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Abstract

Smart structures represent a rapidly growing interdisciplinary technology that is adopted
in many fields to increase functionality, improve usability or to create even more efficient
structures. In the related sensor and actuator technology, piezoelectric materials become
more and more prevalent. Numerical simulation methods can be used to facilitate an effi-
cient design and development process of smart structures even before the first prototype
is built. In this context, this work presents a finite element based computational frame-
work and related algorithms for the virtual design and simulation of controlled smart
lightweight structures.
A novel, geometrically nonlinear piezoelectric composite shell element formulation is pre-
sented. The element is completely based on nonlinear, three-dimensional continuum the-
ory and thus allows for the use of arbitrary complete three-dimensional constitutive laws
without reduction or manipulation in nonlinear plate and shell analysis. A 8-parameter
single-director formulation with Reissner-Mindlin kinematics is developed, which also
considers deformations in thickness direction. The element is based on a modified Hu-
Washizu functional of the coupled electromechanical problem that eliminates locking
phenomena via both the enhanced assumed strain concept (EAS) and the assumed nat-
ural strains (ANS) method. Similar to enhanced strains, also enhanced assumed electric
field strength terms are introduced to eliminate related parasitic terms and incompatible
approximation spaces of the electromechanical problem. A detailed investigation of the
diverse locking phenomena is presented, a well as an analysis of the performance of the
element enhancement techniques.
Beyond that, the overall design process of smart structures including closed-loop control
is focus of this work. Controller design is based on a state space model that is derived
from the finite element model and that preserves the geometrically nonlinear equilibrium
state and eventual prestress effects of the structure. Discrete time control via an optimal
linear-quadratic-Gaussian (LQG) regulator is applied. In the context of control, special
focus is put here on prestressed membrane structures and their special issues in the con-
text of controller design.
Several examples demonstrate the performance and accuracy of the presented piezoelec-
tric element formulation and provide comparisons to related element formulations of the
literature. Furthermore, the methods and algorithms of all simulation and design steps
of a smart structure are illustrated and verified at the example of a smart 4-point tent
that adopts closed-loop control for vibration suppression under external loads. Beyond
that, the three-dimensional static-aeroelastic simulation and optimization of a solid-state
piezo-actuated variable-camber morphing wing for low Reynolds number regimes is pre-
sented. Parameter-free structural optimization is used here in order to integrate a flexi-
ble, generic and efficient optimization technique in the very early stage of design. The
simulation and design results illustrate the workflow and demonstrate a good match to
experimental results.
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Zusammenfassung

Intelligente Strukturen stellen eine rapide wachsende, interdisziplinäre Technologie dar,
die in zahlreichen Anwendungsgebieten eingesetzt wird, um die Funktionalität zu er-
weitern, die Gebrauchstauglichkeit zu verbessern, oder schlichtweg noch effizientere
Strukturen zu entwickeln. In der Sensorik und Aktorik werden dabei zunehmend
piezoelektrische Materialien verwendet. Numerische Simulation kann eingesetzt wer-
den, um einen effizienten Entwurfprozess intelligenter Strukturen noch vor der Fer-
tigung des ersten Prototyps zu ermöglichen. In diesem Kontext präsentiert die vor-
liegende Arbeit ein Rahmenkonzept und zugehörige Methoden und Algorithmen für
den virtuellen Entwurf und die Simulation intelligenter Leichtbaustrukturen.
Ein neues, geometrisch nichtlineares Komposit-Schalenelement wird vorgestellt. Das
Element basiert auf nichtlinearer, dreidimensionaler (3D) Kontinuumsmechanik und
ermöglicht daher die direkte Verwendung von 3D Materialgesetzen ohne notwendige
Modifikation für die Platten- oder Schalentheorie. Dazu wird eine 8-Parameter
Formulierung mit Einschichttheorie (Singledirektortheorie) und Reissner-Mindlin
Kinematik entwickelt, die auch Deformationen in Dickenrichtung berücksichtigt. Das El-
ement basiert auf einem modifizierten Hu-Washizu Funktional des gekoppelten elektro-
mechanischen Problems. Locking-Phänomene werden durch die Enhanced Assumed
Strains (EAS) Methode und die Assumed Natural Strains (ANS) Methode beseitigt. Ähn-
lich zur EAS Methode werden zusätzlich erweitere Moden des elektrischen Feldes (EAE
Moden) eingeführt, um parasitäre Terme und inkompatible Approximationsräume des
elektromechanischen Problems zu beheben.
Zudem wird ein allgemeiner Entwurfsprozess von intelligenten Strukturen inklu-
sive Regelung vorgestellt. Der Reglerentwurf basiert auf einem Zustandsraummodel,
das vom Finite Elemente Model abgeleitet wird und den geometrisch nichtlinearen
Gleichgewichtszustand inklusive potentieller Vorspannungseffekte berücksichtigt. Es
wird eine zeitdiskrete Regelung mit einem optimalen linear-quadratischen Gauss-Regler
(LQG Regler) verwendet. Besonderer Fokus liegt auf dem Reglerentwurf für vorgespan-
nte Membranstrukturen.
Numerische Beispiele demonstrieren die Leistungsfähigkeit und Genauigkeit des
vorgestellten piezoelektrischen Elements und zeigen Vergleiche zu Elementformulierun-
gen der Literatur auf. Die Methoden und Algorithmen sämtlicher Simulations- und
Entwurfsschritte einer intelligenten Struktur werden am Beispiel eines 4-Punkt-Zeltes
demonstriert, das aktive Regelung zur Vibrationskontrolle unter äußeren Lasten verwen-
det. Außerdem wird die dreidimensionale, statisch-aeroelastische Simulation und Opti-
mierung eines piezoelektrisch aktuierten formadaptiven Flügels mit festen Flugzustän-
den für die Anwendung im Bereich niedriger Reynoldszahlen vorgestellt. Parame-
terfreie Strukturoptimierung wird hierbei verwendet, um eine flexible und effiziente
Optimierungstechnik bereits in einem frühen Stadium des Entwurfs zu integrieren. Die
Ergebnisse illustrieren den Entwurfsprozess und weisen eine gute Übereinstimmung mit
den experimentellen Ergebnissen nach.
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Chapter 1

Introduction

1.1 Motivation

In the case of thin lightweight structures like tents, stadium roofings, diverse automotive
components, aircraft parts or space structures, the objective of the computational design
process is usually to minimize the weight of the structure. However, at the same time
various constraints stemming from safety, usability or comfort considerations have to be
satisfied, like stress, deformation or vibration criteria. In order to increase the static and
dynamic performance of structures also in presence of time-varying environmental and
operational conditions, the structure can be designed to be adaptive or smart.

Smart structures, also called active or intelligent structures can be defined as structural sys-
tems with the ability to respond adaptively in a pre-designed manner to changes in en-
vironmental conditions using distributed actuators and sensors of high integration level.
Sensors and actuators are directed by a controller that allows for the modification of static
and dynamic behavior of the system. A detailed discussion of the naming and the termi-
nology can be found e.g. at Clark et al. [CSG98].
An adaptive structure makes use of one or more controllers that analyze the responses
obtained from the sensors and use control algorithms in order to produce actuating sig-
nals. These signals are subsequently amplified and transferred to the actuators in order
to perform a localized action which adapts and adjusts structural characteristics such as
its shape, stiffness or damping. A smart structure is able to respond to variable ambient
stimuli, regardless if these are internal or external, such as temperature or loads, respec-
tively. In general, control can be applied to structures in order to increase functionality,
improve usability or to create even more efficient structures. Intelligent structures re-
present a rapidly growing interdisciplinary technology embracing the fields of materials,
structures, sensor- and actuator systems, information and signal processing, electronics
and control.

The application fields range from automotive to aerospace and civil engineering and be-
yond. Figure 1.1 shows for example the Stuttgart SmartShell which represents an adap-
tive shell supporting structure out of wood with over 10m span [SmS12]. It is build with
a thickness of only 4cm which would be in general too thin to sustain snow and wind
loads. In order to reach this high slenderness of the structure, three supports are actively
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Figure 1.1: The Stuttgart SmartShell: actively controlled shell structure under snow load.

controlled in their position in order to allow for a shape adaptation and thus a reduction
of stresses and vibrations of the system. In this context, smart technologies open the door
to ultra-lightweight design of structures.
Smart structures are also highly interesting in the automotive industry: For example, the
missing roof structure of convertibles leads to a lower torsional stiffness of the car struc-
ture. Due to the lower stiffness, the car body is more susceptible to vibrations. Active
rods based on piezoceramics can be embedded in the frame of convertibles in order to
successfully perform vibration reduction [KGF01].
Furthermore, two examples from the field of aeronautics are shown in Figure 1.2: Highly
efficient variable-camber morphing wings with smooth and continuous aerodynamic con-
trol surfaces can be developed with the help of state-of-the-art piezoelectric actuators
(Figure 1.2 a), as discussed in detail in chapter 7.6 of this work. Another example are ro-
tor blades that adopt active control with low profile piezoceramic actuators in the blade
skin (Figure 1.2 b). This concept aims at reducing the blade vortex interaction induced
vibration by appropriate twisting of the blades in order to improve noise, comfort and
flight performance characteristics.

For the design of these smart structures, a wide range of smart materials is used, com-
prising piezoelectric, electrostrictive and magnetostrictive elements, electrorheological
fluids and solids, carbon nanotube actuators, shape memory alloys (SMAs), and many
more [SM01, BSW96]. These materials can be used for sensing, actuating or even both as
in the case of piezoelectric materials.
Piezoelectricity is a fundamental phenomenon of electromechanical interaction and rep-
resents a linear coupling in energy conversion [Ike90]. Piezoelectric materials can gen-
erate an electric signal from applied mechanical strain (direct piezoelectric effect). In the
other way round, piezoelectric materials react on applied electric voltage with mechan-
ical strains (inverse piezoelectric effect). That’s why piezoelectric materials play a role in
both sensor and actor technology. However, piezoelectric materials are of higher interest
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a)                                                        b) 

Figure 1.2: Applications of Piezoelectric materials for smart structures: (a) variable-camber mor-
phing wing [BF12] and (b) active rotor blade with low profile piezoceramic actuators in the blade
skin [MW05].

in the field of actuation, as there exist several other techniques of comparable quality in
the sensor context.
Piezoelectric materials are available as natural materials like quartz as well as in syn-
thetic form e.g. via sintering in the case of piezoelectric ceramics. Due to advancing
manufacturing techniques, manifold geometries, layered systems and composites struc-
tures with piezoelectric materials are possible. The general advantages of piezoelectric
material are short reaction time, high precision, durability and the capability to produce
large forces. In static operation states, piezoelectric actuators are comparable with capac-
itors and consume practically no energy. The typical travel ranges of piezoelectric actors
are 10− 100µm and can be considerably increased e.g. via stacked sequences. Bending
actuators in general reach a deformation of several millimeters. This can be amplified via
tailored embedding into carrier structures using leverage effects.

In general, the application fields of piezoelectric systems can be subdivided into four
groups [Sch10]: First of all, energy harvesting systems which transform mechanical en-
ergy into electrical energy. An overview of this field can e.g. be found at Erturk and
Inman [EI11]. Second, position and shape control where a change in shape is detected,
balanced or actively generated. Related application fields range from precise positioning
of space antennas up to the control of turbine blades. An related overview of computa-
tional aspects of structural shape control is e.g. given by Ziegler [Zie05], while a review
of shape control with focus on piezoelectric actuation is presented by Irschik [Irs02]. The
third group of application fields is vibration and buckling control, as e.g. in Berger et
al. [BGKS00]. And last but not least, the field of health monitoring where piezoelectric
elements are used in bridges, buildings and airplanes for an early detection of damages.
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Beyond that, the usage of piezoelectricity is part of the daily life today: The direct piezo-
electric effect is used in electric cigarette lighters, electronic weighing scales and micro-
phones. Actuation via the inverse piezoelectric effect is used e.g. in diesel injection sys-
tems, loudspeakers, and inkjet printers. Furthermore, electronic components combine
both effects: An applied voltage leads to an deformation which in turn is detected again.
This is the case e.g. in quartz crystal clocks or in the ultrasonic signal processing of park-
ing assist systems.

However, for economical reasons, shorter development cycles and optimal usage of the
resources are required. Beyond that, more and more complex and detailed demands
have to be considered in modern products. Thus real experiments do not always provide
a solution, as they are expensive, time-consuming and often just not practicable. That’s
why the numerical analysis of single parts or even complete machines or buildings has
established itself as efficient tool to predict and design the behavior of systems. Computa-
tional simulations are usually the starting point of today’s engineering design processes
and gain more and more importance. Based on a virtual computer model, the system
under consideration can be analyzed, optimized and even redesigned before the first pro-
totype is built. This saves both time and money.
The finite element method has superseded other numerical approximation methods in
many applications fields due to its reliability, robustness, efficiency and versatility. Orig-
inally developed for structural mechanics applications, the application field of the finite
element method today comprises heat conduction, fluid mechanics, electromagnetism,
biomechanics or medicine technology. Also in the context of design, analysis and control
of flexible mechanical structures, simulations are commonly based on the finite element
method. More and more realistic representations of the real systems have to be simulated
considering detailed physical and mathematical models that reflect the coupling of the in-
volved fields. That’s why the finite element method has to intensify its interdisciplinary
character to face the today’s requirements.

Smart structures provide unique challenges to the numerical engineer due to their level
of complexity: The requirements for the finite element simulation start at the stage of
finite element technology: Efficient and accurate finite elements are needed that reflect
e.g. the layered structure of piezoelectric composites, the electromechanical coupling
of piezoelectric materials, as well as the large deflections that can appear especially in
the sensor case. However, not only a model of the structure including the embedded
sensors and actuators has to be assessed, but also a suitable control algorithm has to be
designed. Thus the finite element method shall provide a comprehensive computational
framework for a holistic simulation and design process including the aspects of control.
As a consequence, not only the finite element technology is decisive, but also the reach
and coverage of design aspects in the computational modeling.

Besides to efficient structures with bending stiffness like shells, also the membrane struc-
tures form a group of special importance in efficient lightweight structural design. Pre-
stressed membranes are well suited for lightweight structures due to the extremely low
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areal density and the optimal static load carrying behavior. Prominent examples are the
well-known minimal surfaces [HT85]. Experimentally, minimal surfaces can be realized
by soap films (soap film analogy) [BR99]. For the design of highly efficient structures, it
is thus reasonable to aim for the combination of the efficiency of (passive) membrane
structures with the advantages of active control.

1.2 Review and Current State of Research

1.2.1 Piezoelectricity

In this work, a compact historical review of the developments in piezoelectricity shall be
given. A detailed historical review of the early developments in this field can be found
e.g. at [Cad64]. A review of the newer developments in piezoelectricity can be found e.g.
at [HLW08].
Pierre and Jacques Curie first discovered the piezoelectric effect in 1880 at experiments
with tourmaline crystals. They found out that charges are created at specific crystals un-
der mechanical loading and that this charges are directly proportional to the mechanical
loading. Lippmann predicted the existence of the inverse effect from thermodynamic
considerations. His prediction was verified by the Curies in 1881. In the upcoming years,
twenty crystal classes with natural piezoelectric effect have been identified and the macro-
scopic material constants have been determined. Voigt published on overview of these
results with a detailed mathematical description of the known crystals [Voi28]. Starting
with the pioneering work of Voigt, the piezoelectric effect became an established branch
of crystal physics in the meantime.
The first practical applications go back to 1917, when Rochelle salt was used to gene-
rate vibrations for sonars. Further applications have been developed, like accelerometers,
ultrasonic devices and microphones. However, the first developments were limited by
the rather weak piezoelectric parameters of the naturally available piezoelectric crystals.
Starting with the 40ies of the last century, a new class of synthetic materials, called ferro-
electrics, have been developed that clearly outperformed the piezoelectric parameters of
naturally available materials like quartz or tourmaline crystals. Among others, barium
titanate and later zirconate titanate materials with specific properties for particular appli-
cations have been produced.
Within the 60ies of the last century, also highly heat-resisting piezoceramic materials have
been developed, like lithium niobate with an Curie temperature of 1140◦ [Sch10]. Besides
to that, also the development of piezopolymer materials started. A prominent example
is polyvinylidene fluoride (PVDF). In contrast to ceramics, where the crystal structure
creates the piezoelectric effect, in polymers the intertwined long-chain molecules cause
this material behavior by attracting and repelling each other if an electric field is applied.
Until today, the development of piezoelectric actuators is continuously advancing. Bend-
ing actuators with same orientation of polarization and electric field are the most com-
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mon type of actuators. Besides to that, shear actuators with an electric field perpendicular
to the polarization gained some importance recently due to the higher efficiency [Ben07].
More and more tailored piezoelectric elements are developed, like the low-profile Macro-
Fiber Composite (MFC) actuators. MFC actuators were originally developed at NASA
Langley Research Center and offer structural flexibility and high actuation authority
[HW03]. The MFC uses rectangular piezoceramic rods sandwiched between layers of
adhesive, electrodes and polyimide film. The electrodes are attached to the film in an
interdigitated pattern. This assembly enables in-plane poling and in-plane voltage actu-
ation which allows the MFC to utilize the 33-coupling effect, which is higher than the
31-coupling effect used by traditional PZT actuators with through the thickness poling
[HKGG93].
New developments also enter the small scales: thin films of crystalline material like alu-
minum nitride (AlN) are deposited on silicon wafers using semiconductor technologies.
Applications include surface acoustic wave sensors (SAWs) that can be used e.g. for touch
screens, and radio frequency (RF) filters used in mobile phones. Beyond that, microelec-
tromechanical systems (MEMS) shall be mentioned, where piezoelectric material is used
in the context of electronic chips.
The global demand for piezoelectric devices was valued at approximately 14.8 billion
US-$ in 2010. The largest material group for piezoelectric devices are piezocrystal ma-
terials, while piezoelectric polymers materials are facing the fastest growth due to low
weight and size [Acm11].

1.2.2 Finite Element Models of Shells

From the historical point of view, the first shell models (like many other structural mod-
els) have been developed on the basis of engineering evaluation of experiments and
heuristic assumptions. Kirchhoff is credited to be the founder of modern plate theory
with his publication in 1850 [Kir50], while the first consistent theory of thin shells goes
back to August E.H. Love in 1888 [Lov88]. As Love’s publication is based on Kirchhoff’s
work, this shell model became known as the Kirchhoff-Love model. The key assumption
is that a mid-surface plane can be used to represent the three-dimensional plate in two-
dimensional form. This model has no (independent) rotational degrees of freedom and
assumes the cross section to remain straight, unstretched and normal to the mid-surface
after deformation. As the strains in thickness direction are assumed to be zero, an appro-
priate modification of general three-dimensional material laws is required before usage.
The related element formulations are commonly called 3-parameter formulations, because
the element deformation can be described with the 3 nodal displacements. In 1960, Koi-
ter presents a concise theory for shells [Koi60]. As his models neglect shear deformations
like the Kirchhoff models, the application is here again restricted to thin shells.

However, Reissner introduced already in 1944 shear strains for the calculation of plate
deformations [Rei44, Rei45]. He assumed the normal cross section to remain straight,
but not necessarily to stay normal to the mid-surface after deformation. The Reissner
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plate theory also allows for nonzero normal stresses in thickness direction. Applying
the mixed functionals of Hellinger-Reissner, cubic normal stresses in thickness direction
can be represented [Hel14, Rei50]. However, the theory still needs a modification of 3D
material laws. A plate theory that is based on a pure displacement-formulation and still
includes shear deformations has been introduced by Hencky [Hen47] in 1947 and some
years later by Mindlin [Min51]. This approach assumes the transversal normal stresses
to be zero, which cancels out the normal strain in thickness direction from the equation
system. The corresponding concise theory for shells has been presented by Nagdhi in
1972 [Nag72]. Introducing a polynomial description of the displacements in thickness
direction, he opened the door for shell models that match the three-dimensional theory
with arbitrary exactness. Nevertheless, these shear-deformable shell models are com-
monly called shells with Reissner-Mindlin kinematics due to the origin of the assumption
of shear-deformable cross-sections. Following the naming of Bischoff [Bis99], the pure
displacement-based shell formulations with shear deformation are called 5-parameter for-
mulation in the sequel of this work. This name relates to the use of 5 kinematic degrees of
freedom (3 displacements and 2 rotational degrees of freedom).

A mathematical basis has been provided later with the method of the asymptotic analysis:
Here the shell model is compared with the result of the exact three-dimensional equations.
A shell model is called asymptotically correct, if the shell model solution converges to the
continuum solution in the limit of zero thickness. Possibly the first work of this type has
been presented by Goodier in 1938 [Goo38]. Morgenstern presents in 1959 the first math-
ematical justification of the Kirchhoff theory [Mor59]. Arnold and Falk present in 1996
an investigation of the boundary layers of Reissner-Mindlin plate models with consid-
eration of the transverse shear strain effects [AF96]. The asymptotic analysis of shells
started with the work of John in 1965 [Joh65] who investigated error estimates for nonlin-
ear shells. Ciarlet provides with his work in 1996 a general justification of flexural shell
equations [CLM96]. Last but not least Lewiński and Telega extended the investigations
also to laminate shell structures [LT00].

The fundamental idea of shell models is based on the dimensional reduction of the 3D
continuum: Taking advantage of the disparity in length scale, the semi-discretization of
the continuum is performed to end up in a two-dimensional problem description. This
discretization in thickness direction is completely independent from the (later) discretiza-
tion within the shell mid-surface. Starting from the mechanical model, two general ap-
proaches can be chosen:

• The Cosserat models are derived from the weak form of the shell equilibrium differen-
tial equation of the Cosserat surface. This method to derive shell models is usually
called direct approach.
• Continuum-based shell models start from the formulation of three-dimensional con-

tinua under consideration of shell-specific assumptions.

In principle, both approaches can lead to the same system of differential equations. How-
ever, the Cosserat models are based on a two-dimensional shell model which defines
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the equilibrium equations directly via stress resultants, without considering the related
stresses of a three-dimensional model [CC65, GNW65]. Here, the shell is described as
a directed continuum which means that every point is defined via position vector and
director vector. These shell models are often called geometrically exact since Simo and
Fox in 1989 [SFR89a, SFR89b], as the two-dimensional Cosserat surface is exactly de-
scribed in this formulation. However, this does not imply any approximation quality
of the shell deformation or any comparison to continuum-based shell models. A general
drawback of the direct method is the difficult application of 3D continuum relations like
three-dimensional material laws. Another problem is the modeling of constructional de-
tails like stiffeners or connection points [Kos04].
In the case of continuum-based shell models, kinematic resultants and stress resultants
are derived from the strains and stresses of the three-dimensional continuum. Doing so,
a 2D shell model is derived via appropriate assumptions. This key idea of a dimensional
reduction to a 2D surface with appropriate assumptions has been a fundamental basis
for the development of both Kirchhoff-Love models [Kir50, Lov88] and Reissner-Mindlin
models with shear deformation [Rei44, Min51].

Besides to the two described approaches to derive finite element models, there is a third
method: the degeneration concept [AIZ68]. Here, the discretization takes place before the
dimensional reduction: The continuum is first discretized with three-dimensional solid
elements which are then "degenerated" to shell elements. However, apart from the order
of dimensional reduction and discretization, strong similarities to continuum-based mod-
els can be identified. It can be shown that the methods are even equivalent if the same
mechanical assumptions are made [Büc92]. A more detailed investigation and review of
the influences of different model assumptions and the related consequences can be found
in the literature, e.g. at Bischoff et al. [BWBR04].

Shell models of low order in thickness direction like the 5-parameter formulation still
suffer from some severe drawbacks, such as the need for a modification of three-
dimensional material laws or the restriction to small strains [Bis99]. Also local effects
like geometric discontinuities and delamination effects cannot be investigated. That’s
why three-dimensional shell formulations became more and more vivid in the 1990ies. New
elements have been developed which try to combine both the efficiency and ease of eval-
uation of shell elements on the one hand side and exactness and generality of continuum
elements on the other hand side [BR92b, Par95, BGS96].
The convincing property of these elements is the consideration of the complete three-
dimensional stress and strain state which requires the thickness change of the shell to be
introduced as additional degree of freedom and thus leads to 6-parameter formulations.

However, the 6-parameter formulation leads to incompatible descriptions of the thick-
ness normal strains and the related energy-conjugate stresses. The resulting stiffening
effect in bending situations of curved structures is known as curvature thickness locking
(see also section 3.5.3.4). In general, this problem could be solved by using quadratic ba-
sis functions for the displacement in thickness direction which would increase the global
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degrees of freedom. Büchter, Ramm and Bischoff introduce another approach that adopts
an enhanced strain mode as 7th parameter [BR92b, BRR94, Bis99]. This technique allows
for a static condensation of the additional degree of freedom on the element level. For
these 7-parameter formulations, the difference between degenerated solid shell elements
and "real" shell elements is almost disappearing [BR92c]: The only distinction is the use
of real rotational degrees of freedom in the case of shell theory elements while the degen-
eration concept uses the deformations of the director.

1.2.3 Piezoelectric Shell Element Technology

Since many decades, piezoelectric materials have been indispensable for sensors, actua-
tors, electromechanical resonators, transducers and adaptive structures in general. How-
ever, due to the complexity of the piezoelectric governing equations, only a few sim-
ple problems such as simply supported beams and plates have been solved analytically
[Tie69, RRS93, YBL94]. Since Allik and Hughes [AH70] presented their work on piezoelec-
tric finite element vibration analysis, the finite element method became more and more
the dominating practical tool for design and analysis of piezoelectric devices and adap-
tive structures. There are also simplified models which replace the effect of piezoelectric
actors with equivalent forces and moments and which neglect the electromechanical cou-
pling within the constitutive law [Pre02]. However, focus of this work is put on element
formulations which consider the full electromechanical coupled problem. Inheriting the
approach of Allik and Hughes, a large number of publications until now present finite
element formulations which adopt the displacement and the electric potential as the only
discretized field variables [SP99].

For the efficient modeling of thin and lightweight structures, piezoelectric shell formu-
lations are of special interest. An overview of different formulations is e.g. given by
Saravanos [SH99] and Benjeddou [BLM00]. Similar to the case of pure structural formu-
lations, two main categories of piezoelectric shell finite element models can be identified:
On the one hand side, there are solid-shells that model the geometry with upper and
lower side of the geometry. Piezoelectric 8-noded solid-shell element formulations are
e.g. presented by Sze and Yao [SY00] and Sze et al. [SYY00], Zheng et. al. [ZWC04], Tan
and Vu-Quok [TVQ05], Klinkel et al. [KGW06] and Klinkel and Wagner [KW06, KW08].
In contrast to that, the second piezoelectric shell element category models the geometry
via a reference surface. Such element formulations with focus on 4-noded quadrilaterals
can be found e.g. at Lammering [Lam91], Lammering and Mesecke-Rischmann [LMR03],
Kögl and Bucalem [KB05] and Legner [Leg11].
All these contributions and in general the majority of publications present quadrilateral
elements. In contrast to that, Tzou and Ye also present triangular elements and their per-
formance at piezoelectric bimorphs and semicircular ring shells [TY96]. Also Bernadou
and Haenel introduce a triangular piezoelectric element [BH03].
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As piezoelectric materials are commonly embedded in layered structures, the first related
publications reach back to the 70ies [SC74]. Also the majority of publications of the last
two decades consider the application to composites. In this context, solid-shell elements
allow for a modeling of each single layer with one separate element. The advantage
of this approach is the high approximation level with the option for independent shear
deformations of each layer, while the formulation of a tailored laminate theory can be
omitted. On the other hand side, the modeling effort and the computational cost are in-
creasing in this case. In contrast to that, shell elements defined on a reference surface
must provide a suitable laminate theory to model layered structures. A good overview
of different laminate theories for piezoelectric shell elements is delivered by a group of
publications of Tzou et al.: For thin shells, piezoelectric elements with single layer theory
and Kirchhoff-Love hypothesis are introduced [TG89]. The related single layer theory
without shear deformation is commonly called classical laminate theory. The idea of piezo-
electric layered structures is extended in [TZ93] to include shear deformations. In gen-
eral, related elements with constant shear assumptions over all layers are called first order
shear deformation theory (FSDT) elements. This approach is further refined e.g. in [TY96]
with a theory that assumes layerwise constant shear angles (multi-layer theory). A simi-
lar approach is adopted by Heyliger et al. for a model with discrete-layer shell theory
[HPS96]. An overview of piezoelectric laminate theories can also be found at Saravanos
and Heyliger [SH99].

Since the early ages of the finite element method in the 60ies, it has been known from
structural applications that finite element formulations based on the principle of virtual
work deliver in some cases very inexact results or converge only very slowly. Differ-
ent element enhancement techniques have been developed to overcome the underlying
structural locking effects. Later, these element enhancement techniques also established
themselves in the context of electromechanical problems. Several proposed element for-
mulations of the literature reduce the locking effects with biquadratic assumptions for
the basis functions [BN01, CYL01]. Selective reduced integration techniques in the con-
text of piezoelectric elements have been applied by Braess and Kaltenbacher to eliminate
shear locking [BK08]. Also the assumed natural strains (ANS) method or the mixed in-
terpolated tensorial components (MITC) approach, respectively, have been adopted at
piezoelectric elements, such as by Sze and Yao [SY00], Sze et al. [SYY00], as well as Kögel
and Bucalem [KB05]. Also the enhanced assumed strain (EAS) method according to Simo
and Rifai [SR90] has been applied in several piezoelectric elements, such as by Zheng et.
al. [ZWC04].

However, in the context of electromechanical problems, it is not enough to eliminate
"classical" structural locking effects. For a long time, element deficiencies resulting from
incompatible approximation spaces of the electromechanical problem have not been in-
vestigated. For the first time, De Miranda and Ubertini discuss oscillations of stresses
and electric displacements in bending situations in 2003 [MU03, MU04]. These effects ac-
tually go back to incompatible approximation spaces of the strains and the electric field.



1. Introduction 11

The critical aspect of the piezoelectric element formulation is here the decision about the
used basis functions for the behavior of the electric potential in thickness direction. An
overview of different formulations in the literature in this context is given by Kögl and
Bucalem [KB05]. Several elements, especially from the earlier developments, assume a
linear behavior of the electric potential in thickness direction. However, Wang and Wang
showed analytically in 2002 that a linear description of the electric potential in thickness
direction is not sufficient for a correct representation of a bending state [WW02]. Legner
[Leg11] presents a detailed analysis of incompatible approximation spaces which can be
identified to be one basic origin of low element performance besides to "classical" struc-
tural locking effects. Legner also introduces the naming electromechanic weakening, as the
elements tend to larger displacements in contrast to structural locking.

Several mixed formulations for electromechanical problems have been presented: Three-
field formulations with displacement, electric potential and electric displacement degrees
of freedom can be found at Lammering and Mesecke-Rischmann in the context of shal-
low shells [LMR03], as well as at Sze and Pan [SP99]. A hybrid stress element with the
displacements, the electric potential and the stresses as independent fields is introduced
by Sze et al. [SYY00]. Furthermore, elements with with stresses and electric displacement
as additional fields besides to displacements and electric potential are suggested by Sze
and Pan [SP99], as well as De Miranda and Ubertini [MU04]. Several authors also sug-
gest complete six-field variational principles derived from the Hu-Washizu functional,
e.g. Zheng et al. [ZWC04] and Schulz [Sch10].

The overall majority of the discussed piezoelectric element formulations adopt geometri-
cally linear formulations. Exceptions are the shallow shell element formulations of Wang
and Wang [WW02] and Varelis and Saravanos [VS06], the solid shells of Klinkel and Wag-
ner [KW06, KW08], or the formulation of Legner [Leg11].
However, as shown by Tzou and Bao [TB97] and e.g. also Schulz [Sch10], the geometrical
nonlinear kinematics can be decisive for the element quality, especially in the case of sen-
sor applications where relatively large deformations may appear. On the other hand side,
due to the brittle behavior of piezoelectric material, the consideration of small strains is
in most cases reasonable.

1.2.4 Control

The growing interest in the development and application of smart structures requires
suitable and reliable simulation tools that contain all main functional parts [Gab02]: The
passive structure, the sensors, the actuators and also the control algorithm. In this con-
text, the finite element method provides the necessary basis for a holistic simulation and
design concept that also includes the control aspects [GNTK02].
Many publications can be found on the simulation of structural control and controller
design in the context of parts with bending stiffness. The first usage of the term shape
control goes back to Haftka and Adelmann who derived finite element formulations for
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the shape control of large space structures by applied temperatures [HA85]. Austin et. al.
adopt the finite element method for the static shape control of adaptive wings [ARN+94].
Zehn and Enzmann present the finite element based controller design and control simu-
lation of an aluminum alloy casting plate [ZE00]. Nestorovic-Trajkov et al. apply finite
element based controller design to a funnel-shaped part of a magnetic resonance tomo-
graph [TKG06]. Lefèvre et al. also show extensions of the approach to vibroacoustic
effects [LGK03]. A good overview of the finite element based overall design of controlled
smart structures is given in [GTK06].

However, also prestressed membranes are interesting candidates for efficient and
lightweight smart structures, as they are optimal designs for two reasons: they represent
structures of optimal material usage with constant stress state over the thickness and they
reflect surfaces of minimal area or minimal weight in the case of uniform prestress. For
the design of highly efficient structures, it is thus reasonable to aim for the combination
of the efficiency of (passive) membrane structures with the advantages of active control.
However, especially slightly prestressed membrane structures exhibit very low mode fre-
quencies and are thus prone to vibration even for small disturbance loads. Furthermore,
established control techniques have to be revisited, as the attachment of many sensors,
actuators or dampers directly on the membrane would heavily disturb the membrane
stress state. Beyond that, membranes represent structures where large deformations, re-
lated geometrically nonlinear effects as well as the prestress state are indispensable for a
correct representation.
That might have contributed to the fact that only a small number of publications can
be found dealing with the control of prestressed membranes in the finite element context.
Maji and Starnes present analytical techniques for shape control of deployable membrane
structures for space antennas [MS00]. Beyond that, Sakamoto et al. present distributed
and localized active vibration control techniques for membrane structures [SPM06]. How-
ever, focus is put here on the isolation of membranes from the major disturbance source
rather than the control of vibrating membranes. Peng et al. present a scheme for inflat-
able structure shape control based on genetic algorithms and neural network techniques
[PHN06]. They report about the challenges to find good optimal control output due to
the strong nonlinear properties of the structures.

1.3 Objectives

One key goal of this work is the development of a flexible, efficient and robust piezoelec-
tric composite shell finite element. A 7-parameter single-director shell formulation with
Reissner-Mindlin kinematics [BR92b, BRR94, Bis99] is extended to a composite formula-
tion for the electromechanical problem. Besides to three displacement degrees of freedom
and three deformation components of the director, the difference of the electric potential
in thickness direction is introduced as nodal degree of freedom. The key aspects of this
piezoelectric composite finite element are listed in the sequel:
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• An extensible director formulation with director-based degrees of freedom is
adopted in order to account at once for rotations as well as thickness deformation.

• The element is completely based on nonlinear, three-dimensional continuum theory.
This allows for a concise description of arbitrary complete three-dimensional cou-
pled material equations in the convective coordinate system of the element without
reduction or manipulation in nonlinear plate and shell analysis. As a consequence,
a complete representation of 3D stress states is possible. Furthermore, complex
transformation matrices can be replaced by metric-based transformations.

• A modified Hu-Washizu functional for the electromechanical problem is derived.
Introducing an additional orthogonality condition between the enhanced electric
field modes and the independent electric displacement field, the general electro-
mechanical six-field Hu-Washizu functional can be reduced to a four-field formula-
tion before the discretization takes places. Thus the numerical cost for the discretiza-
tion, calculation and static condensation of the stress and electric displacement field
can be eliminated.

• The enhanced assumed strain (EAS) method is applied to eliminate structural
locking effects.

• Similar to enhanced assumed strains, also enhanced assumed electrical (EAE) field
modes are introduced to eliminate electromechanical locking phenomena stem-
ming from incompatible approximation spaces.

• Also the Assumed Natural Strains (ANS) method is applied in order to eliminate
shear locking in a robust manner also in the context of distorted meshes.

• No restriction to shallow shells is introduced.

• A geometrically nonlinear formulation is adopted to account for large deformations
that can appear especially in sensor applications.

