c−r−λ)s dQ(T∞,D ≤ s) .

The latter integral is solved using Theorem 3.3 in Scherer and Zagst [2010]

∫ T

0
e(c−r−λ)sdQ(T∞,D ≤ s) = e−

d(µ̃−µ)

σ2
(
1 − Φd,µ̃,σ(T )

)
,

with the notation of Lemma 5, µ := r − c+ λ− σ2/2, and µ̃ :=
√

µ2 + 2(c− r − λ)σ2.

Then,

VD(0) = −D0
λ

c− r − λ
+D0 e

(c−r−λ)T c− r

c− r − λ
Φd,µ,σ(T )

+D0 e
−

d(µ̃−µ)

σ2

(

R+
λ

c− r − λ

)
(
1 − Φd,µ̃,σ(T )

)
.

Theorem 15 can be applied to obtain an implied asset volatility σ using data on d, T ,

r, c, λ, and R. Therefore one has to use a root search algorithm, for example Newton’s

method.

The following results in Theorem 6 can then be used to retrieve an equity volatility σE

from the asset volatility σ. The proof is an application of Itô’s Lemma and can be found

in, for example, Schönbucher [2003], p. 276.

Lemma 6 (Equity volatility)

With the notation of Lemma 5, it holds that

σE = σ
∂VE(0)

∂S0

S0

VE(0)
, (3.37)

where VE(0) denotes the initial equity value of the firm11.

Using the results of this section, we are able to calculate deal-specific asset and equity

volatilities. The application to a large PE data set is carried out in the following two

sections.

11For the calculation of VE(0) and ∂VE(0)/∂S0, see the Appendix.
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3.2.2 Data description: PE database

Our initial sample of 1 290 buyout transactions initiated between 1990 and 2005 is drawn

from proprietary databases of two international PE funds-of-funds. When considering

investing into a PE fund, these investors request detailed information on historical trans-

actions managed by the PE sponsor. This information is a key element of their fund due

diligence process. The PE funds-of-funds grant us access to all information they possess

(in anonymous form), irrespective of their final investment decision. This means we have

information on deals sponsored by a variety of PE firms and the investment pattern exhib-

ited by the PE funds-of-funds is not a source of sample selection. Nevertheless, as these

investors are more likely to collaborate with previously successful PE sponsors, there is

likely to be a bias in our sample towards deals from more successful funds.

While all of the buyouts included in our initial sample are realized, i.e. the PE sponsor

has already sold the company, a substantial share of these transactions does not meet the

data requirements as imposed by our quantitative model. We remove all transactions with

missing values for variables which are relevant for our model (581 transactions). Because

we do not consider “quick flips”, i.e. short-termed investments in which PE sponsors do not

realize the value potential of the buyout firms, to be PE (Kaplan and Strömberg [2009]),

we also delete all transactions for which the reported holding period, i.e. the time span

between acquisition and exit, is six months or shorter (11 transactions). Finally, for some

transactions, the final debt levels reported in the databases exceed the compounded initial

debt. In these cases, the companies were apparently financed with further external capital

within the holding period. As our model does not allow for such additional financing

rounds (if not anticipated at investment entry) we discard these 168 deals. In addition, we

have to remove 70 deals for which certain deal-related data is not available (e.g. industry

affiliation of the target company, PE sponsor characteristics etc.), ending up with 460

transactions.

We identify the 5-Year US Treasury Notes at the date of transaction as proxy for the

risk-free interest rate r. We decide for this maturity as it is closest to holding periods

said to be characteristic for buyouts (e.g. six years as reported by Strömberg [2008]) and

similar to those observed in our sample. The default spread consists of an interbank rate

and a deal-specific spread. In order to obtain information on these loan characteristics,

we use Reuters’ LPC DealScan database (DealScan)12. DealScan reports comprehensive

information on syndicated loan deals sponsored by PE firms. We are able to match 95

of our total 460 transactions in the final sample. For these deals DealScan provided

12Data from DealScan was retrieved while Reiner Braun was a visiting researcher at Said Business School,

Oxford University.
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information on the interbank rate underlying the loans and the size and spread of each

debt tranche. The spreads were all based on the London Interbank Offered Rate (LIBOR)

or the Euro Interbank Offered Rate (EURIBOR). Historical data is publicly available for

both rates and we retrieved them from the European Central Bank13. We calculate the

corresponding historical rate for each of the 95 matched deals in our sample by using the

geometric mean of all monthly interbank rates during the holding period of the transaction.

Further, we compute the tranche size weighted average spread for each matched deal. By

adding up the interbank base rate and the weighted total spread for each of the matched

deals we obtained the total cost of debt c.

We fill the missing values of default spread for the other 365 deals we are unable to

find in DealScan by imputation. Imputation is a procedure which has been shown to be

superior to ad-hoc filling of missing data in finance research (Kofman and Sharpe [2003])

and is common among other researchers in the field (see, e.g., Bernstein et al. [2010]). We

impute missing default spreads by constructing fitted values from a regression of default

spreads on deal size, the ratio of net debt to equity, the ratio of net debt to EBITDA,

the yield spread on corporate bonds (Moody’s BAA bond index) on the risk-free rate over

time, a dummy variable distinguishing European and North American deals, and industry

variables.

Further, since our model allows for default during the holding period of the PE sponsor, we

have to make assumptions about the debt recovery rate R in case of default. In line with

Wilson et al. [2010] we assume a recovery rate of 62% throughout the paper. With regard

to the calculation of λ, i.e. the continuous rate the debt holders receive (including interest

and debt redemption payments), we calibrate λ using the equation DT = D0 e
(c−λ)t and

D0, DT from our database. In other words, since all transactions used in our analyses are

already realized we can resort to the actual value of debt at investment exit in order to

make assumptions about λ.

In addition, in order to calculate variables on the PE sponsor experience at the time of

each transaction we use Thomson Venture Economics (TVE). First, we count the number

of transactions the respective PE firm had historically sponsored before the deal at hand

as reported in TVE. Second, we calculate the total assets under management of the PE

sponsor accumulated in the five years before each transaction. Finally, in order to account

for the volatility in public equity markets we use the MSCI website14 to obtain data on

the MSCI World index. For descriptive statistics and sample characteristics of the PE

dataset, we refer to Braun et al. [2011].

13The data can be obtained from http://sdw.ecb.europa.eu.
14The data can be obtained from http://www.mscibarra.com.
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3.2.3 Risk factors of PE investments

Now, we analyze the risk appetite of PE sponsors reflected in deal-level equity volatilities.

The first part deals with patterns of PE sponsors’ risk appetite over time, i.e. in different

cycles of the PE market. In the second part, we report the results of cross-sectional

analyses to assess the role of several drivers explaining equity volatility variation among

PE transactions. We put a particular emphasis on factors related to the PE sponsor.

Time Trends

Table 3.9 shows summary statistics on the equity volatilities (i.e. the standard deviations

resulting from our model) grouped by PE market cycles according to Strömberg [2008].

These volatilities represent the annual implied equity volatilities for the individual trans-

actions and are calculated with the model introduced in Section 3.2.1. The mean and

median values in the entire final sample are 80% and 72%, respectively. This is consid-

erably higher than the average firm equity volatility of 51.3% p.a. and the median firm

equity volatility of 43.6% p.a. reported by Choi and Richardson [2008] who calculate the

implied equity volatility for over 150 000 public companies. However, given that in general

PE-backed firms have higher leverage ratios (which, ceteris paribus, increases equity risk)

this result is intuitive (see, e.g., Guo et al. [2011]). This finding confirms the general feel-

ing that PE deals are particularly risky, at least from the perspective of equity investors.

In line with this argument, Cochrane [2005] reports an annualized standard deviation of

equity returns of 89% for a sample of venture capital (VC)-backed firms. Taking into con-

sideration that Cochrane [2005] analyses VC investments, which are thought to be even

more risky than buyout transactions, this finding is intuitive.

Our equity risk numbers reflect the risk appetite of a PE sponsor in the sense that they

are mainly determined by the buyout target’s asset volatility and its specific financing

structure. Both factors can be influenced by the PE sponsor. Even if one argues that the

financing structure is mainly determined by the willingness of banks to provide debt (the

PE sponsor always takes as much debt as possible) it is still the choice of a PE sponsor to

choose a company with a relatively high or low asset volatility. As Table 3.10 shows, banks

do not always offset investments in companies with high asset volatilities by providing less

debt. Significant rank sum tests indicate considerable fluctuations of equity risk levels

over time. Overall, our results imply that it is reasonable to assume that the PE sponsor

can significantly influence this process, especially during boom periods when banks have

a relatively pronounced risk appetite.

Table 3.10 shows additionally the mean and median asset volatility and net debt to eq-

uity ratio grouped by the PE market cycles. Interestingly, our mean and median asset
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# Asset risk Equity risk Debt to equity Default risk

Mean Median Mean Median Mean Median Mean Median

1990–1994 48 34% 27% 79% 68% 2.61 1.59 4.35% 3.03%

1995–1999 203 31% 27% 84% 73% 2.59 1.82 4.92% 4.52%

2000–2002 118 29% 25% 68% 64% 1.83 1.56 2.38% 1.91%

2003–2005 91 38% 32% 89% 82% 2.56 1.62 5.59% 5.41%

Total 460 32% 27% 80% 72% 2.39 1.64 4.34% 3.53%

Table 3.10: Mean and median values of deal-level asset/equity risk and the net debt to

equity ratio according to private equity (PE) market cycles based on Strömberg [2008].

Asset and equity risk for each transaction is calculated based on the model introduced in

this section. The reported net debt to equity ratios of the buyout companies are those at

entry, i.e. when the PE sponsor acquired the company.

volatility of 32% and 27%, respectively, is considerably lower than the mean and median

asset volatility of 40% and 31% reported by Choi and Richardson [2008]. This finding

supports the assumption that appropriate buyout targets are companies with low inherent

asset volatilities. However, given the relatively high equity risks of buyout transactions,

PE sponsors obviously offset the low asset volatilities by deploying high leverage ratios.

In this context, Table 3.10 reveals another interesting observation. The relatively high

mean asset risk of 38% for deals conducted in the 2003–2005 period is very close to the

result by Choi and Richardson [2008] which indicates that during boom periods, which

in general are accompanied by increasing fundraising activity, higher investment pressure

might induce PE sponsors to invest in less appropriate companies, i.e. companies with

more volatile cash flows and consequently higher asset risk. This could be due to the

fact that elevated supply of capital meets a relatively inflexible demand, i.e. a somewhat

given pool of appropriate buyout companies. This is an intuitive assumption as there are

only a limited number of appropriate buyout companies, i.e. firms that produce stable and

predictable cash flows allowing the forecasting of interest payment and debt repayment

schemes over any given holding period (Opler and Titman [1993]). This finding is in line

with the over-investment problem described by Axelson et al. [2009].

Another intuitive and interesting observation from Table 3.10 are the high average equity

volatilities in the periods 1995–1999 and 2003–2005. The period after 1994 was a period

with increasing deal activity after the burst of the first leverage buyout bubble around

1990 (Guo et al. [2011]). Similarly, the period beginning after 2003 is considered to be

a boom period in the PE market (see, e.g., Axelson et al. [2010]) with increasing deal
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activity, decreasing costs of debt and, consequently, high leverage levels. This situation

emerged out of the bust period between 2000 and 2002 after the bursting of the dot.-com

bubble. This can be seen in a sharp decline of deals observed in our sample and the

considerably lower equity risk compared to the late 1990s15. The patterns of risk appetite

of PE sponsors shown in Table 3.10 are intuitively in line with the market cycles of the

PE market.

We argue that these findings result from agency problems inherent in the PE business in

combination with loose debt market conditions. PE funds are limited partnerships with

the PE sponsor acting as the GP who manages the fund. Institutional or other investors

are LPs and provide most of the capital. In turn, PE sponsors only provide a relatively

small amount of the capital (typically about 1 percent) (Kaplan and Strömberg [2009]).

PE sponsors as fund managers are (at least) compensated through management fees and

a share of the profits of the fund (carried interest).

We observe an increasing risk appetite from 2003 onwards, a result that can mainly be

explained by two aspects: First, in times of favorable debt market conditions PE sponsors

are able to use more debt to finance a transaction as banks probably demand a lower

equity stake from a PE sponsor. Given their asymmetric payoff profile they use as much

debt as possible. Second, as Axelson et al. [2010] and Demiroglu and James [2010] show,

the overall debt financing terms for PE sponsors improved considerably after 2003. If costs

of debt are not priced adequately due to overheating debt markets it might be rational for

any investor to use more inadequately priced debt since the costs for higher probabilities of

default are not reflected in the interest rates. This means in the present context that equity

volatility in PE market boom periods increases. Furthermore, in addition to the increased

use of leverage, PE sponsors also invest in companies with higher asset volatilities (see

Table 3.10). Apparently, both factors explain the significant increase in equity risk.

Table 3.10 shows that the increased risk appetite of PE sponsors during PE market boom

periods also has a downside as default risk increases. The assumed ex-ante median prob-

ability that a PE company will default within the first year after the buyout increased

from about 2% in 2000-2002 to more than 5% in 2003-2005. The average and median

default rates for the whole sample are 4.3% and 3.5% respectively. This supports the

notion of an incentive conflict between the PE sponsor on the one side and LPs as well as

15The most recent period 2003–2005 contains relatively few deals considering that it is a boom period of

the PE market. This is a direct result from our sampling requirement since we can only use realized

deals for calculating equity risk. Hence, at the time the fund-of-fund investors obtained information on

these deals, fewer deals entered in the most recent period were realized, even though deal activity was

relatively high.
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other stakeholders of the company, e.g. employees and creditors, on the other side, as PE

sponsors try to shift risks from themselves to others.

With regard to the explanatory power of our model, a comparison with other studies

delivers encouraging results. Given that the probability of default in our model is at a

maximum in the first year after the PE sponsor acquired a company (due to high interest

and redemption payments) this number is comparable to the average annual default rates

of 1.2% and 2.8% per year in Strömberg [2008] and Jason [2010], respectively, neither of

whom account for the fact that the probability of default is not equally distributed over

the holding period16.

Now, we conduct multiple regression analyses using equity volatility as dependent variable.

Regression analysis17

In our analyses of drivers of deal-level risk appetite, we focus on buyout company size, PE

sponsor experience and equity risk exposure, public market volatility, and, finally, the PE

market cycles.

To begin with, larger buyout companies are assumed to have a higher lending capacity

as they are less risky (Nikoskelainen and Wright [2007], Halpern et al. [2009]) and less

exposed to asymmetrical information (Chen [1983] and Chan et al. [1985]). In addition,

larger companies are assumed to be more diversified and consequently less exposed to

industry shocks. According to this argument, we would expect larger companies to have

lower asset volatilities, which, ceteris paribus, would result in lower equity volatilities.

However, the lower asset risk of larger companies might be offset or even outweighed by

more leverage deployed by the PE sponsor. If this holds, we would rather expect larger

buyout companies to have higher equity volatilities. Since there are arguments in both

directions, it remains an empirical question. We address this question by including the

logarithmized enterprise value of the buyout company at investment entry in our regres-

sions.

Regarding PE sponsor characteristics, more experienced PE sponsors are thought to be

more reputable (Gompers and Lerner [2000], Kaplan and Schoar [2005]). As reputation

can be an important competitive advantage, for example in terms of lending capacity

(Demiroglu and James [2010], Ivashina and Kovner [2011]), more reputed PE sponsors

16For example, our median default rate of 3.5% is not an annualized default rate over the holding period,

but the probability that a firm defaults within the first year after the buyout. In year two, three, etc.

the probability of default decreases.
17I want to thank Dr. Nico Engel for carrying out the regression analysis.
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would not risk their reputation by taking excessive risks (Diamond [1989]). Therefore, we

expect a negative relation between PE sponsor reputation and equity risk. In order to

assess this relationship we include the logarithmized number of previously completed deals

by the respective PE sponsor at investment entry as proxy for PE sponsor reputation

(Demiroglu and James [2010]). As the measures of PE sponsor experience are controver-

sially discussed in the literature (e.g. Gompers and Lerner [1999]) we also use the loga-

rithmized total assets under management of the PE sponsor accumulated in the five years

before investment entry as proxy for PE sponsor experience (Gompers and Lerner [1999],

Kaplan and Schoar [2005]).

Another PE sponsor characteristic is its ownership stake in the company which can be

interpreted as the equity risk exposure. While in a typical buyout transaction, the PE

sponsor purchases majority control (Kaplan and Strömberg [2009]), the ownership stake,

and accordingly the equity risk exposure, varies. The intuition behind this is that if a PE

sponsor owns a large part of the equity value, the willingness to take excessive risks might

be reduced. This argument fits into the concept of equity stakes as call options on firm

values (Axelson et al. [2009]). If the PE sponsor provides a higher share of the enterprise’s

equity value, the downside risk, ceteris paribus, increases. We expect a negative relation

between PE sponsor ownership and equity risk. Accordingly, we include the total capital

invested by the PE sponsor divided by the total equity value at investment entry in our

regressions.

Apart from company- and PE sponsor-related characteristics, it is reasonable to assume

that the conditions of public equity markets also have an influence on the chosen deal-level

equity risk. Very volatile public equity markets may indicate a relatively high uncertainty

with regard to future economic development which could lead to a reduced risk appetite

among all participants in both public and private equity markets. In order to test for

these more general market effects we assign the volatility of the MSCI World Index in the

last twelve months (LTM) before the entry date of a specific PE transaction to each deal.

Considering that we have a regionally diverse sample of European and North American

transactions, the MSCI World Index may be the best measure to account for worldwide

market volatility and is consequently the best proxy for the level of uncertainty about

future economic developments. As a result, we expect a negative relationship between

LTM public market volatility and deal-level equity risk.

In order to account for the effects of PE market cycles, we include time dummies to control

for systematic time patterns in the buyout market. Again, we resort to the PE market

cycle time categories introduced by Strömberg [2008].
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Furthermore, there are some other standard factors we include in our analysis: First,

to control for significant systematic differences between European and North American

deals, a region dummy is used which adopts a value of 1 if the PE transaction took place

in Europe and a value of 0 if the deal took place in North America. Second, we include

eight ICB industry dummies to control for industry specific risks.

Table 3.11 shows the regression results on our final sample of 460 buyout transactions

using as a dependent variable the equity volatility resulting from our model. We use the

logarithmized value in our regression analysis since equity volatility can only take non-

negative numbers. In our first specification, which only includes the 12-month historical

volatility of the MSCI World Stock Market Index before the transaction, our PE market

cycles and control variables, we find that deals conducted in a relatively bullish economic

environment (i.e. the periods between 1995-1999 and 2003-2005) are riskier than those

carried out during the relatively bust period during the years 2000-2002 that we use as

reference category. For instance, buyout transactions entered between 2003 and 2005 have

a 26% higher equity risk compared to the deals entered during the period 2000-2002. The

coefficients for the boom periods of the PE market are highly significant throughout all

specifications and strongly support our findings concerning time patterns reported earlier.

Throughout all specifications we find a significantly (5% and 1% level) negative relation

between the volatility of the MSCI World Index and deal-level equity risk. Higher volatility

in public markets represents a strong uncertainty with regard to the economic outlook.

Apparently, this situation also reduces the risk appetite of PE sponsors who craft less

risky deal structures in such an environment.

The highly significant (1% level) negative coefficient of buyout company size in specifica-

tion (2) confirms the argument that larger deals are less risky. Apparently, PE sponsors do

not use excessive leverage in order to offset the lower asset volatility of larger companies.

Our findings show that PE sponsor reputation measured by the logarithm of historical

deals is significantly (1% level) negatively related to deal-level equity risk (see specification

(3)). Similar results hold if the logarithm of assets under management is used as proxy for

PE sponsor reputation (specification (4)). While this estimated coefficient is significant

at the 1% level, the relationship decreases in statistical and practical significance when

including deal size in specification (5). We think that this finding is intuitive as larger

PE funds conduct larger deals. Hence, there is a strong positive correlation between

assets under management and deal size which has a moderating effect on the relationship

between PE sponsor experience and equity risk. In addition, some very experienced and
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Specification (1) (2) (3) (4) (5)

Variables ln(equity ln(equity ln(equity ln(equity ln(equity

volatility) volatility) volatility) volatility) volatility)

ln(enterprise value) -0.045*** -0.045*** -0.033***

ln(number of deals) -0.026***

ln(ownership) -0.018*** -0.017***

ln(assets under management) -0.050*** -0.031***

ln(MSCI world volatility) -0.127*** -0.118*** -0.131*** -0.131*** -0.123***

1990–1994 0.046*** 0.010*** -0.038*** -0.040*** 0.036***

1995–1999 0.164*** 0.162*** 0.138*** 0.094*** 0.106***

2003–2005 0.233*** 0.249*** 0.273*** 0.201*** 0.202***

Industry dummies Yes Yes Yes Yes Yes

Region dummy Yes Yes Yes Yes Yes

Observations 458 458 458 416 416

R-squared 0.096 0.121 0.133 0.126 0.137

Table 3.11: Equity Risk as Dependent Variable. We present the results of ordinary least

squares regressions on the determinants of equity risk using our final sample of 460 lever-

aged buyouts acquired between 1990 and 2005. The dependent variable is the logarithmized

equity risk volatility as computed in our model. In order to account for temporal effects,

a value of 1 is assigned to all buyouts that, for example, were initiated between 1990 and

1994 and 0 otherwise. Again, these categories represent different cycles of the PE market

based on Strömberg [2008]. We have chosen the period between 2000 and 2002 as the base

category. In addition, we include eight ICB industry category dummies accounting for in-

dustry effects. We also include the logarithmized value of the average volatility in the last

twelve months (LTM) prior to the investment entry date of the respective PE transaction

of the MSCI World Stock Index to account for public market volatility. Finally, the region

dummy obtains a value of 1 if the buyout target company’s headquarter is in Europe and

0 if it is located in North America. *, ** and *** indicate p-values of 10%, 5%, and 1%

significance level, respectively.

We use an ordinary least squares regression with heteroscedasticity-consistent standard er-

rors. Our data fulfills the standard assumptions necessary to perform a linear regression

(e.g. normality of residuals and linearity).
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highly reputed PE sponsors deliberately restrict their maximum fund size in order to

avoid putting their fund-level performance at risk. As the assets under management proxy

would indicate low PE sponsor experience, we believe that our first reputation proxy is a

superior proxy in this context. Thus, we argue that more experienced and higher reputed

PE sponsors exhibit less risk appetite because they fear losing their reputation and its

corresponding competitive advantage.

Our specifications (4) and (5) consistently show a negative relationship between the own-

ership stake at investment entry and equity risk. Our results are in line with viewing PE

investors’ equity stakes as call options. As higher equity stakes go along with reduced risk

appetite, lower stakes in the total equity values could trigger “gambling for resurrection”

behavior (Axelson et al. [2009], Axelson et al. [2010]).

3.2.4 Summary and Conclusion

During the last two decades, PE has become an important source of capital for companies

and considerable amounts of money have flown into these funds from investors around

the globe. While academic work has made significant progress, evidence on the risks

associated with PE investing is still relatively scarce. The main reasons for this situation

are the conceptual problems to compute risks for these illiquid investments as well as the

limited availability of appropriate data sets. Using a proprietary data set of 460 realized

European and North American buyouts entered between 1990 and 2005, we analyzed time

patterns and determinants of the risk appetite of PE sponsors.

We started by developing a quantitative model to calculate deal-level implied asset and

equity volatilities including both systematic and idiosyncratic risk. Our model allows for

continuous interest and redemption payments as well as for continuous default. We think

that the implied deal-level asset and equity risks resulting from our model represent good

indications of the PE sponsors’ assumptions about the development of the asset and equity

risk over the holding period at investment entry.

We then calculated the deal-level equity volatilities for our transactions in order to analyze

the risk appetite of PE sponsors over time. We have found that the risk appetite of

PE sponsors fluctuates remarkably over time indicating that these investors adjust their

attitude towards risk according to the economic environment. In this context we have

found that PE sponsors take more risk during boom periods which explains (or can be

explained by) boom and bust cycles in the buyout market. It is important to note that it is

not only banks issuing cheap debt in times of economic upturns which causes overheating

buyout markets but also the increasing risk appetite of PE sponsors. PE sponsors could

use more equity to finance a transaction and not accept all supplied debt or offset higher
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leverage ratios by choosing companies with lower asset risk.

In this context, we have also found high volatility in public equity markets prior to the

investment entry of a PE sponsor (i.e. in the twelve months before the PE sponsor buys a

company) has a negative influence on deal-level equity risk. Obviously, high uncertainty

with regard to future economic development leads to reduced risk appetite of PE sponsors

and/or a reduced willingness by banks to provide debt to finance a transaction.

In a next step, we have taken a detailed look at the determinants of PE sponsors’ risk

appetite. We find that larger buyouts exhibit lower equity risks. This finding indicates

that PE sponsors do not use excessive leverage in order to offset the lower asset volatility

of larger companies. If they were to do so, the equity risk increases through heightened

leverage would outweigh the effect of low asset risk embraced in the company. Further, we

find that buyouts initiated by more experienced and higher reputed PE sponsors are less

risky. We attribute this reduced risk appetite to their fear of damaging their reputation

and its corresponding competitive advantage in the PE context (Achleitner et al. [2012],

Demiroglu and James [2010], Ivashina and Kovner [2011]). Finally, we have found that

an increasing ownership stake by the PE sponsor is related to a decreasing risk appetite.

This finding is in line with viewing the PE investors’ equity stake as a call option. If the

price the PE sponsor has to pay for his option rises, the risk appetite decreases. Since we

have found that equity volatilities increase during boom periods and that reputation (as

well as ownership stake) is negatively related to equity risk, we argue that PE sponsors

do not always act in the interest of LPs when they deploy a certain debt to equity ratio

on a buyout target, but take excessive risks. This is further support for agency conflicts

between GPs and LPs which can (at least partially) be solved through reputation.
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3.3 Insurance risk

As a third example, we discuss applications of first-exit times in insurance. Consider an in-

surance company that, for example, issues fire insurance policies. The insurance company

receives premiums regularly and, in return, has to pay the claims of the policyholders.

Since size and arrival time of insurance claims are random, the insurance company has

to ensure that it is able to fulfill its obligations to the policyholders. Therefore, the total

assets of the insurance company – called risk reserve – has to stay positive. This risk

reserve B := {Bt}t≥0 is usually modeled as (see, e.g., Asmussen and Albrecher [2010])

Bt = B0 + µt− CNt , (3.38)

where B0 > 0 is the initial reserve, µ > 0 the continuously paid premiums per unit of

time, Nt ∈ N0 the number of claims, and CNt the cumulated loss of the policies. One

assumes that individual claim sizes Yi are independent and identically distributed (i.i.d.)

with expectation E[Yi] = ζ > 0 and that Cj := Y1 + Y2 + . . . + Yj . The process CNt

can be any renewal-type process; it does not necessarily have to be a compound Poisson

process. A special case is the classical compound-Poisson risk model, known as Cramér-

Lundberg model (see, e.g., Cramér [1969]). An example of a claim size distribution is

given in Example 19.