A linear coupled material law is assumed. This assumption is reasonable for small electri-
cal and mechanical loading. In order to consider nonlinear piezoelectric material effects,
the polarization state of the material must be taken into account. This can be done e.g.
by the mathematical Preisach model [Pre35]. For a study of nonlinear material effects
and the related numerical simulation in the context of piezoelectric elements, the reader
is kindly referred to the literature, such as Schulz [Sch10].

Beyond that, this contribution presents a finite element based computational framework
and the related algorithms for the virtual design and nonlinear simulation of controlled
smart lightweight structures. Special focus is put here also beyond structures with bend-
ing stiffness: Membranes and their special characteristic in the context of control are con-
sidered. Form finding is used to determine the optimal structural shape of tensile struc-
tures from an inverse formulation of equilibrium. Also the cutting pattern generation
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of membranes is integrated in the design process in order to consider fabrication effects
already in the earliest possible stage.
Active control is adopted for vibration suppression under external loads like e.g. wind.
Controller design is based on a state space model that is derived from the finite ele-
ment model and that preserves the geometrically nonlinear equilibrium state and the
prestress effects of the membrane. Furthermore, discrete time control via an optimal
linear-quadratic-Gaussian (LQG) regulator is applied.

The introduced methods and algorithms of all simulation and design steps are bench-
marked at two examples with different focus and challenge:

• The simulation and design of an actively controlled smart tent is presented to
demonstrate the overall design process of a membrane structure with closed-loop
control.
• The design framework is extended to finite element-based structural optimization

in the context of static-aeroelastic shape control of a solid-state piezo-actuated
variable-camber morphing wing.

Thus in total a computational design framework shall be presented that covers aspects
of the sensing and actuation technology, the optimal design of passive parts of smart
structures, as well as the controller design.

1.4 Outline of This Thesis

In chapter 2, the basic terms and relations of the electromechanical continuum are defined
and deduced. As a preparing step for the understanding of the upcoming chapters, the
technical notation is introduced and the general behavior of electromechanically coupled
structures is illustrated here. Furthermore, an in-depth presentation of variational meth-
ods and related functionals is provided in order to provide the basis for the piezoelectric
finite element formulation presented later.

Chapter 3 provides selected fundamental aspects of the finite element method as far as
needed for the subsequent chapters. One focus is the term of convergence and the result-
ing requirements for finite element technology. Also the idea of patch tests is presented
with its extensions to electromechanical applications. Furthermore, the different locking
phenomena are defined, interpreted and illustrated. Besides to the well-known structural
locking effects, focus is also on the closely related effects of incompatible approximation
spaces of the electric field. In order to provide insight into the locking phenomena, 1D
and 2D examples are adopted. Beyond that, the following enhanced finite elements for-
mulations are introduced that face the locking phenomena with different techniques:

• the reduced integration method,
• the assumed natural strain method (ANS),
• the enhanced assumed strain method (EAS) and
• the enhanced assumed electric field strength method (EAE).
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The latter method is derived from the EAS method via extension of the modified Hu-
Washizu functional to electromechanical problems.

Chapter 4 is dedicated to the theory of the piezoelectric composite shell element formula-
tion. Presenting the assumptions and definitions for geometry, kinematics, electric field,
stresses and electric displacements, a geometrically nonlinear finite element formulation
based on a modified Hu-Washizu functional is presented. Special focus is put on the
discretization aspects, including the adopted element enhancement techniques.

Chapter 5 gives an introduction to the simulation and design of actively controlled elastic
structures. As already mentioned, additional focus is put on the special characteristics
of prestressed membrane structures and related consequences for the design of sensors,
actuators and controller. The state space approach is adopted. The state space model is
derived from the finite element model via linearization and modal truncation. A linear-
quadratic-Gaussian (LQG) regulator is adopted. The overall design loop is completed
with the nonlinear simulation of the structure including control.

Chapter 6 gives a short introduction into the object-oriented software framework Carat++
that has been developed to realize the overall simulation and design goal.

Chapter 7 provides numerical examples for the validation of the presented algorithms
and formulations. In the first part of this chapter, the presented piezoelectric composite
shell formulation is tested at several benchmark examples. In this context, the applied
element enhancement techniques to avoid locking are discussed in detail concerning
efficiency and robustness. Furthermore, in a separate example the overall virtual design
process of a actively controlled smart structure is shown at the example of a tent struc-
ture. The final example demonstrates the static-aeroelastic simulation and the design of
a shape adaptive solid-state piezo-actuated variable-camber morphing wing, including
aeroelastic coupling and FE-based structural optimization.

Last but not least, chapter 8 provides a short conclusion and summary of the key aspects
of this work. Additionally, a short outlook is given.



Chapter 2

Fundamentals of Continuum
Mechanics and Electrostatics

In this chapter, the basic terms and relations of continuum mechanics and electrostatics
are defined and deduced. Analyzing the electromechanical continuum, the technical no-
tation is introduced and the general behavior of electromechanically coupled structures
is illustrated. Thus this part forms a notational and phenomenological basis for further
considerations in the upcoming chapters of this work.

For a deeper study of this field, the reader is kindly referred to the literature. Further in-
formation related to structural continuum mechanics can be found e.g. at Müller [Mül06],
Truesdell and Noll [TN60], Malvern [Mal69], Marsden and Hughes [MH83], Mang and
Hofstetter [MH00], Eringen [Eri62] as well as Parisch [Par03]. Beyond that, the reader can
find an in-depth presentation of the concise theory of electromechanics e.g. at Crowley
[Cro86], Maugin [Mau88] and Yang [Yan05].

2.1 Namings and Conventions

Throughout this work, both index notation and absolute notation is used for vectors and
tensors. It has been tried to comply with the standard conventions in modern publica-
tions of the addressed fields of research.

In general, operators are printed as standard characters, scalars as italics, vectors are
printed with small bold face letters, whereas tensors of second or higher order are printed
with capital bold-printed letters. Quantities that are needed in both reference and current
configuration are identified with uppercase and lowercase letters, respectively (see chap-
ter 2.2). Some distinct exceptions from these conventions are made where needed to
avoid name collisions: E.g. the electric field strength is named ~E in order to prevent am-
biguity errors with the Green-Lagrange strain tensor E and the unit vectors ei.
Some further points that might need clarification shall be listed below. Let a and b be
vectors, then:

aTb = aibi = aibi (2.1)



2. Fundamentals of Continuum Mechanics and Electrostatics 17

represents the inner product. Subscripts indicate covariant components, superscripts
mark contravariant components.
Furthermore, letters used as superscripts denote explicit dependencies from another vari-
able [Fel89], like e.g. Eu describing the strain tensor resulting via kinematic equations
from the displacement field u.
The scalar product of second-order tensors is denoted like the following:

A : B := Aij gi ⊗ gj : Bkl gk ⊗ gl = AijBij (2.2)

The dyadic product (or tensor product) of two vectors a, b ∈ R3 is implicitly defined
with:

(a⊗ b) · c = a (b · c) ∀ c ∈ R3 (2.3)

When using index notation, indices in small Greek letters take the values {1,2}, indices
in small Latin letters take the values {1,2,3}. The Einstein summation convention:

aibi :=
i=1∑

3

aibi (2.4)

holds for both Latin and Greek indices if appearing twice in a product. An overview of
all defined terms is provided in a nomenclature in Table B.1 in appendix B.

2.2 Differential Geometry

A body is defined as a bounded set of material points Ω. The surface or boundary of the
body, respectively, is labeled with Γ. A body has at any time t a specific configuration in
the three-dimensional physical space, also called Euclidean space E3.
To describe the geometrical position of a body and its movement in space, two general
approaches can be distinguished:

• The Euler approach observes fixed points in space and the changes of their proper-
ties.

• The Lagrangian approach investigates the movement of single points in space.
That’s why it is commonly called material point of view.

In this work, the Lagrangian description is used. It can be extended from points to bodies:
The Lagrangian approach observes the movement and the deformation of a body in the
three-dimensional Euclidean space.

In order to determine the body and each of its points, a point of origin O has to be de-
fined in E3. An immovable Cartesian coordinate system is introduced which is defined
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by the ortho-normalized base vectors ei = ei. This coordinate system allows for easy
identification of arbitrary points in space via the position vector X:

X = Xiei = X1e1 + X2e2 + X3e3 (2.5)

Especially for the description of thin free-form geometries, it is advantageous to use curvi-
linear convective coordinate systems that can be regarded as permanently connected to
the (shell) body.
Thus curvilinear convective coordinate systems are introduced using the covariant basis
Gi and the contravariant basis Gi. With the corresponding contravariant coordinates θi

and the covariant coordinates θi, the position vector can be expressed as:

X = θiGi = θiGi (2.6)

Describing the geometry of a structure, a distinction has to be made between reference
("material") configuration and actual configuration.
Choosing an arbitrary reference time t = t0, the mapping of the body at this time is called
reference configuration. The actual configuration depicts the position at a point of time
t > t0 after a deformation or movement of the observed body (Figure 2.1). The conven-
tion is used that capital letters describe the reference configuration and small letters stand
for the actual configuration (see also chapter 2.1).
For every point of the body, the reference configuration can thus be described by the posi-
tion vector X(θ1, θ2, θ3) and the actual configuration can be depicted by x(θ1, θ2, θ3). Con-
sequently, the overall body is clearly defined in both configurations via a field of position
vectors. Furthermore, the location-dependent covariant base vectors for the curvilinear

reference configuration

actual configuration

G1

G3
G2

1

g
3

g
2

g
X

x

u

q

q

q

q

q

q

3

2

1

3

1

2

e3

e1
e2

Figure 2.1: Reference and actual configuration of a differential body element.
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coordinate system can be derived from the position vectors as follows for both configura-
tions:

Gi =
∂X
∂θi = X,i , gi =

∂x
∂θi = x,i (2.7)

The convention that (·),i =
∂(·)
∂θi stands for the partial derivative with respect to contravari-

ant convective coordinates will be used further on in this work. Following equ. (2.7), the
contravariant base vectors can be derived:

Gi =
∂θi

∂X
, gi =

∂θi

∂x
(2.8)

The duality property:

Gi ·Gj = Gj
i = δ

j
i =

{
0 i 6= j
1 i = j

(2.9)

of covariant and contravariant base vectors will be used later in the context of energy
expressions. The metric tensor (also called identity tensor) with its covariant and con-
travariant representation is defined as follows:

G = Gij Gi ⊗Gj = Gij Gi ⊗Gj (2.10)

The metric coefficients are computed by the scalar product of the corresponding base
vectors:

Gij = Gi ·Gj , Gij = Gi ·Gj (2.11)

Equ. (2.11) is commonly called the first fundamental form (of surfaces). It enables the
calculation of curvature and metric properties of a surface, such as lengths of curves
on the surface, angles between such curves, or surface areas. The contravariant metric
coefficients Gij can also be obtained by the inverse of the covariant metric coefficient
matrix: [

Gij
]
=
[
Gij
]−1 (2.12)

As a consequence, the metric provides a reversible and definite arithmetic operation in
order to transform the co- and contravariant base vectors into each other:

Gi = GijGj , Gi = GijGj (2.13)

Extending the idea of equ. (2.13), the continuum mechanical description allows for a clear
transformation of tensors of arbitrary order between different bases. This will be used in
the element formulation in chapter 4 for tensors of second to fourth order to account for
a description of geometry, kinematics and piezoelectric material law in best-suited coor-
dinate systems.
Let ai⊗ aj and bi⊗bj describe two (arbitrary) bases with their related contravariant coun-
terparts ai ⊗ aj and bi ⊗ bj. A second-order tensor C can be expressed using these bases
as:

C = aijai ⊗ aj = aijai ⊗ aj = bijbi ⊗ bj = bijbi ⊗ bj (2.14)
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Now it shall be assumed that the coefficients of tensor C shall be transformed from the
basis ai ⊗ aj to the basis bi ⊗ bj:

aijai ⊗ aj = bijbi ⊗ bj (2.15)

The transformation of the tensor coefficients can be easily performed by taking advantage
of the duality property of equ. (2.9). Thus multiplying the covariant base vectors bk and
bl from two sides to equ. (2.15) leads to:

aijbk(ai ⊗ aj)bl = bijbk(bi ⊗ bj)bl

aij(bk · ai)(aj · bl) = bij(bk · bi)(bj · bl)

= bijδ
i
kδ

j
l

= bkl

(2.16)

This approach is applicable to any pair of covariant or contravariant bases. Thus for a
general transformation of a second order tensor the following transformations can be
stated:

bkl = aij(bk · ai)(aj · bl) (2.17)

bkl = aij(bk · ai)(aj · bl) (2.18)

bkl = aij(bk · ai)(aj · bl) (2.19)

bkl = aij(bk · ai)(aj · bl) (2.20)

Beyond that, this transformation approach is extendable to tensors of order n. Instead of
2 pairs of co- and contravariant base vectors of initial and destination coordinate system
as shown in equ. (2.17) - (2.20), the transformation is extended to n pairs, respectively.

Furthermore, the curvature properties of a surface are described by the curvature tensor
coefficients Bαβ which is defined as follows:

Bαβ = −Gα ·G3,β = −Gβ ·G3,α = Gα,β ·G3 (2.21)

The curvature description according to equ. (2.21) is called the second fundamental form of
surfaces.
Summing up, geometry and movement of a body are thus clearly defined via position
vectors and the metric. As a consequence, all subsequent quantities, like strain measures
or geometric mappings, can be derived from that.

2.3 Kinematics

Kinematics is the branch of classical mechanics that describes the motion of points and
bodies in space in dependence of time, but without consideration of the causes of motion
[Whi04]. Thus it provides a relationship between the geometric quantities under con-
sideration. The kinematics is usually described with the measures of distance (change of
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position vector), velocity and acceleration. In the present context of structural continuum
mechanics, the kinematics describes the relationship between the displacements and the
strains in the body Ω, and the displacements and their prescribed values at the boundary
denoted with Γ.
The movement of a material point P of the body Ω can be described with the displace-
ment vector u which is defined as difference of the position vectors of actual and reference
configuration:

u = x− X (2.22)

Furthermore, the mapping of a differential line element in the reference configuration
dX into a differential line element in the deformed configuration dx is depicted by the
deformation gradient F [Hol04]:

dx = F · dX (2.23)

It describes the deformation in a infinitesimal area around a particle, whereas its compo-
nent values are finite. F is a tensor of second order which is in general not symmetric:
F 6= FT. It provides an unambiguous relation between deformed and undeformed ge-
ometry. From the continuum mechanical point of view, the deformation gradient and its
variations due to inverting and transposing are defined as follows:

F = gi ⊗Gi (2.24)

FT = Gi ⊗ gi (2.25)

F−1 = Gi ⊗ gi (2.26)

F−T = gi ⊗Gi (2.27)

The components of F can be determined via:

F = grad x =
dx
dX

=


dx
dX

dx
dY

dx
dZ

dy
dX

dy
dY

dy
dZ

dz
dX

dz
dY

dz
dZ

 (2.28)

With the help of the deformation gradient, it is possible to transform the undeformed
basis Gi into the deformed basis gi and vice versa [MH83]. The deformed bases are
obtained via forward transformation (push forward):

gi =
dx
dX
· ∂X

∂θi = F ·Gi (2.29)

gi = F−T ·Gi (2.30)

and the undeformed bases are obtained via backward transformation (pull back):

Gi = F−1 · gi (2.31)

Gi = FT · gi (2.32)
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Let the determinant of the deformation gradient be labeled with J. Then J indicates the
ratio of deformed differential volume element dV to the corresponding undeformed dif-
ferential volume element dV0:

J := det(F) =
dV
dV0

(2.33)

To enable the transformations in both directions according to equ. (2.29) - (2.32), the
mapping must be bijective. Thus the existence of F−1 must be guaranteed. Beyond that,
the mapping that is described via F must be continuous. This is a necessary condition
to exclude cases of self-intersections and negative volumes. Thus all in all, the positive
definiteness of F must be given:

J > 0 (2.34)

With the deformation gradient and its determinant, it is now possible to describe the
transformation of a differential surface element between deformed and undeformed con-
figuration:

n da = det(F)F−TN dA = J F−TN dA (2.35)

The term da stands for the differential surface element and n defines the unit surface
normal in the actual configuration. dA and N represent the corresponding terms of the
reference configuration. Furthermore, it holds for the volume elements dV and dv of
reference and actual configuration:

dv = det(F) dV (2.36)

However, as the deformation described by the deformation gradient F also contains rigid
body motions, it cannot be directly used as a measure for strains. While a variety of
different strain measures exist, this work focuses on the Green-Lagrange strain tensor E:

E =
1
2

(
FTF− I

)
= EijGi ⊗Gj (2.37)

The Green-Lagrange strains E represent a nonlinear relation between deformations and
strains (see equ. (2.37)) and are an appropriate measure for strains under large deforma-
tions. E is a symmetric tensor and relates the strain measure to the reference configura-
tion. Furthermore, inserting equ. (2.24) and (2.25) into equ. (2.37) yields [Hol04]:

E =
1
2

(
FTF− I

)
=

1
2

((
Gi ⊗ gi

)(
gj ⊗Gj

)
− GijGi ⊗Gj

)
=

1
2
(
gij − Gij

)
Gi ⊗Gj (2.38)

Thus referring to the contravariant basis the coefficients of the Green-Lagrange strain
tensor can be calculated from the covariant base vectors of both configurations [Mül06]:

Eij =
1
2

(
gi · gj −Gi ·Gj

)
=

1
2
(
gij − Gij

)
(2.39)
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The Green-Lagrange strain tensor can also be described in dependence of the displace-
ment field u and the basis of the reference geometry Gi:

Eij =
1
2
(
Gi · u,j + Gj · u,i + u,i · u,j

)
(2.40)

This allows for an easy identification of the linear and nonlinear part of the strain mea-
sure. In addition to the kinematic field equation according to equ. (2.38), the displace-
ment boundary conditions û have to be considered that have to be fulfilled at the Dirich-
let boundary:

u = û on Γu (2.41)

The Dirichlet boundary condition is commonly called essential boundary condition.

2.4 Electrostatics

In combination with (structural) continuum mechanics, the theory of electrostatics pro-
vides the theoretical basis for the mathematical description of the investigated electrome-
chanical problems of this work. While this chapter focuses on definitions and aspects
relevant for the presented piezoelectric element formulation, the reader can find detailed
information about the general field of electrostatics and electrodynamics for example at
[Gri99], [Jac99], [BD97], [Jon02] and [Gre02].
Let the position of a stationary point charge of quantity Qi be given by the location vector
Xi. Furthermore,~Fc is the electrically induced force that acts between two point charges
of quantity Qa and Qb in the direction of their connection line. Then the Coulomb’s law
states: ∥∥∥~Fc

∥∥∥ = QaQb

4πε0‖Xa − Xb‖2 (2.42)

~Fc is called Coulomb force. The constant ε0 is commonly called the vacuum permittivity,
permittivity of free space or dielectric constant. It holds: ε0 = 8.854 · 10−12 C2

Jm . If more than
two point charges exist in the considered space, the resulting force of each point charge
can be determined applying the superposition principle. Equation (2.42) forms the basis
of the field of electrostatics. It is the electrostatic analogon to Newton’s (inverse-square)
law of universal gravitation.
The electrical field strength is defined at a position X via the fraction of resulting force
over the quantity of the point charge:

~E (X) :=
~Fc

Q
(2.43)

The work that is needed to move a body with a specific charge from position X0 to X1 is
path-independent. Choosing X0 as reference position, the electric potential can be defined
as:

ϕ =

∫ X0

X1

~E dX (2.44)
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Figure 2.2: Charged particle in an electrical field of two point charges.

Vice versa, the electrical field can be described as gradient of the scalar field of the electric
potential ϕ (X):

~E = −grad ϕ (2.45)

Assuming a space with stationary point charges, the electric field strength is a rotation-
free force field:

rot~E = 0 (2.46)

From a physical point of view, there exists only an electric potential in the actual configu-
ration which reads as follows:

ϕt =

∫ x0

x1

~e dx =

∫ x0

x1

~EF−1dx (2.47)

Besides to the field equation according to equ. (2.45), also the boundary of the field ϕ has
to be defined. For boundaries Γϕ of ideally conductive material it can be stated:

ϕ = ϕ̂ = const. on Γϕ (2.48)

This forms the essential boundary condition for the electric potential field.
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2.5 Stresses and Electric Displacements

2.5.1 Stress Measures

First of all, the Cauchy stress vector t shall be introduced. It describes the physically acting
stresses in the actual configuration:

t = lim
∆a→0

∆p
∆a

=
dp
da

(2.49)

Here ∆p denotes the force acting on a infinitesimal, deformed piece of area ∆a. Intro-
ducing the unit normal vector n of the piece of area da, the Cauchy stress vector t can be
computed from the symmetric Cauchy stress tensor σ:

t = σn (2.50)

This relation is also known as Cauchy theorem. Furthermore, σ is defined in the covariant
basis of the actual configuration according to:

σ = σT = σijgi ⊗ gj (2.51)

In contrast to that, the Second Piola-Kirchhoff (PK2) stresses are defined with respect to the
the reference configuration. Furthermore, the PK2 stresses are the energetically conju-
gate stress measure to the Green-Lagrange strains introduced in chapter 2.3. The Cauchy
stress tensor and the PK2 stress tensor can be transformed into each other with the help
of the deformation gradient F:

S = det(F)F−1 · σ · F−T (2.52)

Due to the symmetry of the Cauchy stresses (see also chapter 2.6.3) and the symmetry
conserving mapping according to equ. (2.52), it can be deduced that also the PK2 stresses
have symmetry properties:

S = ST (2.53)

For the components of the PK2 stresses it holds:

S = Sij Gi ⊗Gj (2.54)

As the PK2 stress tensor describes stresses relative to the reference configuration, its com-
ponents do not allow for an intuitive physical interpretation. Another commonly used
stress measure is the first Piola-Kirchhoff stress tensor P which is sometimes also called
tensor of nominal stresses:

P = Pijgi ⊗Gj (2.55)

It relates the force in the actual configuration to an oriented area dA in the reference
configuration. It can be defined with:

P := det [F] σF−T (2.56)
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However, in contrast to σ, it is in general not symmetric. Using the inverse of the defor-
mation gradient F−1, the 2nd Piola-Kirchhoff stress tensor S can be derived from the 1st
Piola-Kirchhoff stress tensor P:

S = F−1P (2.57)

2.5.2 The Electric Displacement

First of all, the term voltage has to be introduced. It can be defined as difference ∆ϕ of the
electric potential of two points:

U = ∆ϕ = ϕ1 − ϕ2 =

∫ X0

X1

~E dX−
∫ X0

X2

~E dX (2.58)

In a dielectric material the presence of an electric field ~E causes the bound charges in
the material (atomic nuclei and their electrons) to slightly separate. This induces a local
electric dipole moment. The electric displacement ~D is defined as:

~D = ε0~E +~P (2.59)

where ε0 is the vacuum permittivity introduced in chapter 2.4, and~P is the (macroscopic)
density of the permanent and induced electric dipole moments in the material, called
polarization density. The electric flux Ψ is defined with:

Ψ =

∫
Γ
~D ·N dA (2.60)

Thus only the part of the electric displacement field that is perpendicular to the surface
contributes to the electric flux.
The set of geometrical points with a voltage of zero to each other forms a equipotential
surface. The electric displacement field ~D is perpendicular to the equipotential surfaces.
Finally, the electric flux through a closed surface is equal to the charge enclosed by this
surface:

Ψ =

∮
Γ
~D ·N dA =

∫
Ω

ρel
0 dV = Q (2.61)

where ρel
0 is the electric charge density (see also chapter 2.6.4)

2.6 Conservation Laws

Within this chapter, a short introduction to the conservation laws in the context of de-
formable dielectric structures shall be given. Conservation laws, also called integral equa-
tions of balance, are a fundamental basis for the mathematical description of physical
processes. The conservation laws of mass, linear momentum, angular momentum and
electric charge are presented.
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The general structure of a balance law for a physical field measure Z (x, t) in spatial rep-
resentation is [TN60]:

d
dt

∫
Ω

Z dv =

∫
Ω

(
Ξ f + Ξp

)
dv +

∫
Γ

Λ da (2.62)

with Ξ f being the volumetric flow (inflow and outflow), Ξp being the volumetric produc-
tion, and Λ being the surface flow (inflow and outflow).

2.6.1 Balance of Mass

Let the material body Ω be a closed system. Then the overall mass does not change
during the deformation process.
Let furthermore ρ0 = ρ0 (X) be the density in the reference configuration Ω0 and ρ =

ρ (X, t) the density in the actual configuration Ω. Then it can be stated:

m =

∫
Ω0

ρ0dV =

∫
Ω

ρdv =

∫
Ω

dm (2.63)

As there is neither a flux nor a production of mass in the context of the body under
consideration, all terms of the right hand side in equ. (2.62) vanish. Thus using Z = ρ,
equ. (2.62) leads to:

d
dt

∫
Ω

ρ dv =
d
dt

m = 0 (2.64)

Balance laws hold for any subdomain Ωs ⊂ Ω and consequently for any point x of the
body. This is expressed via the local form of the conservation law which can be derived
from the related integral form. Accordingly, using:

d
dt

(detF) = div ẋ detF (2.65)

the local representation of the balance of mass can be obtained from equ. (2.36) and (2.64):

ρ̇ + ρ div [ẋ] = 0 (2.66)

This equation is known as continuity equation according to Euler and d’Alembert.

2.6.2 Conservation of Linear Momentum

Let the material body Ω be in a closed system which means that it does not exchange any
matter with the outside and it is not acted on by outside forces. Then the total momentum
is constant. This fact is implied by Newton’s second law of motion. It says that the change
of momentum with time is equal to the resultant of all forces that act on the body Ω.
Starting again from equ. (2.62), it is now asumed that Z = ρẋ. With the gravitational

force per unit volume ρb and the electromagnetically induced volume forces~f
el

, we can
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formulate Ξ f = ρb +~f
el

. Furthermore it can be assumed that Ξp = 0. Considering the
surface traction t̂, it can be stated Λ = t̂. Thus it finally follows from equ. (2.62):

d
dt

∫
Ω

ρ ẋ dv =

∫
Ω

(
ρb +~f

el)
dv +

∫
Γ

t̂ da (2.67)

Furthermore, using equ. (2.36) one can derive a relation between the densities of refer-
ence and actual configuration:

ρ0 (X) = det (F) ρ (x, t) (2.68)

Using equ. (2.68) and transforming the surface integral into a volume integral with the
help of the divergence theorem, the local representation of the conservation law of linear
momentum in the actual configuration can now be derived from equ. (2.67):

ρ ẍ = ρb +~f
el
+ divσ (2.69)

It has been shown that the effect of the electromagnetically induced volume forces is
negligible for the technical application of piezoelectric elements [Mau88], [Kam01]. Con-
sequently, a pure mechanical type of conservation law is obtained:

ρ ẍ = ρb + divσ (2.70)

This reduction to a pure mechanical conservation law is a common approach in the con-
text of piezoelectric finite element development [KW08, Sch10, Leg11].
Neglecting the acceleration term, also the static equilibrium conditions can be derived
from the conservation law of linear momentum.

div(σ) + ρb = 0 (2.71)

σn = t̂ (2.72)

Here, equ. (2.71) is the static field equation and equ. (2.72) is the static boundary condi-
tion. The term t̂ represents the boundary surface traction.
Rewritten in reference configuration and in dependence of the Second Piola-Kirchhoff
stresses one obtains:

div(FS) + ρ0b0 = 0 (2.73)

FSN = t̂0 (2.74)

2.6.3 Conservation of Angular Momentum

The law of conservation of angular momentum states that no change of angular momen-
tum can occur in a closed system if no external torque acts on the system. Consequently,
the angular momentum before an event involving only internal torques or no torques is
equal to the angular momentum after the event.
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The angular momentum L with respect to a given center of rotation x0 is defined with:

L =

∫
Ω
(x− x0)× ρẋ dv (2.75)

Furthermore, we can state:

Ξ f = ~mel + (x− x0)×
(

ρb +~f
el)

(2.76)

where ~mel is the electrically induced moment per unit volume. With Ξp = 0, Λ =

(x− x0)× t̂ and the lever arm x̄ := x− x0 it can be obtained from equ. (2.62):

d
dt

∫
Ω

x̄× ρẋ dv =

∫
Ω

[
~mel + x̄×

(
ρb +~f

el)]
dv +

∫
Γ

x̄× t̂ da (2.77)

Following the explanations in chapter 2.6.2, both~f
el

and ~mel can be neglected for the focus
of this work. Similarly to the conservation law of linear momentum, a pure mechanical
representation can be obtained:

d
dt

∫
Ω

x̄× ρẋ dv =

∫
Ω

x̄× ρb dv +

∫
Γ

x̄× t̂ da (2.78)

A transformation into the local form of the conservation law of angular momentum can
be performed using the local form of conservation of mass according to equ. (2.66). This
leads to the known symmetry of the Cauchy stresses [Bal10]:

σij = σji (2.79)

2.6.4 Conservation of Electric Charge

Let the material body Ω be again a closed system. Electric charges can be created and
eliminated, however, this happens in a balanced manner in the closed system. Thus the
overall electric charge does not change.
Let ρel

0 be the electric charge density in the reference configuration. Then the electric
charge q can be defined as follows:

q =

∫
Ω

ρel
0 dV (2.80)

The electric charge can only change if an electric current I 6= 0 exists. The electric current
I can be described with the electric current density jel

0 in the reference configuration:

I =
∫

Ω
div jel

0 dV (2.81)

Again, starting from equ. (2.62), a conservation law can be obtained. The local from is

ρ̇el
0 + div jel

0 = 0 (2.82)
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This equation corresponds to the local conservation law of mass according to equ. (2.66).
Furthermore, it can be identified that the conservation law of electric charge is not af-
fected by mechanical measures.

The conservation of electric charge can also be derived from the Maxwell’s equations that
describe the physical behavior in electromagnetic fields. The Maxwell equations form
the basis of classical electrodynamics and define relations between the magnetic field ~H,
the magnetic flux density ~B, the electric field ~E, the electric displacement ~D, the electric
current density jel

0 and the electric charge density ρel
0 :

rot ~H = jel
0 +

∂~D
∂t

(Ampere’s circuital law) (2.83)

div~B = 0 (Gauss’s law for magnetism) (2.84)

rot~E = −∂~B
∂t

(Maxwell - Faraday equation) (2.85)

div ~D = ρel
0 (Gauss’s law) (2.86)

Assuming a quasi-static problem, the electric and magnetic field equations are decoupled
[Jac99]. Furthermore, as the piezoelectric materials are in general not magnetizable and
of low conductivity, the magnetic components can be neglected and the magnetic flux
density can be set to ~B = 0. Thus equ. (2.85) leads again to the relation of equ. (2.46).
Transforming equ. (2.86) into integral form leads to∫

Γ
~D ·N dA =

∫
Ω

ρel
0 dV (2.87)

which says that the electric flux through the surface of a body is equal to the overall
charge of the body. Furthermore, the natural boundary condition for the electric displace-
ment boundary Γ~D can be derived from equ. (2.87):

~D ·N = −q̂0 on Γ~D (2.88)

with q̂0 being the electric surface charge on the boundary. There are different conventions
with respect to the sign of q̂0 in the literature (see e.g. [KW06, MR04, Sch10]). The minus-
sign is chosen here which also reflects the result of a consistent derivation in chapter
2.9.2.1.

2.7 Constitutive Equations

The constitutive equation (often called material law) defines the relation between static
and kinematic field quantities of a structure. In the context of deformable dielectric mate-
rials this means the coupled relation between strains and electric fields on the one hand
side and stresses and electric displacements on the other hand side.
For further details about the theory of constitutive equations beyond the explanations
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in the sequel, the reader is referred to the literature: Concise theory of material laws in
the context of structural continuum mechanics can be found e.g. at Simo and Hughes
[SH98], Mang and Hofstetter [MH00], Malvern [Mal69], as well as Stein and Barthold
[SB93]. Further literature about electromechanics, piezoelectricity and the derivation of
the material law from thermodynamic potentials can be found e.g. at Crowley [Cro86],
Maugin [Mau88], Ikeda [Ike90] and Yang [Yan05].

2.7.1 Phenomenological Behavior of Piezoelectric Materials

Before a continuum mechanical description of the constitutive equations is started in the
sequel, a short introduction into the phenomenological behavior of piezoelectric materi-
als shall be given. The word piezoelectricity means "electricity resulting from pressure".
It is derived from the ancient Greek word πιέςειν (piezein), which means to squeeze
or press, and ήλεκτρoν (electron), which stands for amber, an ancient source of electric
charge.

2.7.1.1 Crystal Structure

The piezoelectric effect is based on the occurrence of electric dipole moments in solids.
The latter property is commonly induced by crystal lattices with asymmetries. This is e.g.
the case for ceramics with perovskite structure (Figure 2.3), like lead titanate (PbTiO3),
barium titanate (BaTiO3) and lead zirconate titanate (Pb(ZrxTi1−x)O3, 0 ≤ x ≤ 1).
Further perovskite materials can be found e.g. at Jaffe [Jaf71].

Depending on the temperature, the unit cell turns into different geometries. Above the
Curie temperature, the unit cell is in the cubic phase where the structure is symmetric
and no piezoelectric behavior is present (also called paraelectric phase). Lowering the tem-
perature below Curie temperature, the charge concentrations can move such that electric
dipole moments arise.
Dependent from the size of charge concentration movement and the size of electric dipole
moment generation, also the shape of the unit cell changes. Barium titanate is often used
in the literature as demonstration example in this context [Jaf71, Sch10]: Gradually reduc-
ing the temperature, the unit cell turns first from a cubic system to a tetragonal system
via stretching in the direction of one axis. With further decreasing temperature, the rect-
angular orientation of the unit cell is more and more lost and the shape turns into an
orthorhombic system and finally a rhombohedral system where the latter has the highest
unit cell polarization (Figure 2.4).

The polarization in these phases happens without applying an external electric field or
pressure, and is known as spontaneous polarization if it is a permanent electric dipole mo-
ment. When spontaneous polarization occurs, dipoles near each other tend to be aligned
in regions, the so-called Weiss domains. However, as the different domains have random
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Figure 2.3: Crystal structure of perovskite: Unit cell in cubic phase (T > TC) and tetragonal phase
(T < TC).

polarization orientation, there is no polarization existing from the macroscopic point of
view.

Nevertheless, for several piezoelectric materials the domains can be aligned using the
process of poling where a strong electric field ~E is applied across the material, usually
at elevated temperatures. An increase of the temperature beyond the Curie temperature
would lead to a loss of any piezoelectric behavior again. Materials that show an remanent
or non-remanent change of the polarization under an applied electrical field are called
dielectrics. Dielectrics are electrical insulators: When a dielectric is placed in an electric
field, electric charges do not flow through the material, but only slightly shift from their
average equilibrium positions causing dielectric polarization. Piezoelectric materials are
the sub-group of the dielectrics that exhibit the piezoelectric effect.

Some materials, called pyroelectric, exhibit electric dipole moments even in the absence
of an external electric field. In pyroelectric materials, a temporary voltage is generated
when the material is heated or cooled. Ferroelectric crystals are pyroelectric crystals in
which the direction of the spontaneous polarization can be switched to another remanent
orientation by an external electric field. All ferroelectric materials are piezoelectric ma-
terials, but not the other way round. There are also piezoelectric materials that have a
macroscopic polarization just due to their atomic lattice structure. The polarization can
either be of permanent type or be generated via mechanical pressure.
An overview of this classification is given in Figure 2.5 which can also be found e.g. at
[Kao04, Kli06].
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Figure 2.4: Phases of barium titanate (see also e.g. at [KLBC93]).
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Figure 2.5: Classification of dielectric materials.

2.7.1.2 Direct and Inverse Piezoelectric Effect

As stated above, piezoelectric materials are a class of materials which can be polarized
not only by an electric field, but also by application of a mechanical stress.
In piezoelectric materials, mechanical stresses due to external forces induce displace-
ments in the positive and negative lattice elements which leads to a change of the macro-
scopic polarization ~P. The resulting formation of an electric field ~E puts an electric po-
tential on insulated electrodes on the surface of the probe which can be used as output
signal for sensors. This effect is called direct piezoelectric effect and sometimes also referred
to as the generator effect in the literature.
Dependent from the mechanical loading with respect to the polarization direction, three
different types can be identified according to the electric output signal that can be mea-
sured (Figure 2.6):

• The longitudinal effect where normal stresses are applied parallel to the polarization.
The size of the charge depends here only on the applied force. The only way to
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increase the charge (and thus the sensor sensitivity) is to connect several plates
mechanically in series and electrically in parallel.