The insurance company defaults as soon as the risk reserve turns negative. As in Equation

(2.1) in Chapter 2, we define the first-exit time

T∞,−B0 := inf
{
t ≥ 0 : Bt < 0

}
, (3.39)

where we use the convention inf{∅}=∞. The objective of this chapter is to find approxi-

mations for the first-exit time distribution by applying the central limit theory.

Example 19 (Pareto distribution)

For the distribution of the claim sizes, a generalized Pareto distribution is often used. A

Pareto(k, θ, σ) distribution is for x ≥ θ (if k ≥ 0), respectively θ ≤ x ≤ θ−σ/k (if k < 0),

defined via the probability density function (pdf)

f(x) =
1

σ

(

1 +
k(x− θ)

σ

)− 1
k
−1

,

where k ∈ R, θ ∈ R, and σ > 0. If Yi ∼Pareto(k, θ, σ), then we can derive the first two

moments as E[Yi] = θ + σ/(1 − k) (if k < 1) and Var(Yi) = σ2/
(
(1 − k)2(1 − 2k)

)
(if

k < 1/2).

Equation (3.38) has extensively been treated in the literature, we refer to

Asmussen and Albrecher [2010] for a detailed and recent overview. In this section, we
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want to discuss an idea that relates this problem to the earlier results in this thesis: It

is often possible to approximate the risk reserve by a diffusion (see, e.g., Iglehart [1969]).

The idea behind this approximation is that if the number of claims is large, we can take

advantage of the central limit theorem and deduce that Cn/
√
n converges for n→ ∞ to a

normal distribution18. As one can see in Figure 3.7, this approximation seems to already

be acceptable if the number of claims is around 40.
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Figure 3.7: Distribution of C5 (left) and C40 (right) together with a normal approximation.

The claims Yi follow a Pareto(k, θ, σ) distribution with parameters k = 0, θ = 0.8, and

σ = 0.2.

The general idea is now to construct a sequence of risk reserve processes B
(n)
t , Y

(n)
i , and

C
(n)
j := Y

(n)
1 + Y

(n)
2 + . . .+ Y

(n)
j that – for a large number n of claims per unit of time –

serves as an approximation for the original process Bt. Therefore, we take advantage of

central limit theorem results, for example by Prokhorov [1956]. Take an expected claim

size E[Y
(n)
i ] = 0 with Var(Y

(n)
i ) = σ2

n
n→∞−−−→ σ2 and assume that E

[(
Y

(n)
i

)2+ǫ]
< ∞ for

some ǫ > 0. Then, according to Prokhorov [1956], we find that

C
(n)
⌊nt⌋√
nσ

(3.40)

converges in distribution to a standard normal distribution (hereby ⌊x⌋ returns the smallest

integer less than or equal to x).

In our setting (3.38) not only the claim sizes but also the number of claims is random.

That is why, we define equidistant arrival times (0 <)t1 < t2 < . . ., where the waiting

18This convergence is “in distribution”. The terms “convergence in distribution” and “weak convergence”

are frequently used in this section. We refer the unfamiliar reader to, i.e., Billingsley [2008].
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times △ti := ti − ti−1, for i = 1, 2, . . ., are i.i.d. and positive. The number of claims that

occur up to time t is then written as

Nt := max
{

n :
n∑

i=1

△ti ≤ t
}

.

By weak convergence we can conclude that (see, e.g., Iglehart [1969])

Nnt

n

n→∞−−−→ λt , (3.41)

where λ can be interpreted as the average number of claims per unit of time. Following

Iglehart [1969] (see also Equations (3.40) and (3.41)), we can conclude that the defined

sequence B
(n)
t for n→ ∞ converges weakly to a Brownian motion, i.e. to

Bt = B0 + (µ− λζ)t+ σ
√
λtW1 , (3.42)

where W1 is a standard Brownian motion (see Iglehart [1969] for a proof). Central limit

theorems can not only be applied on the process itself, but also on a large class of func-

tionals of the process. That is why, we define a sequence of stopping times

T
(n)
∞,−B0

:= inf
{
t ≥ 0 : B

(n)
t < 0

}
,

that allows us to conclude that limn→∞ P(T
(n)
∞,−B0

≤ T ) = P(T∞,−B0 ≤ T ).

An approximation of the probability of a negative risk reserve and thus a default of the

insurance company is then given by (see also Equation (2.2) in Chapter 2)

P(T∞,−B0 ≤ T ) = Φ

(−B0 − (µ− λζ)T

σ
√
λT

)

+ exp

(−2(µ− λζ)B0

σ2

)

Φ

(−B0 + (µ− λζ)T

σ
√
λT

)

, (3.43)

where Φ( · ) denotes the standard normal cumulative distribution function.

To summarize this section: Using the central limit theorem, we showed that for a large

number n of claims per unit of time, the risk reserve process Bt is approximately a Brow-

nian motion. This allows us to use the first-exit time results from Chapter 2 and derive

the default probability of, for example, a fire insurance company.

For rigorous mathematical proofs, we refer to Iglehart [1969].



Chapter 4

Multivariate extensions1

The aim of this chapter is to extend the univariate results of Chapter 2 to higher di-

mensions. This can be used to, for example, examine the default distribution of a credit

portfolio. For an individual portfolio constituent, we consider the two exit events ⊕ and

⊖, corresponding to the hitting of an upper (⊕) or a lower barrier (⊖) in Chapter 2. For

d components, we now define exit times T+
ab(i) and T−

ab(i) for i = 1, 2, . . . , d. In the follow-

ing, we present suitable models where one is able to determine joint exit probabilities, for

example the probability that (until time T ) two components jointly exit to ⊕, i.e.

Q
(
T+
ab(1) ≤ T ; T+

ab(2) ≤ T
)
,

or to ⊖, i.e.

Q
(
T−
ab(1) ≤ T ; T−

ab(2) ≤ T
)
.

Therefore, it is necessary to adequately model the dependence between the portfolio com-

ponents while still being analytically tractable. Note that this is not an easy task since

in finance or insurance we typically have to deal with large portfolios (i.e. d = 100 or

d = 125). In the literature, two approaches are frequently used:

• Structural approach (Section 4.1): The idea behind the structural approach is that an

exit event is triggered as soon as a certain quantity exceeds (a) prespecified thresh-

old(s). In the multivariate extension, one considers correlated “trigger” processes

and their joint exit times. This is the most natural extension of the univariate case,

however, it lacks the analytical tractability as already the bivariate case leads to ex-

1This chapter is based on the paper: Hieber, P. and Scherer, M. (2013): Modeling credit portfolio deriva-

tives, including both a default and a prepayment feature, Applied Stochastic Models in Business and

Industry, Vol. 19, No. 5, pp. 479–495.
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tremely complicated expressions for the first-exit time distribution. More than two

dimensions cannot be treated analytically, yet one has to rely on numerical schemes.

• Copula approach (Section 4.2): Another idea is to link the univariate first-exit time

probabilities by means of a copula (see, e.g., Schönbucher and Schubert [2001]). The

advantage of such an approach is the fact that one can treat the univariate exit proba-

bilities and their dependence structure separately. Thus, this approach is analytically

tractable and can rather easily be calibrated to market data.

In the following, we discuss the structural approach (Section 4.1) and the copula approach

(Section 4.2) in more detail.

4.1 Structural approach

The structural approach is a natural extension of the univariate case in Equation (2.1) to d

dependent processes B(i) = {B(i)
t }t≥0, for i = 1, 2, . . . , d. If those processes are Brownian

motions, the dynamics read as

dB
(i)
t = µ(i)dt+ σ(i)dW

(i)
t , B

(i)
0 = 0,

where µ(i) ∈ R, σ(i) > 0, and W (i) = {W (i)
t }t≥0, for i = 1, 2, . . . , d, are correlated standard

Brownian motions. Similar to Chapter 2, individual first-exit times can be defined via

Tab(i) := inf{t ≥ 0 : B
(i)
t /∈ (bi, ai)} , (4.1)

where the corridors are defined such that bi < B
(i)
0 = 0 < ai. Again – as in the univariate

case – upper (and lower) barrier first-exit times T+
ab(i) (and T−

ab(i)) can be defined.

In the bivariate case, there are still analytical expressions for the joint single-barrier first-

exit times (see, e.g., He et al. [1998], Zhou [2001b]). However, those expressions are already

numerically challenging and involve integrals and infinite series of Bessel functions. Further

extensions to two-sided barriers or to the d-dimensional case are to the author’s knowledge

not available in (semi) closed-form. Here, one has to rely on numerical schemes.

The result by He et al. [1998] and Zhou [2001b] on Brownian motion can – similarly to

our results on the univariate case in Section 2.4 – be extended to stochastic volatility by

introducing a (joint) continuous stochastic clock Λ = {Λt}t≥0, independent of the B(i).

In financial applications, this includes, for example, the following bivariate model with a

Heston-type stochastic volatility:
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dS
(1)
t

S
(1)
t

= r dt+
√
vt dW

(1)
t , S

(1)
0 > 0, (4.2)

dS
(2)
t

S
(2)
t

= r dt+
√
vt dW

(2)
t , S

(2)
0 > 0, (4.3)

dvt = θ(ν − vt)dt+ γ
√
vt dW̃t, v0 > 0, (4.4)

where r is the risk-free interest rate and θ, ν, and γ are non-negative constants fulfilling

the Feller condition 2θν > γ2 that guarantees that the variance process {vt}t≥0 is almost

surely positive (see Feller [1951]). The one-dimensional Brownian motions {W (1)
t }t≥0 and

{W (2)
t }t≥0 have correlation ρ and are independent of {W̃t}t≥0. For a detailed discussion

and more examples we refer to, for example, Kammer [2007], Götz [2011]. The latter

example is one of the few bivariate models that are analytically tractable, even for payoffs

like barrier (see, e.g., Götz [2011]) or spread options (see, e.g., Kiesel and Lutz [2011]).

If one wants to depart from the unsatisfactory assumption of continuous diffusion one has

to rely on numerical techniques. The Brownian bridge algorithm from Section 2.5 can (for

one barrier) be extended to the bivariate case (see, e.g., Zhang and Melnik [2009]). This

extension builds on the fact that analytical expressions for the bivariate Brownian bridge

probabilities are available (see, e.g., He et al. [1998], Zhou [2001b]).

However, if one is interested in analytically tractable models, the copula approach in the

subsequent section might be more useful. The disadvantage of this approach is the fact

that those kind of models work for fixed time horizons T , yet they are not dynamic in

time.

4.2 Copula approach

In Chapter 2, the univariate case deals with two exit events, denoted by ⊕ (the upper

barrier is hit) and ⊖ (the lower barrier is hit). In credit risk applications, those exits can

refer to default (⊖) and an early repayment of debt (⊕). Other examples like insurance

portfolios can be treated similarly.

In the following, we again consider d components (which might refer to obligors or compa-

nies in a credit risk context). The univariate exit times of component i (for i = 1, 2, . . . , d)

are still denoted by Tab(i), T
+
ab(i), and T−

ab(i). As mentioned earlier, we are now interested

in joint exit probabilities, for example in the probability that two components simultane-

ously exit to ⊕ (until time T ), i.e.

Q
(
T+
ab(1) ≤ T ; T+

ab(2) ≤ T
)
,
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or the probability that component 1 and 2 exit to ⊖ while component 3 is still active, i.e.

Q
(
T−
ab(1) ≤ T ; T−

ab(2) ≤ T ; Tab(3) > T
)
.

There are many ways to model such a joint probability, for an overview see Nelsen [2006]

or Mai and Scherer [2012]. In this thesis the focus is on an analytically tractable class

called Archimedean copulas. To be able to work with this class, some basic concepts of

copula theory are in the following recalled and applied to our specific framework. First,

marginal risk-neutral exit probabilities are for t ≥ 0 abbreviated as

qi(t) := Q
(
T+
ab(i) ≤ t

)
, pi(t) := Q

(
T−
ab(i) ≤ t

)
. (4.5)

The functions t 7→ pi(t) and t 7→ qi(t) are right continuous, increasing functions with

pi(0) = qi(0) = 0 and limt→∞

(
pi(t) + qi(t)

)
= 1. In the copula approach we do not

further discuss those marginal exit probabilities (therefore we refer to Chapter 2); instead

these marginal probabilities are considered as model input. The aim of this chapter is to

adequately model the dependence structure, i.e. to link the marginal exit probabilities to

account for their dependence.

At a fixed time T > 0, we now decide on the fate of component i by drawing one standard

uniform random variable Ui. To preserve (4.5), i.e. the marginal exit probabilities pi(T )

and qi(T ), we write for i = 1, 2, . . . , d

Q
(
T+
ab(i) ≤ T

)
:= Q

(
Ui ≤ pi(T )

)
, and (4.6)

Q
(
T−
ab(i) ≤ T

)
:= Q

(
Ui ≥ 1 − qi(T )

)
. (4.7)

It is important to stress that the latter two probabilities are defined via the same standard

uniform random variable Ui to account for the dependence between the two events ⊕ and

⊖. Note that in this setting, ⊕ and ⊖ are exclusive events. The previously specified

marginal probabilities pi(t) and qi(t) are obviously preserved.

Figure 4.1 gives one example of d = 4 homogeneous components. The black, respectively

gray, line corresponds to the marginal probabilities p(t) := pi(t), respectively 1 − q(t) :=

1−qi(t), for the components i = 1, 2, 3, 4. Following the construction (4.6)–(4.7), standard

uniform random variables U1, U2, U3, U4 are drawn. For T = 5, we find that U4 ≤ p4(T )

(exit event ⊖ for component 4) and U1 ≥ 1 − q1(T ) (exit event ⊕ for component 1).