• The shear effect which can be subdivided into two subgroups [Sch10]: The longitu-
dinal shear effect where shear is applied with a shear plane normal that is parallel to
the polarization. and the transverse shear effect where shear is applied with a shear
plane normal that is perpendicular to the polarization. The shear effect is just as the
longitudinal effect independent from size and shape of the piezoelectric element.

• The transversal effect where normal stresses are applied in a transverse direction to
the polarization. The transversal effect has the unique property that the generated
charge is dependent on the aspect ratio of the probe. That’s why pressure sensors
are commonly based on the transversal effect.

transversal                         longitudinal                  longitudinal shear        transverse shear

     effect                                   effect                                    effect                              effect

S33

P E

S33

33

S11

P E

S11

33
P

E33
S12

S12

P

E11

S13

S13

Figure 2.6: Types of direct piezoelectric effects dependent from mechanical loading with respect
to polarization direction.

Conversely, the application of an electric voltage to an piezoelectric body also leads to a
shift of the centers of positive and negative charge which results in a deformation of the
probe (inverse piezoelectric effect). The amount and type of deformation is a function of
the polarity, the voltage applied and the direction of the polarization vector. Dependent
from the orientation of the applied electrical field with respect to the polarization, one
can identify the following types of inverse piezoelectric effects:

• Extension: an electrical field in the direction of the polarization leads to an exten-
sion of the probe in this direction with an contraction in the transversal directions.

• Compression: if the electrical field is oriented in opposite direction, the probe per-
forms a contraction in this direction with an extension in the transversal directions.

• Shear: an electric field perpendicular to the polarization results into a shear defor-
mation of the probe.
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If free deformation is constrained in the body, mechanical stresses are generated. The
inverse piezoelectric effect is frequently also called the motor effect. The inverse piezoelec-
tric effect can be used for various actuator types.
Applying an external voltage, all piezoelectric effects (longitudinal, transversal and
shear) can be used to control deformations. Limitations concerning obtainable deforma-
tions can be exceeded with stacked sequences, additional lever arms via substrate mate-
rials or special constructions like the bimorph beam (see simulation example in chapter
7.2).

If an electric field is applied to an probe, the resulting strains consist in general of an
elastic strain part and a remanent strain part. The remanent strain part is related to an
permanent change of the polarization and remains after deactivation of the electric field.
In this work it is assumed that the applied electric field is small enough such that the
remanent strain part can be neglected.

2.7.2 Continuum Mechanical Description

In pure mechanical applications, it is a well-known approach to derive the stresses from
the strain energy density Wmech (E):

Smech =
∂Wmech (E)

∂E
(2.89)

Similarly, the stresses and electric displacements can be derived from a thermodynamic
energy function in an electromechanical generalization of this approach [Ike90]. To de-
scribe the energy density function in the context of piezoelectricity, different combina-
tions of independent field variables are possible [Tie69].
In this work, the electric enthalpy density WH is chosen, in which the Green-Lagrange strain
tensor E and the electric field~E are the independent variables:

WH = WH(E,~E) (2.90)

Using the second law of thermodynamics and assuming a reversible process [Kli06], one
can derive:

S =
∂WH(E,~E)

∂E
(2.91)

−~D =
∂WH(E,~E)

∂~E
(2.92)

Thus the energy conjugate quantities to E and~E, namely the second Piola-Kirchhoff (PK2)
stress tensor S and the vector of the electric displacements ~D are obtained.
The material tensor of fourth order is denoted by C. It provides a relation between stress
and strain and represents a fourth order tensor:

C = CijklGi ⊗Gj ⊗Gk ⊗Gl (2.93)
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Furthermore, if a potential exist, it holds:

Cijkl :=
∂2WH(E,~E)

∂Eij ∂Ekl
(2.94)

Accordingly, one can derive the 3rd order piezoelectric coupling tensor:

e
ijk := −∂2WH(E,~E)

∂Eij ∂~Ek
(2.95)

and the second order permittivity tensor:

εij := −∂2WH(E,~E)
∂~Ei ∂~Ej

(2.96)

Now the material tensors of equ. (2.94), equ. (2.95) and equ. (2.96) shall be discussed a bit
more in detail. Linear constitutive equations are assumed. In the context of piezoelectric-
ity, this means that a linear mapping between strain tensor and electric field on the one
hand side and stress tensor and electric displacement on the other hand side is assumed.
Using index notation, the material law can be stated as follows:

Sij = CijklEkl − e
mij~Em (2.97)

~Di = e
ijkEjk + εil~El (2.98)

The electric displacement describes the charge per unit area and can thus be regarded
as electrical counterpart of the mechanical stresses. It should be mentioned that also
other formulation variants of the constitutive equations can be found in the literature
depending on the choice of the dependent variable fields at the right side of equ. (2.97)
and (2.98) (see e.g. [Ike90], [HLW08]): e.g. also the polarization~P can be used as electrical
variable field. However, these formulation variants can be transformed into each other
via tensor operations.
In contrast to the common approach of enhanced piezoelectric element formulations of
the actual literature, no matrix representation of the material law in Voigt notation is
needed. In contrast, a pure continuum-mechanical description in convective coordinates
is adopted. Thus for base transformations, no tailored energy-conserving transformation
rules are needed that consider the author-dependent ordering of the entries in the strain
vector, stress vector, etc. This also enhances the clarity of the related implementation.
However, besides to the continuum mechanical description a Voigt notation is introduced
in the sequel where it seemed appropriate to highlight single aspects.

2.7.2.1 Elasticity Tensor

The described linear mapping of the material law in equ. (2.97) and (2.98) implies an
elasticity tensor C with only constant entries. In general, C would exhibit 34 = 81 entries.
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Due to the symmetry of the Green-Lagrange strains and the PK2 stresses as discussed in
chapter 2.3 and 2.5.1, one can deduce:

Cijkl = Cjikl (2.99)

Cijkl = Cijlk (2.100)

Furthermore, one can state according to the Young’s theorem:

Cijkl = Cklij (2.101)

if the order of the partial derivatives in equ. (2.94) is freely selectable. This is true as an
elastic potential exists and thus the work of the stresses is path-independent.
In total this means that in general 21 independent constants are needed in the elasticity
tensor. Dependent on further symmetry conditions and assumptions due to the chosen
material law, this number of constants can further be reduced.
In the case of linear elastic isotropic material, two independent material parameters are
sufficient to describe the elasticity tensor. In mathematical literature, the Lamé constants
λ and µ are commonly used in this context. In engineering literature, the more intuitively
accessible parameters Young´s modulus E and Poisson´s ratio ν are predominantly used.
A transformation between these parameter pairs can be done with:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E
2(1 + ν)

(2.102)

Using the Lamé constants, the components of the material tensor are:

Cijkl = λGijGkl + µ(GikGjl + GilGkj) (2.103)

In the case of orthotropic material behavior of a three-dimensional structure, there exist
three symmetry planes of elastic material behavior that are perpendicular to each other.
The number of independent material constants reduces to nine. Here it is advantageous
to introduce a orthonormal basis {G∗1 , G∗2 , G∗3} that reflects the symmetry planes of the
orthotropic material:

C = C∗ ijkl G∗i ⊗G∗j ⊗G∗k ⊗G∗l (2.104)

Then a decoupling of shear terms and normal strain terms is possible. To describe
the orthotropic material, the following definitions are made in the orthonormal basis
{G∗1 , G∗2 , G∗3}:

• E1, E2 and E3 represent the Young’s moduli in the three coordinate directions.

• νij =
Ejj
Eii

is the Poisson’s ratio for strains in j-direction due to stress in i-direction.

• G12, G13 and G23 are the shear moduli of the 1-2-plane, 1-3-plane and 2-3-plane.
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Now the non-zero entries of the elasticity tensor can be defined as:

C∗ 1111 =
1− ν23ν32

∆E
E1 ; C∗ 2222 =

1− ν13ν31

∆E
E2 ; C∗ 3333 =

1− ν12ν21

∆E
E3

C∗ 1122 =
ν12 + ν13ν32

∆E
E2 ; C∗ 1133 =

ν13 + ν12ν23

∆E
E3 ; C∗ 2233 =

ν23 + ν21ν13

∆E
E3 (2.105)

C∗ 1212 = G12 ; C∗ 1313 = G13 ; C∗ 2323 = G23

with
∆E = 1− ν12ν21 − ν13ν31 − ν23ν32 − 2ν31ν12ν23 (2.106)

2.7.2.2 Piezoelectric Tensor and Permittivity Tensor

The second-order tensor of dielectric constants contains 6 independent coefficients which
represent the permittivity of the dielectric material. It describes the behavior of electric
charge if it is subjected to electrical voltage. The entries of the permittivity tensor are
usually described with:

εij = ε0 ε
ij
r (2.107)

where ε0 is the vacuum permittivity as introduced in chapter 2.4, and εr is the relative
permittivity of the material.
Similar to the description of the orthotropic elastic material description above, it is
advantageous to describe the piezoelectric material behavior in an orthonormal basis
{G∗1 , G∗2 , G∗3} that reflects the polarization orientation of the piezoelectric material. Then
the permittivity tensor only contains nonzero entries at the diagonal entries:

εij = 0 ∀ {(i, j)|i 6= j} (2.108)

However, piezoelectric material commonly exhibits an isotropic behavior in the transver-
sal direction to the polarization. This reduces the independent coefficients of εij to two.
In the literature, the permittivity coefficient in transversal direction is usually identified
with ε11 and the permittivity coefficient in the polarization direction is commonly de-
noted with ε33.

The third-order tensor of the piezoelectric constants eijk represents the coupling between
the mechanical and electrical fields. Consequently, the absolute value of the piezoelectric
constants represent the level of interaction between electrical and mechanical response of
the structure. In the general case, eijk would contain 18 independent coefficients.
Again assuming a polarization only in G∗3 direction, the following nonzero entries appear
in the piezoelectric tensor:

• e
311 and e

322 represent the transversal effect: A deformation is generated perpen-
dicular to the applied electric field.

• e
333 represents the longitudinal effect: If an electric field in the polarization direc-

tion is applied, the structure shows a deformation in this polarization direction.
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• e
113, e131, e223 and e

232 represent the shear effect: Electric fields perpendicular to
the polarization direction cause shear deformations in the structure.

Furthermore, for the most piezoelectric materials isotropic behavior in the transversal
directions to the polarization can be assumed. It holds: e311 = e

322 and e
113 = e

131 =

e
223 = e

232. Thus the number reduces to three independent parameters which reflect
the basic actor types of the longitudinal effect, transversal effect and shear effect. In
the literature, the Voigt matrix notation is very common to describe piezoelectric finite
elements. Table 2.1 gives an overview of related tensor and Voigt notations.

type of piezoelectric effect piezoelectric tensor entry Voigt notation naming
transversal effect e

311 = e
322

e
31 = e

32

longitudinal effect e
333

e
33

shear effect e
113 = e

131 = e
223 = e

232
e

15

Table 2.1: Relation between piezoelectric tensor entries and common naming in literature with
Voigt notation.

As these namings stemming from Voigt notation are quite established, they will be used
in chapter 7 to refer to the single piezoelectric constants of the numerical examples.

2.8 Strong Form

In the past chapters, the field equations (2.37), (2.45), (2.73), (2.86), (2.97), (2.97), as well
as the essential and natural boundary conditions according to equ. (2.41), (2.48), (2.74)
and (2.88) have been derived. Together this equations form the strong form of the elec-
tromechanical boundary value problem as summarized in Table 2.2. Strong form means
in this context that the problem is defined by a system of ordinary and partial differential
equations, supplemented by suitable boundary conditions.

Mechanical Electrical

Kinematic field equations: E = 1
2

(
FTF− I

)
in Ω ~E = −grad ϕ in Ω

Conservation laws: div(FS) + ρ0 (b0 − ẍ) = 0 in Ω div ~D− ρel
0 = 0 in Ω

Constitutive equations:
Sij = CijklEkl − e

mij~Em in Ω
~Di = e

ijkEjk + εil~El in Ω

Essential b/c: u = û on Γu ϕ = ϕ̂ on Γϕ

Natural b/c: FSN = t̂0 on ΓS ~D ·N = −q̂0 on Γ~D

Table 2.2: Strong form of the coupled electromechanical problem.
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For the definitions of the four boundary types it holds:

Γu ∪ ΓS = Γ, Γu ∩ ΓS = � (2.109)

Γϕ ∪ Γ~D = Γ, Γϕ ∩ Γ~D = � (2.110)

Configuration variable:

displacement u

Kinematics

Intermediate variable:

strain E

Prescribed

disp. û

Essential 

b/c
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^
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electric field strength E
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Essential 

b/c

Source variables:
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b/c
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charge q0
^
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Figure 2.7: Tonti diagram of the coupled electromechanical problem.

The Tonti diagram (Figure 2.7) is a suitable method for a systematic presentation of the re-
lations between the six fields u, ϕ, E,~E, S and ~D. The diagram shows the dependencies of
the fields due to kinematic, constitutive and balance equations. Furthermore, it provides
the generic namings of the fields: The displacement field and the potential field represent
the configuration variables or primary variables, the strain and the electric field strength are
the intermediate variables and finally the stress and the electric displacement are called the
flux variables [Ton72, Ton03, Fel06].

As an analytical solution of the strong form is in general not available, integral formu-
lations are often used to generate approximation methods. These integral formulations
do not fulfill the differential equation at each single point, but in the sense of an integral
mean value. As a consequence, these formulations are commonly called weak form. The
weak form is the basis for the formulation of finite elements and can be derived via func-
tional analysis from the strong form (see chapter 2.9). A common approach is to derive
the weak form via multiplication of the strong form with a test function and subsequent
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integration over the domain Ω. Another alternative to derive the weak form is the prin-
ciple of the minimum of the potential energy. These techniques are used in chapter 2.9 to
derive suitable weak formulations of the electromechanic problem.
Finally, it shall be mentioned that strong and weak form are equivalent formulations as
long as identical solution spaces are assumed and no discretization is performed yet.

2.9 Energy Methods and Functionals

For the mathematical analysis of piezoelectric structures, a coupled system of partial dif-
ferential equations has to be solved. As the direct solution of the strong form of the
problem is in general not possible, variational formulations are adopted: Weak formula-
tions are generated to enable the use of numerical solution methods like the finite element
method.
An overview of variational formulations can be found e.g. at Stein [Ste64], Oden and
Reddy [OR76], as well as Felippa [Fel94]. Variational formulations with focus on elec-
tromechanical problems can be found e.g. at Sze and Pan [SP99], Lammering and
Mesecke-Rischmann [LMR03], as well as Klinkel [KW08].

2.9.1 Principle of Virtual Work

The principle of virtual work is the variational basis for classical displacement-based fi-
nite element formulations in structural mechanics. The principle of virtual work states
that an arbitrary, geometrically compatible, infinitesimal displacement δu (so-called vir-
tual displacement) does not cause any work for a mechanical system in equilibrium state.
This allows for an intuitive mechanical interpretation: the virtual work of the inner forces
must be negative equal to the virtual work of the outer forces. The principle of virtual
work is equivalent to the postulation of equilibrium.
In the context of electromechanical problems, there are also virtual potentials δϕ besides
to virtual displacements δu. Furthermore, besides to equilibrium, also the electrical con-
servation law according to equ. (2.86) is considered. Apart from that, the general idea of
the principle of virtual work stays the same.

2.9.1.1 Derivation by the Minimum Potential Energy Principle

The principle of virtual work can be derived with the principle of minimum potential
energy, where the term energy refers here to the electromechanical problem. Hereby, the
stationary value of the underlying potential is calculated:

Π (u, ϕ) = Πint + Πext
V + Πext

A

=

∫
Ω

WH dV −
∫

Ω
Wext

V dV −
∫

ΓS

Wext
ΓS

dA−
∫

Γ~D

Wext
Γ~D

dA→ stat. (2.111)
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which summarizes all internal and external work contributions of both volume and
boundary of the body. The constitutive equations are already implicitly included via
the definition of the electric enthalpy density (see chapter 2.7.2). Using

E =
1
2

(
FT · F− I

)
= Eu (2.112)

~E = −grad ϕ = ~Eϕ (2.113)

u = û on Γu (2.114)

ϕ = ϕ̂ on Γϕ (2.115)

in the potential formulation of equ. (2.111) and assuming a quasi-static problem leads to:

Π (u, ϕ) =

∫
Ω

[
WH

(
Eu,~E

ϕ
)

dV − ρ0 b0 · u + ρel
0 · ϕ

]
dV

−
∫

ΓS

t̂0 · u dA +

∫
Γ~D

q̂0 · ϕ dA (2.116)

In this context, the upper indices u and ϕ are not meant to be an exponent. These in-
dices should demonstrate the direct dependency of the strain tensor and the electric field
strength from the displacement field and the potential field, respectively. Setting the first
variation of equ. (2.116) to zero finally results in the principle of virtual work:

δΠ(u, ϕ) =

∫
Ω

[
∂WH

∂Eu : δEu +
∂WH

∂~E
ϕ · δ~E

ϕ − ρ0 b0 · δu + ρel
0 · δϕ

]
dV

−
∫

ΓS

t̂0 · δu dA +

∫
Γ~D

q̂0 · δϕ dA = 0 (2.117)

with

δEu = δFT · F = FT · δF = FT · grad δu (2.118)

δEϕ = −grad δϕ (2.119)

2.9.1.2 Derivation from the Method of Weighted Residuals

The principle of virtual work can also be derived from the conservation laws via the
method of weighted residuals. The method of weighted residuals does not require the
existence of a potential and is e.g. also valid for inelastic constitutive laws. The kinematic
equations and the constitutive equations are fulfilled in their strong form.
The conservation laws of equ. (2.73) and (2.86) and the Neumann boundary conditions
of equ. (2.74) and (2.88) are multiplied with arbitrary scalar test functions δu and δϕ and
integrated over the domain Ω and the boundaries ΓS and Γ~D, respectively. This results
in: ∫

Ω
(div(FS) + ρ0 b0) · δu dΩ +

∫
Ω

(
div (−~D) + ρel

0

)
· δϕ dΩ

+

∫
ΓS

(t̂0 − t) · δu dA +

∫
Γ~D

(q̂0 − q) · δϕ dA = 0 (2.120)
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where t stands for the surface stress vector with t = F · S ·N and q represents the electric
surface charge with q = −~D ·N.
Again it is assumed here that the strain tensor and the electric field strength is derived
from the kinematic field equations. Reformulation and partial integration leads again to
the weak form according to equ. (2.117).

2.9.1.3 Euler Differential Equations

Now the Euler differential equations should be derived. To do so, the first two terms of
equ. (2.117) are reformulated:

∂WH

∂Eu : δEu =
∂WH

∂Eu : FT · grad δu

= F · ∂WH

∂Eu : grad δu = F · Su : grad δu (2.121)

∂WH

∂~E
ϕ · δ~E

ϕ
= −~Dϕ · (−grad δϕ) (2.122)

Inserting equ. (2.121) and (2.122) into the principle of virtual work of equ. (2.117) yields:

δΠ(u, ϕ) =

∫
Ω

[
F · Su : grad δu + ~D

ϕ · grad δϕ− ρ0 b0 · δu + ρel
0 · δϕ

]
dV

−
∫

ΓS

t̂0 · δu dA +

∫
Γ~D

q̂0 · δϕ dA = 0 (2.123)

Using the product rule and the divergence theorem reveals:∫
Ω

grad δu : F · Su dV =

∫
ΓS

F · Su ·N · δu dA−
∫

Ω
δu · div (F · Su) dV (2.124)

∫
Ω

grad δϕ · ~Dϕ
dV =

∫
Γ~D

~D
ϕ ·N · δϕ dA−

∫
Ω

δϕ · div~D
ϕ

dV (2.125)

Now equ. (2.124) and (2.125) can be inserted in equ. (2.123) to obtain the following
modified representation:

δΠ(u) =
∫

Ω
δu · (−div (F · Su)− ρ0 b0) dV −

∫
ΓS

δu (t̂0 − tu) dA

+

∫
Ω

δϕ ·
(
−div~D

ϕ
+ ρel

0

)
dV +

∫
Γ~D

δϕ (q̂0 − qϕ) dA = 0 (2.126)

where tu stands for the surface stress vector with tu = F · Su ·N and qϕ represents the
electric surface charge qϕ with qϕ = −~Dϕ ·N. Based on the fundamental lemma in the
calculus of variations, we can derive the Euler equations of the principle of virtual work:
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div (F · Su) + ρ0 b0 = 0 in Ω (equilibrium condition) (2.127)

div ~Dϕ − ρel
0 = 0 in Ω (Gauss′s law) (2.128)

tu = t̂0 on ΓS (Natural boundary condition) (2.129)

qϕ = q̂0 on Γ~D (Natural boundary condition) (2.130)

The principle of virtual work is the variational basis for all so-called irreducible finite ele-
ment formulations which means that the number of independent field variables cannot
be further reduced [ZTZ05]. All Euler equations are only dependent from the fields u an
ϕ. These fields are the only ones that have to be discretized and are subjected to special
continuity requirements to guarantee stability and convergence (see chapter 3.2). Consti-
tutive equations, kinematics and kinematic boundary conditions are fulfilled in an exact
manner (strong formulation), the conservation law and the natural boundary conditions
are only satisfied in the integral sense (weak formulation).
However, numerous enhanced element formulations introduce further independent
fields, like strain, stress, electric field strength or electric displacement. Thus the prin-
ciple of virtual work is not suitable anymore for the derivation of these elements and
new variational principles have to be adopted. To this goal, the Hu-Washizu principle is
introduced in the next chapter.

2.9.2 Principle of Hu-Washizu

Following the principle of Hu-Washizu [Hu55, Whi04], three independent fields are de-
fined in the case of a pure mechanical problem: The displacements u, the strains E and the
stresses S. Accordingly, in the case of an electromechanical problem the electric potential
ϕ, the electric field~E and the electric displacement field ~D are defined as additional inde-
pendent fields. Consequently, the principle of Hu-Washizu represents the most general
form of multi-field functionals.

The principle guarantees highest possible flexibility for the formulation of finite elements,
as also the approximation of the six wanted fields can be defined independently. Beyond
that, the variable fields u and ϕ do not need to fulfill the kinematic boundary conditions
in a strict sense and thus can be chosen from a larger space.

2.9.2.1 Derivation from the Minimum Potential Energy Principle

Similar to the principle of virtual displacements, the Hu-Washizu functional can be de-
rived starting from the formulation of the energy potential. However, the kinematic
equations are not introduced into the functional via insertion (elimination method), but
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via Lagrangian Multipliers (multiplier method). Assuming a quasi-static problem, one can
state:

ΠHW(u, ϕ, E,~E, λ1, λ2, µ1, µ2) =

∫
Ω

[
WH(E,~E) + λ1 : (Eu − E) + λ2 ·

(
~E

ϕ −~E
)]

dV

−
∫

Ω
ρ0b0 · u dV −

∫
ΓS

t̂0 · u dA

+

∫
Ω

ρel
0 · ϕ dV +

∫
Γ~D

q̂0 · ϕ dA

+

∫
Γu

µ1 · (û− u) dA

+

∫
Γϕ

µ2 · (ϕ̂− ϕ) dA→ stat. (2.131)

It is a common approach in the literature to directly assign the physical measures of the
stresses and electric displacements to the Lagrangian parameters. In contrast to this ap-
proach, in this work the stresses and the electric displacements are not directly inserted
as additional independent fields from the start. Instead, sharing and extending the argu-
mentation of Bischoff [Bis99], it must be considered that the fields S and ~D are already
defined via the energy function in equ. (2.91) and equ. (2.92). Thus introducing the fields
S and ~D as independent variables would be wrong from a formal point of view. How-
ever, as it is shown in the sequel, a natural identification of the Lagrangian parameters
is possible with the straight-forward derivation of the Euler equations. So no a priori
assumptions about the Lagrangian parameters is needed.
Performing the variation of equ. (2.131) leads to

δΠHW =

∫
Ω

[
∂WH

∂E
: δE +

∂WH

∂~E
· δ~E + δλ1 : (Eu − E) + δλ2 ·

(
~E

ϕ −~E
)]

dV

+

∫
Ω
[λ1 : δEu − λ1 : δE] dV +

∫
Ω

[
λ2 · δ~E

ϕ − λ2 · δ~E
]

dV

−
∫

Ω
ρ0b0 · δu dV −

∫
ΓS

t̂0 · δu dA +

∫
Ω

ρel
0 · δϕ dV +

∫
Γ~D

q̂0 · δϕ dA

+

∫
Γu

δµ1 · (û− u) dA +

∫
Γϕ

δµ2 · (ϕ̂− ϕ) dA = 0 (2.132)

According to equ. (2.118) and (2.119), we can insert δEu = FT · grad δu and δEϕ =

−grad δϕ into equ. (2.132). Furthermore, we can deduce by using the product rule and
the divergence theorem:∫

Ω
grad δu : F · λ1 dV =

∫
ΓS

F · λ1 ·N · δu dA−
∫

Ω
δu · div (F · λ1) dV (2.133)

as well as: ∫
Ω

λ2 · grad δϕ dV =

∫
Γ~D

λ2 ·N δϕ dA−
∫

Ω
div λ2 δϕ dV (2.134)
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Thus using equ. (2.133) and equ. (2.134) within the first variation according to equ. (2.132)
leads to:

δΠHW =

∫
Ω

[
∂WH

∂E
: δE +

∂WH

∂~E
· δ~E + δλ1 : (Eu − E) + δλ2 ·

(
~E

ϕ −~E
)]

dV

−
∫

Ω

[
δu · div (F · λ1)− div λ2 δϕ + λ1 : δE + λ2 · δ~E

]
dV

−
∫

Ω
ρ0b0 · δu dV +

∫
Ω

ρel
0 · δϕ dV

−
∫

ΓS

(t̂0 − F · λ1 ·N) · δu dA +

∫
Γ~D

(q̂0 − λ2 ·N) · δϕ dA

+

∫
Γu

δµ1 · (û− u) dA +

∫
Γϕ

δµ2 · (ϕ̂− ϕ) dA = 0 (2.135)

Unlike to the derivation of the method of virtual displacements, here it is not searched
for minimum points but for stationary points. This also affects the convergence proper-
ties of the derived finite element formulations: While displacement-based elements are
guaranteed to converge strictly starting from lower values, this is not necessarily the case
anymore for finite elements based on the Hu-Washizu functional [BRB99].
Based on the fundamental lemma in calculus of variations, it can be derived:

div(F · λ1) + ρ0b0 = 0, Eu − E = 0,
∂WH

∂E
− λ1 = 0 in Ω (2.136)

div(λ2) + ρel
0 = 0, ~E

ϕ −~E = 0,
∂WH

∂~E
− λ2 = 0 in Ω (2.137)

t̂0 − F · λ1 ·N = 0 on ΓS, û− u = 0 on Γu (2.138)

q̂0 − λ2 ·N = 0 on Γ~D, ϕ̂− ϕ = 0 on Γϕ (2.139)

Thus in total ten Euler equations are obtained. First of all, it can be seen that the Lagrange
parameters µ1 and µ2 dropped out in the derivation of the Euler equations. They serve
as test functions for the kinematic field equations. Considering the units of µ1 and µ2, the
following choice of the test functions can be made: The dependent stress resultant vector
tS is assigned to µ1, and µ2 is replaced by the dependent charge q~D resulting from the
electric displacement. Furthermore, inserting equ. (2.91) in the last part of equ. (2.136),
one obtains:

S = λ1 (2.140)

which means that the stresses are equal to the Lagrangian parameter λ1 in a weak sense,
but not pointwisely. Similarly, inserting equ. (2.92) in the last part of equ. (2.137) leads
to:

−~D = λ2 (2.141)
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These results for the Lagrange parameters can be inserted into equ. (2.131):

ΠHW(u, ϕ, E,~E, S, ~D) =

∫
Ω

[
WH(E,~E) + S : (Eu − E)− ~D ·

(
~E

ϕ −~E
)]

dV

−
∫

Ω
ρ0b0 · u dV −

∫
ΓS

t̂0 · u dA +

∫
Ω

ρel
0 · ϕ dV +

∫
Γ~D

q̂0 · ϕ dA

+

∫
Γu

tS · (û− u) dA +

∫
Γϕ

q~D · (ϕ̂− ϕ) dA→ stat. (2.142)

which is the standard variational functional of Hu-Washizu type known from the litera-
ture. However, it should be pointed out, that both S and ~D are now redefined and the
constitutive equations are only fulfilled in a weak sense. The related first variation of equ.
(2.142) is finally:

δΠHW =

∫
Ω

[
∂WH

∂E
: δE +

∂WH

∂~E
· δ~E + δS : (Eu − E)− δ~D ·

(
~E

ϕ −~E
)]

dV

+

∫
Ω
[S : δEu − S : δE] dV +

∫
Ω

[
−~D · δ~Eϕ

+ ~D · δ~E
]

dV

−
∫

Ω
ρ0b0 · δu dV −

∫
ΓS

t̂0 · δu dA +

∫
Ω

ρel
0 · δϕ dV +

∫
Γ~D

q̂0 · δϕ dA

+

∫
Γu

δtS · (û− u) dA +

∫
Γϕ

δq~D · (ϕ̂− ϕ) dA = 0 (2.143)

which is equivalent to

δΠHW =

∫
Ω

[
∂WH

∂E
: δE +

∂WH

∂~E
· δ~E + δS : (Eu − E)− δ~D ·

(
~E

ϕ −~E
)]

dV

−
∫

Ω

[
δu · div (F · S)− div ~D δϕ + S : δE− ~D · δ~E + ρ0b0 · δu− ρel

0 · δϕ
]

dV

−
∫

ΓS

(
t̂0 − tS

)
· δu dA +

∫
Γ~D

(
q̂0 + ~D ·N

)
· δϕ dA

+

∫
Γu

δtS · (û− u) dA +

∫
Γϕ

δq~D · (ϕ̂− ϕ) dA = 0 (2.144)
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2.9.2.2 Euler Differential Equations

Using the fundamental lemma of calculus of variations, the Euler equations can be de-
rived from equ. (2.143). The obtained field equations are:

div (F · S) + ρ0 b0 = 0 in Ω (Equilibrium condition) (2.145)

div ~D− ρel
0 = 0 in Ω (Gauss′s law) (2.146)

Eu − E = 0 in Ω (kinematic equation) (2.147)

~E
ϕ −~E = 0 in Ω (kinematic equation) (2.148)

∂WH

∂E
− S = 0 in Ω (constitutive law) (2.149)

∂WH

∂~E
+ ~D = 0 in Ω (constitutive law) (2.150)

while the boundary conditions are obtained as:

t̂0 − F · S ·N = 0 on ΓS (Mechanical natural b/c) (2.151)

q̂0 + ~D ·N = 0 on Γ~D (Electrical natural b/c) (2.152)

û− u = 0 on Γu (Mechanical essential b/c) (2.153)

ϕ̂− ϕ = 0 on Γϕ (Electrical essential b/c) (2.154)

The fields of u and ϕ have to be chosen from the Sobolev space H1(Ω) in order to provide
second power integrable derivatives and continuity at the boundaries. However, E, ~E, S
and ~D can be chosen from the Lebesgue space L2 as the square of the function itself must
be integrable while no continuity is required between the subdomains of elements. This
means that the related unknowns can be determined and eliminated on the element level
via static condensation.

All governing equations are covered in equ. (2.142) and (2.143) in a weak sense, no addi-
tional constraint equations are needed. Consequently, all six fields have to be discretized
if finite element formulations are derived from this functional. This approach has been
adopted e.g. by Sze and Pan [SP99] and Klinkel and Wagner [KW06]. However, this re-
sults in a large discretization effort and consequently a large numerical effort.
On the other hand side, satisfying single fields as constraint equations in a strong sense,
the number of independent fields can be reduced. Sze and Pan presented in this context
degenerated functionals with (u, ϕ), (~D, u, ϕ), (S, u, ϕ) and (S, ~D, u, ϕ) as independent
fields. However, this approach introduces again locking phenomena (chapter 3.5) and
thus can severely reduce the element quality, most visible in the irreducible (u, ϕ) - func-
tional.
Thus it would be preferable to derive a functional that covers the advantages of both
worlds: The inclusion of the full capacities of the Hu-Washizu functional to eliminate
element deficiencies like locking, but also the reduction of the discretized fields to min-
imize numerical cost. An approach of this type based on the Hu-Washizu functional is
presented in the next chapter.
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2.9.3 Modified Principle of Hu-Washizu

An interesting alternative of an enhanced finite element formulation has been initially
introduced by Simo and Rifai [SR90] in the context of pure mechanical problems with the
Enhanced Assumed Strain (EAS) Method. The basic idea of the EAS method is the extension
of the displacement-dependent strains by so-called Enhanced Strains Ẽ. These additional
assumed strains are introduced in order to eliminate parasitic strains that cause the lock-
ing phenomena which decrease the element quality (see chapter 3.5).
Similar to enhanced strains, also enhanced electric field strength terms can be introduced
to eliminate related parasitic terms of the electromechanical problem. This approach that
applies the idea of the EAS method to the electrical fields of the coupled problem is called
Enhanced Assumed Electrics (EAE) Method in this work.

2.9.3.1 Derivation from the Hu-Washizu Principle

Starting point of the variational derivation is the principle of Hu-Washizu according to
chapter 2.9.2. For the sake of clarity, at first only the internal potential part of equ. (2.143)
is investigated:

δΠint
HW =

∫
Ω

[
∂WH

∂E
: δE +

∂WH

∂~E
· δ~E + δS : (Eu − E)− δ~D ·

(
~E

ϕ −~E
)]

dV

+

∫
Ω
[S : δEu − S : δE] dV +

∫
Ω

[
−~D · δ~Eϕ

+ ~D · δ~E
]

dV (2.155)

The enhanced strains are now introduced via re-parameterization of the strain field E:

E =
1
2
(FT · F− I) + Ẽ = Eu + Ẽ (2.156)

Accordingly, also the electric field strength is re-parameterized:

~E = −grad ϕ + ~̃E = ~E
ϕ
+ ~̃E (2.157)

Consequently, the original independent fields E and ~E are eliminated. Inserting equ.
(2.156) and (2.157) into the functional of equ. (2.155) leads to:

δΠint
MHW(u, ϕ, Ẽ,~̃E, S, D) =

∫
Ω

[
∂WH

∂Eu : δEu +
∂WH

∂Ẽ
: δẼ

]
dV

+

∫
Ω

[
∂WH

∂~E
ϕ · δ~E

ϕ
+

∂WH

∂~̃E
· δ~̃E

]
dV

+

∫
Ω

[
δS : (−Ẽ)− δ~D ·

(
−~̃E
)]

dV

+

∫
Ω

[
S : δEu − S : δ(Eu + Ẽ)

]
dV

+

∫
Ω

[
−~D · δ~Eϕ

+ ~D · δ(~Eϕ
+ ~̃E)

]
dV (2.158)
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This equation can be simplified to:

δΠint
MHW(u, ϕ, Ẽ,~̃E, S, D) =

∫
Ω

[
∂WH

∂Eu : δEu +
∂WH

∂Ẽ
: δẼ

]
dV

+

∫
Ω

[
∂WH

∂~E
ϕ · δ~E

ϕ
+

∂WH

∂~̃E
· δ~̃E

]
dV

−
∫

Ω

[
δS : Ẽ− δ~D · ~̃E + S : δẼ− ~D · δ~̃E

]
dV (2.159)

The enhanced strains Ẽ and the enhanced electric field strength ~̃E are chosen in a way
such that they fulfill the orthogonality condition:∫

Ω
S : Ẽ dΩ = 0 (2.160)∫

Ω
~D · ~̃E dΩ = 0 (2.161)

The condition of equ. (2.160) makes sure that the existing stresses do not introduce ad-
ditional work contributions in combination with the additional enhanced strains. Thus
it can be avoided that Ẽ introduces new parasitic strains which would lead to additional
energy terms and related stiffening effects of the structure. Similarly, equ. (2.161) for-
mulates the electrical counterpart of equ. (2.160). The enhanced electrical field has to
be chosen such that no additional energy terms are generated in combination with the
existing electric displacement field.
Furthermore, taking advantage of equations (2.160) and (2.161) in equ. (2.159) leads to:

δΠint
MHW(u, ϕ, Ẽ,~̃E) =

∫
Ω

[
∂WH

∂Eu : δEu +
∂WH

∂Ẽ
: δẼ

]
dV

+

∫
Ω

[
∂WH

∂~E
ϕ · δ~E

ϕ
+

∂WH

∂~̃E
· δ~̃E

]
dV (2.162)

Recalling equ. (2.91) and (2.92), this can be reformulated such that:

δΠint
MHW(u, ϕ, Ẽ,~̃E) =

∫
Ω

[
SEu

: δEu + SẼ : δẼ
]

dV

−
∫

Ω

[
~D
~E

ϕ

: δ~E
ϕ
+ D~̃E : δ~̃E

]
dV (2.163)

Summing up, it is obtained for the overall variation of the potential:

δΠMHW(u, ϕ, Ẽ,~̃E) =

∫
Ω

[
SEu

: δEu + SẼ : δẼ−D~E
ϕ

: δ~E
ϕ −D~̃E : δ~̃E

]
dV

−
∫

Ω
ρ0b0 · δu dV −

∫
ΓS

t̂0 · δu dA +

∫
Ω

ρel
0 · δϕ dV +

∫
Γ~D

q̂0 · δϕ dA

+

∫
Γu

δtS · (û− u) dA +

∫
Γϕ

δq~D · (ϕ̂− ϕ) dA = 0 (2.164)
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It can be observed that the orthogonality conditions of equ. (2.160) and (2.161) have com-
pletely eliminated the stress S and the electric displacement ~D as independent variable
fields in equ. (2.164).
The functional is only dependent from the four fields u, ϕ, Ẽ and ~̃E. It is also worthwhile
to mention that the originally introduced stresses S and electric displacements ~D repre-
sent in fact independent fields. They are not coupled with the strains E and the electric
field strength~E via the constitutive equations. The coupling effect of the material law has
only been used in the context of the dependent stresses SẼ and SEu

and the dependent

electric displacements ~D
Ẽ

and ~D
Eu

. This fact will be of importance later in the context of
stress and electric displacement recovery in the post-processing of a finite element formu-
lation (see chapter 4.5.3).