Apart from dependence between the two exit events ⊕ and ⊖, the construction (4.6)–

(4.7) also allows to include dependence between the components by coupling the random

variables (U1, U2, . . . , Ud). This coupling is in the following achieved by means of a copula,

see Definition 1 and, for example, Mai and Scherer [2012].
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Figure 4.1: Exit events in a portfolio of d = 4 homogeneous components. The gray line

corresponds to 1− q(t), i.e. 1 minus the exit distribution for ⊕; the black line to p(t), i.e.

the exit distribution for ⊖.

Definition 1 (Copula)

A function C : [0, 1]d −→ [0, 1] is called a d-dimensional copula, if there exists a probability

space (Ω,F ,Q) supporting a random vector (U1, U2, . . . , Ud) such that Ui ∼ U(0, 1) for all

i = 1, 2, . . . , d and

C(u1, u2, . . . , ud) := Q(U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud), u1, . . . , ud ∈ [0, 1].

Using this definition in our example, we can obtain the marginal distribution p1(T ) as

C
(
p1(T ), 1, . . . , 1

)
= Q

(
U1 ≤ p1(T ), U2 ≤ 1, . . . , Ud ≤ 1

)
= Q

(
U1 ≤ p1(T )

)
.

There are many examples of copulas C: Well known and frequently used (but also crit-

icized for missing tail dependence and radial symmetry) is, for example, the Gaussian

copula. In this chapter, we want to concentrate on the class of Archimedean copulas

that allows for flexible dependence structures while still being analytically tractable. An

Archimedean copula is defined via its generator ϕ fulfilling the properties of Definition 2.
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Definition 2 (Archimedean generator)

A function ϕ : [0,∞) 7→ [0, 1] is called an Archimedean generator if it fulfills the properties:

(a) ϕ(0) = 1, limu→∞ ϕ(u) = 0,

(b) ϕ is continuous,

(c) ϕ is decreasing on [0,∞) and strictly decreasing on [0, inf{u > 0 : ϕ(u) = 0}], where

inf ∅ := ∞.

We restrict our analysis to completely monotone generators, i.e. generators where the j-

order derivatives ϕ(j) of ϕ have alternating signs: (−1)jϕ(j)(u) ≥ 0, for all u > 0 and

j ∈ N0.

A possibility to construct random variables with Archimedean dependence structure is

presented in Marshall and Olkin [1988], for extensions see McNeil and Nešhlová [2009].

In this construction, a common factor Y > 0 is introduced. Conditional on this factor,

the components (U1, U2, . . . , Ud) are assumed to be independent. Following Bernstein’s

theorem (originally in Bernstein [1929], see also [Feller, 1966, p. 439]), the positive random

variable Y has a (completely monotone) Laplace transform ϕ(u) := E[exp(−uY )]. Thus,

there is a one-to-one relationship between Laplace transforms of positive random variables

and completely monotone Archimedean generators (see, e.g., Kimberling [1974]). For

various examples see Nelsen [2006] or Mai and Scherer [2012].

For any Archimedean generator, the joint distribution of the Ui is defined as

Q(U1 ≤ u1, . . . , Ud ≤ ud) = Cϕ(u1, . . . , ud) := ϕ
(

ϕ−1(u1) + . . .+ ϕ−1(ud)
)

. (4.8)

Note that the inverse ϕ−1( · ) exists for completely monotone generators ϕ. In some cases,

there exists a closed-form expression for both ϕ and its inverse ϕ−1. Thus, (4.8) can easily

be evaluated. Furthermore, the correspondence to positive random variables Y allows us

to construct a straightforward sampling algorithm for the vector (U1, U2, . . . , Ud), using

that

(U1, . . . , Ud) :=
(

ϕ
(ǫ1
Y

)

, . . . , ϕ
(ǫd
Y

))

∼ Cϕ, (4.9)

where {ǫi}di=1 are independent exponential random variables with mean 1. The fact that

construction (4.9) leads to an Archimedean dependence structure can be seen as follows:

The univariate marginal distributions are standard uniform, i.e. for i = 1, 2, . . . , d, we have

that Q(Ui ≤ ui) = Q(ϕ(ǫi/Y ) ≤ ui) = E[1− exp(−Y ϕ−1(ui))] = 1− ui. Furthermore, the

dependence structure is of Archimedean kind, since

Q(U1 ≤ u1, . . . , Ud ≤ ud) = E
[
E[1{ϕ(ǫ1/Y )≤u1} · · ·1{ϕ(ǫd/Y )≤ud} |Y ]

]
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= E

[

exp
(
− Y (ϕ−1(u1) + . . .+ ϕ−1(ud))

)]

= ϕ
(

ϕ−1(u1) + . . .+ ϕ−1(ud)
)

.

This leads to Algorithm 7 which is originally by Marshall and Olkin [1988], see also

Mai and Scherer [2012]. Algorithm 7 samples random variables (U1, U2, . . . , Ud) whose

dependence structure is Archimedean.

Algorithm 7 (Sampling Archimedean Copulas)

This algorithm returns a realization (U1, U2, . . . , Ud) of the Archimedean copula Cϕ.

(1) Sample i.i.d. ǫ1, ǫ2, . . . , ǫd, where ǫi ∼ Exp(1) for i = 1, 2, . . . , d.

(2) Sample a positive random variable Y with Laplace transform ϕ.

(3) Return (U1, U2, . . . , Ud), where Ui := ϕ(ǫi/Y ) for i = 1, 2, . . . , d.

The advantage of relying on a simulation is the possibility to generalize the presented

model, for example, by including a hierarchical dependence structure, see Remark 5.

Remark 5 (Hierarchical Dependence Structure)

A hierarchical model is constructed as follows: First, we define some reasonable economic

criterion (for example the geographic region, the affiliation to a certain group,. . . ) that

is known to influence the likelihood of the exit event. According to this criterion, we

partition our portfolio in J groups. Each group contains dj components (j = 1, 2, . . . , J),

where d1 + d2 + . . .+ dJ = d. Our motivation is to design a model where the dependence

of the exit times within one group is stronger than between different groups. This can be

achieved by means of a generalization of the original model that relies on J independent

subordinators Λ(j) = {Λ(j)
t }t≥0, j = 1, . . . , J that determine the dependence within each

group. The dependence between those subordinators is modeled by a common random

time V . For the i-th firm in group j (i = 1, 2, . . . , dj) we define the trigger variate

Uji := ϕ(j)
(
ǫji/Λ

(j)
V

)
, where the ǫji are independent exponential random variables with

mean 1 and ϕ(j)(u) := E[exp(−uΛ(j)
V (u))]. Following Hering et al. [2010], it can be shown

that the vector (U11, . . . , UJdJ
) is distributed according to the hierarchical Archimedean

copula, i.e.

(U11, . . . , UJdJ
) ∼ Cψ

(
Cϕ(1)(u11, . . . , u1d1), . . . , Cϕ(J)(uJ1, . . . , uJdJ

)
)
, (4.10)

where the “global” Archimedean copula is defined via the common time V with Laplace

transform ψ(u) and the group specific “inner” copulas via the composition of V and the sub-

ordinators Λ(j). This composition has Laplace transform ϕ(j)(u) := E
[
exp

(
−uΛ(j)

V (u)
)]

=
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E[exp(−V ξ(j)(u))] = ψ
(
ξ(j)(u)

)
where ξ(j) is the Laplace exponent of Λ(j). One then ob-

serves that the pairwise dependence within a group is indeed stronger than between two

different groups.

The common factor Y regulates the dependence between the portfolio components, i.e.

the probabilities of joint exits. From construction (4.9), it is possible to imply conditional

exit probabilities. If the common factor Y takes the value y, we find that

pyi (t) := Q
(
T−
ab(i) ≤ t

∣
∣Y = y

)
= exp

(
− yϕ−1

(
pi(t))

)
, (4.11)

qyi (t) := Q
(
T+
ab(i) ≤ t

∣
∣Y = y

)
= 1 − exp

(
− yϕ−1

(
1 − qi(t))

)
. (4.12)

An example with d = 4 homogeneous components (p(t) := pi(t), q(t) := qi(t), for i =

1, 2, 3, 4) is illustrated in Figure 4.2. A high value of Y corresponds to a high probability

of the exit event ⊕ and a low probability of the exit event ⊖, whereas a low value of Y

increases the likelihood of ⊖ and decreases the likelihood of ⊕.
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Figure 4.2: Exit events in a “recession” (left, Y = 2) and in a “boom” period (right,

Y = 6). In the recession (pY=2(5) = 19%, qY=2(5) = 16%) we observe one exit to ⊕,

while in the boom period (pY=6(5) = 1%, qY=6(5) = 40%) we observe two exits to ⊖.

The so described portfolio model allows for applications, for example, in the modeling and

risk management of credit or (life) insurance portfolios.

4.2.1 Dependence measurement

Up to now, we have described a dependence model. This section presents some possibilities

on how to measure this dependence. Since, for example, in credit risk management it is

vital to adequately account for extreme events (i.e. clusters of joint exits), we introduce
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the tail dependence coefficients and Kendall’s τ . In contrast to, for example, a Gaussian

correlation coefficient, both characteristics allow us to measure dependence in the tails of

the distribution.

In the following, we focus on a portfolio with homogeneous components (p(t) := pi(t),

q(t) := qi(t) for all i = 1, . . . , d). The results can rather easily be generalized to the case of

inhomogeneous marginal exit probabilities. However, the resulting expressions are rather

unhandy and do not provide a deeper understanding of the model.

Definition 3 introduces the tail dependence coefficients and Kendall’s τ . The tail depen-

dence coefficients (see, e.g., [Schönbucher, 2003, p. 332]) measure the dependence in the

lower, respectively upper, tail of a distribution. A positive coefficient of upper (lower)

tail dependence of Cϕ increases the likelihood of joint exits within small amounts of time.

Dependence structures that allow for a positive tail dependence tend to better fit em-

pirical observations (for portfolio credit derivatives, see, e.g., Hofert and Scherer [2011]).

Kendall’s τ (see, e.g., [Schönbucher, 2003, p. 355], [Embrechts et al., 2005, p. 207]) is a

measure of the overall dependence structure that is often used to calibrate Archimedean

copulas to empirical data via moment matching.

Definition 3 (Tail dependence and Kendall’s τ)

Consider an Archimedean copula with generator ϕ.

(a) The copula Cϕ has upper tail dependence (given the limit exists)

λU := lim
u→1

1 + Cϕ(u, u) − 2u

1 − u
= 2 − 2 lim

x→0

ϕ′(2x)

ϕ′(x)
, (4.13)

and lower tail dependence

λL := lim
u→0

Cϕ(u, u)

u
= 2 lim

x→∞

ϕ′(2x)

ϕ′(x)
, (4.14)

where ϕ−1(u) := x is used.

(b) Kendall’s τ of (U1, U2) ∼ Cϕ(u1, u2) is given by

τ := E

[

sign
(

(U1 − Ũ1)(U2 − Ũ2)
)]

= 4

∫ 1

0

∫ 1

0
Cϕ(u1, u2) dCϕ(u1, u2) − 1

= 1 + 4

∫ 1

0

ϕ−1(u)

(ϕ−1(u))′
du , (4.15)

where (Ũ1, Ũ2) is an independent copy of (U1, U2) and sign(x) returns 1 for x ∈ R+,

-1 for x ∈ R−, and 0 otherwise.
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A proof of part (b) is to be found in [Embrechts et al., 2005, p. 207 and p. 222].

Theorem 16 presents the correlation between exit events (in the sense of Lucas [1995]).

To get an impression of the behavior for short time horizons, furthermore the limiting

correlations for (t → 0) are derived. A non–zero limit is important to adequately model

dependence for short time horizons. If the limiting correlation is zero, exit events behave

almost as independent for short time horizons.

Theorem 16 (Exit correlation)

Consider a portfolio with d components having marginal default probability p(t) and pre-

payment probability q(t), where p(t)+q(t) ≤ 1. Dependence is modeled by the Archimedean

copula Cϕ via construction (4.8)–(4.9).

(a) Exit correlations (for each bivariate margin) are given by

Corr
(
1{T−

ab
(1)≤t},1{T−

ab
(2)≤t}

)
=
ϕ
(
2ϕ−1

(
p(t)

))
− p(t)2

p(t)(1 − p(t))
,

Corr
(
1{T+

ab
(1)≤t},1{T+

ab
(2)≤t}

)
=
ϕ
(
2ϕ−1

(
1 − q(t)

))
−
(
1 − q(t)

)2

q(t)(1 − q(t))
.

(b) The correlation between the exits ⊕ and ⊖ is non–positive and given by

Corr
(
1{T−

ab
(1)≤t},1{T+

ab
(2)≤t}

)
= −ϕ

(
ϕ−1

(
p(t)

)
+ ϕ−1

(
1 − q(t)

))
− p(t)(1 − q(t))

√

p(t)(1 − p(t))
√

q(t)(1 − q(t))
.

(c) In the limit (t→ 0), one gets limt→0 Corr(1{T−
ab

(1)≤t},1{T−
ab

(2)≤t}) = λL,

limt→0 Corr(1{T+
ab

(1)≤t},1{T+
ab

(2)≤t}) = λU , limt→0 Corr(1{T−
ab

(1)≤t},1{T+
ab

(2)≤t}) = 0.

Proof. Part (a):

Corr
(
1{T−

ab
(1)≤t},1{T−

ab
(2)≤t}

)
=
Cϕ
(
p(t), p(t)

)
− p(t)2

p(t)(1 − p(t))
=
ϕ
(
2ϕ−1

(
p(t)

))
− p(t)2

p(t)(1 − p(t))
.

A similar argument leads to

Corr
(
1{T+

ab
(1)≤t},1{T+

ab
(2)≤t}

)
=

2q(t) − 1 + Cϕ
(
1 − q(t), 1 − q(t)

)
− q(t)2

q(t)(1 − q(t))
.