2.9.3.2 Derivation as Independent Variational Principle

Besides to the derivation from the Hu-Washizu functional, the modified Hu-Washizu
functional can also be considered as independent principle. This idea has already been
presented by Bischoff in the context of structural problems [Bis99]. This approach is
applicable as well in the context of electromechanical problems. Starting point is the
following potential formulation:

Π
(

u, ϕ, E,~E
)
=

∫
Ω

[
WH

(
E,~E

)
dV − ρ0 b0 · u + ρel

0 · ϕ
]

dV

−
∫

ΓS

t̂0 · u dA +

∫
Γ~D

q̂0 · ϕ dA→ stat. (2.165)

The re-parameterization according to equ. (2.156) and (2.157) can also be stated as:

Ẽ := E− Eu (2.166)

~̃E := ~E−~Eϕ
(2.167)

Thus the fields Ẽ and ~̃E actually represent the residua of the two kinematic equations.
Similar to the derivation of the principle of Hu-Washizu in chapter 2.9.2.1, the kinematic
equations are not introduced into the functional via insertion, but via Lagrangian Multi-
pliers:

Πmod
HW(u, ϕ, Ẽ,~̃E, λ1, λ2, µ1, µ2) =

∫
Ω

[
WH(u, ϕ, Ẽ,~̃E)− λ1 : Ẽ− λ2 · ~̃E

]
dV

−
∫

Ω
ρ0b0 · u dV −

∫
ΓS

t̂0 · u dA

+

∫
Ω

ρel
0 · ϕ dV +

∫
Γ~D

q̂0 · ϕ dA

+

∫
Γu

µ1 · (û− u) dA

+

∫
Γϕ

µ2 · (ϕ̂− ϕ) dA→ stat. (2.168)
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For comparison reasons, the signs of the terms at λ1 and λ2 are chosen to be minus here
in order to coincide with the kinematic definitions of the derivation of the Hu-Washizu
functional in equ. (2.132) of chapter 2.9.2.1. Performing the first variation of equ. (2.168)
leads to:

δΠmod
HW =

∫
Ω

[
∂WH

∂Eu : δEu +
∂WH

∂~E
ϕ · δ~E

ϕ
+

∂WH

∂Ẽ
: δẼ +

∂WH

∂~̃E
· δ~̃E

]
dV

−
∫

Ω

[
δλ1 : Ẽ + λ1 : δẼ + δλ2 · ~̃E + λ2 · δ~̃E

]
dV

−
∫

Ω
ρ0b0 · δu dV −

∫
ΓS

t̂0 · δu dA +

∫
Ω

ρel
0 · δϕ dV +

∫
Γ~D

q̂0 · δϕ dA

+

∫
Γu

δµ1 · (û− u) dA +

∫
Γϕ

δµ2 · (ϕ̂− ϕ) dA = 0 (2.169)

Using the product rule and the divergence theorem one can state:∫
Ω

∂WH

∂Eu : δEu =

∫
ΓS

F · ∂WH

∂Eu ·N · δu dA−
∫

Ω
δu · div

(
F · ∂WH

∂Eu

)
dV

=

∫
ΓS

tu · δu dA−
∫

Ω
δu · div (F · Su) dV (2.170)∫

Ω

∂WH

∂~E
ϕ · δ~E

ϕ
= −

∫
Γ~D

∂WH

∂~E
ϕ ·N · δϕ dA +

∫
Ω

δϕ · div
(

∂WH

∂Eϕ

)
dV

= −
∫

Γ~D

qϕ · δϕ dA +

∫
Ω

δϕ · div
(
−~D

)
dV (2.171)

Thus using equ. (2.170) and (2.171) in equ. (2.169) leads to:

δΠmod
HW =

∫
Ω

[
∂WH

∂Ẽ
: δẼ +

∂WH

∂~̃E
: δ~̃E

]
dV

−
∫

Ω

[
δu · div (F · Su) + δϕ · div~D

]
dV

−
∫

Ω

[
δλ1 : Ẽ + λ1 : δẼ + δλ2 · ~̃E + λ2 · δ~̃E

]
dV

−
∫

Ω
ρ0b0 · δu dV +

∫
Ω

ρel
0 · δϕ dV

−
∫

ΓS

(t̂0 − tu) · δu dA +

∫
Γ~D

(q̂0 − qϕ) · δϕ dA

+

∫
Γu

δµ1 · (û− u) dA +

∫
Γϕ

δµ2 · (ϕ̂− ϕ) dA = 0 (2.172)

Based on the fundamental lemma in calculus of variations, it can be derived:

div (F · Su) + ρ0b0 = 0, div
(
~D

ϕ
)
− ρel

0 = 0 in Ω (2.173)

Ẽ = 0, ~̃E = 0 in Ω (2.174)
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∂WH

(
u, ϕ, Ẽ,~̃E

)
∂Ẽ

= λ1,
∂WH

(
u, ϕ, Ẽ,~̃E

)
∂~̃E

= λ2 in Ω (2.175)

t̂0 − tu = 0 on ΓS , q̂0 − qϕ = 0 on Γ~D (2.176)

û− u = 0 on Γu , ϕ̂− ϕ = 0 on Γϕ (2.177)

At this stage, in total ten Euler equations are obtained. Analogously to the approach in
chapter 2.9.2.1, the Lagrange parameters can be identified now.
It can be observed that the Lagrange parameters µ1 and µ2 are serving again as test func-
tions for the kinematic field equations and drop out in the derivation of the Euler equa-
tions. Just like in chapter 2.9.2.1, µ1 is assigned to be the stress resultant vector tS, and µ2

is replaced by the dependent charge q~D resulting from the electric displacement.
Considering the units in the Euler equations, λ1 can be identified with the stress tensor:

S := λ1 (2.178)

However, as the stress tensor is already defined via the constitutive law, this has to be
considered as a redefinition of the stresses. The constitutive law is fulfilled by S now
only in a weak sense any more. Similarly, it can be deduced:

−~D = λ2 (2.179)

which accordingly leads two a weak formulation in the second part of the constitutive
law. Summing up, the derivation as an independent variational principle leads to an con-
cise identification of the Lagrangian parameters. Inserting the Lagrangian parameters
according to equ. (2.178) and (2.179) into the functional according to equ. (2.169), we end
up again in the same result as in the direct derivation approach from the Hu-Washizu
principle in equ. (2.159) in chapter 2.9.3.1.
The use of the orthogonality conditions according to equ. (2.160) and (2.161) has been in-
tentionally postponed in the derivation of this chapter in order to maintain all equations
needed to determine the Lagrangian parameters. Using the orthogonality conditions
with the knowledge about the Lagrangian parameters leads again to equ. (2.164) or the
equivalent representation:

δΠint
HW(u, ϕ, Ẽ,~̃E) =

∫
Ω

[
∂WH

∂Ẽ
: δẼ +

∂WH

∂~̃E
: δ~̃E

]
dV

−
∫

Ω

[
δu · div (F · Su) + δϕ · div~D

ϕ
]

dV

−
∫

Ω
ρ0b0 · δu dV +

∫
Ω

ρel
0 · δϕ dV

−
∫

ΓS

(t̂0 − tu) · δu dA +

∫
ΓD

(q̂0 − qϕ) · δϕ dA

+

∫
Γu

δtS · (û− u) dA +

∫
Γϕ

δq~D · (ϕ̂− ϕ) dA = 0 (2.180)
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2.9.3.3 Euler Differential Equations

Similar to the approach in chapter 2.9.2, now the Euler differential equations can be de-
rived. Using the fundamental lemma of calculus of variations, the Euler equations can be
derived from equ. (2.164). The obtained field equations are:

div (F · Su) + ρ0 b0 = 0 in Ω (2.181)

div ~Dϕ − ρel
0 = 0 in Ω (2.182)

∂WH

∂Ẽ
= SẼ = 0 in Ω (2.183)

∂WH

∂~̃E
= ~D

~̃E
= 0 in Ω (2.184)

The equations (2.181) and (2.182) contain in a mixed form the constitutive laws and con-
servation laws. Equation (2.183) contains the consequence of the orthogonality condition
of equ. (2.160): The stress S and the enhanced strains Ẽ must not contain any energy con-
jugated contributions. Thus any stress SẼ resulting from enhanced strains must vanish.

For the same reasons the enhanced electric displacements ~D
~̃E

must vanish according to
equ. (2.184). Besides to that, the kinematic equations have been defined a priori via equ.
(2.166) and (2.167):

Ẽ = 0 in Ω (kinematic equation) (2.185)

~̃E = 0 in Ω (kinematic equation) (2.186)

These equations might be surprising at the first glance as they postulate the vanishing of
the enhanced fields. The reason is that so far no discretization has been performed yet.
For the continuous problem, it makes indeed sense to require all strains and electric field
strengths to be of compatible type with respect to displacements and electric potential.
Only at the case of the discretized problem the enhanced strains Ẽ and the enhanced
electric field strength ~̃E is indeed introduced in order to enrich the element formulation
and eliminate the locking phenomena (chapter 3.5).
Last but not least, the boundary conditions are obtained from equ. (2.164) as:

t̂0 − tu = 0 on ΓS (Mechanical natural b/c) (2.187)

q̂0 − qϕ = 0 on Γ~D (Electrical natural b/c) (2.188)

û− u = 0 on Γu (Mechanical essential b/c) (2.189)

ϕ̂− ϕ = 0 on Γϕ (Electrical essential b/c) (2.190)

which coincide with the results of the original Hu-Washizu principle in chapter 2.9.2.
Summing up, the modified Hu-Washizu functional allows for the elimination of the stress
tensor as well as the electric displacement vector. This is also favorable in the context of
finite element development, as less fields have to be discretized and thus the computa-
tional efficiency is increased.
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2.9.4 Overview

In the previous sections, the principle of virtual work (chapter 2.9.1), the Hu-Washizu
functional (chapter 2.9.2) and the modified Hu-Washizu principle (chapter 2.9.3) have
been presented as possible variational formulations to derive finite element formulations.
In general, many more functionals can be derived dependent from the type and number
of the independent field variables. These functionals represent all combinations of strong
and weak fulfillment of the field equations and the boundary conditions. For example,
also the principle of Hellinger-Reissner [Hel14, Rei50] is used for the design of enhanced
elements. Besides to contributions with pure mechanical focus [PC82, PS84], also some
Hellinger-Reissner-based elements for electromechanical problems have been presented
[ZZF03, SYY04].
Table 2.3 provides an overview of the variational formulations. From the principle of
virtual work up to the Hu-Washizu functional the number of independent variable fields
is increasing which leads to growing flexibility of the possible element formulations, as
the approximation of the independent fields can be done independently from each other
in the discretization process.

Variational Variables: Euler equations: Constraint equations:
principle: (weak formulation) (fulfilled pointwisely)

Virtual Work u, ϕ - equilibrium - kinematic field equ.
- static b/c - constitutive equ.

- kinematic b/c

Hellinger-Reissner u, ϕ, S, ~D - equilibrium - constitutive equ.
- kinematic field equ.
- static b/c
- kinematic b/c

Hu-Washizu u, ϕ, S, ~D, E,~E - equilibrium
- kinematic field equ.
- constitutive equ.
- static b/c
- kinematic b/c

Table 2.3: Variational principles and their strongly and weakly formulated contributions.

In general it can be stated that mixed formulations with an extended number of indepen-
dent fields are computationally more expensive than so-called single-field formulations
based on the principle of virtual work. In this context, so-called hybrid-mixed formulations
are advantageous. Starting from a multi-field functional, additional degrees of freedom
are already eliminated on the element level via static condensation. With this approach,
the global number of degrees of freedom can be reduced to the number of a correspond-
ing single-field formulation. Thus the computational overhead compared to single-field
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formulations can be reduced to the construction of the additional element matrices and
the static condensation. Several common methods for enhanced elements like the EAS
method and EAE method (chapter 4.5.3) are based on these hybrid-mixed formulations.



Chapter 3

Fundamentals of the Finite Element
Method

The basis for the derivation of finite elements is given by the functionals as introduced
in chapter 2.9. This chapter is meant to provide selected aspects that are relevant in the
focus of this work. Thus it is by no means a general introduction into the finite element
method. Detailed information to the fundamentals of the finite element method can be
found e.g. at Zienkiewicz and Taylor [ZTZ05, ZT05], Hughes [Hug00] and Bathe [Bat02].

3.1 Discretization

From the mathematical point of view, the finite element method is a numerical approxi-
mation method for the solution of partial differential equations of elliptic type. For me-
chanical problems of arbitrary geometry and arbitrary natural and essential boundary
conditions, a continuous and exact solution of the underlying differential equations is in
general not available.
Consequently numerical solution schemes are adopted that discretize the problem formu-
lation. Discretization means the transformation of the continuous mathematical model
into a discrete problem with a finite number of unknowns (degrees of freedom). Focus of
this work is the spatial discretization which is performed for both electrical and mechan-
ical fields with the finite element method. Other common spatial discretization schemes
are the boundary element method (BEM), the finite difference method (FDM), the finite
volume method (FVM), spectral methods and meshfree methods.
In the context of the finite element method, spatial discretization means the decompo-
sition of the domain Ω into subdomains Ωe, the elements. In this context, not only the
geometry, but also the displacement field and the electric potential field of these sub-
domains are approximated. This is done via the calculation of the respective values at
discrete nodal points while the values in between are obtained by interpolation via shape
functions Nk.
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The specific finite element formulation has fundamental influence on the quality of the
finite element calculation results. The essential requirements for a finite element are
[Kos04]:

• Reliability (robustness, stability).
• Efficiency (high exactness at low computational effort).
• Flexibility (large application field).

These are competing requirements that have to be met at the same time and in a satisfy-
ing manner.
The calculation of arbitrary structures rises the question for suitable finite elements. The
abundance of existing finite element formulations can be assigned to two general fami-
lies of elements: continuum elements and structural elements (see also chapter 1.2.2). Con-
tinuum elements open the larger application field due to their universality. They are
the best choice for massive models or models without clear geometric structure. They
result from subdivision of the 1d-, 2d- or 3d-continuum. A disadvantage is the rather
difficult interpretation of results, as no structural orientation (like thickness direction)
and no engineering-relevant measures like stress resultants are shipped with the ele-
ment formulation. Structural elements resemble fabricated structural components like
bars, trusses, beams, plates and shells. The basic difference to continuum elements are
additional assumptions with respect to deformation and stress states. In other words:
Structural elements can be derived from continuum elements by additional kinematic
and stress-related restrictions. The development of structural elements is driven by the
idea to condense the complex three-dimensional description to the essential components
of structural response, like stretching, bending, shear, and so on. The use of structural
elements has two essential advantages:

• The number of degrees of freedom and thus the computational effort is consider-
ably reduced compared to continuum elements.
• The results allow for a direct interpretation of the results. The mechanical insight

and the consideration of possible boundary conditions is considerably facilitated.

Focus of this work is put on the development of a new enhanced shell element. The
development of shell elements goes - just like in the case of any other structural element
development - through the stages of mechanical model, mathematical model and finally
numerical model. The final shell element is influenced by the decisions at the setup of the
original mechanical model as well as all assumptions that are taken during these stages
of the model. In this context, one has to distinguish between assumptions of the shell
model on the one hand side and assumptions and decisions of the discretization on the
other hand side. The first group relates to assumptions for the derivation of the governing
equations of the continuum shell theory. The second group relates to possible errors that
are introduced due to the discretization of the finite element. However, the latter errors
due to discretization can be eliminated via mesh refinement, while the assumptions and
possible restrictions of the shell model remain.
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3.2 Convergence

First of all, of course, the assumed mathematical model should capture the physics in
a reasonable manner. Considering that as a precondition, the fundamental idea for the
application of the finite element method is the requirement of convergence: The finite
element solution shall approach the analytical solution of the mathematical model if the
FE mesh is refined and thus the element size approaches zero.
In order to perform a detailed description of the requirements of convergence, the vari-
ational index has to be defined first. Let Π(utot) be the energy functional that the con-
sidered finite element discretization is based on. Let also utot be the vector of all primary
variables with m as the highest (spatial) derivative order of utot that appears in the energy
functional Π. Then m is called variational index.

The requirements for convergence of displacement-based elements can be broken down
to the following requests for the element formulation and in particular the chosen shape
functions [Fel04, Fis07]:

• Completeness: The set of shape functions must be able to exactly represent all poly-
nomial terms up to order m, where m is the variational index of the problem. The
set of shape functions is then called m-complete.

• Compatibility: The shape functions must guarantee continuity of the primary vari-
ables between the elements. As a consequence, material gaps and interpenetrations
can be excluded for the deformed state.

• Correct Rank: The stiffness matrix must provide the correct rank which means that
it must not possess any zero-energy mode other than rigid body modes. In other
words: No unphysical zero energy modes may exist.

• Positive Jacobian Determinant: Characterizing the local metrics of the natural element
coordinate system, the Jacobian determinant represents a measure for element dis-
tortion and thus for mesh quality. The requirement of a positive Jacobian in every
point of the element excludes excessive element distortion which would result in
self penetration of the geometry.

If the requirements for completeness and compatibility are satisfied, the so-called consis-
tency condition between discrete and mathematical model is given (see also Figure 3.1).
Besides to that, the correct rank of the stiffness matrix and a positive Jacobian determinant
contribute to the property of stability of the finite element model. In particular, stability
with respect to external loads is required. This means that small variations in the external
loads are only allowed to result in finite variations in the primary variables (i.e. displace-
ments or electric voltages in the context of this work). The request of stability addresses
e.g. unphysical zero-energy modes that must be avoided.
According to the theorem of Lax-Wendroff, which originally addresses the method of
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Consistency

Completeness

Convergence

Stability

Pos. Jacobian Det.Correct RankCompatibility

Figure 3.1: Convergence requirements for finite element shape functions.

finite differences for fluid mechanics [LW60], completeness and stability result in the
wanted property of convergence.

However, completeness is the only necessary condition for convergence. The compati-
bility is actually not a necessary condition for convergence in any case. An exception is
e.g. provided with the method of incompatible modes [WTDG73]. And there are also
numerically unstable elements used in special situations, e.g. for the modeling of local
singularities [Fel04]. Nevertheless, the list of requirements according to table 3.1 pro-
vides a sufficient condition for convergence and thus a good guideline for finite element
design.

3.3 Rank of the System Matrix

As discussed in the chapter before, the correct rank of the system matrix is a fundamental
prerequisite for the stability of the element formulation. The correct rank of the element
system matrix Ke is denoted with rankc and can be determined with:

rankc (Ke) = nDOF − nRBM (3.1)

where nDOF is the number of element degrees of freedom and nRBM is the number of
rigid body modes. If an element delivers a system matrix of correct rank, then the rigid
body modes represent the only zero energy modes. In the case of a statically determinate
support condition, no inner kinematics are arising. In order to guaranty the stability of
the overall element grouping, each element should show the correct rank of the element
system matrix. As a consequence, also the assembled global system matrix is of correct
rank.
In the case of a too low rank, singular equation systems can arise. In the contrary, if the
correct rank is exceeded, rigid body motions cannot be represented without energy con-
tributions which severely compromises convergence.
However, there are cases where elements of too low rank form a global system matrix
of correct rank: Non-communicable zero energy modes are indeed zero energy modes of the
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single element, but they are stabilized due to neighboring elements in a suitable element
grouping (see Figure 3.2).
In contrast to that, communicable zero energy modes also arise in element groupings.
As a consequence, the well-known hourglass modes can arise in the deformation Other
common namings in the literature are keystoning, kinematic modes oder mesh instability.
Communicable zero energy modes in general prevent a successful finite element calcu-
lation, as the system is either not solvable due to singularities, or the system solution is
dominated by the wrong zero energy mode contributions in the solution field.

Non-communicable

zero energy modes: 

Communicable

zero energy modes: 

Stabilization via 

element patch

Hourglassing

Figure 3.2: Types of zero energy modes (ZEM).

For proper element definitions based on the functionals described in chapter 2.9 with
complete numerical integration, no unwanted zero energy modes are to be expected.
However, enhanced element formulations based on reduced integration (see chapter
3.6.1) can lead to losses in the system matrix rank and thus to element stability problems.

3.4 The Patch Test

The patch test in its original form has been introduced by Irons in 1966 [Iro66b]. From
then on, a large number of variants have been evolved and it became a key tool to test ad-
vanced finite element formulations [ZTZ05]. Also specialized patch tests for piezoelectric
elements have been proposed [KW06], [Leg11]. The patch test has been introduced as a
mean to easily verify the convergence of a finite element formulation to the correct result.
It examines at an patch of (arbitrary) distorted elements if a constant distribution of the
state fields can be correctly reproduced. The element passes the standard patch test if the
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finite element solution is the same as the exact solution. The underlying idea of the patch
test is that elements that can exactly reproduce constant states and rigid body movements
should be able to reproduce any kind of state if the mesh is fine enough. Additionally, it
also allows for an analytical investigation besides to the numerical verification.

       a) 2D patchtest                           b) Weak patch test                     c) Copy refinement

Figure 3.3: Patch test meshes.

For completeness it should be mentioned that there are also one-element patch tests
which adopt additional assumptions in order to reduce the original patch test to one
element. Bergan and Hanssen developed the so called Individual Element Test (IET) which
can be carried out directly on the stiffness relations of one element [BH76]. The very in-
tuitive physical idea behind this test is that the boundary forces of neighboring elements
must cancel out each other in a uniform stress state. The passing of the IET is a suffi-
cient condition for passing the standard patchtest. Beside to that, Taylor et al. [TZSC86]
present the Single Element Test (SET) to track possible zero energy modes that might be
hidden when several elements are assembled.
The weak patch test checks if the element can pass the standard patch test at least for
increasing mesh refinement. Here the mesh of the standard patch test is refined by recur-
sively cutting between the midpoints of the element edges such that each element results
in four new elements (Figure 3.3 b). This results into elements that turn into a parallelo-
gram shape for increasing refinement [Kos04]. This patch test is e.g. also passed by the
non-conforming elements introduced by Wilson [WTDG73]. However, if the mesh refine-
ment is performed by copying of the original mesh as shown in Figure 3.3 c, the patch
test is not passed by elements that don’t pass the standard patch test.

Focus of this work is put on multielement tests (Figure 3.4), where a set of at least two
elements (patch) are examined such that also possible incompatibility effects at the com-
mon edge or surface between the elements can be investigated. In general, the patch
can also contain elements of different type to test element mixability (heterogeneous patch
test). In contrast to that, homogeneous patch tests only use elements of same formulation
type as well as same material properties. The homogeneous multielement patch test can
be further subdivided into subgroups: At the displacement patch test, Dirichlet boundary
conditions are applied to the patch and it is investigated if constant strain and rigid body
modes are reproduced correctly. In the context of piezoelectric elements, additionally the
correct representation of a constant electric field state can be examined (see also chapter
7.1.4). At the force patch test, Neumann boundary conditions are applied to verify if the
patch can exactly reproduce constant stress and electric displacement states. However, a
minimum number of Dirichlet boundary conditions has to be applied in order to elimi-
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„Standard“ multi-

element patch tests

One-element tests

homogeneous

heterogeneous

Displacement patch test

Force patch test

Individual Element Test (IET)

Single Element Test (SET)

Mixed patch test

Weak patch tests

Figure 3.4: Overview of the patch test variants (gray: applied variants to test the presented ele-
ment).

nate rigid body motions. Besides to that, there are also mixed patch tests that combine both
force and displacement boundary conditions (beyond rigid body mode preventions).

The basic idea behind the patch test is that "a good element must solve simple problems
exactly whether individually, or as component of arbitrary patches" [Fel06]. And if the
element can reproduce constant states and rigid body motions correctly, it should be
able to approximate any solution state if the mesh is fine enough. Nevertheless, it has
been shown that the passing of the patch test is neither a necessary nor a sufficient con-
dition for convergence [Bis99, Kos04]. Instead, it is dependent from the specific patch
test and the specific element formulation with its underlying theory. For several beam,
plate and shell element formulations a failing in the patch test can be permissible without
loosing convergence. However, these elements must provide stiffness relations that are
dependent from the element slenderness to maintain convergence to the correct solution.
This necessitates suitable methods like stabilization techniques (see e.g. [LSV93]). For all
cases were the thickness is just a scaling parameter for the stiffness, the patch test must
be passed and thus represents a necessary condition for convergence. And there are el-
ements like the purely displacement-based 8-noded hexahedron that passes the tension
patch test but severely suffers from diverse locking phenomena [Fis07] such that the low
convergence rate prevents from a practical use with reasonable numerical effort.

Summing up, a passing of the patch test can be considered as a fundamental quality
attribute and shall be targeted in finite element design. However, a combination of sev-
eral patch test types is reasonable, and it should be supplemented with further element
benchmark examples in order to guarantee not only convergence but also a reasonable
convergence rate.
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3.5 Locking and Incompatible Approximation Spaces

3.5.1 Introduction

Already in the 60ies of the last century, it has been discovered that irreducible finite ele-
ment formulations deliver in some cases very inexact results or converge only very slowly
to the correct result. B. Fraeijs de Veubeke discovered this already in 1965 at 3-noded tri-
angular elements and 4-noded quadrilateral elements [dV65].
First suggestions for the element enhancement were driven by the idea of the increase of
the order of the basis functions [Iro66a]. This turned out to be a reasonable means against
locking in many cases, however the actual reasons for the locking effects remained unex-
plored. In 1973, for the first time a solution strategy for elements with low order of basis
functions has been presented by Doherty, Wilson and Taylor. Their approach, the method
of the incompatible modes [WTDG73], has initially been discussed in a very controverse
manner. However, it formed the basis of the later EAS method.
The term locking goes back to the association that the element locks itself against displace-
ments. The term established itself only in the mid-seventies to describe the phenomenon
that leads to a strong underestimation of the displacements or strong overestimation of
the structural stiffness at the finite element calculation. In 1985, the publication of suitable
test examples by MacNeal und Harder [MH85] as well as by Belytschko et al. [BSL+85]
established a cornerstone of the further finite element development: This allowed for a
posteriori checks of finite elements with respect to their liability to the different locking
phenomena.
Nevertheless, the focus stayed on the avoidance of locking and the definition of new ele-
ment formulations, while the theoretical foundations and reasons of locking still stayed
unexplored. Only in 1992, Babuska und Suri published a comprehensive analysis and
systematic characterization of the locking effects [BS92]. Babuska und Suri [BS92] identi-
fied the dependency of the solution from a critical parameter as fundamental property of
every locking phenomenon: For a fixed mesh density the locking-induced error increases
steadily if the critical parameter approaches its critical value λ −→ λcrit. Thus locking
can also be defined as reduced convergence rate in dependence of a critical parameter.
For reasons of clearness, this chapter makes recourse to 1D- and 2D-examples to provide
a deeper insight into the causes of locking and highlight solution strategies to eliminate
related element deficiencies. Furthermore, linearized strain and stress measures are as-
sumed throughout this section. However, the gained insight is clearly utilizable in the
context of the advanced composite shell element presented in chapter 4.

3.5.2 Interpretation of Locking

Different point of views contribute to a comprehensive interpretation of locking. Three
different views are presented in the sequel to provide the basis for an investigation of both
mechanical and electromechanical locking effects in chapter 3.5.3 and 3.5.4. For further
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details to the three presented point of views of locking the reader is kindly referred to
Bischoff and Koschnick [Bis05, Kos04].

3.5.2.1 Mechanically Motivated Point of View

The most intuitive way to interpret locking is the mechanically motivated point of view:
The locking effect is explained with the unwanted existence of parasitic stresses. Parasitic
means here that these contributions do not exist in the analytical solution but only in the
discrete solution. The resulting parasitic contributions to the overall internal energy lead
to additional, artificial stiffness. As a consequence, also the primary variables are affected
after the solution of the underlying equation system.
With increasing rate of parasitic stiffness, the overall mechanical behavior is dominated
by the locking effect and the results are useless.
The drawback of the mechanically motivated point of view is the rather arbitrary and
unreliable identification of parasitic strains or stresses. Linear triangular elements for
example are free of parasitic stresses but exhibit severe stiffening defects [Fis07].
However, the interpretation of the stiffening effects as the existence of parasitic stresses
also led to the development of a lot of enhanced element formulation techniques, e.g.
the method of reduced integration (chapter 3.6.1), the assumed natural strain method
(chapter 3.6.2) or the enhanced assumed strain method (chapter 3.6.3).

3.5.2.2 Mathematical Point of View

From a mathematical point of view, the ill-conditioning of the system of partial differen-
tial equations is analyzed. Thus the analysis of locking effects is based on the convergence
properties of the underlying functional. The term locking is rarely used in mathematically
oriented literature. An important contribution has been made by Babuska und Suri with
their comprehensive analysis characterization of the locking effects [BS92].

In the mathematical context, the Céa’s lemma can be used for error estimation and con-
vergence evaluation [Bra97]. The Céa’s lemma provides an upper bound for the error
of elements of irreducible form. However, as it assumes structured meshes, it does not
account for mesh distortion effects. Thus the element-dependent sensitivity to mesh dis-
tortions must be investigated separately.
Again the critical parameter λcrit can be identified as measure that triggers the conver-
gence behavior: With λ −→ λcrit, the ratio between the stiffness terms in the discretized
equation system strongly increases. This leads to a dominant behavior of the parasitic
terms (see also section 3.5.2.1).

Furthermore, it is important to verify if the variational formulation of the element under
consideration has an unique solution. A common approach in the context of irreducible
element formulations is here the inf-sup condition (see e.g. Braess [Bra97] or Bischoff
[Bis99]). Combining the verification of the continuity condition and the verification of
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the inf-sup condition which proves the V-ellipticity of the functional, the existence of a
unique solution can be proven.

In the context of multi-field functionals, the inf-sup condition is not enough. Instead,
the Babuska-Brezzi condition has to be examined which goes back to the work of Babuska
and Azis [BA72] as well as Brezzi [Bre74]. A short and clear introduction to the Babuska-
Brezzi condition can be found at Braess [Bra97] and Bischoff [Bis99].

All in all, the mathematical point of view focuses on the proof of stability and conver-
gence of the element formulation. However, the mechanical background of the problem
is not under investigation.

3.5.2.3 Numerical Point of View

Last but not least, the third point of view to interpret locking effects is the numerical one
suggested by Hughes [Hug00]. To do so, a constraint ratio is defined:

r =
neq

nc
=

nnodes · ndo f

nc
(3.2)

where neq describes the overall number of degrees of freedom that contribute to the con-
straint equations under consideration. Furthermore, nc denotes the number of system
constraints, like the Bernoulli- or Kirchhoff-condition for beams and plates (in the con-
text of transverse shear locking) or the incompressibility condition of solid elements (in
the context of volumetric locking).
However, the definition of r according to equ. (3.2) introduces a discretization depen-
dency. Thus an infinitely large, structured mesh is assumed to derive conclusions for a
single element. Under these conditions, the ratio of node number to element number is
determined for different element types. Examples of 2d-elements are given in table 3.1.

Linear triangular elements: n3
nodes =

1
2

Bilinear quadrilateral elements: n4
nodes = 1

Quadratic triangular elements: n6
nodes = 2

Bi-quadratic quadrilateral elements: n9
nodes = 4

Table 3.1: Ratio of node number to element number [Kos04].

In the case of numerical integration, the number of constraint equations is determined by
the number of Gaussian points as the constraint equations are only to be fulfilled there.
A violation of a constraint equation at any other position would not be recognized. Thus
the constraint ratio can be determined with:

r =
neq

nc
=

ni
nodes · nelem · ndo f

nG · nc,elem · ndo f
=

ni
nodes · nelem

nG · nc,elem
(3.3)
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where nG is the number of Gaussian points per element, nc,elem denotes the number of
constraint equations per element and nelem represents the element number. Summing up,
the constraint ratio according to equ. (3.3) is only dependent on the element shape, the
number of element degrees of freedom, the number of elements and the number of Gauss
points. Thus for a system with given geometry and given element type, there is only the
number of Gaussian points nG in order to manipulate the constraint ratio r.

The numerical point of view is a heuristic approach which is not so much a precise
method to analyze arbitrary finite elements as an easy and efficient tool to investigate
the disposition of the element to locking. Comparing the calculated constraint ratio r
with the optimal constraint ratio rk obtained from the continuous problem, three cases
can be distinguished:

• r < rk: Disposition to locking.

• r = rk: Optimal case: neither disposition to locking, nor to zero energy kinematics.

• r > rk: Possible disposition to zero energy modes.

Thus elements with a disposition to locking (and thus too small constraint ratio r) can be
improved by reducing the number of Gaussian points. This corresponds to the effects of
the method of reduced integration as introduced in chapter 3.6.1

Is should be pointed out that this numerical point of view is intended to give a fast and
easy estimation of the disposition to locking, without mathematical rigor. Furthermore,
the method is not for all elements as reliable as for incompressible solid elements which
the method was initially introduced for [Hug00]. Beyond that, the sensitivity of elements
to mesh distortion is not covered.

3.5.3 Mechanical Locking Phenomena

The following chapter is meant to provide a review and summary of the reasons that lead
to the stiffening effects of the structural locking phenomena. This insight is the prerequi-
site to develop and evaluate suitable element enhancement techniques. Further insight
to this topic is given e.g. at [Kos04, Bis99, Fis07]. Focus is put here on pure mechanical
types of locking. However, it must be pointed out that these element deficiencies are in
the same way crucial as well for coupled electromechanical problems (see examples in
chapter 7). Locking effects that directly stem from the electrical fields will be covered
separately in chapter 3.5.4.

Using the critical parameter λcrit, a classification of the stiffening effects in geometrical
and material locking effects is possible (see Table 3.2). Thus the classification is done
here based on the system constraint which is responsible for the stiffening effect (see also
numerical point of view in chapter 3.5.2.3).
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Locking types Critical parameter

Geometric
locking effects

(Inplane) shear locking: Element aspect ratio
Transverse shear locking: Slenderness
Membrane locking: Slenderness
Trapezoidal locking: Element aspect ratio
Curvature thickness locking: Slenderness

Material
locking effects

Volumetric locking: Bulk modulus (Poisson’s ratio)

Table 3.2: Overview: Mechanical locking phenomena and related critical parameters.

3.5.3.1 In-Plane Shear Locking

In-plane shear locking can arise at solid elements, shell elements and plates in membrane
action. The name goes back to parasitic strain that is responsible for this locking effect:
the arising (in-plane) shear in a bending situation. In-plane shear locking is especially
significant if elements of low order are subjected to pure bending deformations.

Insight to this locking phenomenon shall be given at the example of a linear elastic 2D-
problem modeled with solid elements (see e.g. also [Kos04]). Table 3.3 shows the correct
results for strains and stresses of the continuous problem of inextensional bending.
For reasons of clarity, the global and the natural coordinate system are set to have
the same origin and orientation. The vertical displacements u3 are obtained to have a
quadratic behavior in ξ while the horizontal displacements u1 are linearly dependent in
both ξ und ζ. As a consequence, normal strains E11 with a linear dependence in ζ are
obtained, while E33 und E13 disappear. Following the assumption of a linear elastic mate-
rial law, a normal stress S11 with linear dependence from ζ is obtained, while S33 and S13

cancel out.
However, it can be identified by an investigation of the deformation modes that this bend-
ing state cannot be represented adequately by an element formulation with bilinear basis
functions. All presentable deformation states of the bilinear element can be derived from
a linear combination of the deformation modes shown in tab. 3.4. This can be reformu-
lated with:

u1 = c1 + c2 · ξ + c3 · ζ + c4 · ξζ

u3 = c5 + c6 · ζ + c7 · ξ + c8 · ξζ (3.4)

In table 3.4, the modes 1 and 5 represent the rigid body modes, modes 2 and 6 reflect
normal strains, and modes 3 and 7 show states of constant shear. Thus only the modes 4
and 8 are remaining to represent the bending state according to tab. 3.3. However, both
modes 4 and 8 represent a coupled state of linear shear and linear normal strain.
Thus in order to represent a strain state E11 that is linearly dependent from ζ, only defor-
mation mode 4 can be activated. While the normal strains E11 and E33 and thus also the
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Correct state according to
linear bending theory:

u1 ∼ ξζ

u3 ∼ − 1
2 ξ2

S11 ∼ E
1−ν2 ζ

S33 = 0
S13 = 0









h

t

13S

11S

u1

u3

Solution of a
bilinear element:

u1 ∼ ξζ

u3 = 0

S11 ∼ E
1−ν2 ζ

S33 = 0
S13 ∼ E

2(1+ν)
ξ









h

t

13S

11S

1/t 1/t

1/t1/t

Solution of a
biquadratic element:

u1 ∼ ξζ

u3 ∼ − 1
2 ξ2

S11 ∼ E
1−ν2 ζ

S33 = 0
S13 = 0









h

t

13S

11S

1/t 1/t

1/t1/t


Table 3.3: Deformation and stress state in case of pure bending.
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Deformation mode 1 2 3 4 5 6 7 8





c1 c2 c3 c4 c5 c6 c7 c8

u1 1 ξ ζ ξζ - - - -

u3 - - - - 1 ζ ξ ξζ

E11 = u1,1 0 c2 0 c4 · ζ 0 0 0 0

E33 = u3,3 0 0 0 0 0 c6 0 c8 · ξ

E13 = 1
2 (u1,3 + u3,1) 0 0 c3 c4 · ξ 0 0 c7 c8 · ζ

Table 3.4: Overview of the 8 deformation modes of the linear 2D quadrilateral element.

normal stresses S11 and S33 can be represented correctly, the shear strain and stresses do
not cancel out as required (see table 3.3). In general, as soon as pure bending has to be
described, the arising of parasitic shear stresses is inevitable.

In order to further investigate the influence of the parasitic shear stresses, the inner po-
tential of this 2D example is formulated [Kos04]:

∏int

bilin
=

1
2

− t
2∫

t
2

− h
2∫

h
2

(
S11E11 + S13E13

)
dxdz =

Et3h
24 (1− ν2)

 1︸︷︷︸
bending part

+

(
h
t

)2

· 1− ν

2︸ ︷︷ ︸
parasitic shear part


(3.5)

where a plane stress situation and a thickness of 1.0 is assumed for simplicity. The contri-
bution of the parasitic shear part within the inner potential of equ. (3.5) is proportional

to the square of the aspect ratio
(

h
t

)2
. This explains the weak performance of related el-

ements for high aspect ratios h
t and approves the aspect ratio to be the critical parameter

according to tab. 3.2. In contrast to the bilinear element, the biquadratic element is able
to correctly represent the pure bending state according to Table 3.3.

3.5.3.2 Transverse Shear Locking

The name of transverse shear locking goes back to parasitic strain that is responsible
for this locking effect: the arising (in-plane) shear in a bending situation. Transverse
shear locking is known for oscillations of the transverse shear on the element level. Thus
a reasonable stress analysis is in general not possible due to the zig-zag shape of the
transverse shear stresses.



3. Fundamentals of the Finite Element Method 71

Transverse shear locking only appears at structural elements that consider transverse
shear strains. Thus this locking effect is restricted to Timoshenko beams, as well as
Reissner-Mindlin plates and shells with related kinematics. The critical parameter is the
element slenderness. Due to the early development of structural elements like beams,
plates and shells, this locking effect is already known for a long time. However, the in-
tensive scientific treatment of this locking phenomenon originates from the devastating
effects of transverse shear locking on the finite element results [Bis05]. For thin shells
with formulations based on irreducible forms, it is practically impossible to gain satisfy-
ing finite element results with an reasonable amount of effort.
The background of transverse shear locking shall be demonstrated at the 2D-example of
a two-noded Timoshenko beam element [Bis99, Kos04].

1 2

x




w1
w2

L

Figure 3.5: 2-noded Timoshenko beam element with its degrees of freedom.

The transverse shear strain γ is defined to be positive in counterclockwise direction,
while w′ = ∂w/∂x is oriented in clockwise direction. Figure 3.6 shows the kinematics for
an infinitesimal beam element in the deformed case of shear and bending.

dx



 w´

a) undeformed element           b) shear deformation                  c) bending deformation

´dx

Figure 3.6: Kinematics of an infinitesimal part of a Timoshenko beam.

Thus the kinematic field equation for shear deformation can be defined with:

γ =
∂w
∂x

+ φ = w′ + φ (3.6)

Separated linear assumptions are made for the behavior of displacement w and rotation
φ of the Timoshenko beam:

wh (x) =
2∑

i=1

Ni (x) · wi =
(

1− x
L

)
w1 +

x
L

w2 (3.7)
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Figure 3.7: Timoshenko beam element: Parasitic shear strain in pure bending state.

ϕh (x) =
2∑

i=1

Ni (x) · ϕi =
(

1− x
L

)
ϕ1 +

x
L

ϕ2 (3.8)

where the index h reflects the discretization. Thus the discretized form of the transverse
shear results in:

γh (x) =
∂wh

∂x
+ ϕh =

2∑
i=1

(
Ni

,x · wi + Ni · ϕi

)
=

1
L
(w2 − w1) + ϕ1 +

x
L
(ϕ2 − ϕ1) (3.9)

With the investigation of a pure bending state, the deficiencies of a two-noded Timo-
shenko beam element can be revealed. A linear shear distribution is obtained from equ.
(3.9) if the kinematic boundary conditions w1 = w2 = 0 and φ = φ2 = −φ1 6= 0 are
inserted.

γh (x) = φ ·
(

2x
L
− 1
)
6= 0 (3.10)

Thus the shear strains do not vanish according to equ. (3.10) as they should according to
the analytical result. Figure 3.7 brings the finite element model of the linear Timoshenko
beam face to face with the correct analytical state.

The origin of these parasitic shear strains lies in the deficient balancing of the basis for-
mulations for displacements and rotations. The usage of separated basis functions for
the displacements and the rotations results in linear behavior of the rotations and a con-
stant behavior of the displacements ( Figure 3.7). Thus the linear contribution of the shear
strains cannot be balanced and the constraint equation γ = 0 cannot be fulfilled along
the overall element.
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Similar to the investigations of the in-plane shear locking at an bilinear 2d-element in
chapter 3.5.3.1, now the contribution of parasitic strains to the overall strain energy shall
be examined [Kos04]:

∏bending
=

Et3

24

∫
x

κ2dx =
Et3

24

∫ L

0
(ϕ,x)

2 dx =
Et3

6L
φ2 (3.11)

∏shear
=

Et
1− ν

∫
x

γ2dx = αs
Et

1− ν

∫ L

0
(ϕ− w,x)

2 dx = αs
EtL

3 (1− ν)
φ2 (3.12)

with the shear correction factor αs = 5/6. Thus the ratio of shear to bending energy
results in: ∏shear

/
∏bending

=
2αs

(1− ν)
·
(

L
t

)2

(3.13)

The proportion factor
( L

t

)2
means that the influence of shear energy increases for beams

with increasing slenderness. However this contradicts the behavior of real structures
where the shear part also vanishes if the thickness approaches zero. Thus this shear en-
ergy can be identified to be parasitic, and the critical parameter is obviously the slender-
ness, i.e. the ratio of length to thickness. Furthermore, equ. (3.13) shows that increasing
mesh refinement let the result again tend to the correct solution as the slenderness L

t is
decreased again in this case. However, in many cases the needed amount of mesh refine-
ment precludes satisfying finite element results with an reasonable amount of effort, and
deficiencies like the parasitic zig-zag shape of the shear stress cannot be eliminated with
mesh refinement.

3.5.3.3 Trapezoidal Locking

Trapezoidal locking can only show up at curved systems with bending action. It primari-
ly arises at solid elements. However, this locking effect can also arise in the context of
shell structures that exhibit in-plane curvature. The trapezoidal shape is a natural con-
sequence of the discretization of a curved structure and not the accidental effect of an
arbitrary mesh distortion (see Figure 3.8).

In order to guarantee that only locking phenomena and no mesh distortion effects are
observed, curved structures with regular meshing should be chosen. A four-noded trape-
zoidal plate element according to Figure 3.9 under bending deformation is chosen for the
investigations. The strains in the local coordinate system of the element are defined with:

Ebilin
11 =

ht
2

ζ (αζ − 1) (3.14)

Ebilin
33 =

αht
2
(
ξ2 − 1

)
(3.15)

Ebilin
13 =

ht
2

ξ (2αζ − 1) (3.16)
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Figure 3.8: Distinction of trapezoidal mesh distortion and trapezoidal locking
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Figure 3.9: Trapezoidal bilinear element subjected to bending.

The correct strain components for pure bending are:

E11 ∼ ζ (3.17)

E22 = 0 (3.18)

E12 = 0 (3.19)

It can be identified that all three strain components differ from the correct values if α 6= 0.
The error grows with increasing α which is a measure for the curvature of the structure.
Analogously to the in-plane shear locking of the bilinear solid element shown above in
this chapter, the parasitic shear strains Ebilin

13 are linear with respect to ξ. The parasitic
normal strains Ebilin

33 have a quadratic shape and vanish along the element edges with
ξ = ±1. This defect is unique for trapezoidal locking and thus a useful measure to
identify this locking phenomenon.

3.5.3.4 Curvature Thickness Locking

Curvature thickness locking is commonly categorized as an special case of trapezoidal
locking. In 1994, this locking phenomenon has been described for the first time by Ramm,
Bischoff and Braun [RBB94]. As the presented piezoelectric shell element in chapter 4
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belongs to this category, this locking effect is also described in this work.
Like identified above in the context of trapezoidal locking, the parasitic stresses are again
normal stresses in thickness direction. Similar to the distinction of in-plane shear locking
and transverse shear locking, a distinction between trapezoidal locking and curvature
thickness locking can be made by the element plane that reveals the parasitic strains.
This locking phenomenon only appears at shell elements that are deformable in thickness
direction and that use difference vectors of averaged directors as degrees of freedom.
The phenomenon of curvature thickness locking shall be investigated at a linear beam
element subjected to bending.

z

x

a3

A3
Node1

Node1

A3

Node2

a (0)3

w
Node1

w
Node2

a3

Node2
A3

Node1a

Figure 3.10: Curvature thickness locking: Parasitic normal strains.

The director ANode i
3 represents the normal to the discretized shell mid-surface at node

i. It is determined by averaging the normals of the neighboring elements at this node i.
Accordingly, aNode i

3 represents the discretized director at node i in the deformed configu-
ration. The director along a linear beam element can be determined with:

Ah
3 =

1
2
(1− ξ)ANode 1

3 +
1
2
(1 + ξ)ANode 2

3 (3.20)

In the same way, the deformation vector of the director from reference configuration to
actual configuration can be interpolated with:

wh =
1
2
(1− ξ)wNode 1 +

1
2
(1 + ξ)wNode 2 (3.21)

In the case of pure bending, the director is expected to have no change in length and it
holds: A3 ·w = 0. Assuming a symmetric bending deformation with |w| =

∣∣wNode 1
∣∣ =∣∣wNode 2

∣∣, it holds due to simple trigonometric relations [Kos04]:

ANode 1
3 ·wNode 2 = ANode 2

3 ·wNode 1 =
t
2

sin(α) |w| (3.22)

Using the relations of equ. (3.20) - (3.22), the parasitic normal strains can be derived:

Eh
33 = Ah

3 ·wh =
1
4
(
1− ξ2) t sin(α) |w| (3.23)

This relation reveals that curvature thickness locking is indeed only existing in the con-
text of curved structures. In the case of zero curvature (α = 0), the parasitic normal
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strains according to equ. (3.23) are vanishing. Furthermore, a mesh refinement leads to
reduction of the angle α between neighboring directors and thus leads to a reduction of
the parasitic strains. The critical parameter of curvature thickness locking is the slender-
ness of the element.
All these aspects of curvature thickness locking shown at the example of a linear beam el-
ement hold analogously in the case of the presented piezoelectric shell element of chapter
4, as it also adopts extensible and averaged directors. Consequently, a suitable element
enhancement by the EAS method will be applied to eliminate this locking phenomenon.

3.5.3.5 Membrane Locking

Membrane locking only shows up in the case of curved structures, just like trapezoidal
locking. It can arise at beam, shell and solid elements. Membrane locking is the stiffen-
ing effect of parasitic membrane stresses in the case of inextensional bending. Similarly
to transverse shear locking, the parasitic strains exhibit an oscillating behavior and the
slenderness can be identified as the critical parameter. In general, the severity of the
detrimental effects of membrane locking can be comparable to the malicious effects of
shear locking. In the context of membrane locking, it is not of importance if the element
is based on shear-deformable kinematics or not, as the decisive normal strains are not
dependent from these assumptions.
In contrast to trapezoidal locking, membrane locking only arises if the element itself is
curved, and not only the structure. As a consequence, linear triangular elements are free
of membrane locking, while elements of quadratic or higher basis functions usually show
strong membrane locking effects [Kos04].
The mathematical view of membrane locking shows striking parallels to transverse shear
locking. Instead of transverse shear stiffness, now the membrane stiffness is the critical
part. Furthermore, small errors in the kinematic representation of the deformation are en-
larged due to the ill-conditioning of the problem. This effect increases with the growing
critical parameter slenderness.

A prominent demonstration example of membrane locking is the weakly curved beam
(Marguerre beam, see e.g. [Kos04, Bis05]) which is discretized with a three-noded beam
element with quadratic basis functions.

However, it should be mentioned that the piezoelectric shell elements of chapter 4 with
linear basis functions are only weakly affected by membrane locking.

3.5.3.6 Volumetric Locking

In contrast to all other presented locking effects, volumetric locking is not a kinematic
or geometric effect, but depends on a material parameter: the Poisson’s ratio ν. That’s
why this phenomenon is also commonly called Poisson locking in the literature. In general,
volumetric locking is based on the existence of parasitic volumetric strains at deviatoric
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deformation modes [AR93]. For ν = 0, volumetric locking is precluded. With growing
Poisson’s ratio, the problem is more and more ill-conditioned from a mathematical point
of view. With ν→ 0,5 and thus for a compression modulus going to infinity, the material
tends to be incompressible. The related critical constraint is

div (u) = ui,i = u1,1 + u2,2 + u3,3 = 0 (3.24)

For demonstration purposes, a plane strain state is assumed with the related material law S11

S33

S13

 =
E

(1 + ν) (1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2


 E11

E33

E13

 (3.25)

and with E22 = u2,2 = 0, which reduces equ. (3.24) to:

div (u) = u1,1 + u3,3 = 0 (3.26)

This condition is e.g. fulfilled by the following deformation state [Kos04]:

u1 ∼ ξζ E11 = ζ S11 = E(1−ν)ζ
(1+ν)(1−2ν)

− Eν·νζ
(1+ν)(1−2ν)(1−ν)

= E
1−ν2 ζ

u3 ∼ − 1
2 ξ2 − ν

2(1−ν)
ζ2 E33 = − ν

1−ν ζ S33 = 0

E13 = 0 S13 = 0
(3.27)

However, if this strain state is approximated with plate elements with bilinear basis func-
tions, this results in:

ubilin
1 ∼ ξζ Ebilin

11 = ζ S11 bilin = E(1−ν)
(1+ν)(1−2ν)

ζ

ubilin
3 = const. Ebilin

33 = 0 S33 bilin = Eν
(1+ν)(1−2ν)

ζ

Ebilin
13 = ξ S13 bilin = E

2(1+ν)
ξ

(3.28)

This example confirms the increase of parasitic stresses with growing critical parameter:
In the limit ν → 0.5, both S11 bilin and S33 bilin are going to infinity. Figure 3.11 illustratres
the origin of volumetric locking: In the real bending state, the material fibers of the upper
cross sectional area are getting thinner due to Poisson effects, while the fibers of the lower
area are expanding under pressure. This leads to a displacement of the centerline of the
cross section for ν 6= 0. However, this effect cannot be represented by a bilinear plate
element, as the basis function prescribes a linear interpolation between the corner nodes.
Thus if the four nodes do not move vertically, each point within the element is as well
fixed in vertical direction. In other words: The origin of volumetric locking is based in
the missing feature to represent linear strains in thickness (here: ζ-) direction.
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Figure 3.11: Volumetric locking of the bilinear plate element.

3.5.4 Electromechanical Locking Phenomena

Besides to the "classical" mechanical locking phenomena described in chapter 3.5.3, piezo-
electric elements can suffer from further locking effects that are directly related to the
electric field discretization. This shall be demonstrated at 2D examples of piezoelectric
material with polarization ~P3 which is assumed to be the thickness direction.

A linear ansatz of the electric potential field in thickness direction is assumed. The electric
field is derived as described in chapter 2.4. Thus ~E1 is capable to represent linear behavior,
while ~E3 is only of constant type.

3.5.4.1 Pure Bending

Already in the case of transverse shear locking, it has been shown that deficient balanc-
ing of the basis formulations for the primary variables can be the origin of locking. In the
case of transverse shear locking, the balancing between the separate basis functions for
displacement and rotation has been identified to be crucial. In the case of electromechan-
ical locking, the deficient balancing of the basis functions of the displacement field and
the electric potential field is the origin of the locking phenomenon.

For demonstration purposes, the case of pure bending of the 2D electromechanical prob-
lem is investigated (compare also Legner [Leg11]). The analytic solution according to
linear bending theory leads to a strain component E11 that is linear along the thickness
direction. Similarly, also the electric field ~E3 shows a linear behavior over the thickness
in the analytic solution (Figure 3.12).
However, in the case of the element formulation with linear ansatz of the electric poten-
tial field in thickness direction, the electric field ~E3 can only be represented by a constant
behavior over the thickness. Beyond that, the linear strain E11 is linked in one deforma-
tion mode to the constant ~E3 in the same manner as it is linked to the linear shear strain
E31 (compare Table 3.4 of structural in-plane shear locking and Figure 3.12). Thus sum-
ming up, this element suffers from both in-plane shear locking and electromechanical
locking if subjected to bending.
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Figure 3.12: Pure bending state of a piezoelectric material.

3.5.4.2 Shear Loading

As a second test case, a clamped piezoelectric beam subjected to a single load shall be
investigated. Again all strain and electric field strength components of the pure bending
case are activated as in the example before. Beyond that, the analytic solution shows a
shear strain E13 and an electric field strength ~E1 that both have a quadratic behavior along
the thickness direction.
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Figure 3.13: Shear loading on a piezoelectric beam.
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The numerical result of the chosen linear element shows again the parasitic linear shear
strain E13 as well as the defective constant electric field strength ~E3 due to the bending
mode. The shear strain E13 can only be approximated by a constant shear mode. How-
ever, this is in general sufficient, as a shear correction factor can be integrated to eliminate
this induced error.
However, the quadratic shape of the electric field strength ~E1 can by no means be repre-
sented with the chosen linear interpolation of the electric potential. All in all, the parasitic
electric field contributions can severely deteriorate the potential field approximation and
thus lead to wrong representation of sensor signals - even if the shear locking effects can
be eliminated.

3.6 Enhanced Element Formulations

Due to the serious influence of locking, an independent research branch of finite element
technology has established itself within the past 50 years which is dedicated to the de-
velopment of locking-free elements. As a consequence of intensive research in this field,
numerous element enhancement techniques have been developed.
The principles of some established element enhancement techniques shall be presented
in this chapter. For reasons of clearness, this chapter makes again recourse to 1D- and 2D-
examples and assumes linearized strain and stress measures to provide a deeper insight.
Details of the enhanced element formulation techniques related to the presented piezo-
electric shell element are postponed to chapter 4.

3.6.1 Reduced Integration

The uniform reduced integration (URI) goes back to a publication of 1969 by Doherty,
Wilson and Taylor about 2D solid elements [DWT69]. It represents from the historical
point of view the first method in order to avoid locking phenomena.
The basic idea is the choice of a reduced integration order compared to the correct one
that would actually be necessary for a correct integration. The uniform reduced inte-
gration is a easy and effective method to eliminate locking phenomena. On top of that,
computational time can be saved. In seldom cases, even the equivalence of reduced inte-
gration and mixed formulations can be shown [MH78].
Critical drawback of this method is the possible existence of zero energy modes (see chap-
ter 3.3). For example the 8-noded hexahedron that is integrated with 1 Gaussian integra-
tion point instead of the actually needed 2x2x2 Gaussian points leads to 12 unwanted
zero energy modes which create hourglass deformation modes [Fis07]. The correct re-
sult is completely hidden by dominating zero energy modes. In general, the method of
uniform reduced integration is useless as long as zero energy modes enter the result.

However, already in the origins of the method, the improved approach of the selective re-
duced integration (SRI) has been applied. It is based on the principle idea to split the strain
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energy into mechanically motivated parts and to integrate the related contributions to the
stiffness matrix with different integration rules. Just like in the previous chapter, the 4-
noded quadrilateral solid element can be used as example: The parasitic shear stresses of
in-plane shear locking with linear behavior (compare Table 3.3 in chapter 3.5.3.1) can eas-
ily be eliminated by integration of the shear stiffness contribution by 1 Gauss point. This
means that a suitable reduced integration can efficiently blank out the parasitic terms.
The normal stresses can be integrated with 2x2 Gaussian points without any changes. As
a consequence, the selective reduced integration often generates a good compromise be-
tween efficiency and stability. However, the SRI elements - although to a smaller degree -
still suffer from the same deficiencies as URI elements.

Also the numerical point of view of locking (chapter 3.5.2.3) provides a useful interpre-
tation of the reduced integration approach: The number of Gaussian points is a suitable
parameter to manipulate the constraint ratio according to equ. (3.2) and consequently the
disposition to locking. In order to increase the constraint ratio r in the case of locking, the
number of Gaussian points in the denominator of r just has to be reduced. In the same
manner, r > rk represents in the case of a too small number of Gaussian points the risk of
zero energy modes.

The uniform reduced integration as well as the selective reduced integration have been
widely used as well in the context of shell elements. Also transverse shear locking of
plates can be tackled by selective reduced integration if shear and bending contributions
are separated. However, the resulting element stiffness can loose the correct rank and
then stability is not guaranteed anymore [Kos04].
However, reduced integration gets more complicated in the 3D case. Instead of one shear
strain term in the 2D case, three shear terms E12, E13 and E23 have to be integrated in a
reduced manner along the coordinate axes of the linear parasitic strains. Also the separa-
tion of the reduced integrated contributions gets more difficult. On top of that, SRI and
URI elements are usually highly prone to element distortion such that the element result
quality considerably decreases in these cases.

3.6.2 ANS Method

The investigation of the parasitic strains as origin of locking has been the starting point
of the method of assumed natural strains (ANS). The basic idea of the ANS method is
the suitable modification of the strain field such that the parasitic terms are eliminated
[HT81, BD85]. In today’s element formulations, the ANS method has established itself
especially in order to avoid transverse shear locking. Also the presented piezoelectric
element formulation in chapter 4 adopts the ANS approach in this context.

A prominent example for the illustration of the ANS method is the 4-noded bilinear
Reissner-Mindlin plate element (Figure 3.14). Here the displacements wi and the rota-
tions φi are interpolated linearly and independent from each other (compare also the
Timoshenko beam in section 3.5.3.2). For illustration purposes, the case of uniaxial, pure
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Figure 3.14: ANS method: Illustration at the example of the MITC4 element.

bending with mx = const. shall be examined [Kos04, Fis07]. Similar to the defect of a lin-
ear interpolated Timoshenko beam element, the shear strains γx do not vanish but show
a linear behavior. Thus parasitic shear strains arise and form the origin of strong trans-
verse shear locking effects as described in chapter 3.5.3.2.
The ANS method evaluates the strains of the displacement-based element at discrete
points that provide correct strains results without parasitic effects. These points are called
sampling points or collocation points and are denoted by A, B, C, D in Figure 3.14 and Figure
3.15. Using the strain values at the collocation points, modified strain fields can be de-
fined with the help of appropriate basis functions (Figure 3.15).
Depending on the order of the element basis functions and the specific strain contribu-
tions to be modified, different collocation points have to be determined. The determina-
tion of the collocation points is done a priori using appropriate test cases. For example



3. Fundamentals of the Finite Element Method 83

A

gx

x

h
x

h

B

D

C

A

gx
B

gy
D

gy
C

g x,h h g h gx x x( ) = 1/2 (1+ ) + 1/2 (1- ). .A B . C D

Modified B-operator:

g = B uS
.

g x,h x g x gy y y( ) = 1/2 (1+ ) + 1/2 (1- ).

Figure 3.15: ANS method: Modified shear strain interpolation of the MITC4 element.

in the case of the bilinear Reissner-Mindlin plate element, the zero-crossing points of the
original, displacement-based strains of the load case of pure uniaxial bending are used.
The modified strains can be described in terms of the original nodal deformation vec-
tor u of the element. Thus no additional degrees of freedom have to be defined. The
modification of the strain field leads finally to a modified B-operator which maps the el-
ement deformation vector to the strain field. At the example of the MITC4 element, the
discretized transverse shear strain γ is defined as follows:

γ = BS u (3.29)

Thus the stiffness matrix of the ANS element results in [Kos04]:

K =

1∫
−1

1∫
−1

BT
BCBBB det (J) dξdη

︸ ︷︷ ︸
unchanged bending part

+

1∫
−1

1∫
−1

BT
S CSBS det (J) dξdη

︸ ︷︷ ︸
modi f ied shear part

(3.30)

Due to the modification of the B-operator, the ANS method belongs to the B-bar methods.
Furthermore, the ANS method can be consistently derived from a mixed functional
[SH86].
In principle, the ANS method would be applicable to any kind of parasitic strain as long
as enough collocation points can be identified. The criteria for the choice of the collo-
cation points stay the same as in the case of transverse shear locking. Thus the ANS
method can in general eliminate curvature thickness locking, as the related parasitic nor-
mal strains vanish at element edges. Also the membrane locking of 9-noded elements
has been successfully eliminated by the ANS method [Bis99]. However, independent
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modifications, test cases, collocation points and interpolation functions would be neces-
sary for all the different geometrical locking effects. Furthermore, the ANS method is not
well-suited for the elimination of volumetric locking [Kos04].

3.6.3 EAS and EAE Method

3.6.3.1 Historical Background of the EAS Method

The method of the enhanced assumed strains (EAS) goes back to a new formulation for
elements of low order of basis functions published by Doherty, Wilson and Taylor in 1973
[WTDG73]. The so-called "Q6" element has been presented, a bilinear isoparametric 2D
solid element (compare also Table 3.3 in chapter 3.5.3.1) that has been enhanced by two
quadratic displacement modes. The added displacement modes are not part of the linear
interpolation of the displacement field, as they would in general violate the compatibility
between the elements.
In general, the basic idea is to add additional displacement modes such that the corre-
sponding strain modes eliminate parasitic strains and enlarge the space of correctly rep-
resentable strain modes of the original element formulation.
Due to this incompatibility and the initially missing mathematical foundation, the
method was subject of controversial discussions in the seventies of the last century,
despite of the successful application to solid elements as well as thick shell elements
[WTDG73]. The criticism of Strang became famous with his statement "Two wrongs make
a right in California" [SF73]. As the initial Q6 element did not pass the patch test, Taylor
et al. presented 1976 the improved version called "QM6" [TBW76]. This element is able
to pass the patch test, however it exhibits higher sensitivity to mesh distortions. This
approach of Taylor, Wilson et al. became famous as the method of incompatible modes and
became the basis for the development of the EAS method. Later, in 1990, the variational
basis of the EAS method was presented by Simo and Rifai using the modified principle of
Hu-Washizu ("Two rights do make a right, even in California" [SR90]). The EAS method com-
prises the method of incompatible modes as special case and represents a widely used
technique in today’s elements to eliminate locking effects.

3.6.3.2 Illustration of EAS at a 2D Problem

Recalling the variation of the modified Hu-Washizu functional with its extension for elec-
tromechanical problems according to equ. (2.164):

δΠMHW(u, ϕ, Ẽ,~̃E) =
∫

Ω

[
SEu

: δEu + SẼ : δẼ− ~D
~E

ϕ

: δ~E
ϕ − ~D

~̃E
: δ~̃E

]
dV − δΠext

MHW

(3.31)
additional enhanced strains are introduced besides to the displacement-compatible strains
of standard elements of irreducible form. These additional strain terms are introduced
in order to balance the unwanted parasitic strains that cause the locking phenomena (see
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also section 3.5). This a fundamental difference of the EAS method to the B-bar methods
which try to reach locking-free elements via the elimination of the parasitic strains. In
contrast to the method of incompatible modes, no displacement modes have to be de-
signed which would lead again to derived strain modes. In the contrary, the enhanced
strain modes are defined directly.
For reasons of clarity, the principle of the EAS method is illustrated at the example of the
2D 4-noded linear plane stress solid element [SR90, Kos04, Fis07]. In order to merge EAS
and EAE in one example, the ξ-ζ-plane is used. Table 3.5 shows again the 8 compatible
displacement modes that have been introduced in the context of in-plane shear locking
in section 3.5.

Deformation modes EAS modes
1 2 3 4 5 6 7 8 1 2 3 4





c1 c2 c3 c4 c5 c6 c7 c8 α1 α2 α3 α4

u1 1 ξ ζ ξζ - - - - ξ2−1
2

- - ζ2−1
2

u3 - - - - 1 ζ ξ ξζ - ζ2−1
2

ξ2−1
2

-

E11 0 1 0 ζ 0 0 0 0 ξ 0 0 0

E33 0 0 0 0 0 1 0 ξ 0 ζ 0 0

E13 0 0 1 ξ 0 0 1 ζ 0 0 ξ ζ

Table 3.5: Linear 2D quadrilateral element: compatible deformation modes and EAS modes.

Four additional strains modes are added to the element formulation. These enhanced
assumed strains can be collected in a matrix M4:

M4 =

 ξ 0 0 0
0 ζ 0 0
0 0 ξ ζ

 (3.32)

In total, this results in a (in ξ and ζ) linear description of all strain components. Fur-
thermore, Table 3.5 also shows the corresponding displacement modes that belong to the
enhanced strain modes which reveals the equivalence to the QM6 element of Taylor et
al. based on the method of incompatible modes. In general, for each incompatible mode
a corresponding enhanced strain mode can be formulated. However, not all enhanced
strain modes are representable by incompatible displacement modes.
The choice of the specific EAS modes 3 and 4 can be explained at the resulting term for
the discretized shear strains:

E13 = c3 + c7 + (α3 + c4) ξ + (α4 + c8) ζ (3.33)
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Thus in case of a bending deformation according to deformation mode 4, for example, it
holds: c4 6= 0. The related parasitic shear strains can be eliminated if the EAS coefficients
are chosen appropriately with α3 = −c4. In the same way, α4 can balance parasitic shear
strains stemming from c8. As a consequence, bending deformations can be in general
represented without any parasitic shear strains in this case. The finite element is shear-
locking free for uniaxial bending.
The enhanced strains related to α1 and α2 are needed for the elimination of volumetric
locking (see also section 3.5.3.6). These linear enhanced strains are needed to fulfill the
incompressibility condition in the case of (in-plane) bending according to deformation
modes 4 and 8 (Table 3.5). This can be verified looking at the corresponding stresses of a
bending deformation mode assuming a linear elastic material: S11

S33

S13

 =
E

(1 + ν) (1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2


 c4 · ζ

0
c4 · ξ

 =


E(1−ν)

(1+ν)(1−2ν)
· c4 · ζ

νE
(1+ν)(1−2ν)

· c4 · ζ
E

2(1+ν)
· c4 · ξ


(3.34)

Here the shear strains are visible again that can be balanced via EAS mode α3. The origin
of volumetric locking is based on the stresses S33 which show the coupling of the nor-
mal strains via the Poisson’s ratio ν. However, the EAS parameter α2 can be chosen such
that a stress state with zero normal stresses in ζ-direction is representable. Thus the EAS
modes of matrix M4 are sufficient to generate a bilinear element that is completely free
of volumetric locking [AR93].
In the case of distorted meshes and multi-dimensional bending states, additional en-
hanced strain modes can further improve the element result quality. Using M7 for ex-
ample, a complete bilinear strain state can be represented:

M7 =

 ξ 0 0 0 ξζ 0 0
0 ζ 0 0 0 ξζ 0
0 0 ξ ζ 0 0 ξζ

 (3.35)

With these 7 enhanced strain modes, the element provides in total 15 modes, consisting of
3 rigid body modes and 12 deformation modes. For this bilinear 2D element, M7 provides
the optimum number of enhanced strains [AR93]. Further enhanced strain modes would
lead to the same stiffness matrix in this example.

3.6.3.3 Illustration of EAE at a 2D Problem

Similar to enhanced strains, also enhanced assumed electric field strength terms can be
introduced in order to eliminate related parasitic terms and incompatible approximation
spaces of the electromechanical problem (EAE Method).
Recalling the case of structural electromechanical locking according to Figure 3.13 in chap-
ter 3.5.4, a linear electric field representation in thickness direction is missing in order to
eliminate electromechanical locking in a pure bending state. This can be established by
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a suitable ~̃E3-enhancement. Furthermore, a constant representation of the normal strains
in longitudinal direction can be constructed by the EAE method in order to eliminate par-
asitic fields that appear in the context of shear loading. Of course, a constant mode ~̃E1

does not match the analytical result of a quadratic behavior. However, this is not neces-
sarily needed, as a correct result of the primary variables can also be generated adopting
a correction factor comparable with the commonly used shear correction factor. Thus
summing up, all parasitic field effects and incompatible approximation spaces can be bal-
anced, as illustrated in Figure 3.16.
An detailed analysis of the single enhanced electric field modes will be provided in chap-
ter 4.5.3 in the context of the discretization of the piezoelectric shell element formulation.
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Figure 3.16: EAS and EAE principle at the example of a bilinear 2D element.

3.6.3.4 Prerequisites for Enhanced Modes

The side constraints for the determination of shape functions for enhanced assumed
strain modes and enhanced assumed electric field strength modes result from the require-
ments for stability and consistency (see also section 3.2):

1. The enhanced modes are allowed to be C−1-continuous.

2. The enhanced modes must be linear independent from the compatible modes.

3. The enhanced modes must be linear independent from all other enhanced modes.

4. The orthogonality conditions of equ. (2.160) and (2.161) must be fulfilled.
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Requirement 1 can be illustrated at the example of in plane shear locking: the parasitic
shear strains exhibit a zig-zag behavior which of course can only be balanced with en-
hanced strains of same type.
Requirement 2 is needed to exclude zero energy modes and thus to guarantee stability.
This can be illustrated at the following example:

MZEM
5 =

 ξ 0 0 0 ζ

0 ζ 0 0 0
0 0 ξ ζ 0

 (3.36)

The matrix MZEM
5 introduces a zero energy mode that is hidden behind a linear combina-

tion of three modes: E11

E33

E13

 = c4

 ζ

0
ξ

+ α3

 0
0
ξ

+ α5

 ζ

0
0

 =

 0
0
0

 with c4 = −α3 = −α5 (3.37)

Requirement 3 results from the necessity to invert the matrix of enhanced modes for the
static condensation of the additional parameters on the element level.
Requirement 4 is a fundamental assumption of the variational derivation of the under-
lying electromechanical functional. The assumptions are prerequisite for the successful
elimination of the stress field and the electric displacement field from the Hu-Washizu
functional.