Part (b):

Corr
(
1{T−

ab
(1)≤t},1{T+

ab
(2)≤t}

)
=
p(t) − ϕ

(

ϕ−1
(
p(t)

)
+ ϕ−1

(
1 − q(t)

))

− p(t)q(t)
√

p(t)(1 − p(t))
√

q(t)(1 − q(t))
.

The relation Cϕ(p(t), 1 − q(t)) ≥ p(t)(1 − q(t)) holds for Archimedean copulas with com-

pletely monotone generator due to their positive quadrant dependence property (PQD),



116 4.2 Copula approach

see, e.g., [Nelsen, 2006, p. 141]. Those are precisely the kind of copulas constructed in

(4.9). Thus, Corr(1{T−
ab

(1)≤t},1{T+
ab

(2)≤t}) ≤ 0.

Part (c):

From Definition 3, we conclude that limt→0 Corr(1{T−
ab

(1)≤t},1{T−
ab

(2)≤t}) = λL. A similar

argument leads to limt→0 Corr(1{T+
ab

(1)≤t},1{T+
ab

(2)≤t}) = λU . In the limit t → 0, the last

term in the denominator of Equation (4.16) cancels out; furthermore ϕ−1(1 − q(t)) → 0

(t→ 0). Thus, limt→0 Corr(1{T−
ab

(1)≤t},1{T+
ab

(2)≤t}) = 0.

We now need a parametric model with both positive lower and upper tail dependence to

obtain the desirable model features discussed earlier. The positive tail dependence param-

eters allow to include the possibility for exit clusters. Furthermore, the exit correlation

is positive for t → 0, allowing for dependence for short time horizons. Theorem 16 has

additionally shown that the correlation between the exits ⊕ and ⊖ is less than or equal

to zero if the Archimedean generator ϕ is completely monotone. A possible choice for the

copula Cϕ, respectively the common factor Y , is presented in the next section.

4.2.2 Numerical example

A suitable Archimedean copula Cϕ should allow us to obtain clusters of joint exits in the

two exit possibilities ⊕ and ⊖. A possible choice is the generator

ϕα,θ(u) := (1 + uα)−
1
θ , (4.16)

where 0 < α ≤ 1 and θ > 0. In Joe [1997], p. 376, this generator is referred to as LTE ;

the resulting Archimedean copula as BB1.

Lemma 7 (Archimedean generator LTE)

The generator ϕα,θ(u) := (1 + uα)−
1
θ defines a (completely monotone) Archimedean gen-

erator, i.e.

(a) According to Definition 2, ϕα,θ is an Archimedean generator.

(b) The generator ϕα,θ is completely monotone.

Furthermore, the resulting copula Cϕ has upper tail dependence λU = 2 − 2α, lower tail

dependence λL = 2−
α
θ , and Kendall’s τ = 1 − 2α/(θ + 2).

Proof. The continuity, ϕα,θ(0) = 1, and limu→∞ϕα,θ(u) = 0 are obvious. The generator

ϕα,θ(u) belongs to the so-called “outer power family” and thus still defines an Archimedean
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copula (see, e.g., Nelsen [2006], p. 141, or Mai and Scherer [2012], p. 69). Later on, we

show that the resulting market factor Y is positive and can be sampled easily.

For the dependence characteristics, we use Definition 3 to get

λL = lim
u→∞

ϕα,θ(2u)

ϕα,θ(u)
= lim

u→∞

(1 + (2u)α)−
1
θ

(1 + uα)−
1
θ

= lim
u→∞

(1/uα + 2α)−
1
θ

(1/uα + 1)−
1
θ

= 2−
α
θ ,

λU = 2 − lim
u→0

1 − ϕα,θ(2u)

1 − ϕα,θ(u)
= 2 − lim

u→0

1 − (1 + (2u)α)−
1
θ

1 − (1 + uα)−
1
θ

= 2 − lim
u→0

2α
(1 + (2u)α

1 + uα

)− 1
θ
−1

= 2 − 2α,

τ = 1 + 4

∫ 1

0

ϕ−1
α,θ(u)

(ϕ−1
α,θ(u))

′
du = 1 + 4

∫ 1

0

(u−θ − 1)
1
α

1
α(u−θ − 1)

1
α
−1(−θ)u−θ−1

du

= 1 + 4

∫ 1

0

−α
θ

(u− uθ+1) du = 1 − 4
α

θ

[
u2

2
− uθ+2

θ + 2

]1

0

= 1 − 2α

θ + 2
.

Again, we want to take advantage of the one-to-one relationship between Archimedean

generators and Laplace transforms of positive random variables. First, we observe that

ϕ1,θ(u) is, for u > 1/θ, the Laplace transform of a Γ(1/θ, 1)-distributed random variable.

The Laplace exponent uα = − log
(
E[exp(−uΛ(α))]

)
corresponds to a special form of an

alpha-stable random variable2 Λ(α).

The common factor Y in construction (4.9) is then an α-stable Lévy subordinator Λ =

{Λt(α)}t≥0 stopped at time V ∼ Γ (1/θ, 1). Then,

E
[
exp

(
− uΛV (α)

)]
= E

[

E
[
exp

(
− uΛV (α)

) ∣
∣V
]]

= E

[

exp
(
− V uα

)]

= ϕ1,θ(u
α) = (1 + uα)−

1
θ =: ϕα,θ(u).

To sample Archimedean copulas using Algorithm 7, one can then sample the common

factor Y = ΛV as V
1
αW , where W ∼ Λ(α).

2α-stable random variables, see, e.g., Nolan [2010], are parameterized as S1(α, β, γ, δ), where 0 < α ≤ 2,

−1 ≤ β ≤ 1, 0 < γ < ∞, δ ∈ R, and are defined by their characteristic function

φ(u) = exp
(

iuδ − |γu|α
(

1 − iβ sign(u) tan
πα

2

))

. (4.17)

A special form is Λ(α) ∼ S1
(

α, 1,
(
cos
(

πα
2

)) 1

α ,1{α=1}

)

. Using Euler’s formula, the Laplace transform

of Λ(α) can be obtained as φα(u) = exp (−uα). Details of this calculation can be found in Hofert [2010].
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Note that this parameterization is special: The generator LTE is one of the rare

Archimedean generators that allows for both positive upper tail dependence λU = 2 − 2α

and positive lower tail dependence λL = 2−
α
θ .

Additionally, the two parameters α and θ allow to calibrate exit correlation for the two exit

events ⊕ and ⊖ separately. In the bivariate case, the dependence structure of (U1, U2) can

be visualized by a scatterplot. Figure 4.3 gives examples for different parameter choices.

A rather strong clustering in the lower left corner of the scatterplot is evidence for positive

lower tail dependence and thus a high likelihood of joint exits to ⊖. A clustering in the

upper right corner is a sign for positive upper tail dependence and, thus, a high likelihood

of joint exits to ⊕. The flexibility of the model to fit different magnitudes of exit clusters

is crucial.
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Figure 4.3: Bivariate scatterplots of the Archimedean copula Cϕ. Clusters in the lower left

and the upper right corner provide evidence for tail dependence. Copulas with solely lower

(left, α = 1.00, θ = 0.91), upper and lower tail dependence (middle, α = 0.84, θ = 0.24),

and mostly upper (right, α = 0.80, θ = 1000.0) tail depencence are presented.

A special case of the presented Archimedean dependence structure Cϕα,θ
is, for α = 1,

the Clayton copula. The limit θ → ∞ corresponds to the comonotonicity copula; the

limit θ → 0, α = 1 is the independence copula. In this sense, Cϕ interpolates between

independence and perfect comonotonicity.
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4.3 Credit risk management: Prepayment risk

Default risk for (portfolios of) mortgages, loans, and bonds is a well-studied phenomenon.

Fewer attention is put on the borrower’s option of early contract termination. For instance,

mortgagors in the US are allowed to pay back their mortgages at any time at the price of

the outstanding notional. Loans and bonds can be equipped with similar characteristics.

Related is the case of mortality risk (or longevity risk) for life insurance contracts and

the option that such contracts can be canceled by the policy holders. This flexibility

introduces a cash-flow uncertainty called prepayment risk.

With $13.1 trillion3 in total mortgage debt outstanding, mortgage-backed securities (MBS)

are one of the most important asset classes in the US. Prepayment risk is one of the key

determinants for the pricing of MBS (see, e.g., Deng et al. [2000], Chow et al. [2000],

Maxam and Lacour-Little [2001]). Several empirical studies, for example Brown [1999]

and Gabaix et al. [2007], find evidence that this risk is priced in the MBS market. Due

to various reasons for early contract termination, modeling prepayment risk has turned

out to be difficult. Apart from borrower-specific factors like, for example, divorce or

unemployment, the literature has identified four major risk factors affecting all borrowers.

First, mortgagors tend to refinance if the prevailing mortgage rate is lower than the coupon

rate (see, e.g., Hakim [1992], Schwartz and Torous [1993], Gabaix et al. [2007]). Second, a

high loan-to-value (LTV) ratio leads to a faster repayment (Schwartz and Torous [1993],

Deng et al. [2000], Downing et al. [2005]). Third, rising house prices result in an increased

activity in the housing market and thus in increased prepayment rates (Monsen [1992],

Caplin et al. [1997], Downing et al. [2005], Gabaix et al. [2007]). Last, the age of the

mortgage is an important determinant of the prepayment behavior: Prepayment rates tend

to increase during the first 8–10 years of the mortgage and decrease after that (see, e.g.,

Schwartz and Torous [1993], Maxam and Lacour-Little [2001], Goncharov [2006]). The

reported percentage of prepaid mortgages varies widely: In a portfolio of single family

mortgage loans originated between 1968 and 1973, Deng et al. [2000] estimate a 5-year

prepayment rate of 19.0%, while Coffey [2007] – using a different sample – finds a 5-year

prepayment rate of 38.0%. Chow et al. [2000] estimate a yearly prepayment rate of above

20.0% in the Hong Kong housing market. However, there is vast agreement that banks

must not neglect this risk. First, due to the high costs of acquiring a mortgage, the funds

need to remain on the books for several years in order to be profitable. Second, in case of

prepayment, banks have to find alternative use for the funds and thus face reinvestment

risk. As prepayments tend to occur when interest rates are low, banks often have to relend

3According to the Federal Reserve Statistical Release, December 2012

(http://www.federalreserve.gov/econresdata/releases/mortoutstand/mortoutstand2013.htm).
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the funds at a loss.

This motivates why managing both default and prepayment risk is important. To compute

the Value–at–Risk (VaR) of a mortgage portfolio for regulatory or internal purposes, it is

necessary to estimate quantiles of the portfolio loss distribution. Thus, an accordant model

must appropriately specify the interdependence between the different obligors. At the same

time, the computational burden associated with the MBS valuation technique – especially

on a portfolio level – has to remain feasible. During daily business, possibly large portfo-

lios of MBS have to be revaluated frequently under different scenarios. A model relying

on time expensive numerical schemes might be unsuitable for most real–world applica-

tions (see, e.g., Collin-Dufresne and Harding [1999], Sharp et al. [2007]). Another feature

of mortgage and loan portfolios is the joint occurrence of defaults and prepayments. De-

faults/prepayments tend to occur in clusters (see, e.g., Dobránszky and Schoutens [2008]).

On the markets, times of prospering economy with an increased prepayment activity and

few defaults as well as times of recession with a high probability of joint defaults are

observed. Therefore, it is necessary to model both tails of the portfolio distribution ad-

equately. As correlations of prepayments and of defaults tend to be different (see, e.g.,

Dobránszky and Schoutens [2009]), fitting default and prepayment correlation separately

is important. Gaussian (and other elliptical) copulas – being radially symmetric – do

not allow for this flexibility. Furthermore, the Gaussian dependence structure leads to

unrealistic prices for short time horizons as defaults and, respectively, prepayments under

a Gaussian dependence assumption are almost independent for short maturities. Last, a

default and prepayment model has to consider the interdependence between defaults and

prepayments. Estimating both risks separately leads to serious pricing errors, as pointed

out in Deng et al. [2000]. Households are more likely to prepay in good states of the econ-

omy than in bad states (see, e.g., Gabaix et al. [2007]). Furthermore, there is evidence

that the value of a prepayment option rises if the value of the corresponding default option

falls (see, e.g., Deng et al. [2000], Downing et al. [2005]). Thus, it is largely accepted in

the literature to assume a negative association between prepayments and defaults (see,

e.g., Dobránszky and Schoutens [2009], Jönsson et al. [2009], Liang and Zhou [2010]).

There are two main strands of literature on the joint modeling of default and prepayment.

The first one is intensity-based: Default and prepayment intensities are correlated, by,

for example, a factor model construction (see, e.g., Liang [2009], Jönsson et al. [2009],

Schoutens and Cariboni [2009], and Liang and Zhou [2010]). The second one is a struc-

tural approach using both a default and a prepayment barrier. The obligor defaults,

respectively prepays, if a certain process falls below a given level, respectively exceeds

a given level. The two levels are either calibrated to default and prepayment probabil-
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ities (see, e.g., Kau et al. [1987], Dobránszky and Schoutens [2009]), credit spreads (see,

e.g., Breeden and Gilkeson [1997]) or directly linked to house prices and some interest

rate level (see, e.g., Gabaix et al. [2007]). As discussed above, modeling the dependence

between different obligors is vital to adequately account for portfolio risk. Only few pa-

pers tackle this problem in a joint default and prepayment model: Jönsson et al. [2009],

Schoutens and Cariboni [2009], and Dobránszky and Schoutens [2009] use a skewed Lévy

copula that allows for both default and prepayment clusters. For the related case of CDO

pricing, see also Albrecher et al. [2007].