The in-depth derivation of the discretized formulation of the EAS method and the EAE
method is discussed later in section 4.5.3



Chapter 4

Theory of the Piezoelectric
Composite Shell Element

4.1 Geometric Definitions and Kinematic Assumptions

In order to efficiently describe the shell element, the element mid-surface is explicitly
defined. The position vector to the point on the mid-surface in the reference configuration
and actual configuration shall be denoted with R and r, respectively.
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G3

A2

q
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3

G2

G1
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X

Figure 4.1: Definition of shell geometry with bases of mid-surface and shell body.

Following the definition according to equ. (2.7), the covariant base vectors at the shell
mid-surface are defined using the derivatives of the position vector with respect to local
coordinates:

Aα = R,α, aα = r,α (4.1)

The director A3 is not derived from the position vector, but is established being perpen-
dicular to A1 and A2. The length of A3 is defined to be the half of the element thickness:

A3 =
h
2

A1 ×A2

|A1 ×A2|
(4.2)
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Having introduced this covariant basis on the shell mid-surface in the reference configu-
ration, we can now describe the position vector X of any point of the shell body by the
shell mid-surface and the director A3 [Büc92, Bis99]:

X = R + θ3A3 with − 1 < θ3 < +1 (4.3)

For the actual configuration we can formulate accordingly:

x = r + θ3a3 (4.4)

4.1.1 Mechanical Part

With equ. (4.3) and (4.4), a complete description of the geometry in reference and actual
configuration is given. As shown in chapter 2.3, this is sufficient to describe all (mechan-
ical) kinematic variables. Using the location vector of a point of the mid-surface in the
actual configuration:

r = R + v (4.5)

together with the relation of the director in the actual configuration:

a3 = A3 + w (4.6)

one obtains the general description of the displacements of a point of the shell body:

u = x− X = R + v + θ3 (A3 + w)−
(
R + θ3A3

)
= v + θ3w (4.7)

Thus the assumptions of the shell model so far lead to 6 independent nodal degrees of
freedom: 3 displacement components v1, v2 and v3 of the mid-surface, and three compo-
nents w1, w2 and w3 of the difference vector between the directors in actual and reference
configuration (Figure 4.2).
However, as a resulting 6-parameter shell with these degrees of freedom would suffer
from Poisson-thickness locking, a linear normal enhanced strain mode in thickness direc-
tion is added according to Bischoff [Bis99]:

E33 = Eu
33 + Ẽ33 (4.8)

The mathematical justification for adding additional strain modes is based on the Hu-
Washizu functional that is used to derive this enhanced element.

As shown in chapter 2.3, a pure continuum mechanical description of strains in 3-
dimensional space requires 6 components to completely describe the deformation state
of a material point: the three normal strain components E11, E22, E33 and the three shear
strain components E12, E13 and E23.
However, in order to separate the thickness direction in the shell element formulation,
the 3-dimensional continuum view must be transferred to a 2-dimensional shell element
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Figure 4.2: Definition of shell deformation.

point of view where the thickness dimension is separated. To this goal, strain and cur-
vature measures must be defined that represent energetically conjugate quantities to the
stress resultants. For conventional 5-parameter shells this means introducing membrane
strains, curvature and shear strains. For the piezoelectric formulation, electric field com-
ponents are added that are constant and linear over the thickness. Beyond that, enhanced
strain and enhanced electric field terms have to be added to the group of kinematic vari-
ables as shown in the sequel.

Starting point for the derivation is the convective coordinate system with its covariant
base vectors according to equ. (2.7). Taking advantage of the geometric and kinematic
assumptions made in section 4.1, the base vectors of a point of the shell body can be
defined in dependence of the shell mid-surface:

Gα = X,α = R,α + θ3A3,α (4.9)

gα = x,α = r,α + θ3a3,α (4.10)

Using the covariant base vectors according to equ. (4.1), one obtains:

Gα = Aα + θ3A3,α (4.11)

gα = aα + θ3a3,α (4.12)

The director vector of a shell volume position is equal to the director of the related shell
mid-surface position:

G3 = A3 (4.13)

g3 = a3 (4.14)
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In three-dimensional continuum theory, the Green-Lagrange strain tensor is dependent
on its position in three-dimensional space. In the convective coordinate system of the
shell, this means a dependence from all three coordinates θi. While θ1 and θ2 are incorpo-
rated via the base vectors and the mid-surface definition, the dependence from θ3 has to
be separately considered due to the semi-discretization in thickness direction. Owing to
the kinematic assumption in chapter 4.1, the function space in thickness direction of the
components of E are restricted to polynomials up to second order in θ3.

Thus the components of the Green-Lagrange strain tensor can be decomposed into con-
tributions that are constant, linear and quadratic in θ3.

Eij = Eu
ij + Ẽij = αij + θ3βij +

(
θ3)2

γij (4.15)

The components of Eu can be derived via setting equ. (2.39) equal to the ansatz according
to equ. (4.15):

Eu
ij =

1
2

(
gi · gj −Gi ·Gj

)
= αu

ij + θ3βu
ij +

(
θ3)2

γu
ij (4.16)

Via inserting equ. (4.11) - (4.14) one obtains:

αu
αβ =

1
2
(
aα · aβ −Aα ·Aβ

)
, (4.17)

αu
α3 =

1
2
(aα · a3 −Aα ·A3) , (4.18)

αu
33 =

1
2
(a3 · a3 −A3 ·A3) , (4.19)

βu
αβ =

1
2
(
aα · a3,β + aβ · a3,α −Aα ·A3,β −Aβ ·A3,α

)
, (4.20)

βu
α3 =

1
2
(a3,α · a3 −A3,α ·A3) , (4.21)

βu
33 = 0, (4.22)

γu
αβ =

1
2
(
a3,α · a3,β −A3,α ·A3,β

)
, (4.23)

γu
α3 = 0, (4.24)

γu
33 = 0. (4.25)

In the following, the behavior of the strains in thickness direction are assumed to be linear.
Thus the quadratic terms γij in equ. (4.16) cancel out. Related errors are restricted to cases
of strong bending deformations of relatively thick or strongly curved shells and to cases
of strong gradients of strains in thickness direction [Büc92, BRR94, Bis99].
Following the definition of equ. (4.8), the additional strain tensor components Ẽij are
zero except for the contribution of linear normal strains in thickness direction. Thus the
components Eij finally result in:

Eij = Eu
ij ∨ (i, j) 6= (3,3) , (4.26)

E33 = Eu
33 + Ẽ33 = αu

33 + θ3 β̃ (4.27)
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It should be mentioned that this special treatment of Ẽ33 is based on the idea to provide
this additional strain component as 7th parameter in the element formulation. Thus equ.
(4.27) and (4.27) refer to the "basic" 7-parameter formulation. The definition of further
enhanced strain modes according to the modified Hu-Washizu functional is explained
later in chapter 4.5.3. Thus this separate treatment of Ẽ33 here is by no means a restriction
of the enhanced assumed strain (EAS) method.

4.1.2 Electrical Part

Similar to the approach in equ. (4.15) for the Green-Lagrange strain, the electrical field
can be assumed to be subdivided into contributions that are constant and linear in θ3:

~Ei = ~E
ϕ
i + ~̃Ei =~αi + θ3~βi (4.28)

Starting from equ. (2.45), the Green-Lagrange electrical field strength can be defined in
the convective coordinate system of the shell with:

~E
ϕ
=

 ~Eϕ
1

~Eϕ
2

~Eϕ
3

 = − ∂ϕ

∂θi Gi (4.29)

A polarization of the piezoelectric material in thickness direction is assumed. Further-
more, the electrodes are assumed to be positioned at the upper and lower surface of the
shell. Thus the potential in thickness direction is of major importance. Furthermore, it
is a common approach to ground one electrode while the other electrode is loaded with
an electric potential. Thus it is sufficient to consider the potential difference ∆ϕ in the
thickness direction instead of single potentials at the lower and the upper surface. As a
consequence, the electric field strength results in

~Eϕ
1 = −∂∆ϕ

∂θ1 G1, ~Eϕ
2 = −∂∆ϕ

∂θ2 G2 (4.30)

~Eϕ
3 = −1

2
∆ϕ G3 (4.31)

Thus one obtains:

~α
ϕ
1 = −∂∆ϕ

∂θ1 (4.32)

~α
ϕ
2 = −∂∆ϕ

∂θ2 (4.33)

~α
ϕ
3 = −1

2
∆ϕ (4.34)

~β
ϕ
1 = 0 (4.35)

~β
ϕ
2 = 0 (4.36)

~β
ϕ
3 = 0 (4.37)



4. Theory of the Piezoelectric Composite Shell Element 94

4.1.3 Generalized Representation

Combining the mechanical and electrical contributions of the kinematics, a generalized
representation can be defined. This also facilitates a unified approach for electrical and
mechanical fields in discretization and implementation. The vector of the degrees of
freedom of node i can be stated as:

d̄i
=
[
vi

1 vi
2 vi

3 wi
1 wi

2 wi
3 ∆ϕi

]T
(4.38)

In the same manner, a generalized vector of shell strains Ē can be defined using equ.
(4.15) and equ. (4.28):

Ē =
[
α11 α12 α13 α22 α23 α33 β11 β12 β13 β22 β23 β33 ~α1 ~α2 ~α3 ~β1 ~β2 ~β3

]T
(4.39)

where the first six entries describe the membrane and shear strains, and the second six
entries describe the bending strains. Furthermore, the last six entries represent the elec-
tric field components that are constant or linear in θ3. Thus in total a vector of 18 entries
has been defined to describe the generalized strains (including the electric field strength
terms). Evaluating the actual contributions to the entries of equ. (4.39) from the kinemat-
ics, the vector:

Ēuϕ =
[
αu

11 αu
12 αu

13 αu
22 αu

23 αu
33 βu

11 βu
12 βu

13 βu
22 βu

23 0 ~α
ϕ
1 ~α

ϕ
2 ~α

ϕ
3 0 0 0

]T
(4.40)

is obtained.

4.2 Static Variables

The shell element formulation is driven by the idea to transform the shell volume inte-
gration into an integration over the shell mid-surface. To this goal, the generalized shell
strain vector has been defined in section 4.1.3. The next step in this context is the defini-
tion of resulting static variables. To this goal, the shell shifter tensor Z is defined:

Z = Gi ⊗Ai (4.41)

which provides a relation between the differential volume element dV and the differential
surface element dA. With µ̄ = |Z| it holds:

dV = µ̄ dθ3dA (4.42)

Using the description of differential volume and surface with covariant base vectors:

dV = (G1 ×G2) ·G3 dθ3dθ2dθ1 (4.43)

dA = |A1 ×A2| dθ2dθ1 (4.44)
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and inserting equ. (4.43) and (4.44) in the relation of equ. (4.42), a calculation rule for µ̄ is
obtained:

µ̄ =
(G1 ×G2) ·G3

|A1 ×A2|
(4.45)

Now the resulting static variables can be determined via integration in thickness direc-
tion:

nij =

∫ 1

−1
Sij µ̄ dθ3 (4.46)

mij =

∫ 1

−1
Sij θ3 µ̄ dθ3 (4.47)

where nαβ represent the membrane forces, nα3 denote the shear forces and mαβ are the
bending moments. Accordingly, also electric displacement resultants can be defined:

~d i
0 =

∫ 1

−1
~Di µ̄ dθ3 (4.48)

~d i
1 =

∫ 1

−1
~Di θ3 µ̄ dθ3 (4.49)

Collecting the contributions of equ. (4.46) - (4.49) in a vector representation, a generalized
vector of resulting static variables is defined as:

S̄ =
[
nij mij ~di

0
~di

1

]T

=
[
n11 n12 n13 n22 n23 n33 m11 m12 m13 m22 m23 m33 − ~d 1

0 − ~d 2
0 − ~d 3

0 − ~d 1
1 − ~d 2

1 − ~d 3
1

]T

(4.50)

Again a vector of 18 entries is obtained which corresponds to the generalized vector of
shell strains Ē in equ. (4.39).

4.3 Pre-Integration of Material Law

In section 2.7.2, constitutive relations of a piezoelectric continuum have been derived.
Now constitutive relations for the shell-related measures of generalized stresses and
strains are developed. To this goal, a pre-integration in thickness direction is performed
considering the single contributions of the coupled material law:

Dijkl
C,M =

∫ 1

−1
Cijkl (θ3)M

µ̄ dθ3 , with M ∈ {0,1,2} (4.51)

Dijk
e,M =

∫ 1

−1
e

ijk (θ3)M
µ̄ dθ3 , with M ∈ {0,1,2} (4.52)

Dil
ε,M =

∫ 1

−1
εijk (θ3)M

µ̄ dθ3 , with M ∈ {0,1,2} (4.53)
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Using the definitions of equ. (4.51) - (4.53), it holds:


nij

mij

~d i
0

~d i
1

 =


Dijkl

C,0 Dijkl
C,1 Dijk

e,0 Dijk
e,1

Dijkl
C,1 Dijkl

C,2 Dijk
e,1 Dijk

e,2

Dikl
e,0 Dikl

e,1 Dik
ε,0 Dik

ε,1

Dikl
e,1 Dikl

e,2 Dik
ε,1 Dik

ε,2




αkl

βkl

~αk

~βk

 (4.54)

The electric enthalpy density according to equ. (2.90):

W3D
H =

1
2

SijEij −
1
2
~Di~Ei (4.55)

can thus be defined as well as term that is pre-integrated in thickness direction:

W2D
H =

1
2

S̄ · Ē =
1
2
(αijD

ijkl
C,0αkl + 2αijD

ijkl
C,1βkl + 2αijD

ijk
e,0~αk + 2αijD

ijk
e,1
~βk

+ βijD
ijkl
C,2βkl + 2βijD

ijk
e,1~αk + 2βijD

ijk
e,2
~βk

+~αiDik
ε,0~αk + 2~αiDik

ε,1
~βk + ~βiDik

ε,2
~βk) (4.56)

As a consequence, the related potential of the electric enthalpy can thus be defined not
only via volume integration, but also via integration of the mid-surface:

Πint
MHW =

∫
Ω

W3D
H dV =

∫
A

W2D
H dA (4.57)

and so the circle is complete for a thorough representation of the finite element formula-
tion on the mid-surface. For this pre-integration approach in thickness direction, no spe-
cific assumptions have been made with respect to the material law. Thus the approach
is in general also applicable to nonlinear material laws that cannot be represented in the
form of equ. (4.54).

4.4 Constitutive Law for Layered Structures

Piezoelectric material is commonly embedded in layered structures in order to actively
control or to monitor the overall system. These compounds of mechanical and piezoelec-
trical layers are called piezoelectric laminates. Accordingly, the usage of fiber reinforced
materials in combination with piezoelectric materials forms the category of piezoelectric
composites.
In order to describe the mathematical model of these structures, different laminate the-
ories and numerical models have been developed [SH99]. The basic differences of the
models are mainly related to different assumptions for the electromechanical behavior in
thickness direction. There are also models that restrict the formulation to one piezoelec-
tric layer or include only actuation.
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In this work, a single director theory is applied to derive the piezoelectric composite el-
ement [Bra95]. A straight, extensible director is assumed. The application of the single
director theory is reasonable for moderate thickness and stiffness relations of the single
layers to each other.

Recalling equ. (2.104), the material tensor of a single layer L is described in the layer coor-
dinate systems that reflects symmetry planes and orientations of the respective material
law. Also the piezoelectric coupling tensor and the permittivity tensor can be described
in such a layer-specific suitable coordinate system.

CL = C∗ ijkl
L G∗i ⊗G∗j ⊗G∗k ⊗G∗l (4.58)

e = e
∗ ijk G∗i ⊗G∗j ⊗G∗k (4.59)

ε = ε∗ ij G∗i ⊗G∗j (4.60)

The explicit form of the components of C∗ ijkl
L in the case of isotropic and orthotropic

material have been presented in section 2.7.2.
Following the general approach of tensor transformation shown in equ. (2.14) - (2.16), the
material tensors can be transformed into the overall laminate coordinate system:

CL = Cijkl
L Gi ⊗Gj ⊗Gk ⊗Gl (4.61)

e = e
ijk Gi ⊗Gj ⊗Gk (4.62)

ε = εij Gi ⊗Gj (4.63)

In total, the material tensor can be described dependent on the thickness coordinate
[Bra95]:

C
(
θ3) =



CNL θ̃3
NL < θ3 < θ̃3

NL+1 = +1

CNL−1 θ̃3
NL−1 < θ3 < θ̃3

NL
...

...

C2 θ̃3
2 < θ3 < θ̃3

3

C1 −1 = θ̃3
1 < θ3 < θ̃3

2

(4.64)

where the coordinate θ̃3
i describes the distance of the overall composite mid-surface to the

interface between the layers i− 1 and i (Figure 4.3). The index NL stands for the number
of layers of the composite. The coordinates θ̃3

i can be derived from the thicknesses of the
single layers:

θ̃3
i = −1 +

2
h

i−1∑
j=1

hj for i = 2, ..., NL (4.65)

For the numerical integration in thickness direction, the integral has to be divided into
separate integrals of the single layers. A coordinate transformation from the thickness
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Figure 4.3: Piezoelectric Composite: Definition of layer interfaces and layer mid-surfaces.

coordinate of layer L to the laminate thickness coordinate (Figure 4.4) allows for an appli-
cation of the standard Gaussian integration rules [PN79]:

θ3 = −1 +
1
h

[
−hL

(
1− θ3

L
)
+ 2

L∑
i=1

hi

]
(4.66)

dθ3 =
hL

h
dθ3

L (4.67)

Using this transformation, each single layer L can be integrated on θ3
L ∈ [−1,+1]. Thus

the equations (4.51) - (4.53) can be rewritten in the context of layered piezoelectric struc-
tures as:

Dijkl
C,M =

NL∑
L=1

hL

hM+1

∫ 1

−1

[
−h− hL

(
1− θ3

L
)
+ 2

L∑
i=1

hi

]M

· Cijkl
L µ̄θL dθ3

L , with M ∈ {0,1,2}

(4.68)

Dijk
e,M =

NL∑
L=1

hL

hM+1

∫ 1

−1

[
−h− hL

(
1− θ3

L
)
+ 2

L∑
i=1

hi

]M

· eijk µ̄θL dθ3
L , with M ∈ {0,1,2}

(4.69)

Dil
ε,M =

NL∑
L=1

hL

hM+1

∫ 1

−1

[
−h− hL

(
1− θ3

L
)
+ 2

L∑
i=1

hi

]M

· εijk µ̄θL dθ3
L , with M ∈ {0,1,2}

(4.70)

where µ̄θL represents the shell shifter that adopts as well the transformed dependency
from the thickness coordinate θ3.
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Figure 4.4: Piezoelectric Composite: Transformation of layer thickness coordinates into laminate
coordinate system (number of Gaussian points depicted with dots).

4.5 Discretization

In the preceding sections, the finite element formulation has been investigated in a gen-
eral continuum mechanical description. The semi-discretization in thickness direction
has been performed in order to apply a pre-integration of the material law in thickness
direction. Now the discretization of the shell mid-surface shall be done. The piezoelec-
tric finite elements of this work belong to the class of Lagrange elements. An explicit
definition of shape functions and related node numbering can be found in appendix A. It
should be pointed out that so far no assumptions about the discretization of the element
mid-surface have been made. Thus all derivations so far apply for any element discretiza-
tion. However, special focus is put on the 4-noded quadrilateral element in the sequel for
the specification and explanation of EAS modes and EAE modes.

4.5.1 Approximation of Geometry and Generalized Displacements

In the sequel, a general discretization formulation for an element with n nodes is pursued.
Adopting the shape functions NI = NI(ξ, η), the position vector R and the director A3

are discretized as follows:

Rh = NI RI (4.71)

A3h = NI AI
3 (4.72)

where the shape functions NI have to fulfill the geometric constraint:

n∑
I=1

NI = 1 (4.73)

In the case of Lagrange shape functions, the fulfillment of equ. (4.73) is a fundamental
condition to guarantee completeness (see chapter 3.2). The index h stands for the charac-
teristic element size at the discretization and indicates the finite element approximation.
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At finite element nodes that belong to several elements, an averaged director is con-
structed. This averaging is by no means a simplification or approximation [Bis99], but
follows from the degeneration concept (see also chapter 1.2.2) and reflects the effects of
the discretization of curved structures.
The base vectors A1 and A2 are the derivatives of the position vector R with respect to
the convective coordinates according to equ. (4.1). Thus it holds:

Aαh = NI,α RI (4.74)

with
NI,1 =

∂NI

∂ξ
, NI,2 =

∂NI

∂η
(4.75)

Finite element formulations are called isoparametric1 if the same set of shape functions
is used for the interpolation of the element geometry as well as the primary variables
[ZTZ05]. In this work, only isoparametric element formulations are developed. Thus the
primary variables are interpolated within the element with:

vh = NIvI (4.76)

wh = NIwI (4.77)

∆ϕh = NI∆ϕI (4.78)

From equ. (4.76) and (4.77) it follows for the discretized displacement vector:

uh =

 v1h

v2h

v3h

+ θ3

 w1h

w2h

w3h

 (4.79)

Furthermore, the discretized version of the generalized vector of primary variables can
be defined as follows:

ūh =

[
uh

∆ϕh

]
= N̄ · d̄ (4.80)

with

N̄ =


N1 0 0 ζN1 0 0 0 ... Nn 0 0 ζNn 0 0 0
0 N1 0 0 ζN1 0 0 ... 0 Nn 0 0 ζNn 0 0
0 0 N1 0 0 ζN1 0 ... 0 0 Nn 0 0 ζNn 0
0 0 0 0 0 0 N1 ... 0 0 0 0 0 0 Nn


(4.81)

and
d̄T

=
[
v1

1 v1
2 v1

3 w1
1 w1

2 w1
3 ∆ϕ1| ... | vn

1 vn
2 vn

3 wn
1 wn

2 wn
3 ∆ϕn

]
(4.82)

1From ancient Greek: ισoς = equal
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Thus the vector d̄ comprises all displacement and potential difference degrees of freedom
of the finite element. Furthermore, the discretized directors of the actual configuration
can be defined using equ. (4.76) and (4.77):

aαh = NI,α rI = NI,α RI + NI,α vI (4.83)

a3h = NI aI
3 + NI wI (4.84)

Beyond that, also the variation of the covariant base vectors in both configurations is
needed:

δAα = δA3 = 0 → δAαh = δA3h = 0 (4.85)

δaα = δv,α → δaαh = NI,α δvI (4.86)

δa3 = δw → δa3h = NI δwI (4.87)

4.5.2 Approximation of Strains and Electric Field Strength

The discretized electric field strength is directly obtained from equ. (4.30):

~Eϕ
α h = −NI,α ∆ϕI (4.88)

The component in thickness direction is obtained with

~Eϕ
3 h = −1

2
NI ∆ϕI (4.89)

The discretized strain tensor is derived from equ. (4.16) with the related components of
equ. (4.17) - (4.22). Inserting the discretized base vectors according to equ. (4.72), (4.74),
(4.83) and (4.84) leads to the discretized representation. In accordance to equ. (4.40), a
generalized discretized strain vector can be generated:

Ēuϕ
h =

[
αu

11h
αu

12h
αu

13h
αu

22h
αu

23h
αu

33h
βu

11h
βu

12h
βu

13h
βu

22h
βu

23h
0 ~α

ϕ
1h
~α

ϕ
2h
~α

ϕ
3h

0 0 0
]

(4.90)

Furthermore, for the discretization of the modified Hu-Washizu functional according to
equ. (3.31), a representation of the variation of strain tensor and electric field strength is
needed. In this context, it holds:

δEu
h =

∂Eu
h

∂d̄
δd̄ = Eu

h,d δd̄ (4.91)

δ~E
ϕ
h =

∂~E
ϕ
h

∂d̄
δd̄ = ~E

ϕ
h,d δd̄ (4.92)
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Thus the single strain tensor components can be derived:

δαu
αβ =

1
2
(
δaα · aβ + aα · δaβ

)
(4.93)

δαu
α3 =

1
2
(δaα · a3 + aα · δa3) (4.94)

δαu
33 = δa3 · a3 (4.95)

δβu
αβ =

1
2
(
δaα · a3,β + aα · δa3,β + δaβ · a3,α + aβ · δa3,α

)
(4.96)

δβu
α3 =

1
2
(δa3,α · a3 + a3,α · δa3) (4.97)

δ~α
ϕ
α = −δ∆ϕ,α (4.98)

δ~α
ϕ
3 = −1

2
δ∆ϕ (4.99)

This leads in discretized form to:

δαu
αβ =

1
2
(
aβNI,α + aαNI,β

)
δvI = αu′

αβ · δd̄ (4.100)

δαu
α3 =

1
2

(
a3NI,αδvI + aαNIδwI

)
= αu′

α3 · δd̄ (4.101)

δαu
33 = a3NIδwI = αu′

33 · δd̄ (4.102)

δβu
αβ =

1
2
(
a3,αNI,β + a3,βNI,α

)
δvI +

1
2
(
aαNI,β + aβNI,α

)
δwI = βu′

αβ · δd̄ (4.103)

δβu
α3 =

1
2
(a3,αNI + a3NI,α) δwI = βu′

α3 · δd̄ (4.104)

δ~α
ϕ
α = NI,α δ∆ϕI =~α

ϕ′
αh · δd̄ (4.105)

δ~α
ϕ
3 =

1
2

NI δ∆ϕI =~α
ϕ′
3h
· δd̄ (4.106)

Also the variation components can be collected in a generalized vector form:

Ēuϕ
h,d =

[
αu′

11h
αu′

12h
αu′

13h
αu′

22h
αu′

23h
αu′

33h
βu′

11h
βu′

12h
βu′

13h
βu′

22h
βu′

23h
0 ~α

ϕ′
1h

~α
ϕ′
2h

~α
ϕ′
3h

0 0 0
]T

(4.107)
Beyond that, also the second Gateaux derivatives of the terms in equ. (4.93) - (4.99) will
be needed later in the context of the linearization of the functional:

Dδαu
αβ =

1
2
(
δaα · Daβ + Daα · δaβ

)
(4.108)

Dδαu
α3 =

1
2
(δaα · Da3 + Daα · δa3) (4.109)

Dδαu
33 = δa3 · Da3 (4.110)

Dδβu
αβ =

1
2
(
δaα · Da3,β + Daα · δa3,β + δaβ · Da3,α + Daβ · δa3,α

)
(4.111)

Dδβu
α3 =

1
2
(δa3,α · Da3 + Da3,α · δa3) (4.112)

Dδ~α
ϕ
α = 0 (4.113)

Dδ~α
ϕ
3 = 0 (4.114)
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A discretization leads to:

Ēuϕ
h,dd =

[
αu′′

11h
αu′′

12h
αu′′

13h
αu′′

22h
αu′′

23h
αu′′

33h
βu′′

11h
βu′′

12h
βu′′

13h
βu′′

22h
βu′′

23h
0 ~α

ϕ′′
1h

~α
ϕ′′
2h

~α
ϕ′′
3h

0 0 0
]T

(4.115)
with:

Dδαu
αβ =

1
2

∆vK (NK,βNI,α + NK,αNI,β
)

δvI = ∆d̄T
αu′′

αβ δd̄ (4.116)

Dδαu
α3 =

1
2

(
∆wK NK NI,α δvI + ∆vK NK,αNI δwI

)
= ∆d̄T

αu′′
α3 δd̄ (4.117)

Dδαu
33 = ∆wK NK NIδwI = ∆d̄T

αu′′
33 δd̄ (4.118)

Dδβu
αβ =

1
2

∆wK (NK,αNI,β + NK,βNI,α
)

δvI +
1
2

∆vK (NK,αNI,β + NK,βNI,α
)

δwI

= ∆d̄T
βu′′

αβ δd̄ (4.119)

Dδβu
α3 =

1
2

∆wK (Nk,αNI + NK NI,α) δwI = ∆d̄T
βu′′

α3 δd̄ (4.120)

Dδ~α
ϕ
α =~α

ϕ′′
αh = 0 (4.121)

Dδ~α
ϕ
3 =~α

ϕ′′
3h

= 0 (4.122)

4.5.3 EAS and EAE Method

Besides to the displacement field and the electric potential field, also the enhanced modes
have to be discretized. However, as the contravariant base vectors are dependent from
the finite element mesh as well as from position within the element, it is not recommend-
able to directly discretize

Ẽ = Ẽij Gi ⊗Gj (4.123)

~̃E = ~̃Ei Gi (4.124)

The reason is that the orthogonality conditions according to equ. (2.160) and (2.161) can
be hardly fulfilled within convective coordinate systems which are by nature position-
dependent. Thus the enhanced modes shall be defined with respect to a basis that does
not interfere with the wanted behavior of the discretization. Consequently, the enhanced
modes are defined in the basis of the contravariant vectors Ai

0 on the element center on
the element mid-surface. This approach reflects the suggestion of Simo und Rifai in 1990
to define the enhanced strains in a suitable local coordinate system in order to pass the
patch test for arbitrary geometries (see also chapter 4.6.1 for a separate discussion of this
issue). The final enhanced modes are then obtained via tensor transformation as shown
in equ. (2.17) postulating

Ẽij Gi ⊗Gj = Ẽ0
ij Ai

0 ⊗Aj
0 (4.125)

~̃Ei Gi = ~̃E0
i Ai

0 (4.126)
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The enhanced modes in the sequel are all defined in this fixed coordinate system in the
center of the element mid-surface. Similarly to the approach of the preceding sections,
the enhanced strains and enhanced electrical field strength terms are collected in one
generalized vector.

¯̃Eh = M̃α + ~M~α = M̄ᾱ (4.127)

where M̄ represents the matrix of enhanced modes and the vector ᾱ contains the related
degrees of freedom. Assuming a 4-noded quadrilateral element, the following enhanced
modes are reasonable:

M̃ =



ξ 0 0 0
0 0 ξ η

0 0 0 0
0 η 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0︸ ︷︷ ︸

membrane stresses

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ξ 0 0 0
0 0 ξ η

0 0 0 0
0 η 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0︸ ︷︷ ︸

bending stresses

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 ξ η ξη

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0︸ ︷︷ ︸

thickness stresses

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
ξ ξη 0 0
0 0 0 0
0 0 η ξη

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0︸ ︷︷ ︸

const. shear stresses

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ξ ξη 0 0
0 0 0 0
0 0 η ξη

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

lin. shear stresses

(4.128)

In general, the enhanced assumed strain modes allow for a stepwise supplementation of
the existing displacement-based strains according to equ. (4.107). Thus incompatible ap-
proximation spaces can be adjusted and parasitic strains can be eliminated with suitable
enhanced modes.
Columns 1 - 4 in equ. (4.128) add the missing terms to provide membrane stresses that
are linear in both ξ and η. As a next step, also the mixed terms for a complete bilinear
representation in ξ and η could be added.
Columns 5 - 8 in equ. (4.128) add missing modes of the bending strains. Just as in the case
of the membrane modes, as well here the mixed terms ξη could additionally be added to
generate a complete bilinear representation.
The linear thickness deformation has been introduced in the 9th column of matrix M̃.
Thus the existence of this enhanced mode decides about the existence of the 7th param-
eter of the element formulation. If no enhanced thickness strains are added here, the
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element represents only a 6-parameter formulation (compare section 1.2.2). Modes 10-12
complete the linear thickness deformations to be bilinear in ξ and η.
The columns 13 - 16 in equ. (4.128) provide the needed enhanced modes of (in thickness
direction) constant shear to eliminate shear locking. The modes 13 and 15 can be com-
pared with the enhanced modes of column 3 and 4 of the 2D illustration example in equ.
(3.32) in chapter 3.6.3. In both cases, enhanced shear modes are offered in order to allow
for a "decoupling" of bending modes from related parasitic strains.
Finally, columns 17 - 20 offer (in thickness direction) linear enhanced shear modes that
are in total bilinear ξ and η.

The second part of matrix M̄ according to equ. (4.127) offers in a similar manner enhanced
modes for the electric field strength:

~M =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 ξ 0
0 1 0 η

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0︸ ︷︷ ︸

const. ~Eα

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 ξ η ξη


︸ ︷︷ ︸

lin. el. field ~E3

(4.129)

The already existing electric field modes for ~E1 and ~E2 according to equ. (4.105) only offer
a coupled combination of constant and linear electric field components. This causes elec-
tromechanical locking under shear loading as presented in Figure 3.13 in chapter 3.5.4.2.
For this reason, columns 1 and 2 of matrix ~M in equ. (4.129) offer independent modes of
constant electric field components ~E1 and ~E2. This allows for a constant or linear behav-
ior of ~E1 and ~E2 without parasitic electric field contributions (see also the shear patch test
example in chapter 7.1.6). For distorted meshes, columns 3 and 4 in equ. (4.129) provide
missing modes that are linear in ξ and η.
Intentionally, no enhanced modes for the constant electric field ~E3 are added. This is due
to the fact that this field is already completely described by the original element formu-



4. Theory of the Piezoelectric Composite Shell Element 106

lation. Eventually offered enhanced modes of this type would violate the prerequisite
of linear independence from the compatible modes and thus lead to singularities in the
element formulation (compare chapter 3.6.3.4). For similar reasons, Legner introduces
constant enhanced modes only in the context of ~E1 and ~E2 [Leg11] .
Furthermore, columns 5 - 8 in equ. (4.129) provide a complete representation of the in
thickness linear behaving electric field component ~E3 which is completely missing in the
electric field modes derived from the kinematic relations. These modes are needed to
correctly represent the case of pure bending as described in chapter 3.5.4.1.
Additionally, further electric field modes could be added just as described in the context
of enhanced strains. However, it will be shown in the examples in chapter 7 that the en-
hanced electric field modes as presented in equ. (4.129) can already efficiently eliminate
the discussed locking effects. For the variation of the strain tensor, it holds:

δẼh =
∂Ẽh

∂ᾱ
δᾱ = Ẽh,ᾱ δᾱ (4.130)

In the case of the standard Hu-Washizu functional the stresses as well as the electric dis-
placement would have to be discretized. This would also require to consider additional
conditions concerning number and construction of the related basis functions in order to
guarantee numerical element stability [BF91]. As the presented modified Hu-Washizu
functional has been adopted, the stresses as well as the electric displacement are not
needed to be discretized.

4.5.4 ANS Method

For the elimination of transverse shear locking, the ANS method is applied as efficient
alternative to the EAS method. As the element is defined via the natural coordinate
system of the element, an easy identification of the transverse shear terms is possible.
The collocation points can be determined via the investigation of the parasitic strains in
suitable test cases. For the 4-noded element, the collocation points can be identified in
accordance with the MITC4 element presented in chapter 3.6.2 with:

(ξA, ηA) = (0,1), (ξB, ηB) = (0,−1) for αu
13h

(ξC, ηC) = (1,0), (ξD, ηD) = (−1,0) for αu
23h

(4.131)

For the collocation points of other discretizations like the 9-noded quadrilateral element,
the reader is referred to the literature [BR92b, Bis99]. Now the discrete transverse shear
strains at the collocation points K can be evaluated:

αu K
13h

= Bξ
S (ξK , ηK) · d (4.132)

αu K
23h

= Bη
S (ξK , ηK) · d (4.133)
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where the index S of the B-operator indicates shear just as in equ. (3.29) at the introduc-
tion of the ANS method. The discretized strain values are then determined via the ANS
shape functions:

αu
13h

=
nK∑

K=1

N̄ξ
Kαu K

13h
(4.134)

αu
23h

=
nK∑

K=1

N̄η
Kαu K

23h
(4.135)

with nK being the number of collocation points. In the case of the 4-noded quadrilateral,
equ. (4.134) and (4.135) can be specified to:

αu
13h

=
1
2
(1 + η) αu A

13h
+

1
2
(1− η) αu B

13h
(4.136)

αu
23h

=
1
2
(1 + ξ) αu C

23h
+

1
2
(1− ξ) αu D

23h
(4.137)

Thus in total the ANS-modified transverse shear strains are obtained to be:

αu
13h

=
nK∑

K=1

[
N̄ξ

KBξ
S (ξK , ηK)

]
· d = B̄ξ

S · d (4.138)

αu
23h

=
nK∑

K=1

[
N̄η

KBη
S (ξK , ηK)

]
· d = B̄η

S · d (4.139)

In equ. (4.107), the initial transverse shear terms are replaced by the ANS-modified terms.
As a consequence, also the Gateaux derivatives according to equ. (4.109) are affected by
the ANS improvements. As the next chapter will reveal, this means that the ANS method
provides modifications for both the elastic stiffness matrix and the geometric stiffness
matrix.

4.6 Linearization of Weak Form

Recalling equ. (3.31), the discretized version of the modified Hu-Washizu functional re-
lated to one element can be described with:

δΠe
MHW(u, ϕ, Ẽ,~̃E) ≈ δΠMHW h(d̄, ᾱ)

=

∫
Ω

[
δEu

h : SEu

h + δẼh : SẼ
h − δ~E

ϕ
h : ~D

~E
ϕ

h − δ~̃Eh : ~D
~̃E
h

]
dV − δΠext

MHW

=

∫
Ae

[
δĒuϕ

h · S̄
Ēuϕ

h + δ ¯̃Eh · S̄
¯̃E
h

]
dA− δΠext

MHW

= δd̄
∫

Ae

Ēuϕ
h,d · S̄

Ēuϕ

h dA + δᾱ

∫
Ae

¯̃Eh,α · S̄
¯̃E
h dA− δΠext h

MHW

= 0 (4.140)



4. Theory of the Piezoelectric Composite Shell Element 108

with
δΠext

MHW = P̄ · δd̄ (4.141)

where P̄ represents the generalized load vector that is assumed to be independent from
the displacement field. Furthermore, equ. (4.140) takes advantage of the generalized
vector representations introduced in the last sections.
For the solution of the nonlinear equation system, iterative predictor-corrector methods
like the Newton-Raphson approach are recommendable. The reader is referred to the
literature for the various incremental solution schemes (e.g. [Arg65, Cri81, Ram81]). For
the iterative solution process, a linearized form of the varied potential in equ. (4.140) is
needed:

δΠe
MHW h(d̄, ᾱ) = LIN δΠe

MHW h(d̄
i, ᾱi) + R(d̄i, ᾱi) (4.142)

where

LIN δΠe
MHW h(d̄

i, ᾱi) = δΠe
MHW h(d̄

i, ᾱi)

+
∂δΠe

MHW h(d̄, ᾱ)

∂d̄

∣∣∣∣∣
d̄=d̄i

∆d̄ +
∂δΠe

MHW h(d̄, ᾱ)

∂ᾱ

∣∣∣∣∣
ᾱ=ᾱi

∆ᾱ (4.143)

The Gateaux derivatives needed in equ. (4.143) can be determined as follows:

∂δΠe
MHW h(d̄, ᾱ)

∂d̄
= δd̄

∫
Ae

Ēuϕ
h,dd · S̄

Ēuϕ

h + Ēuϕ
h,d · S̄

Ēuϕ

h,d dA + δᾱ

∫
Ae

¯̃Eh,α · S̄
¯̃E
h,d dA (4.144)

∂δΠe
MHW h(d̄, ᾱ)

∂ᾱ
= δd̄

∫
Ae

Ēuϕ
h,d · S̄

Ēuϕ

h,α dA + δᾱ

∫
Ae

¯̃Eh,α · S̄
¯̃E
h,α dA (4.145)

Thus using equ. (4.144) and (4.145) in equ. (4.143) leads to the linearized incremental
element equation system:

δd̄
∫

Ae

Ēuϕ
h,d · S̄

Ēuϕ

h dA + δᾱ

∫
Ae

¯̃Eh,α · S̄
¯̃E
h dA− δd̄ · P

+δd̄
∫

Ae

[
Ēuϕ

h,dd · S̄
Ēuϕ

h + Ēuϕ
h,d · S̄

Ēuϕ

h,d

]
dA ∆d̄ + δᾱ

∫
Ae

¯̃Eh,α · S̄
¯̃E
h,d dA ∆d̄

+ δd̄
∫

Ae

Ēuϕ
h,d · S̄

Ēuϕ

h,α dA ∆ᾱ + δᾱ

∫
Ae

¯̃Eh,α · S̄
¯̃E
h,α dA ∆ᾱ = 0 (4.146)

Several components of equ. (4.146) shall be identified in the sequel:

K̄el+uϕ =

∫
Ae

Ēuϕ
h,d · S̄

Ēuϕ

h,d dA =

∫
Ae

B̄T · D̄ · B̄ dA (4.147)

represents the system matrix. The last representation in equ. (4.147) assumes a linear
material law for the introduction of the matrix D̄. Furthermore,

K̄geo =

∫
Ae

Ēuϕ
h,dd · S̄

Ēuϕ

h dA (4.148)
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denotes the geometric stiffness matrix. As all enhanced modes are chosen to be linear
in ᾱ, no contributions from EAS and EAE modes are delivered to K̄geo. Beyond that, the
following abbreviations are introduced:

L̄T =

∫
Ae

Ēuϕ
h,d · S̄

Ēuϕ

h,α dA =

∫
Ae

B̄T · D̄ · M̄ dA (4.149)

L̄ =

∫
Ae

¯̃Eh,α · S̄
¯̃E
h,d dA =

∫
Ae

M̄T · D̄ · B̄ dA (4.150)

¯̃D =

∫
Ae

¯̃Eh,α · SẼ
h,α dA =

∫
Ae

M̄T · D̄ · M̄ dA (4.151)

It should be pointed out that all these matrices are related to the generalized representa-
tion including both structural and electromechanical measures. Furthermore, the inner
forces in equ. (4.151) are abbreviated with:

R̄ =

∫
Ae

Ēuϕ
h,d · S̄

Ēuϕ

h dA (4.152)

¯̃R =

∫
Ae

¯̃Eh,α · S̄
¯̃E
h dA (4.153)

Now all abbreviations introduced in equ. (4.147) - (4.153) can be inserted in equ. (4.146).
Using the fundamental lemma of variational calculus, this leads to the following repre-
sentation of the linearized incremental element equation system:[

K̄el+uϕ + K̄geo L̄T

L̄ ¯̃D

]
·
[

∆d̄
∆ᾱ

]
=

[
P̄− R̄
− ¯̃R

]
(4.154)

Now it becomes clear why equ. (4.149) and (4.150) have been related to each other via an
transpose operation. Assuming a linear material law, D̄ is a symmetric matrix and thus it
holds (M̄T · D̄ · B̄)T = B̄T · D̄ · M̄. With ¯̃DT = ¯̃D it holds that the overall equation system
in equ. (4.154) is symmetric.

As explained in chapter 2.9.2, the enhanced strain and electric field modes can be chosen
from the Lebesgue space L2. Thus the enhanced modes parameter ᾱ do not need to ful-
fill compatibility beyond the element boundaries. Consequently, the parameters ᾱ can
be eliminated on the element level via static condensation. The lower line of equation
system (4.154) can be reformulated such that:

∆ᾱ = ¯̃D−1
(
− ¯̃R− L̄ ∆d

)
(4.155)

Thus in total the incremental element equation system can be stated in the same form as
a simple element formulation based on the principle of virtual work:

K̄EAS+EAE ∆d̄ = P̄− R̄EAS+EAE (4.156)

with

K̄EAS+EAE = K̄el+uϕ + K̄geo − L̄T ¯̃D−1L̄ (4.157)

R̄EAS+EAE = R̄− L̄T ¯̃D−1 ¯̃R (4.158)
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The static condensation on the element level has the promising advantage that the as-
sembled system matrix is not increased compared to standard formulations based on the
virtual work principle. Modifications take only place on the element level. The subtrac-
tion of the term L̄T ¯̃D−1L̄ in equ. (4.157) can be interpreted as well-aimed softening of the
element formulation to face and eliminate locking effects.
It is also quite natural that the number of EAS and EAE modes should be chosen with
consideration as they directly affect the computational cost. The number of enhanced
modes determines the size of the matrices L and D, while the latter matrix also has to be
inverted for the static condensation step. However, this computational effort for the EAS
and EAE method increases only linear with the number of elements which makes this
static condensation still a very favorable approach.

In general, the integrals of the system matrices and vectors according to equ. (4.147) -
(4.153) are either hardly or impossible to be solved analytically. Thus all these integrals
are in general determined by Gaussian quadrature.

4.6.1 Restrictions to Pass the Patch Test

In order to guarantee an a priori passing of the (structural) patch test, the parameters
ᾱ have to vanish in cases where d̄ represents a rigid body motion or a state of constant
strain. The reason is that the original irreducible element is already able to represent con-
stant strain and constant electric field states (compare also chapter 7.1). Thus assuming a
linear problem and a field of prescribed primary variables d̄0 (rigid body motion or con-
stant strain or constant electric field), then the vector ᾱ0 can be derived from equ. (4.154)
and (4.155) such that:

ᾱ0 = − ¯̃D−1L̄d̄0 (4.159)

As D̄ is a positive definite matrix [TBW76], the term L̄ d̄0 has to vanish in case of ᾱ0 = 0:

L̄ d̄0 =

∫
Ae

M̄TD̄ B̄ d̄0 dA = 0 (4.160)

As the generalized displacement d̄0 has been chosen to represent a patch test case, the
term D̄ B̄ d̄0 must represent a state of constant stresses or constant electric displacement.
Thus the requirement to pass the patch test can be reduced to:∫

Ae

M̄ dA = 0 (4.161)

This condition is in general only true for regular geometries like rectangles [TBW76]. Ar-
bitrary element geometries lead in general to variable metric tensors in the natural ele-
ment coordinate system. Thus it is not assured that the element can pass the patch test
for arbitrary geometries. In order to remedy this deficiency, Simo and Rifai suggested in
1990 to define the strains in a suitable local element coordinate system [SR90]. Further-
more, Pian and Chen defined already in 1982 the covariant base vectors at the element
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midpoint to be the basis for the definition of stress modes in the context of hybrid stress
elements [PC82]. For the same reason, the enhanced strain and enhanced electric field
modes are defined at the element midpoint as described in chapter 4.5.3.
Considering the base transformations according to equ. (4.125) and (4.126) leads to the
following simplified requirement to pass the patch test:∫ 1

−1

∫ 1

−1
M̄ (ξ, η) dξ dη = 0 (4.162)

This reveals a clear and easy construction rule for the enhanced strains and enhanced
electric field strength modes.

4.7 Stress and Electric Displacement Recovery

After the solution of the equation system, the stress and electric displacement recovery
can be done via the constitutive equations. To this goal, the EAS- and EAE- improved
strains and electric fields are calculated with:

Eh = Eu
h + Ẽh (4.163)

~Eh = ~E
ϕ
h + ~̃Eh (4.164)

dependent from the displacements and the electric potential difference field in the nodal
result vector d, as well as the EAS parameters α and the EAE parameters~α.
Using the strains and the electric field according to equ. (4.163) and (4.164), the stresses
and the electric displacements can be derived from the coupled constitutive equations.

In the context of structural problems, Simo and Rifai initially casted doubt on the varia-
tional consistency of stresses that are derived like that from the material law [SR90]. How-
ever, these doubts have been eliminated by the discovery of the correlation between ele-
ments derived from the EAS method, and elements derived from the Hellinger-Reissner
functional [AR93]. The material law is fulfilled pointwisely exact, both at the Hellinger-
Reissner elements and at the equivalent EAS elements [BRB99].



Chapter 5

Closed-Loop Control of Lightweight
Structures

As already illustrated in the introduction, structural control can be applied to structures
in order to increase functionality, improve usability or to create even more efficient struc-
tures [FWB12b, FMWB11, FWB12a, FDM+11]. The discussion of the underlying theory
shall be focus of this chapter.

5.1 Introduction to control theory

In the sequel, a short overview of basic notions of control theory shall be presented as far
as needed in the context of this work. More detailed information about control theory
can be found e.g. at [Oga02].
In control engineering, it is a common approach to use block diagrams in order to show
the functions performed by each component of a control system. A block diagram of a
system is a pictorial representation of the functions performed by each component and
the relationships between the signals in a system. System variables are linked to each
other through functional blocks which are symbols for the underlying mathematical op-
eration from the input signal to the output. In general, each block in the block diagram
establishes a relationship between signals. Blocks are connected with arrows which are
referred to as signals. Signal indicate the input at the blocks where the arrowhead is point-
ing to, while in turn signals are the output at positions where the arrowhead is leading
away from the block. An principle example is given in Figure 5.1.
The controlled variable, denoted with y in Figure 5.1, is the quantity or condition that is
measured by the sensor F and it is usually the output of the system. The manipulated vari-
able, denoted by u in the figure, is the quantity or condition that is varied by the controller
C in order to affect the value of the controlled variable. Control means measuring the
value of the controlled variable y and using the manipulated variable u on the system to
correct the deviation of the measured value from a desired value. A plant P is any phys-
ical object to be controlled such as a mechanical or electromechanical structure. In the
example of figure 5.1, there is also given a reference variable r. A summing point is used
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Figure 5.1: Block diagram of a closed-loop control system.

to determine the error e. A control system where a sensor monitors the system output
and feeds the data to a controller which adjusts the control as necessary to maintain the
desired system output is called a feedback control or closed-loop control system. In contrast
to that, systems where the output has no effect on the control system are called open-loop
control systems. Closed loop control has several advantages like guaranteed performance
even with model uncertainties, reduced sensitivity to parameter variations and external
disturbances, and improved reference tracking capabilities. However stability issues can
occur in closed-loop control which is not the case for open-loop control.

In the context of control, a system is called linear if the principle of superposition applies.
This means that the response produced by the simultaneous application of two different
forcing actions is the sum of the two individual responses. Dynamic systems that are
composed of linear time-invariant parameter components can be described by linear time-
invariant (constant coefficient) differential equations. Consequently, such systems are
called linear time-invariant (LTI) systems. However, approaches like the linearization with
respect to an operating point have been evolved in order to apply similar approaches also
to non-LTI systems. Concerning the mathematical models for control, various types have
been developed. Three common representations for LTI systems are:

• Differential equations.
• State space models.
• Transfer functions.

In optimal control problems for example, it is often advantageous to use state-space
representations (see also chapter 5.5). For the transient-response or frequency-response
of single-input-single-output (SISO) LTI systems, the transfer function representation is
more convenient than others.
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In the case of LTI systems, the systems as described above can be efficiently analyzed
using the Laplace transform on the variables. For the control system according to Figure
5.1, this gives the following relations for system output, system input and the error:

Y(s) = P(s)U(s) (5.1)

U(s) = C(s)E(s) (5.2)

E(s) = R(s)− F(s)Y(s) (5.3)

Solving now for Y(s) in terms of R(s) leads to:

Y(s) =
(

P(s)C(s)
1 + F(s)P(s)C(s)

)
R(s) (5.4)

In this context, the term transfer function has to be introduced. The transfer function of a
linear, time-invariant, differential equation system is defined as the ratio of the Laplace
transform of the output (response function) to the Laplace transform of the input (driving
function) under the assumption that the initial conditions are zero. Let a LTI system be
defined by the following differential equation:

a0
(n)
y +a1

(n−1)
y + · · ·+ an−1ẏ + any = b0

(m)
x +b1

(m−1)
x + · · ·+ bm−1 ẋ + bmx (5.5)

where y is the output of the system and x is the input. Furthermore, it holds n ≥ m. The
transfer function G(s) of this system is then defined with:

G(s) =
L[output]
L[input]

∣∣∣∣
zero initial conditions

=
Y(s)
X(s)

=
b0sm + b1sm−1 + · · ·+ bm−1s + bm

a0sn + a1sn−1 + · · ·+ an−1s + an
(5.6)

By using the concept of transfer functions, system dynamics can be represented by alge-
braic equations in s. If the highest power of s in the denominator of G(s) is equal to n,
the system is called an nth-order system. The applicability of the transfer function concept
is limited to LTI differential equation systems. The transfer function is a property of the
system itself and it does not depend on the nature and magnitude of the input. Thus the
response of a system for various forms of inputs can be studied once the transfer function
is known. Now considering again equ. (5.4), the closed-loop transfer function G(s) of the
block diagram in Figure 5.1 can be defined:

G(s) =
P(s)C(s)

1 + F(s)P(s)C(s)
(5.7)

such that:
Y(s) = G(s)R(s) (5.8)

Thus it can be observed that the output of the closed-loop system depends on both the
closed-loop transfer function as well as the nature of the system input.



5. Closed-Loop Control of Lightweight Structures 115

5.2 Special Characteristics of Membrane Structures

In general, structural shapes with optimal load carrying behavior prefer a membrane
state of stress to transfer loading. This is due to the fact that prestressed membrane struc-
tures are optimal in two respects. First of all, they represent structures of optimal material
usage: Bending is omitted a priori by the nature of the membrane behavior and thus a
constant stress state over the thickness exists. Secondly, membranes reflect surfaces of
minimal area or minimal weight in the case of uniform prestress.
For the design of highly efficient structures, it is thus reasonable to aim for the combi-
nation of the efficiency of (passive) membrane structures with the advantages of active
control.

5.2.1 Equilibrium Formulation of a Surface Stress Field

In general, the underlying mechanical statement for the analysis of prestressed mem-
branes is the demand for equilibrium, which resembles the mathematical equivalence of
minimizing the area content in the case of isotropic prestress.
In a nonlinear continuum mechanical description, the unknown shape x of equilibrium
can be identified as actual (deformed) configuration, which has to fulfill the equilibrium
condition governed by the principle of virtual work. Using the prescribed Cauchy stress
tensor σ and the external loading q (Figure 5.2), the total virtual work δΠ with its internal
and external parts yields:

δΠ = δΠint + δΠext = t
∫

a
σ : δu,x da−

∫
a

q · δu da (5.9)

where δu,x is the derivative of the virtual displacement with respect to the geometry x of
the surface in equilibrium. The integration domain is the area a of the final equilibrium
surface. The thickness of the membrane is denoted by t.
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Figure 5.2: Tangential surface stress field of a membrane structure.
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Based on the second Piola-Kirchhoff stress tensor S and the deformation gradient F, it
is now possible to transform the integration domain of the original problem from the
yet unknown equilibrium surface to the known reference configuration X (compare also
Figure 2.1). The internal virtual work of equ. (5.9) can thus be rewritten as:

δΠint = t
∫

a
σ : δu,x da = t

∫
A

detF
(

σ · F−T
)

: δF dA = t
∫

A
(F · S) : δF dA (5.10)

This transformation (called pull-back operation) is especially useful for the algorithmic so-
lution of the form finding problem, as the known reference configuration can serve as a
starting point for the solution.

For the numerical solution, equ. (5.10) has to be discretized in order to reduce the number
of unknowns to a finite number. Furthermore, as we are dealing with a geometrically
nonlinear problem involving large displacements from the starting configuration to the
actual equilibrium shape, a linearization of the resulting equation system is necessary,
which follows the standard concept of incremental solution schemes [BLM00].

5.2.2 Inverse Problem Formulation and Regularization

Within membrane structures, the material is used optimally due to the constant stress
state over the thickness. However, the structure has to be shaped in such a way, that
it can achieve equilibrium of forces only by tensile forces, as compressive forces would
lead to undesirable wrinkles in the membrane. Due to this coupling of the geometry
to the stress state in the structure, special form finding techniques have to be adopted.
The equilibrium equations must be solved for the unknown geometry, considering the
prescribed prestress and the support conditions as major shaping parameters. However,
a straightforward application of the method shown above is not possible due to the in-
verse nature of the problem: It is searched for the discretized equilibrium surface with
a certain topology of the discretization parameters. More precisely in the finite element
context, nodes can be moved around on the corresponding equilibrium surface while
still maintaining a valid discretization of the desired surface. Consequently, the shape
parametrization for the same geometry is not unique.

Numerical methods have to face mathematical singularities, which have to be overcome
by specifically tailored algorithms like dynamic relaxation, force density method or the
updated reference strategy (URS) [BFLW09]. In this context the similar nature of shape
control [HA85] and form finding should be pointed out, as both approaches have to over-
come the singularities of an inverse problem by regularization techniques.
The most general method for regularization of the inverse problem of form finding is the
URS approach. This method is consistently derived from nonlinear continuum mechan-
ics of elastic bodies and based on an intelligent mixture of configurations. It performs
a homotopy mapping between the original, singular problem and a stabilization term
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[BR99, WB05]. Starting from equ. (5.10), one can introduce a continuation factor λ and
formulate:

δΠ = λt
∫

A
detF

(
σ · F−T

)
: δF dA + (1− λ)t

∫
A
(F · S) : δF dA = 0 (5.11)

Instead of assuming the Cauchy stress tensor σ of the unknown equilibrium surface to be
given, the 2nd Piola-Kirchhoff stress tensor S referring to the arbitrary starting geometry
is prescribed. If λ is chosen properly, the second term stabilizes the original expression
and allows for the use of a standard finite element discretization and solution. This mod-
ification has the convincing property that it disappears at the solution surface. Using
equ. (5.11) it is thus possible to calculate a unique equilibrium surface for the given PK2
stress state. The modified and stabilized expression is nonlinear with respect to the final
geometry x and must be solved iteratively applying a Newton-Raphson scheme.

 a) Initial shape:                                                b) Step 1 (=0): 

Nodal supports
 

Nodal supports
 Edge cable

 

Membrane

 
 

c) Step 2 (=0.5):                                               d) Step 3 (=0.9):

e) Final shape:                                                  f) Final shape (top view):

Flexible stiffener beam

Figure 5.3: "Batwing" structure: application of form finding via the updated reference strategy
(URS).
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Figure 5.4: "Batwing" structure: Convergence of midpoint displacement over form finding steps.

However, the resulting Cauchy stresses will differ from the targeted stress state depend-
ing on the choice for λ. This necessitates a second, outer iteration: The newly obtained
actual configuration x̃ of the modified system in equ. (5.11), which is closer to the final
equilibrium shape, can be used to update the reference geometry X for the next form
finding iteration. By repeatedly updating the reference geometry, the difference between
the PK2 and Cauchy stresses is consequently reduced and the solution converges safely
and robustly to the one of the unmodified problem. It should be noted that the speed of
convergence is independent from the number of variables. Furthermore, the approach is
capable of handling complex shapes and arbitrary stress states with or without external
loading.

Figure 5.3 shows the form finding process for a "batwing" structure [FWB09a]. The only
shaping parameters that have to be provided for the form finding method are the pre-
stress and the boundary conditions. Also additional, already materialized structures like
the elastic stiffener beams of the "batwing" can be integrated. This additionally enlarges
the design space of possible membrane geometries. The fast convergence of this numeri-
cal form finding method is demonstrated in Figure 5.4.

In general, when the external loads are known in advance, their effects upon the struc-
tural deformation can be taken into account not only in the finite element simulation, but
already in the inverse process of form finding. Thus the overall design framework can be
easily used for passive control strategies. E.g. with the extension to anisotropic prestress,
the different strength in the weft and warp directions of fabrics and the adaptation of
the structural load carrying behavior to different load cases (like snow or wind) can be
taken into account. However, this contribution will focus in the sequel on active control
strategies.
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5.2.3 Cutting Pattern Generation

In general, membrane structures exhibit a doubly curved surface in order to establish
a good load carrying behavior. This important characteristic of such structures is the
main challenge for all methods of cutting pattern generation which have been developed
through the past years. From a differential geometry point of view it is important to
consider that a doubly curved surface cannot be developed in a plane surface. For all sur-
faces that exhibit nonzero Gaussian Curvature, stresses occur through the flattening pro-
cess. However, these stresses can be minimized by the choice of suitable cutting patterns.
In the past, a lot of methods for the generation of cutting patterns have been introduced.
The most of them are based on geometrical methods (see e.g. [AA97, MT90]). The main
drawback of geometrical methods is that it is impossible to consider different material
properties or certain prestress states in the membrane. A more general approach is the
inverse engineering method which is based on the description of the underlying mechan-
ical problem of the cutting pattern generation [LWB08, Lin09]. The three-dimensional
surface, which is defined through the form finding process, represents the final structure
after manufacturing. For this surface the coordinates in three dimensional space Ω3D

and the finally desired prestress state σpre are known. The aim is to find a surface in a
two dimensional space Ω2D which minimizes the difference between the elastic stresses
σel,2D→3D arising through the manufacturing process and the final prestress σpre. Thus
the cutting pattern generation leads to an optimization problem, were the positions of
the nodes in the two dimensional space Ω2D are the design variables.

Taking the practical manufacturing process into account, it is important to divide the
structure into cutting patterns of reasonable size as the width of available textile mate-
rials is usually limited. So the questions arises how to divide into patterns and how to
define the exact cutting lines. From a manufacturing point of view, the crucial point in
defining the cutting lines is also the loss of material due to the cutting. An appropriate
way to minimize the loss of material is the usage of geodesic lines for the definition of
the cutting lines. Geodesic lines are characterized by connecting two points on a surface
with shortest distance. The calculation of geodesic lines on discrete surfaces (like a finite
element mesh) is performed in two steps. First of all, an approximation of the geodesic
lines along the edges of the elements of the discrete surface is calculated [SK98]. The
second step is to perform an optimization of the approximated Geodesic Lines to get the
"shortest path" between two given points [Wak99]. With the above described methods
all steps which are needed for the cutting pattern generation of membrane structures are
developed. It should be mentioned that this method is applicable for different element
types and is able to consider different material models and arbitrary prestress states.

In chapter 7.5, the whole process for the generation of cutting patterns will be illustrated
at the example of a four point tent.
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5.2.4 Challenges for Control in the Context of Membrane Structures

One control objective pursued in this work is to suppress vibrations. This is challenging
in the context of membranes for the following reasons: Membranes, especially lightly
prestressed ones, exhibit very low mode frequencies in the out-of-plane direction and are
thus prone to vibration even for small disturbance loads. Beyond that, attaching many
sensors, actuators or dampers directly on the membrane is not recommended, as this
disturbs the optimal membrane stress state and results in a heavier system.

As already mentioned in the context of form finding, the consideration of geometrically
nonlinear effects is in general indispensable, as large displacements arise already from
the starting configuration to the actual equilibrium shape of the prestressed membrane,
even if external loads are neglected.
Furthermore, the load carrying behavior via tangential membrane forces leads in gen-
eral to large deformations. The geometry of the load-bearing structure adapts itself to
efficiently gather external loads that act perpendicular to the surface. Thus nonlinear
kinematics is vital for the simulation of membrane structures.
The prestress state is a key characteristic of the membrane structure. It is a equilibrium
state with residual stresses in the reference configuration. These residual stresses are
superposed with elastic deformations due to external loads. Thus the reference state of
membrane structures is assumed to be free of strains, but it is not free of stresses. Thus
the constitutive law according to equ. (2.99) has to be modified for membrane structures
such that:

Sij = Sij
pre + CijklEkl (5.12)

The stress in the reference configuration Sij
pre is called prestress. The piezoelectric part of

the material law can be neglected in the context of passive membrane material.

5.3 Nonlinear Transient Analysis

As already mentioned in section 5.2.4, the consideration of geometrically nonlinear ef-
fects at membrane structures is indispensable, as large displacements exist already in the
actual equilibrium shape of the prestressed membrane, even if external loads are not yet
applied. However, highly lightweight structures are in general prone to distinct defor-
mations, independent from the design decision for membranes or shells or other bearing
concepts. This requires in many cases an analysis that considers nonlinear kinematics.
Furthermore, the dynamic contribution due to inertia forces has to be considered in the
energy functional in order to analyze the transient behavior of the structure under consid-
eration. Thus keeping the acceleration term in the conservation law of linear momentum
according to equ. (2.70), the variation of the energy potential yields:

δΠ = δΠint + δΠdyn + Πext
V + Πext

A = 0 (5.13)
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where δΠdyn represents the contribution of the d’Alembert inertia forces. A finite element
discretization leads to:

δΠ = δd̄TM ¨̄d + δd̄Trint(d̄)− δd̄Trext(t, d̄) = 0 (5.14)

with the mass matrix M, the vector of internal forces rint and the vector of external forces
rext. The generalized displacement vector d̄ is used here instead of the displacement
vector d in order to demonstrate the general applicability of this equation to both pure
structural problems as well as electromechanical problems. However, the mass matrix
contains nonzero entries only at structural degrees of freedom.
In order to consider system damping, an additional term proportional to the velocity
field is introduced. Then the geometrically nonlinear dynamic equation yields in its semi-
discrete form:

M ¨̄d + Cd
˙̄d + rint(d̄) = rext(t, d̄) (5.15)

where the damping is again only related to structural degrees of freedom. The initial
conditions of the transient problem of equ. (5.15) can be stated as follows:

¨̄d (t = t0) =
¨̄d0, ˙̄d(t = t0) =

˙̄d0, d̄(t = t0) = d̄0 (5.16)

The damping matrix Cd can be described in a simplified way as a linear combination of
the mass matrix and stiffness matrix (Rayleigh damping):

Cd = α1 ·M + α2 ·Ktan (5.17)

where Ktan denotes the tangent stiffness matrix of the system and thus e.g. also considers
prestress effects in the case of membrane structures. Even more realistic damping pa-
rameters can be obtained if the structure is analyzed in a coupled multi-field simulation
including the surrounding air. Especially in the case of membrane structures, these fluid-
structure interaction effects can play a decisive role in the context of damping [Wüc06].
Based on virtual wind tunnel tests, the damping behavior of the structure can be ana-
lyzed and taken into account for further simulations.
For the numerical time integration of the semi-discrete form in equ. (5.15), a discretiza-
tion in time has to be conducted. Thus the system is solved only for discrete points in
time tn = t0 + n∆t assuming equidistant time steps ∆t. For time integration, common
implicit methods like Newmark-β or Generalized-α are chosen. As the consideration
of geometrical nonlinear effects is indispensable, a nonlinear equation system has to be
solved in each time step. This is done via complete linearisation and iterative solution by
the Newton-Raphson method with predictor-corrector scheme.

5.4 Model Order Reduction

The controller design for a flexible mechanical structure like a membrane represents in
general a multiple input - multiple output (MIMO) system. Since advanced controller
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design techniques typically produce controllers with orders comparable to the order of
the plant, this will inevitably lead to controllers of very high order. Such high-order
controllers are not practical for real-time applications. The main issues with large-scale
systems are storage, computational speed, accuracy and stability.
Thus the application of nonlinear and large-scale finite element models is not suitable.
Reduced order models and related model reduction methods are indispensable for the
practical applicability of modern controller design methods for high-order systems. Var-
ious reduction techniques have been developed for linear systems, like modal trunca-
tion techniques, Padé and Padé type approximations and balanced truncation techniques
[AS01, ZE00]. However, this work will focus on modal truncation in the sequel.

As a first step, a linearization of the geometrically nonlinear system of equ. (5.15) is
performed for controller design:

M ¨̄d + C ˙̄d + Ktand̄ = Ef f(t) (5.18)

Here, the generalized stiffness matrix Ktan is of key importance. It should sufficiently
describe the stiffness of the controlled system. Thus effects like prestress, geometric stiff-
ness and permanent loading like dead load should be contained in the linearized model.
The right hand side of equ. (5.18) contains the load contributions of the external load.
The introduced matrix Ef links the affected degrees of freedom of the load to the related
time dependent function f(t).
Furthermore, an external load part for the actuator-induced load effects is introduced:

M ¨̄d + C ˙̄d + Ktand̄ = Ef f(t) + Bu u(t) (5.19)

where the matrix Bu links the degrees of freedom of the actuator signal to the time depen-
dent function of the control input u(t).
Beyond that, also a sensor or output equation has to be defined based on the finite ele-
ment model. Assuming sensors that measure nodal displacement values, it can be stated:

y(t) = Pd d̄ (5.20)

where y(t) is the vector of (time-dependent) sensor values. The matrix Pd maps the dis-
placement vector to the sensor values. Thus Pd has in general zero entries except the
entries that reflect the measurement positions of the sensors. This formal relation be-
tween the sensor values y(t) and the finite element model data according to equ. (5.20)
will be used later for the transformation of the output equation to the modally truncated
space.

As explained before, the obtained linearized model of the finite element model would
in general yield to very high state-space dimensions. Thus an appropriate model order
reduction scheme has to be adopted. Within this work, the modal truncation technique is
applied. This method is commonly used in the context of flexible structures due to their
low-pass characteristic, which allows for neglecting higher-frequency dynamics.



5. Closed-Loop Control of Lightweight Structures 123

Starting point of the used modal truncation approach is the solution of the linearized
undamped eigenvalue problem of the structure:

(Ktan − λkM)ψk = 0 (5.21)

Solving equ. (5.21) for r eigenvectors with r < n yields the (n× r) modal matrix:

Ψ = [ψ1|ψ2|...|ψr] (5.22)

and the (r× r) spectral matrix:
Λ = diag(λk) (5.23)

where Ψ is orthonormalized with ΨTKtanΨ = Λ and ΨTMΨ = 1. Inserting the modal
coordinates d̄ = Ψz into equ. (5.19) and equ. (5.20), leads to

MΨz̈ + CΨż + KtanΨz = Ef f(t) + Bu u(t) (5.24)

and:
y(t) = Pd Ψz (5.25)

Pre-multiplying equ. (5.24) with ΨT, the original finite element system with n degrees
of freedom can finally be reduced to a decoupled equation system of r modal degrees of
freedom:

z̈ + ∆ż + Λz = ΨTEf f(t) + ΨTBu u(t) (5.26)

with the structural modal damping matrix

∆ = ΨTCΨ (5.27)

A general discussion and estimation of the error introduced by modal truncation can be
found at Brenner [Ben06].

5.5 State Space Approach

It is actually not a new trend that engineering systems are heading towards greater com-
plexity and good accuracy. In order to meet increasing demands on the performance
of control systems and the system complexity, modern control theory has been developed.
Modern control theory is based on the description of the state. The state of a dynamic
system is the smallest set of n variables (state variables) such that the knowledge of these
variables at time t = t0, together with the knowledge of any input for t ≥ t0 completely
determines the behavior of the system for any time t ≥ t0. The state variables of a dy-
namic system are collected in the state vector xc

Based on the modal degrees of freedom of the reduced model, the state vector is defined
by:

xc =

[
z
ż

]
(5.28)
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with xc ∈ Rn and n being two times the number of modes considered in the state space
model. Assuming a time-invariant system that is linear or linearized at the operating
state, the following state space equation and output equation can be defined:

ẋc(t) = Ac xc(t) + Bc uc(t) + Ec f(t) (5.29)

y(t) = Cc xc(t) + Dc uc(t) + Fc fy(t) (5.30)

where Ac is called system matrix, Bc is denoted with input matrix and Ec represents the
external load matrix. The vector uc ∈ Rk represents the control input of k actuators. Fur-
thermore, y ∈ Rl is the system output with l being the number of sensors. In the output
equation, Cc represents the output matrix and Dc is called the direct transmission matrix.
Last but not least, the matrix Fc allows for the consideration of disturbances in the output
equation.
Using now the state vector xc, the reduced model of equ. (5.26) is transformed into the
modal form of the state space equation according to equ. (5.29):

ẋc(t) =

[
0 I
−Λ −∆

]
xc(t) +

[
0

ΨTBu

]
uc(t) +

[
0

ΨTE f

]
f(t) (5.31)

Besides to the state-space equation, also the output equation can be formulated based on
the finite element model data. Using equ. (5.25), it can be derived:

y(t) =
[

PdΨ 0
]

xc(t) (5.32)

Thus the direct transition matrix is zero in this case. A disturbance signal can also be
introduced later in the controller design phase. In contrast to the common notation in the
literature, the state vector and all state space matrices are given a subscript c. This is just
to avoid name collisions with terms defined in preceding chapters in the context of finite
element technology.
Now all required information for the controller design is prepared. It should be pointed
out that all matrices Ac, Bc, Ec, Cc and Dc are derived from the finite element model and
the related modal truncation.