In the remaining part of this chapter, a related model is presented, the dependence struc-

ture, however, is of Archimedean kind and, hence, (a) flexible, (b) explicitly given in

terms of a copula representation, and (c) well studied. Technically speaking, obligors are

assumed to be independent conditional on a positive common factor Y . This common

factor models the current state of the economy: A low value of Y increases the likelihood

of joint defaults while a high value of Y increases the probability of joint prepayment.

Our construction, which is in the spirit of the stochastic representation of extendible

Archimedean copulas, see Marshall and Olkin [1988], is both flexible enough to allow for

the features necessary for a realistic joint default and prepayment model and at the same

time analytically tractable to obtain accurate results in little time.

In Section 4.2, we showed how to model dependence in a portfolio of d components. We

now apply those results to portfolio credit risk in a portfolio of d obligors. Therefore, we

define the two exit events default (⊖) and early repayment of debt (⊕). We now derive

expressions for the loss and notional of an according credit portfolio. This can be achieved

by means of an iterative procedure or through Monte–Carlo simulation.

4.3.1 Distribution of the portfolio loss and notional

Equations (4.11) and (4.12) in Section 4.2 provide the marginal probabilities of default

conditional on a realization Y = y of the common factor. In a portfolio with d oblig-

ors, an important quantity is the joint probability of prepayments and defaults, i.e. the

probabilities

Q(“b defaults and l prepayments until t” |Y = y) =: Πy,d
b,l (t), (4.18)

where b, l ∈ N0 and obviously 0 ≤ b + l ≤ d (otherwise Πy,d
b,l (t) is set to zero). These

probabilities can be obtained by extending the classical recursive loss formula to default

and prepayment risk, see Dobránszky and Schoutens [2009]:

Πy,i
b,l (t) =

(

1 − pyi (t) − qyi (t)
)

Πy,i−1
b,l (t) + pyi (t) Πy,i−1

b−1,l (t) + qyi (t) Πy,i−1
b,l−1 (t), (4.19)
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where one uses as initial conditions that

Πy,−1
b,l (t) = Πy,d

−1,l(t) = Πy,d
b,−1(t) := 0, Πy,0

0,0(t) = 1, (4.20)

for all i = 0, . . . , d. The explanation of this iterative procedure is rather easy: If an

additional obligor is added to the portfolio, it can either default (b 7→ b + 1), prepay

(l 7→ l + 1), or survive. The procedure results in a triangular matrix containing the

probabilities of b defaults and l prepayments conditional on a realization Y = y of the

common factor. Integrating out the common factor Y yields the unconditional default

and prepayment probabilities

Πd
b,l(t) :=

∫ ∞

0
Πy,d
b,l (t) dFY (y), (4.21)

where FY denotes the cumulative distribution function of Y . The marginal distribution
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Figure 4.4: Distributions Q(“b defaults until t”) (left) and Q(“l prepayments until t”)

(right). The bar graph shows the distribution for d = 125 obligors and is compared to a

large homogeneous portfolio approximation (dotted line). The x-axis is either the number of

defaulted, respectively prepaid, firms (d = 125) or the percentage of defaulted, respectively

prepaid, firms (d→ ∞). For a better visual representation, we display the distribution for

0 ≤ b ≤ 25, 0 ≤ l ≤ 25 only.

of the probability of multiple defaults, conditional on Y = y, can be obtained as

Q(“b defaults until t” |Y = y) =
d−b∑

l=0

Πy,d
b,l (t), (4.22)

or iteratively using the procedure (4.19), setting qyi (t) = 0. Figure 4.4 (left hand side)

gives an example in a portfolio with d = 125 loans.
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In case of default, we might additionally assume that the loan is liquidated at a recovery

rate R ∈ [0, 1]. Then, loss Ld(t) and notional Nd(t) in a portfolio with d obligors are

discrete random variables with distribution

Q

(

Ld(t) ≤ (1 −R)
j

d

)

=

j
∑

b=0

d−b∑

l=0

Πd
b,l(t), for 0 ≤ j ≤ d, (4.23)

Q

(

Nd(t) < 1 − j

d

)

= 1 −
⌊j/R⌋
∑

b=0

⌊j−Rb⌋
∑

l=0

Πd
b,l(t), for 0 ≤ j ≤ d, (4.24)

where ⌊x⌋ returns the smallest integer less than or equal to x.

What remains is a specification of the dependence structure and the common factor Y . A

detailed discussion of dependence modeling via the common factor Y and its relation to

Archimedean copulas was given in Section 4.2. We use the Archimedean generator LTE

(see Lemma 7 in Section 4.2 for an introduction and some important quantities) since it

allows for both lower and upper tail dependence; a feature that allows us to model both

default and prepayment clusters.

Apart from an integration over the distribution of the common factor (see, for example,

Equation (4.21)), the distribution of portfolio loss and notional can efficiently be estimated

by Monte–Carlo simulation. The algorithm requires samples of α-stable and gamma-

distributed random variables as input. As demonstrated in Section 4.2.2, the common

factor Y is sampled as V
1
αW , where V ∼ Γ (1/θ, 1) and W ∼ Λ(α). Using Algorithm 7

from Section 4.2, Algorithm 8 is an efficient sampling algorithm from which the portfolio

loss and notional distribution can be estimated.

Algorithm 8 (Sampling (Ld(t), Nd(t)))

This algorithm samples one realization of the portfolio loss Ld(t) and notional Nd(t). As an

input the marginal default and prepayment probabilities pi(t) and qi(t), for i = 1, 2, . . . , d,

and the parameterization of the common factor Y are needed.

1. Get a realization of (U1, U2, . . . , Ud) using Algorithm 7 in Section 4.2. The common

factor Y is thereby sampled as V
1
αW , where V ∼ Γ (1/θ, 1) and W ∼ Λ(α).

2. Return a realization of the portfolio loss Ld(t) and notional Nd(t) by
(
Ld(t), Nd(t)

)
=
(

1−R
d

∑d
i=1 1{pi(t)≥Ui},

1
d

∑d
i=1 1{pi(t)<Ui<1−qi(t)} +R1{pi(t)≥Ui}

)

.

Let us summarize the findings of this section: We found two ways to compute the joint

distribution of loss and notional Ld(t), Nd(t) of a credit portfolio with d obligors: One via

Monte–Carlo simulation and Algorithm 8; another analytically via Equations (4.23) and

(4.24).
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4.3.2 Pricing loan-credit-default-swaps (LCDS)

One possible application of the presented model is the pricing of LCDS contracts

(see, e.g., Dobránszky and Schoutens [2008], Dobránszky and Schoutens [2009], and

Liang and Zhou [2010]). LCDS is buying or selling protection on an issuer’s loan. Buyers

of protection pay a fixed amount and receive compensation on the principal if the ref-

erence entity of the contract defaults. Payments cease if the loan is either in default or

fully repaid. There are two differences between LCDS and the (better–established) credit-

default-swaps (CDS): First, the underlying reference obligation of LCDS is a secured loan,

leading in general to higher recovery rates. Second, LCDS contracts are cancellable, thus

prepayment risk is priced in those contracts. The risk-less interest rate is in the following

denoted by r.

LCDS contracts are traded in tranches [Kj−1;Kj ], for j = 1, . . . ,#tranches. These are

typically [0%; 5%], [5%; 8%], [8%; 12%], [12%; 15%], and [15%; 100%] of the reference port-

folio notional. In respective contracts (see ISDA [2010] for standardized contract specifi-

cations), the junior-most tranche is the first to be hit by a loss; the senior-most tranche

is the first to be reduced by a decrease in notional. The random variables tranche loss

L[Kj−1;Kj ](L
d(t), t) and tranche notional N[Kj−1;Kj ]

(
Nd(t), t

)
are thus defined as

L[Kj−1;Kj ]

(
Ld(t), t

)
:=

min(Ld(t),Kj) − min(Ld(t),Kj−1)

Kj −Kj−1
,

N[Kj−1;Kj ]

(
Nd(t), t

)
:=

min(Nd(t),Kj) − min(Nd(t),Kj−1)

Kj −Kj−1
− L[Kj−1;Kj ]

(
Ld(t), t

)
.

In standard LCDS contracts, spread payments at the rate s[Kj−1;Kj ] occur in n quarterly

periods at times (t0 = 0 <) t1 < t2 < . . . < tn. The present value per unit notional of all

losses in tranche [Kj−1;Kj ] is then

PV loss
[Kj−1;Kj ]

:=

n∑

i=1

E

[

exp(−rti)
(

L[Kj−1;Kj ]

(
Ld(ti), ti

)
− L[Kj−1;Kj ]

(
Ld(ti−1), ti−1

))]

.

For simplicity, we assume that default is only possible at times t1, t2, . . . , tn. The present

value per unit notional of all spread payments is then

PV fee
[Kj−1;Kj ]

:= s[Kj−1;Kj ]

n∑

i=1

E

[

exp(−rti)
(

N[Kj−1;Kj ](N
d
(
ti), ti

)
△ti +AccCi

)]

,

where △ti := ti− ti−1 and AccCi is the interest that has accumulated in the time interval

[ti−1, ti]. Then, s[Kj−1;Kj ] is chosen such that

PV loss
[Kj−1;Kj ]

= PV fee
[Kj−1;Kj ]

.
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For large (e.g. d = 125) and homogeneous portfolios often Assumption 1 is meaningful

(see, e.g., Schönbucher [2003]).

Assumption 1 (Large Homogeneous Portfolio Approximation)

The credit portfolio consists of a large d→ ∞ number of homogeneous obligors. Then, at

a time t > 0, denote by L∞(t) (respectively N∞(t)), the fraction of defaulted securities

(respectively notional) of the credit portfolio.

Theorem 17 derives expected loss and notional in a finite portfolio with d obligors and

in a large homogeneous portfolio approximation (Assumption 1). This can be used to

calculate portfolio tranche loss PV loss
[Kj−1;Kj ]

and notional PV fee
[Kj−1;Kj ]

and then the LCDS

tranche spreads s[Kj−1;Kj ].

Theorem 17 (Expected tranche loss and notional)

The expectations required to calculate a tranche spread in a LCDS can

(a) in a finite portfolio be obtained as

E

[

L[Kj−1;Kj ]

(
Ld(t), t

)]

=
d∑

b=0

d−b∑

l=0

L[Kj−1;Kj ]

(

(1 −R)b/d, t
)

Πd
b,l(t),

E

[

N[Kj−1;Kj ]

(
Nd(t), t

)]

=
d∑

b=0

d−b∑

l=0

N[Kj−1;Kj ]

(

1 − (Rb+ l)/d, t
)

Πd
b,l(t),

(b) in a large homogeneous portfolio approximation be obtained as

E

[

L[Kj−1;Kj ]

(
L∞(t), t

)]

=

∫ ∞

0

L[Kj−1;Kj ]

(

(1 −R)py(t), t
)

dFY (y),

E

[

N[Kj−1;Kj ]

(
N∞(t), t

)]

=

∫ ∞

0

N[Kj−1;Kj ]

(

1 − (Rpy(t) + qy(t)), t
)

dFY (y).

Proof. Part (a): Both results are expectations of functions of random variables with

known distribution. The corresponding probabilities are displayed in Section 4.3.1.

Part (b): If Assumption 1 holds, the share of defaulted obligors conditional on the

common factor Y is by the strong law of large numbers equal to the default probability

py(t). Similarly, the conditional share of obligors that repay their debt early is qy(t).

Assuming a unit notional, the amount of (1 − R)py(t) is lost due to default. Due

to defaults and prepayments, the portfolio notional reduces to 1 − (Rpy(t) + qy(t)).

Individual tranche losses and tranche notional are then obtained applying the monotone

functions L[Kj−1;Kj ]( · ) and N[Kj−1;Kj ]( · ). Integrating out the common factor yields the
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desired expression for the expected portfolio loss and notional. For a formal and more

detailed proof, we refer to Hieber and Scherer [2013].

Remark 6

As obligors are more likely to refinance their loan when interest rates are low, interest

rates tend to be negatively correlated to prepayment rates. For the sake of simplicity, this

observation is not included in the latter model, instead interest rates have to be modeled

stochastically. A possibility to do so is presented in Hieber and Scherer [2013].

Furthermore, empirical observations suggest an inverse relationship between recovery rates

and default rates. In times of a crisis, recovery rates tend to be lower. This fact can be

included in the presented model modifying the idea presented in Andersen et al. [2003] and

Andersen and Sidenius [2004]. However, in such an extension, the loss distribution is no

longer independent of the dependence structure, which might cause difficulties in model

calibration.

4.3.3 Numerical example

This section uses reasonable parameters to finally price LCDS tranches in order to demon-

strate the practical value of the model. The parameters α, θ, p(t), q(t), and R are

set as follows: In Hofert and Scherer [2011], the lower tail dependence is calibrated

(to CDO tranches) as λL ≈ 0.089. As correlation in prepayments tends to be higher,

Corr(1{T+
ab

(1)≤t},1{T+
ab

(2)≤t}) = λU is set to 0.200. Thus, α = ln(2 − λU )/ ln(2) ≈ 0.84

and θ = −α ln(2)/ ln(λL) ≈ 0.24. According to Coffey [2007], about 38% of all obligors

prepay within 5 years. The five year probability of default is set to 8%. The recovery rate

for secured bonds is set to R = 70%, following Dobránszky and Schoutens [2009]. The

time to maturity is 5 years; spread payments occur in quarterly intervals. LCDS tranches

are quoted as [0%, 5%], [5%, 8%], [8%, 12%], [12%, 15%], and [15%, 100%] of the reference

portfolio notional. The risk-less interest rate is set to r = 5%.

Now, we compute LCDS tranche spreads and evaluate the effect of both prepayment risk

and the dependence structure. This section compares the iterative procedure (Equation

(4.19)) to a Monte–Carlo simulation and a large homogeneous portfolio approximation.

Increased default and prepayment clusters are examined.
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d = 125 (d→ ∞)

iteration simulation analytic limit

q(t) > 0 q(t) = 0 ct q(t) > 0 q(t) = 0 ct q(t) > 0 q(t) = 0 ct

[0%; 5%] 1135bp 1134bp 2.9s 1135bp 1135bp 9.1s 1135bp 1135bp 1.8s

[5%; 8%] 140bp 139bp 2.9s 140bp 140bp 9.1s 140bp 140bp 1.8s

[8%; 12%] 77bp 76bp 2.9s 77bp 76bp 9.1s 77bp 76bp 1.8s

[12%; 15%] 51bp 50bp 2.9s 51bp 50bp 9.1s 51bp 50bp 1.8s

[15%; 100%] 8bp 4bp 2.9s 8bp 4bp 9.1s 9bp 4bp 18s

[0%; 100%] 89bp 52bp 2.9s 89bp 52bp 9.1s 89bp 52bp 1.8s

Table 4.1: LCDS spreads in a portfolio with d = 125 obligors (left) and a large homogeneous

portfolio approximation (right). In the case of a finite portfolio, the iterative procedure

(4.19) is compared to a Monte–Carlo simulation with 500 000 runs. Spreads including

prepayment risk (q(t) > 0) are compared to spreads with zero prepayment risk (q(t) = 0).

All parameters are chosen as in Section 4.3.3. The respective third column contains the

computation time (ct) in seconds on a standard PC with 2.4GHz.

Impact of prepayment risk

Table 4.1 presents LCDS tranche spreads in both a portfolio with d = 125 obligors and a

large homogeneous portfolio approximation. These spreads are compared to spreads that

neglect prepayment risk. Spreads computed without prepayment risk (q(t) = 0) are lower

than spreads that consider prepayment risk (q(t) > 0). This effect is especially visible

for the senior-most tranche ([15%; 100%]). Those results are in line with several empirical

studies that point out the relevance of prepayment risk in pricing MBS (see, e.g., Brown

[1999] and Gabaix et al. [2007]). The large homogeneous portfolio approximation yields

almost the same results as a finite portfolio with d = 125 obligors.

Tail dependence

High upper (UTD), respectively lower (LTD), tail dependence coefficients increase the

probability of prepayment, respectively default, clusters. Table 4.2 examines the effect of

an increased upper, respectively lower, tail dependence coefficient. We observe that an

increased upper tail dependence coefficient significantly increases the spread in the senior-

most tranche ([15%; 100%]) that is mostly affected by prepayment risk. Increasing LTD

produces more joint defaults but also more scenarios with few default events. The result

is a smaller spread of the equity tranche ([0%; 5%]) and higher spreads for the more senior

tranches.
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increased LTD base case increased UTD

λL = 0.400, λU = 0.200 λL = 0.089, λU = 0.200 λL = 0.089, λU = 0.400

q(t) > 0 q(t) = 0 q(t) > 0 q(t) = 0 q(t) > 0 q(t) = 0

[0%; 5%] 1092bp 1073bp 1135bp 1135bp 758bp 756bp

[5%; 8%] 171bp 165bp 140bp 140bp 195bp 193bp

[8%; 12%] 90bp 85bp 77bp 76bp 132bp 129bp

[12%; 15%] 59bp 54bp 51bp 50bp 99bp 95bp

[15%; 100%] 9bp 5bp 8bp 4bp 18bp 10bp

[0%; 100%] 89bp 52bp 89bp 52bp 89bp 52bp

Table 4.2: Effect of increased lower tail dependence (LTD) and thus more default clusters

(left column) and increased upper tail dependence (UTD) and thus more prepayment clus-

ters (right column). Spreads including prepayment risk (q(t) > 0) are compared to spreads

with zero prepayment risk (q(t) = 0). All parameters are chosen as in Section 4.3.3.

4.3.4 Summary and Conclusion

This section introduced a tractable and realistic joint default and prepayment portfolio

model. This is, to the best of our knowledge, the first portfolio model that incorporates the

empirically observed features regarding prepayment risk on a portfolio level: Reasonable

prices for contracts with short maturities, default as well as prepayment clusters, distinct

default and prepayment correlation, and negative association between default and pre-

payment. We provide an iterative procedure and a Monte–Carlo simulation to obtain the

distribution of portfolio loss and notional in a finite portfolio of d obligors. Using realistic

parameters in a case study on the pricing of LCDS, we found that including prepayment

risk leads to a significantly higher spread of 89bp ([0%, 100%] tranche), compared to 52bp

when only default risk is considered. This is in line with empirical studies that confirm

that prepayment risk is one of the key components pricing MBS (see, e.g., Brown [1999],

Deng et al. [2000], Maxam and Lacour-Little [2001], and Gabaix et al. [2007]).



Chapter 5

Conclusion

In this thesis, we have extended results on one-sided first-exit time probabilities of (con-

tinuously) time-changed Brownian motion (see, e.g., Hurd [2009]) to two barriers and

have shown that those probabilities can conveniently be represented by rapidly converging

infinite series. This avoids Fourier integrals and allows for an easy error control. Even

in the single barrier case, the infinite series have turned out to be an efficient and close

approximation of the Fourier integrals by Hurd [2009]. In a second step, we worked on

regime switching jump-diffusions. This model class is a lot more general and thus more

suitable when incorporating empirical observed features of financial time series. However,

analytical expressions for the first-exit time probabilities are available in special cases

only. Here, we have extended an efficient and unbiased Brownian bridge algorithm by

Metwally and Atiya [2002] to regime switching parameters and two barriers. The advan-

tage of this approach is its speed, unbiasedness, and its flexibility to adapt to different

jump size distributions and payoff streams. This has later allowed us to easily price ex-

otic derivatives like (step) double barrier options and corridor bonus certificates. We

have discussed the implementation of the presented methods and in a numerical case

study compared them to its numerical alternatives (for example finite elements schemes

or brute-force Monte–Carlo simulations on a grid).

First-exit time problems have a wide range of applications in finance, engineering, and

physics, but also in more exotic disciplines like hydrology. In this thesis we have fo-

cused on applications in finance and insurance. First, we have shown how the results in

Chapter 2 can be used to price a large range of financial derivatives. While a time change

has a quiet convenient interpretation as a “measure of activity” in the economy and is

analytically tractable, regime switching jump-diffusions often calibrate better to empirical

data and lead to more reasonable prices for short-dated contracts. Secondly, we have dealt

with the asset class private equity (PE), where the scarcity of data makes it hard to quan-
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tify the risk inherent in the PE transactions. We have presented a structural credit risk

model, which allows us to determine an implied equity volatility that serves as an indica-

tor for the deal-level equity risk. We have applied this model to a unique PE database to

determine the drivers of PE sponsors’ risk appetite. We have found that the risk appetite

of PE sponsors fluctuates remarkably over time indicating that these investors adjust their

attitude towards risk according to the economic environment: Due to an increased risk ap-

petite and cheap debt, PE sponsors tend to take more risk during boom periods. We have

taken a closer look at the determinants of this risk appetite. We have found that larger

buyouts exhibit lower equity risks. Further, we find that buyouts initiated by more expe-

rienced and higher reputed PE sponsors are less risky. We have attributed this reduced

risk appetite to their fear of damaging their reputation and its corresponding competitive

advantage. Finally, we have found that an increasing ownership stake by the PE sponsor

is related to a decreasing risk appetite. At the end of Chapter 3, we have shortly discussed

first-exit times in insurance applications, where usually premium payments compensate for

(stochastic) insurance claims. An insurance company has to ensure that it stays solvent,

i.e. that its total assets stay positive.

In Chapter 4, we have then dealt with multivariate extensions of the afore-mentioned re-

sults. One of today’s pressing problems in the financial industry is the interactiveness of

companies or obligors especially in the banking and insurance sector. In the past, tail

events (for example the probability that several mortgagors in a credit portfolio default

simultaneously) have significantly been underestimated. The reason for this underesti-

mation has in most cases been a too simple dependence model, relying for example on a

Gaussian copula. In this chapter, we present several alternatives based on more general

dependence concepts like Archimedean copulas. We have discussed those models with

respect to their analytical tractability and their ability to well describe many empirical

phenomena (for example strong dependence in the tails, dependence being dynamic in

time, or asymmetric marginal distributions). In a numerical case study we have shown

how those considerations can be used to price loan-credit-default-swaps (LCDS) – an ex-

tension of credit-default-swaps (CDS) where the borrower is allowed to redeem the debt

at any point in time.

Overall, this thesis presented how to compute first-exit time probabilities for a large class

of stochastic processes. Depending on the specific problem, one has to carefully choose the

most appropriate specification and dependence structure. An inadequate risk management

is an important competitive advantage for any company. Quoting Moody’s1

“Default risk can be reduced and managed through diversification [. . . ]. The

rewards for bearing it will [. . . ] be owned by those who can diversify it best.”

1See the publication Portfolio Management of Default Risk, KMV, 2001, p. 1.





Appendix A

Proofs and formulas

A.1 Parameters of the Stein–Stein model

The functions L(u), M(u), and N(u) in the characteristic function are defined as

A := − ξ

k2
, B :=

κξ

k2
, Cu := − u

k2T
, au :=

√

A2 − 2Cu, bu = − A

au
,

L(u) := −A− au

(
sinh(auk

2T ) + bu cosh(auk
2T )

cosh(auk2T ) + bu sinh(auk2T )

)

,

M(u) := B

(
bu sinh(auk

2T ) + b2u cosh(auk
2T ) + 1 − b2u

cosh(auk2T ) + bu sinh(auk2T )
− 1

)

,

N(u) :=
au −A

2a2
u

(
a2
u −AB2 −B2au

)
k2T

+
B2(A2 − a2

u)

2a3
u

(

(2A+ au) + (2A− au)e
2auk2T

A+ au + (au −A)e2auk2T

)

+
2AB2(a2

u −A2)eauk2T

a3
u

(
A+ au + (au −A)e2auk2T

) − 1

2
ln

(
1

2

(
A

au
+ 1

)

+
1

2

(

1 − A

au

)

e2auk2T

)

.

From (3.8), we find that

λT − λ0 = ξ

∫ T

0
λt dt+ ξκt+ kWT ,

which leads to

E

[
∫ T

0
λt dt

]

=
1

ξ
E
[
λT − λ0 − ξκT − kWT

]
=

1

ξ

(
E[λT ] − λ0 − ξκT

)

=
1

ξ

[(
κ − λ0

)(
1 − exp(−θT )

)
− ξκT

]

,

where we used that E[λT ] = λ0 exp(−θT ) + κ
(
1 − exp(−θT )

)
.
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A.2 Proof of Theorem 11

Part (a):

Using the reflection principle (see, e.g., Bingham and Kiesel [2004], Billingsley [2008]), we

prove the results in Theorem 11. First note that if we are only interested in the barrier

hitting probabilities, it suffices to work with the discounted values, i.e. D0, P0, K0, and

S̃t := St/Bt, for all t ≥ 0. Then

X
g(ST )
D,∞ (S0) =

1

BT
EQ,S0

[

1{T∞,D>T} g(ST )
]

=
1

BT

(

EQ,S0

[
1{S̃T>D0}

g(ST )
]
− EQ,S0

[
1{S̃T>D0, T∞,D≤T} g(ST )

])

.

The path-independence in the latter expectation is now removed. Therefore, we consider

the logarithmized path {st}t≥0 := {ln S̃t}t≥0. After changing to a measure P where {st}t≥0

has zero drift, we reflect the paths {sT > ln(D0), T∞,D ≤ T} from t = 0 up to the first

hitting time T∞,D at the (lower) barrier b := ln(D0). Since {st}t≥0 has zero drift under

P, this reflected path obeys the same dynamics under P, however, it starts at a different

initial value s̃0 = 2b − s0. That is why, as illustrated in Figure A.1, we find that the
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Figure A.1: Illustration of the reflection principle on a lower barrier b < s0. The (loga-

rithmized) process {st}0≤t≤1 (darkest path) is reflected up to its first-hitting time. Thereby

s0 is transformed into s̃0 = 2b− s0.

probability of {st}t≥0 hitting b over the interval [0, T ] is the same as the probability of s̃T

exceeding b. In more detail

EQ,S0

[

1{T∞,D≤T, S̃T>D0}
g(ST )

]

= EP,S0

[

1{T∞,D≤T, sT>b} g(ST ) exp

(

(sT − s0)/2 −
∫ T

0
σ2
t dt/8

)]
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= EP,D2
0/S0

[

1{sT>b} g
(
ST
)

exp

(
(
sT − (2b− s0)

)
/2 −

∫ T

0
σ2
t dt/8

)]

=
S0

D0
EQ,D2

0/S0

[

1{S̃T>D0}
g
(
ST
)]

,

where the second equality holds because of the independence of {Wt}t≥0 and {σt}t≥0. We

finally obtain

X
g(ST )
D,∞ (S0) =

1

BT

(

EQ,S0

[
1{ST>DT } g(ST )

]
− S0

D0
EQ,D2/S0

[
1{ST>DT } g (ST )

])

.

Part (b):

Similar to the single barrier result, we use the reflection principle to show the results in

Theorem 11(b). First note that, again, if we are only interested in the barrier hitting

probabilities, it suffices to work with the discounted values, i.e. D0, P0, K0, and S̃t :=

St/Bt, for all t ≥ 0. Then

X
g(ST )
D,P (S0) =

1

BT
EQ,S0

[

1{TP,D>T} g(ST )
]

=
1

BT

(

EQ,S0

[
1{S̃T∈(D0,P0)} g(ST )

]
− EQ,S0

[
1{TP,D≤T, S̃T∈(D0,P0)} g(ST )

])

.

As in the single barrier case, we work on the logarithmized process {st}t≥0 := {ln(S̃t)}t≥0.

We denote a := ln(P0), b := ln(D0). We again try to remove the path-dependence of the

barrier derivative by reflections at the two barriers. If T−
P,D ≤ T , respectively T+

P,D ≤ T ,

we allow reflections . . .

(1) . . . at the lower barrier D0 < S0. The path is reflected at the barrier D0 from t = 0

until its first hitting time T−
P,D. This yields1

EQ,S0

[

1{S
T
−
P,D

=D0, ..., S̃T∈(D0,P0)} g(ST )
]

=
S0

D0
EQ,D2

0/S0

[

1{..., S̃T∈(D0,P0)} g
(
ST
)]

.

(A.1)

(2) . . . at the upper barrier P0 > S0. Similarly, the path is reflected at the barrier P0

from t = 0 until its first hitting time T+
P,D. This yields1

EQ,S0

[

1{S
T

+
P,D

=P0, ..., S̃T∈(D0,P0)} g(ST )
]

=
S0

P0
EQ,P 2

0 /S0

[

1{..., S̃T∈(D0,P0)} g
(
ST
)]

.

(A.2)

1See the single barrier case for details.
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We now divide the sets of paths according to the number of times it switches between the

upper and lower barrier, i.e. the number of times it hits the upper (respectively lower)

barrier after hitting the lower (respectively upper) barrier.

A0 =
{
sT ∈ (b, a)

}
,

A1 =
{
{st}0≤t≤T rises above a, sT ∈ (b, a)

}
,

A2 =
{
{st}0≤t≤T rises above a, then falls below b, sT ∈ (b, a)

}
,

A3 =
{
{st}0≤t≤T rises above a, then falls below b, then rises above a, sT ∈ (b, a)

}
,

. . .

B0 =
{
sT ∈ (b, a)

}
,

B1 =
{
{st}0≤t≤T falls below b, sT ∈ (b, a)

}
,

B2 =
{
{st}0≤t≤T falls below b, then rises above a, sT ∈ (b, a)

}
,

B3 =
{
{st}0≤t≤T falls below b, then rises above a, then falls below b, sT ∈ (b, a)

}
,

. . .

The probability of first hitting the upper, respectively lower, barrier and sT ∈ (b, a) can

then be represented as

{T+
P,D ≤ T, sT ∈ (b, a)} = (A1\B2) ∪ (A3\B4) ∪ (A5\B6) ∪ . . .

{T−
P,D ≤ T, sT ∈ (b, a)} = (B1\A2) ∪ (B3\A4) ∪ (B5\A6) ∪ . . . .

Using that A2n ⊂ B2n−1 and B2n ⊂ A2n−1, n ∈ N, we can rewrite

EQ,S0

[
1{TP,D≤T, sT∈(b,a)} g(ST )

]

= EQ,S0

[
1{T+

P,D≤T, sT∈(b,a)} g(ST ) + 1{T−
P,D≤T, sT∈(b,a)} g(ST )

]

=
∞∑

n=1

EQ,S0

[(
1{A2n−1} − 1{B2n} + 1{B2n−1} − 1{A2n}

)
g(ST )

]

. (A.3)

The idea is now to remove the path dependence in the latter expression by applying

reflections (1) and (2) iteratively. The procedure is demonstrated in Figure A.2. We

apply the concept exemplary on the first term in Equation (A.3). Here, we first apply (1),

then (2), then (1), then (2), until we reach B0 (which is path independent). We get

EQ,S0

[

1{A2n−1} g(ST )
]

(1)
=
S0

P0
E

Q,P
2

S0

[

1{B2n−2} g(ST )
]

(2)
=
S0

P0

P 2
0
S0

D0
E

Q,
S0D2

0
P2
0

[

1{A2n−3} g(ST )
]

(1)
= . . .

(1)
=
S0

P0

Dn−1
0

Pn−1
0

E
Q,

P2n
0

S0D
2n−2
0

[

1{B0} g(ST )
]

.
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Figure A.2: Illustration of the reflection principle on two barriers b < s0 < a. We

apply (2), then (1) on the (logarithmized) process {st}0≤t≤1 (darkest path). Thereby s0 is

transformed into s0 − 2(a− b).

Applying the same arguments on the remaining three terms in Equation (A.3), we finally

obtain

X
g(ST )
D,P (S0) =

1

BT

[

EQ,S0

[
1{S̃T∈(D0,P0)} g(ST )

]

−
∞∑

n=1

(

S0

P0
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0
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0

E
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P2n
0

S0D
2n−2
0

[
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− Pn0
Dn

0

E
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S0D2n
0

P2n
0
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]

+
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D0
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0
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0

E
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D2n
0

S0P
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0
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1{sT∈(b,a)} g(ST )
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− Dn
0

Pn0
E

Q,
S0P2n

0
D2n

0

[

1{sT∈(b,a)} g(ST )
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=
1

BT

∞∑

n=−∞

Dn
0

Pn0
E

Q,
S0P2n

0
D2n

0
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1{sT∈(b,a)} g(ST )
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− S0

D0

Dn
0

Pn0
E

Q,
P2n
0

S0D
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0

[

1{sT∈(b,a)} g(ST )
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=
1

BT

∞∑

n=−∞

Dn
0

Pn0

(

E
Q,S

(2n)
0

[

1{sT∈(b,a)} g(ST )
]

− S0

D0
E

Q,S
(2n−1)
0

[

1{sT∈(b,a)} g(ST )
]
)

,

where we abbreviate

S
(2n)
0 = S0

P 2n
0

D2n
0

, and S
(2n−1)
0 =

P 2n
0

D2n
0

D2
0

S0
, n ∈ Z .
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A.3 VE(0) and ∂VE(0)/∂S0 in Theorem 6

This section derives an expression for ∂VE(0)/∂S0. A Down-and-out call option (DOC)

guarantees the holder a payoff of 0 in case of default (T∞,D < T ) and a final payoff

max(ST −DT , 0), where DT denotes the strike price at maturity and Dt the time-varying

default barrier. The price of such an option, DOCGBMd,µ,σ (S0, D0, T ), is presented in the

following Lemma 8 and can be found in, for example, Section 3.1.

Lemma 8 (Down-and-out call option (DOC))

Let St be the value of the firm’s assets at time t. The time to maturity is T , r the risk-free

interest rate, and D0 the strike and knock-out barrier. Then, the value of a DOC option

is given by

DOCGBMd,µ,σ (S0, D0, T ) = S0 Φd,µ+σ2,σ(T ) − e−rTD0 Φd,µ,σ(T ) ,

where Φd,µ,σ was introduced in Lemma 5.

Theorem 18 (Equity value VE(0))

The equity price VE(0) in the presented model is given by

VE(0) =S0 e
(c−λ)T Φd,µ+σ2,σ(T ) +D0

λ

c− r − λ
−D0 e

(c−r−λ)T c− r

c− r − λ
Φd,µ,σ(T )

−D0 e
−

d(µ̃−µ)

σ2
λ

c− r − λ

(
1 − Φd,µ̃,σ(T )

)
. (A.4)

Proof. The equity holders have to pay redemption payments at a continuous rate λ until

the company either defaults or matures in T . They receive ST − DT if the company

survives until T , else they receive nothing. Thus

VE(0) = E
[
e−rT 1{T∞,D>T} max(ST −DT , 0)

]

−
[∫ T

0
e−rtλDtdt

]

Q(T∞,D > T ) −
∫ T

0

[∫ s

0
e−rtλDtdt

]

dQ(T∞,D ≤ s)

= e(c−λ)T DOCGBMd,µ,σ (S0, D0, T ) −
[

D0
λ

c− r − λ

(
e(c−r−λ)T − 1

)
]

Q(T∞,D > T )

−
∫ T

0

[

D0
λ

c− r − λ

(
e(c−r−λ)s − 1

)
]

dQ(T∞,D ≤ s)

= e(c−λ)T
(
S0 Φd,µ+σ2,σ(T ) − e−rTD0 Φd,µ,σ(T )

)
+D0

λ

c− r − λ

−D0 e
(c−r−λ)T λ

c− r − λ
Φd,µ,σ(T ) −D0 e

−
d(µ̃−µ)

σ2
λ

c− r − λ

(
1 − Φd,µ̃,σ(T )

)
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= S0 e
(c−λ)T Φd,µ+σ2,σ(T ) +D0

λ

c− r − λ
−D0 e

(c−r−λ)T c− r

c− r − λ
Φd,µ,σ(T )

−D0 e
−

d(µ̃−µ)

σ2
λ

c− r − λ

(
1 − Φd,µ̃,σ(T )

)
,

using the results from Lemma 8.

Lemma 9 (The derivative ∂Φd,µ,σ(T )/∂S0)

The derivative of the default probability Φd,µ,σ(T ) (see Lemma 5) with respect to S0 is

given by

△d,µ,σ(T ) :=
∂Φd,µ,σ(T )

∂S0

=
2

S0σ
√
T
φ

(−d+ µT

σ
√
T

)

+
2µ

σ2S0
e

2µd

σ2 Φ

(
d+ µT

σ
√
T

)

,

where Φ( · ), respectively φ( · ), denote the standard normal cumulative distribution func-

tion, respectively the standard normal density function.

Proof.

∂Φd,µ,σ(T )

∂S0
=

1

S0σ
√
T
φ

(−d+ µT

σ
√
T

)

+
1

S0σ
√
T
e

2µd

σ2 φ

(
d+ µT

σ
√
T

)

+
2µ

σ2S0
e

2µd

σ2 Φ

(
d+ µT

σ
√
T

)

=
2

S0σ
√
T
φ

(−d+ µT

σ
√
T

)

+
2µ

σ2S0
e

2µd

σ2 Φ

(
d+ µT

σ
√
T

)

.

Using the results from Theorem 18 and Lemma 9, Theorem 19 gives the derivative

∂VE(0)/∂S0. The result is a straight forward application of the product rule on Equation

(A.4).

Theorem 19 (The derivative ∂VE(0)/∂S0)

The derivative of the equity value VE(0) with respect to S0 is

∂VE(0)

∂S0
=S0 e

(c−λ)T △d,µ+σ2,σ(T ) −D0 e
(c−r−λ)T c− r

c− r − λ
△d,µ,σ(T )

+ e(c−λ)T Φd,µ+σ2,σ(T ) − D0

S0

µ̃− µ

σ2
e−

d(µ̃−µ)

σ2
λ

c− r − λ

(
1 − Φd,µ̃,σ(T )

)

−D0 e
−

d(µ̃−µ)

σ2
λ

c− r − λ
△d,µ̃,σ(T ) .
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B. Götz. Valuation of multi-dimensional derivatives in a stochastic covariance framework.

PhD thesis, TU Munich, 2011.

R. Green. Investment incentives, debt, and warrants. Journal of Financial Economics,

Vol. 13, No. 1:pp. 115–136, 1984.

S. Griebsch and U. Wystup. On the valuation of fader and discrete barrier options in

Heston’s stochastic volatility model. Quantitative Finance, Vol. 11, No, 5:pp. 693–709,

2011.

A. Groh, R. Baule, and O. Gottschalg. Measuring idiosyncratic risks in leveraged buyout

transactions. Quarterly Journal of Finance and Accounting, Vol. 47, No. 4:pp. 15–23,

2008.

A. P. Groh and O. Gottschalg. The opportunity cost of capital of US buyouts. Working

paper, 2009.

T. Guillaume. Window double barrier options. Review of Derivatives Research, Vol. 6:pp.

47–75, 2003.

T. Guillaume. Step double barrier options. Journal of Derivatives, Vol. 18, No. 1:pp.

59–79, 2010.

S. Guo, E. S. Hotchkiss, and W. Song. Do buyouts (still) create value? Journal of Finance,

Vol. 66 No. 2:pp. 479–517, 2011.

X. Guo. When the “Bull” meets the “Bear” – A first passage time problem for a hidden

Markov process. Methodology and Computing in Applied Probability, Vol. 3, No. 2:pp.

135–143, 2001.

S. R. Hakim. Regional diversity, borrower characteristics and mortgage prepayment. Re-

view of Financial Economics, Vol. 1, No. 2:pp. 17–29, 1992.



BIBLIOGRAPHY 147

W. J. Hall. The distribution of Brownian motion on linear stopping boundaries. Sequential

Analysis, Vol. 4:pp. 345–352, 1997.

P. Halpern, R. Kieschnick, and W. Rotenberg. Determinants of financial distress and

bankruptcy in highly levered transactions. The Quarterly Review of Economics and

Finance, Vol. 49, No. 3:pp. 772–783, 2009.

J. D. Hamilton. A new approach to the economic analysis of nonstationary time series

and the business cycle. Econometrica, Vol. 57, No. 2:pp. 357–384, 1989.

M. Hardy. A regime-switching model of long-term stock returns. North American Actuarial

Journal, Vol. 3:pp. 185–211, 2001.

H. He, W. Keirstead, and J. Rebholz. Double lookbacks. Mathematical Finance, Vol. 8,

No. 3:pp. 201–228, 1998.

P. N. Henriksen. Pricing barrier options by a regime switching model. Journal of Quan-

titative Finance, Vol. 11, No. 8:pp. 1221–1231, 2011.

C. Hering, M. Hofert, J.-F. Mai, and M. Scherer. Constructing hierarchical Archimedean
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K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in

Advanced Mathematics, 1999.

M. Scherer and R. Zagst. Modeling and pricing credit derivatives. In: Menendez, S.C.;
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