5.6 Placement of Actuators and Sensors

In general, the placement of actuators and sensors plays an important role in the de-
sign procedure of smart structures. In the distributed control of continua like e.g. shell
or membrane structures, the estimation of an optimal actuator and sensor shape as
well as their placement are challenging problems which have not yet been fully solved
[GNTK02]. However, the actuator and sensor locations determine to a large extent the
effectiveness of the overall smart structure, as they determine the controllability and the
observability properties of a controlled structure.
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A LTI system is said to be controllable at time t0 if there exists a control signal uc(t) that
will transfer an arbitrary initial state xc(t0) to the origin state xc(t1) = 0 within a finite
time t1− t0 < ∞. If this is true for all initial times t0 and all initial states xc(t0), the system
is said to be completely controllable. This is equivalent to the following statement:

Rank [QC] = n (5.33)

where QC is the (n× kn) controllability matrix:

QC =
[

Bc | AcBc | A2
cBc | . . . | An−1

c Bc

]
(5.34)

However, the check of controllability is only an a-posteriori verification and is not suit-
able for optimal actuator positioning. Thus a controllability index is introduced. Consid-
ering the state space model obtained by modal truncation as described in equ. (5.31), the
controllability index of the kth eigenmode is defined by:

µk = ψT
k BuBT

u ψk (5.35)

Depending on the type of controller, A system is completely controllable if µk > 0, ∀k,
where in general µk should be as high as possible. The best positions Xp to control the
first r eigenmodes are the positions with the highest overall controllability index

µ
(
Xp
)
=

r∏
k=1

µk
(
Xp
)

(5.36)

Furthermore, a system is said to be observable at time t0 if xc(t0) can be determined from
the knowledge of uc(t) and y(t) for t0 < t < t1 < ∞. If this is true for all t0 and all
xc(t0), the system is said to be completely observable. This is equivalent to the following
statement:

Rank [QO] = n (5.37)

where QO is the (n× ln) observability matrix:

QO =


Cc

CcAc

CcA2
c

...
CcAn−1

c

 (5.38)

Similar to equ. (5.35), an observability index can be defined:

νk = ψT
k PT

d Pdψk (5.39)
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A system is completely observable if νk > 0, ∀k. Just like in the case of the controllability
index, it is aimed for maximum values of νk. The best positions Xp to observe the first r
eigenmodes are the positions with the highest overall observability index

ν
(
Xp
)
=

r∏
k=1

νk
(
Xp
)

(5.40)

Using the controllability and observability index, an estimation of the number and posi-
tions of the required actuators and sensors can be done. Based on the evaluation of the
modal measures of input and output, like modal displacements, strains, or modal electric
voltage, a sensor and actuator design can be performed that is driven by original finite
element model. The influence of the stiffness and the mass changes due to the active
materials and the controller influence are commonly omitted at this stage.

5.7 Controller Design

There exist various methods for designing a controller such as the root-locus analysis, the
design by frequency response, the pole placement method or the quadratic optimal control method
[ZE00, Pre02, Oga02]. In the context of this work the latter method shall be focused.
In the early design phase of the smart structure, it is assumed that the specification of
the structure itself, including the objective of the controlled behavior, the external distur-
bances and frequency range etc. is already known. The linearization and model order
reduction at the operating state led to the linearized state and output equations:

ẋc = Ac xc(t) + Bc uc(t) + Ec f(t) (5.41)

y = Cc xc(t) + Dc uc(t) + Fc fy(t) (5.42)

In this general form of the plant model, f and fy describe in general the disturbance which
is assumed to be present in the state and the output equation. For discrete controller
design, it is necessary to derive a discrete-time state space model of the plant structure.
Performing a discretization of equ. (5.42) with an appropriate sampling time T yields:

xc [k + 1] = Gc xc [k] + Hc uc [k] + εc f [k] (5.43)

y [k] = Cc xc [k] + Dc uc [k] + Fc fy [k] (5.44)

with

Gc = eAcT (5.45)

Hc =

∫ T

0
eAcTBc dt (5.46)

εc =

∫ T

0
eAcTEc dt (5.47)
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Figure 5.5: Block diagram of closed-loop control with a LQG regulator.

For active control, a linear-quadratic-Gaussian (LQG) regulator according to Figure 5.5
can be chosen (see also example of a smart 4-point tent in section 7.5). The state and
output equations reflect the behavior of the plant (compare also Fig. 5.1 and 5.5).

In practice, usually only the sensor signals and not all state variables are available for feed-
back. Therefore it is necessary to estimate unavailable state variables. Such an estimation
is commonly called observation. The related device that estimates the state variables is
called a state observer, observer or estimator.
The Kalman filter is a very general filtering technique which can be applied to the solu-
tion of optimal estimation problems, noise filtering or stochastic optimal control. It can
be applied to both stationary and non-stationary processes in contrast to other estimation
filters. Thus a Kalman estimator can be used to obtain a state variable estimation x̃c of
the plant model derived from the information of the sensors (Figure 5.5):

˙̃xc = Acx̃c + Bcuc + Lc(ȳ− ỹ) (5.48)

where
ỹ = Ccx̃c (5.49)

is the estimated output. The inputs to the observer are the output ȳ and the control input
uc. The observer gain matrix Lc is a weighting matrix to the correction term involving the
difference between the measured output ȳ and the estimated output ỹ. This term corrects
the estimated model output and improves the performance of the observer. Assuming
the statistical properties of the system noise Ecf and the measurement noise Fcfy to be
known, the observer gain matrix Lc is determined through an algebraic Riccati equation
that minimizes the estimation error [Oga02, Oga87].

Based on the estimation of the state, the state feedback gain Kc is used to generate the
actuator signal:

uc(t) = −Kc x̃c (5.50)
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Hereby the state feedback gain matrix Kc is chosen such that the feedback law of equ.
(5.47) minimizes the performance index:

Jc =
1
2

∞∑
k=0

(
y [k]T Qc y [k] + uc [k]

T Rc uc [k]
)

(5.51)

where Qc and Rc are symmetric, positive definite matrices.

5.8 Nonlinear Simulation including Control

In general, the feasibility of the structural behavior including control has to be verified
and tested. After controller design, the controller can be directly implemented on a
dSPACE system in order to use a hardware-in-the-loop configuration for testing and evalu-
ation of the designed controller in real experiments [GNW08].

However, before time-consuming experiments are performed, the overall structural be-
havior including control can be evaluated on the basis of the original finite element model.
To this goal, the designed controller is integrated in the transient analysis according to
chapter 5.3. Based on the large-scale and geometrically nonlinear finite element simula-
tion, it can be automatically checked if all components comply with the maximal allow-
able stresses or if e.g. wrinkling effects appear due to undesired compressive stresses in
the membrane [JWB08]. Furthermore it can be evaluated if the efficiency of the controller
predicted by the linearized and reduced model is still obtained in the nonlinear finite el-
ement model [FWB09a, FWB09b].
This allows for a virtual (re-)design of the smart structure on different levels: the design
of the passive structure, the generation of the linearized and reduced model, the assump-
tions of the state space model, the number and placement of sensors and actuators, as
well as the controller design itself can be adapted in the virtual computational model if
specific requirements are not met in the nonlinear simulation including control. A related
example of the overall design loop is given in chapter 7.5.



Chapter 6

Software Implementation

6.1 Challenges of Modern Finite Element Software

As finite element methods and algorithms evolve, the daily life requires modifications
to existing finite element programs. This may be due to the adaptation to latest func-
tional, numerical and physical technologies [FFS90], or just due to the implementation of
a new field of research. Thus it is indispensable that a modern finite element software
constantly changes to satisfy current and future demands of university research as well
as industrial applications.
Beyond that, nowadays the solution of multidisciplinary problems involving several
fields (thermal, fluid, structural, electrical), the combination with optimization methods
and parallel programming strategies are more and more requested in order to meet mod-
ern needs of research and industrial application. Therefore, finite element analysis soft-
ware must be in general modular and flexible.

6.2 Problems and Pitfalls of Procedural Programming

However, finite element programs are commonly written in programming languages that
adhere the procedural programming paradigm like C or Fortran and often consist of sev-
eral hundred thousand lines of code or even more. The codes contain lots of complex
data structures which are directly accessed throughout the program by various compo-
nents [Arc96]. And of course, the various parts of the program take advantage of this
accessibility for the sake of efficiency.
To give only one example: software components for finite elements, nodes and boundary
conditions may need to access the matrices and vectors involved in the analysis to obtain
and transmit their state information. The components of the software become directly
tied to the program’s data structures. Access to the data structures occurs throughout the
component, and easily becomes inseparable from the component’s function. This leads
in several ways to a severe inflexibility of the software [Fis10b]:
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• High code complexity: Modification or extension of a minor portion of code requires
not only knowledge of the component at hand, but also a high degree of knowledge
of the entire program.

• Difficulty of code reuse: Since the layout of the data structures is unique to each pro-
gram component, the possibility of the reuse of the code in other components is
greatly diminished. Also, code from other programs is difficult to adapt for use
within the own system.

• Ripple effects: Since the data structures are globally accessible, a small change in the
data structures can have a ripple effect throughout the program. All code fragments
that access the affected data structures must be updated. As a result, the layout of
the data structures tend to become fixed regardless of how appropriate they turn
out to be as the code evolves.

• Hidden interdependencies: The components of the system become dependent on each
other via their common access to the data structures. Hardly any control can be
placed on the access. As a result, these interdependencies are numerous. More
importantly, they are implicit. One component can be completely unaware of an-
other’s reliance on the same data structure.

• Danger for data integrity: When modification or extension to a component occurs, it
is difficult to assure that all affected portions of the code are adjusted accordingly.
The integrity of the data structures is not assured.

All in all, conventional procedural finite element codes do in general not provide the
optimal basis for an up-to-date multi-disciplinary simulation environment that can suc-
cessfully face the challenges of the future.

6.3 Chances Offered by the Object-oriented Programming
Paradigm

The concept of object-oriented programming is a very promising remedy for the problems
described above and has been proven to be very beneficial to the development of flexible
programs. The reason is very simple: The basis of object-oriented design is abstraction.
The object-oriented philosophy abstracts out the essential immutable qualities of the com-
ponents of the finite element method. This abstraction forms a stable and reliable defini-
tion of objects in which the relationships between the objects are explicitly defined. The
implicit reliance on another component’s data does not occur. Thus, the design can be
easily extended with minimal effort. Object-oriented programming provides in general
four fundamental concepts [RK93b, CL95]:

• Objects. Software is organized into objects that store both its data and operators
on the data. This permits developers to abstract out the essential properties of an
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object: those that will be used by other objects. This abstraction allows the details
of the implementation of the object to be hidden, and thus easily be modified. The
necessary scope of the code developer is reduced to only the object of interest and
the services other objects provide to the object of interest.

• Classes. Objects are instances described by a class definition. Encapsulating the
data and operations together isolates the classes and promotes the reuse of code.
Changes to a class affect only the class in question, without ripple effects. Interde-
pendencies between the classes are explicitly laid out in the class interfaces. The
number of dependencies are minimized and easily determined. Object-oriented
programming languages enforce the encapsulation of the classes. Thus the integrity
of the data structures is assured by the language.

• Inheritance. Classes can be related by inheritance. A subclass inherits behavior
through the attributes and operators of the superclass. Thus code reuse is further
enhanced by placing attributes common to several subclasses into the superclass,
which is implemented once for all.

• Polymorphism allows the same operation to behave differently in different classes
and thus allows objects of one class to be used in place of those of another related
class.

Thus object-oriented programming offers techniques for faster programming, smaller
codes and better management of data and procedures compared to equivalent procedural
programming [Fis08a]. The object-oriented approach is very attractive for finite element
analysis due to the advantages in modularity, maintenance, extensibility and code reuse.
However, it should be stated that there is no contradiction between object-oriented and
procedural programming. Many tasks can best be solved by a combination of both tech-
niques: While the finite element method can be modeled very elegantly using an object-
oriented approach, some inner program parts like equation solvers may still be based on
a procedural concept at the same time [FFMB10].

6.4 Object-Oriented Finite Element Programming

The application of object-oriented programming in the structural engineering community
has started in the late eighties, leading to first publications in the early nineties. In 1990,
Fenves describes the advantages of object-oriented design for the development of engi-
neering software [Fen90]: Based on the data abstraction technique, flexible and modular
programs with substantial code reuse can be developed. Also in 1990, Forde, et al. pub-
lish one of the first detailed applications of the object-oriented paradigm to finite element
analysis [FFS90]. The authors abstract out the essential components of the finite element
method to design the main objects.
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Other authors increase the general awareness of the advantages of object-oriented pro-
gramming over traditional Fortran based approaches and demonstrate how to bene-
fit from these advantages in finite element codes. Filho and Devloo apply the object-
oriented paradigm to element design [FD91]. Mackie gives another introduction to object-
oriented finite element programming by designing a brief hierarchical element [Mac92a].
Furthermore, he presents a more comprehensive finite element program concept provid-
ing a data structure for entities and introducing the use of iterators [Mac97]. Pidaparti
and Hudli [PH93] present a more detailed object-oriented structure with objects for differ-
ent algorithms in dynamic analysis of structures. Raphael and Krishnamoorthy [RK93a]
also publish an introduction to object-oriented programming and show a sophisticated
hierarchy of elements for structural applications. Zahlten, et al. publish one of the most
detailed treatments of the material class and thus of the modeling of the constitutive rela-
tionships [ZDK95, HZK94].
Also a lot of publications about the development of complete finite element system archi-
tectures can be found. In this context, G. R. Miller, et al. [Mil91, Mil94, MR94]) present an
object-oriented software design for nonlinear dynamic finite element analyses.
T. Zimmermann, et al. present a software architecture for linear dynamic finite element
analysis [ZDPB92], with later extensions to account for material nonlinearity [MZ93].
They implemented first a prototype of this structure in Smalltalk [DPZB92] and after
that an efficient one in C++ [DPZ93]. They also report about a comparable performance
of the latter version compared to a Fortran code. Further object-oriented finite element
program designs can be found e.g. at Jun Lu et al. [CSW90, SWC92], J. W. Baugh et al.
[BR89, BR92a], H. Adeli et al. [AY95, YA93], Archer et al. [Arc96, AFT99].

In the sequel, also several open source finite element codes and frameworks with object-
oriented design have been developed, like the code FELyX from ETH Zurich [KWZE],
the multi-disciplinary finite element framework Kratos by P. Dadvand and R. Rossi at
CIMNE in Barcelona [Dad07], OFELI (Object Finite Element LIbrary) developed by R.
Touzani, FreeFem++ by O. Pironneau et al., OOFem developed by Patzák et al. [PB01],
the Object Finite Element Library (OFELI) developed by Touzani [Tou02], the Differential
Equations Analysis Library (DEAL) II by Bangerth et al. [BHK], as well as the object-
oriented Finite Element Modeling (OOFEM) program by Patzák et al. [PB01].

6.5 Development of Carat++

In order to provide the necessary basis for modern, flexible and sustainable finite element
programming, the software Carat++ has been started. [FMFB12c, Fis12, FFMB10, Fis10a,
FFB09, FFB10a, FWB11]. In this context, the object-oriented paradigm has been the key
design concept. The program is completely written in C++ in order to take advantage
of object-oriented programming features. Beyond that, the design objectives have been
platform independence, numerical efficiency, as well as suitability for large and complex
problems such as industrial applications.
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Another design concept has been consistent parallelization of the overall code with MPI
[FFB10b, FFMB11a]. Hereby, the method of geometric parallelization has been adopted,
i.e. every process executes at the same time the same program but works only on a subset
of the model data (domain decomposition). In this context, all software components have
been parallelized: simulation, solvers, post-processing, as well as sensitivity analysis and
optimization algorithms in the context of optimization problems. Thus the software is
capable to perform the overall design process in a consistent parallel computation.

In the context of this work, flexible software modules for form finding, cutting pattern
generation, structural analysis, model order reduction, state space calculation, as well
as structural optimization have been used [FFMB10, Fis11, Fis13b, FB12, FFB12b, BFF10,
BFF11].
For the focused use of Carat++ in the context of simulation and design of composite struc-
tures [Fis13a, FMFB12c, FMB12b, FMFB12a, FMFB12b, FMFB11a, FMFB11b, MFFB10] as
well as in the context of structural optimization [FFB13, FMB13a, FMB13b, BFF13, BF13,
FFB12a, FMB12c, FMB12a, Fis08b, MFFB11, FFMB11b] , the reader is kindly referred to
the literature.



Chapter 7

Numerical Application Examples

In the first part of this chapter, several numerical examples are discussed to evaluate
the presented composite shell formulation and the related implementation. Different
element versions are evaluated in order to verify the need for the single element en-
hancement techniques, namely ANS (chapter 3.6.2), EAS (chapter 3.6.3) and EAE (chapter
3.6.3). The element formulations are named by acronyms for the reasons of clarity and
efficiency:

• S-0: Irreducible form of piezoelectric shell element formulation without enhance-
ments.
• S-Q-EAS: Element with ANS improvement for transverse shear and EAS improve-

ments.
• S-Q-EAS-E: Element with ANS improvement for transverse shear, EAS and EAE

enhancements.

Furthermore, several examples provide detailed insight which single EAS or EAE field
contributions are actually in detail needed to eliminate the locking phenomenon of the re-
spective example. To this goal, the EAS modes are explicitly specified via the number of
modes per strain type according to equ. (4.128). Accordingly, also the EAE modes are ex-
plicitly specified via the number of modes per electric field type according to equ. (4.129).
To give an example, S-Q-EAS04100-E20 stands for the ANS-improved element with the
four bending strain modes and the first thickness strain mode in matrix M according to
equ. (4.128), as well as the two constant electric field modes according to matrix ~M in
equ. (4.129).

A variety of distinct loadings is investigated in piezoelectric patch tests in chapter 7.1
to evaluate the behavior in a pure states of constant membrane action, bending, shear,
etc. It will be shown that the enhanced element formulation is capable to eliminate par-
asitic strains and parasitic electrical fields that cause locking. Another example focuses
on the element quality under high mesh distortions to discover limits of applicability
and element quality. Also the widely used bimorph example (chapter 7.2) is tested to
evaluate the effects of opposite polarities in different layers. Beyond that, it is shown
that the geometrically nonlinear analysis can be indispensable especially in sensor simu-
lation. Furthermore, two examples from the well-known shell obstacle course proposed



7. Numerical Application Examples 135

by Belytschko et al. [BSL+85] are applied in order to test the element’s robustness and
accuracy in complex strain states of pure structural applications.

The second part of this chapter presents two larger application examples: The virtual
design process of a actively controlled smart structure with its components is shown at
an example of a civil engineering structure. The final example demonstrates the design of
a shape adaptive piezoelectric structure at the example of a variable-camber airfoil wing,
including aeroelastic coupling and FE-based structural optimization.

7.1 Piezoelectric Patch Tests

The definition and the background of the patch test has already been introduced in chap-
ter 3.4. In this chapter, the presented piezoelectric finite element is tested in different
versions of the patch test. In detail, the patch is subjected to:

• rigid body motion
• tension
• electric field strength (actuator mode)
• bending load
• shear load

in separate tests. This allows for an evaluation of the behavior in distinct states of strains
and electric field strength with analytical reference results.

7.1.1 Model Definition

1

Coordinates (X₁, X₂, X₃): 

Node 1: (0.04, 0.02, 0.00)

Node 2: (0.18, 0.03, 0.00)

Node 3: (0.16, 0.08, 0.00)

Node 4: (0.08, 0.08, 0.00)
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l   = 0.24 m

w = 0.12 m

h   = 0.01 m
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Figure 7.1: Patch test model: Geometry information with position of interior nodes.
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The geometry of the model is chosen according to MacNeal and Harder [MH85] (Figure
7.1). For comparison reasons, the material parameters (see table 7.1) are chosen accord-
ing to Klinkel and Wagner [KW06] who extended this patch test for piezoelectric appli-
cations. The piezoelectric coupling parameters are given in the common matrix form as
introduced in chapter 2.7.2.2. The polarization is assumed to be in negative e3-direction.
For reasons of clarity, the electric potentials at the lower and upper side ϕl and ϕu are
specified instead of ∆ϕ. Furthermore, in order to allow for a clear derivation of analytical
results, the Poisson’s ratio is set to zero. This simplification is admissible here, as the
decisive coupling effects under consideration are not dependent on the Poisson’s effect.

E1 = E2 = E3 = 1.23 · 1011N/m2
e

31 = −5.0 C/m2

ν = 0.0 e
32 = 0.0 C/m2

ε11 = ε33 = 1.25 · 10−8 C2/Nm2

Table 7.1: Material parameters for the patch tests. Not listed parameters are zero.

7.1.2 Displacement Patch Test
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a) Deformation:

 b) Electric potential difference:

Figure 7.2: Displacement patchtest: Deformation contour plot (a) and electric potential difference
contour plot (b) obtained by all tested elements.
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In this patch test, the correct reproduction of rigid body motions shall be investigated.
The presented model is well suited for that test, as the element in the middle is completely
surrounded by other elements. The Dirichlet boundary condition v1 = 0.001 m is chosen
as rigid body motion and thus is applied to the outer nodes 5, 6, 7 and 8.

This patch test is passed by all elements under consideration: S-0, S-QEAS, S-QEAS+E
(see introduction to chapter 7). A constant displacement field of v1 = 0.001 m is obtained
for the full model, the nodal potential differences are zero. It should be pointed out
that this is not a trivial solution test: While the outer node displacements are prescribed,
all other primary variables are obtained by solving the coupled piezoelectric equation
system.

7.1.3 Tension Patch Test

The structure according to Figure 7.1 is provided with an statically determinate support:
The degrees of freedom v1, v2, v3 and w1 are fixed at node 5, and v1 and v3 are fixed at
node 6. This statically determinate support is in general important for two reasons: On
the one hand side, it eliminates possible restraints which would influence the results, on
the other hand side possible zero energy modes (see chapter 3.3) are not stabilized with
additional support conditions. For all nodes of the model, the lower side is grounded
which means ϕl = 0V.
As this patch test belongs to the group of force patch tests (sometimes also called stress
patch tests), care has to be taken that the applied forces on exterior nodes are set to
consistently lumped surface tractions. In order to obtain a constant stress state of
S11 = 1 · 108N/m2 in this example, forces F1 = 6 · 104N are assigned to the nodes 7
and 8. All other stress components are zero. Due to the electrical boundary conditions,
also all electric displacement components are zero.
Thus using this boundary conditions and material parameters, the coupled electrome-
chanical system is reduced to a 1-D problem that can easily be solved analytically. Two
relevant electromechanical equations remain:

S11 = E · E11 − e
31 · ~E3 (7.1)

0 = e
31 · E11 + ε33 · ~E3 (7.2)

Solving this equation system with the given material parameters according to table 7.1
leads to a constant strain E11 = 8 · 10−4 and an electrical field in thickness direction
of ~E3 = 3.2 · 105V/m. The analytical result of the electric potential at the overall upper
surface of the structure is ϕu = −3.2 · 103V, the displacement at the free edge is vNode 7,8

1 =

1.92 · 10−4m. For comparison reasons it shall be mentioned that the displacement of the
pure elastic structure without piezoelectric coupling would reveal a tip displacement of
vNode 7,8

1, mech = 1.95 · 10−4m. As shown in Table 7.2, all piezoelectric elements exactly match
the analytical result. This means that the tension patch test can also be passed without
any ANS-, EAS-, or EAE- enhancements.
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The linear ansatz of the electric potential in thickness direction leads to a correct repre-
sentation of the constant electric field. Eventually offered EAS- and EAE modes are not
activated in this load state.

1

4

2

3

7

8

5

6

Figure 7.3: Tension patchtest: Deformation contour plot obtained by all tested elements.

v7,8
1 (m) ϕu (V) ~E3 (V/m) S11 (N/m2)

analytical solution 1.92 · 10−4 −3.20 · 103 3.20 · 105 1.00 · 108

S-0 1.92 · 10−4 −3.20 · 103 3.20 · 105 1.00 · 108

S-Q-EAS 1.92 · 10−4 −3.20 · 103 3.20 · 105 1.00 · 108

S-Q-EAS-E 1.92 · 10−4 −3.20 · 103 3.20 · 105 1.00 · 108

Table 7.2: Tension patch test: Comparison of analytical and numerical results.

7.1.4 Electric Field Patch Test

The structure according to Figure 7.1 is used again with an statically determinate support:
The degrees of freedom v1, v2, v3, w1 are fixed at node 5, and v1, v3 are fixed at node 6. For
all nodes of the model, the lower side is grounded again. Additionally, the voltage at the
upper surface is set to ϕu = 1.0 · 103V. This results in an electrical field ~E3 = − ϕu−ϕl

h =

−1.0 · 105V/m. As no external forces are applied, the stress S11 remain zero. Thus the
governing equations of this 1d-problem can be stated as:

0 = E · E11 − e
31 · ~E3 (7.3)

~D3 = e
31 · E11 + ε33 · ~E3 (7.4)

Inserting the material parameters and the given electric field value, one obtains E11 =

4.065 · 10−6 and ~D3 = −1.270 · 10−3C/m2. The longitudinal displacement at the free edge
is v7,8

1 = 9.756 · 10−7m.
As it can be seen in Table 7.3, all tested element versions also pass this electric field patch
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test. The linear ansatz of the electric potential in thickness direction leads to a correct
representation of the constant electric field. Eventually offered EAS- and EAE modes are
again not activated in this benchmark.

1

4

2

3

7

8

5

6

1

4

2

3

7

8

5

6

a) Deformation:

 b) Electric potential difference:

Figure 7.4: Electric field patchtest: Deformation contour plot (a) and electric potential difference
contour plot (b) obtained by all tested elements.

v7,8
1 (m) E11 (−) ~D3 (C/m2)

analytical solution 9.756 · 10−7 4.065 · 10−6 −1.270 · 103

S-0 9.756 · 10−7 4.065 · 10−6 −1.270 · 103

S-Q-EAS 9.756 · 10−7 4.065 · 10−6 −1.270 · 103

S-Q-EAS-E 9.756 · 10−7 4.065 · 10−6 −1.270 · 103

Table 7.3: Electric field patch test: Comparison of analytical and numerical results.

7.1.5 Bending Patch Test

In this example, the model is subjected to a pure bending state. Two bending moments of
value M = 1000 Nm and oriented in e2-direction are applied at the nodes 7 and 8. As the
rotational degrees of freedom are related to director deformations according to equ. (4.7)
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in chapter 4.1, the bending moments are transformed into equivalent loads at the director
degrees of freedom in Carat++. For all nodes of the model, the lower side is grounded
which means ϕl = 0V. Just as in the previous patch tests, the structure is provided with
an statically determinate support, fixing v1, v2, v3 and w1 at node 5, and v1 and v3 at
node 6. This model resembles to a large extent the bending state presented in the context
of electromechanical locking in chapter 3.5.4.1. However, not in-plane shear locking but
transverse shear locking is critical now.
The normal stress S11 in this problem is constant in e1-direction and linear in e3-direction.
In accordance to Klinkel and Wagner [KW08], the vertical tip displacement can be calcu-
lated analytically with v3 = −0.8 1

m · X2
1 = −0.8 · 0.242m = −0.04608 m. Beyond that, the

analytical result of the voltage is obtained with ϕ = 0.32 V
m2 · X2

3 − 8.0 · 10−6V. For the
upper surface voltage at the tip it is obtained ϕ7,8

u = 0.32 · 0.0052 − 8.0 · 10−6 = 0V. It
should be pointed out again that the analytical distribution of the electric potential over
the thickness is a quadratic function. This is due to the fact that the coupled material law
generates a linear electric field distribution ~E3 together with a linear strain distribution
E11. Integrating the electric field distribution over the thickness with consideration of the
boundary conditions leads to the described quadratic function of the electric potential.

v7
3 (m) v8

3 (m) ϕ7,8
u (V)

analytical solution −4.60800 · 10−2 −4.60800 · 10−2 0
S-0 −4.92059 · 10−4 −3.96037 · 10−2 0

S-Q-EAS −4.68293 · 10−2 −4.68293 · 10−2 0
S-Q-EAS-E01 −4.61158 · 10−2 −4.61398 · 10−2 0
S-Q-EAS-E04 −4.60800 · 10−2 −4.60800 · 10−2 0

Table 7.4: Bending patch test: Comparison of analytical and numerical results.

Table 7.4 lists the results for the different element versions. First of all, it can clearly be
seen that the element S-0 without any enhancements produces completely useless results.
The described locking effects are dominating the result.
The element S-Q-EAS is able to eliminate the parasitic shear stresses and thus transverse
shear locking via the ANS method. EAS modes are actually not needed here. However,
the element does not apply any EAE modes to enhance the electric field. Therefore only
electric fields can be approximated which are constant through the thickness which is
not sufficient here (compare also Figure 3.12 in chapter 3.5.4.1). It is also remarkable that
the electromechanical locking leads here to displacement results that are larger than the
analytical reference. This is indeed in contrast to the behavior of "classical" structural lock-
ing where in general the deformation is reduced and a stiffening effect can be observed.
However, this phenomenon can be explained very intuitively: The element offers only
a constant approximation of the electrical field which is not activated here. Thus the
approximation of ~E3 collapses to zero. As a consequence, the electromechanical locking
eliminates energy that is spent into the electric field and restores it to the strain energy.
This leads in this example to an identical behavior as a pure mechanical structure without
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piezoelectric coupling.
The S-Q-EAS-E01 element offers a linear interpolation of the electric field in thickness di-
rection. This mode can eliminate the predominant part of the electromechanical locking.
However, it misses the exact result due to the mesh distortion of the model and it also
looses the symmetry of the results at nodes 7 and 8. Thus also this element does not pass
the patch test.
However, the complete structural locking as well as electromechanical locking can be
eliminated here by the element S-Q-EAS-E04. Due to the bilinear interpolation of the lin-
ear electric field in thickness direction, also the mesh distortion does not deteriorate the
element result.

The reader should also be pointed to very similar results by solid shell elements presented
by Klinkel and Wagner where all 6 fields of the Hu-Washizu functional are discretized
[KW06]. Using element versions with different number of enhanced electric field modes
in thickness direction, Klinkel and Wagner obtain almost identical results with their el-
ements in this patch test. The element S-Q-EAS of this work can be compared with the
element HSE-0 of Klinkel and Wagner, S-Q-EAS-E01 can be matched with the HSE-1 el-
ement and S-Q-EAS-E04 can be compared with the HSE element [KW06]. The reason
for the strong similarity of the results is that both element formulations are based on the
Hu-Washizu functional and comparable kinematic assumptions. The good match con-
firms that the shown element formulation based on the modified Hu-Washizu functional
can eliminate the stress field and electric displacement field and thus increase numerical
efficiency without loss of numerical result quality.

7.1.6 Shear Patch Test

As last benchmark within the series of patch tests, a transverse shear loading shall be
examined. This allows for an investigation of the related electromechanical locking phe-
nomenon as described in Figure 3.13 in chapter 3.5.4.2. For the shear patch test, the model
shall be used as suggested by Legner [Leg11]. The geometry stays the same as in the pre-
ceding patch tests, but the mesh is chosen differently as shown in Figure 7.5.
The material parameters are chosen as shown in section 7.1.1, however e15 = 5.0 C/m2

is chosen as additional coupling parameter. For convenience, table 7.5 lists again all
material parameters of the shear patch test. For all nodes of the model, the lower
side is grounded again such that ϕl = 0V. The structure is supported fixing all 6 dis-
placement degrees of freedom at node 1 and at node 2. The load is defined via two
Forces F3 = 1000N at nodes 3 and 4 in opposite direction of e3 (Figure 7.5). The trans-
verse load results in a linear behavior of the strains E11 in e1 direction. The analyt-
ical result assuming a Timoshenko beam kinematics and linear piezoelectricity is de-
rived at Legner [Leg11]. Inserting the parameters of this model, a tip displacement of
vtip

3 = −7.38036 · 10−3m is obtained. The electric potential at the upper side has an ana-
lytical result of ϕu = 0V in the case of a geometrically linear analysis.
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Figure 7.5: Shear patch test model: Geometry information and mesh.

E1 = E2 = E3 = 1.23 · 1011N/m2
e

31 = −5.0 C/m2

ν = 0.0 e
32 = 0.0 C/m2

e
15 = 5.0 C/m2

ε11 = ε33 = 1.25 · 10−8 C2/Nm2

Table 7.5: Material parameters for the shear patch test. Not listed parameters are zero.

Now, the numerical results of the element versions shall be examined. Table 7.6 lists the
vertical tip displacement at node 4 and the electric potential at the upper side at node 4.
The evaluations are made for the mesh with 48 elements as depicted in figure 7.5, as well
as a finer mesh with 96 elements in longitudinal direction.
The element S-0 without any enhancements is just listed to show the severity of the lock-
ing effects. The element S-Q-EAS leads to an overestimation of the displacement. Again
like in the bending patch test before, the element formulation misses here the correct rep-
resentation of the electric field in thickness direction ~E3. With increasing mesh refinement
in longitudinal direction, this element formulation would converge to the pure structural
deformation result of v4,mech

3 = 7.5005 · 10−3m. Furthermore, it can be observed that the er-

48 elements 96 elements

v4
3 (m) ϕ4

u (V) v4
3 (m) ϕ4

u (V)

analytical solution −7.38036 · 10−3 0 −7.38036 · 10−3 0
S-0 −6.79288 · 10−3 −105.042 −7.31010 · 10−3 −105.834

S-Q-EAS −7.49966 · 10−3 −105.025 −7.50027 · 10−3 −105.830
S-Q-EAS-E01 −7.37979 · 10−3 −105.025 −7.38039 · 10−3 −105.830
S-Q-EAS-E04 −7.37979 · 10−3 −105.025 −7.38039 · 10−3 −105.830
S-Q-EAS-E24 −7.37960 · 10−3 0 −7.38020 · 10−3 0

Table 7.6: Linear shear patch test: Comparison of analytical and numerical results.
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ror in the electric potential approximation is even a bit increasing with mesh refinement.
The elements S-Q-EAS-E01 and S-Q-EAS-E04 show the same results. The tip displace-
ment result is improved compared to the S-Q-EAS element, as the EAE mode of the linear
electric field in thickness direction allows for a correct representation of ~E3. As a regular
mesh is used here, the additional EAE modes offered by the element S-Q-EAS-E04 are not
activated here. However, the elements S-Q-EAS-E01 and S-Q-EAS-E04 are still not able
to represent the electric field ~E1 according to Figure 3.13 in chapter 3.5.4.2. The electric
potential at the tip is strongly affected by parasitic electric field effects stemming from
the incompatible approximation spaces.
Only element S-Q-EAS-E24 allows for a correct representation of the electric potential
field (Figure 7.6 b), as additional constant electric field enhancement modes for ~E1 and
~E2 are included. This example shows that all element enhancements are indispensable,
especially for sensor applications.
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a) Deformation:

 b) Electric potential difference:

Figure 7.6: Shear patch test model with 48 elements: deformation and electric potential result
using the element S-Q-EAS-E24 with ANS-, EAS- and EAE- improvement.
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7.2 Bimorph

7.2.1 Sensor Test

The bimorph beam is a commonly used test example in the literature to examine the fi-
nite element quality in both sensing and actuation action. It goes back to Tzou and Tseng
[TT91] and has also been used e.g. by Hwang and Park [HP93], Sze and Pan [SP99], Chee
et al. [CTS99], Mesecke-Rischmann [MR04] and Schulz [Sch10].
The model consists of two identical uniaxial layers of the material polyvinylidene diflu-
oride (PVDF). The layers are attached to each other with opposite polarities (Figure 7.7).
The structure has a clamped support at the left edge. In accordance to the literature, the
model is discretized with 5 elements. The material parameters are listed in Table 7.7.

h

5

e3

e1

e2

Geometry:                        Polarization:

l   = 0.10 m

w = 5 10⁻³ m

h   = 2 x 5 10⁻⁴ m

.

.

w
l

Figure 7.7: Bimorph model: Geometry and polarization of the two layers.

E1 = E2 = E3 = 2.0 · 109N/m2
e

31 = −4.6 · 10−2 C/m2

ν = 0.29 ε11 = ε33 = 1.062 · 10−10 C2/Nm2

Table 7.7: Material parameters of the bimorph. Not listed parameters are zero.

For the sensor testing, the bimorph tip is deflected with vtip
3 = 0.01m according to Fig. 7.7.

The applied deformation results in an electric potential that can be measured along the bi-
morph. Figure 7.8 shows the results of a linear analysis with the element S-Q-EAS-E and
compares it with the results of the mentioned literature. The element S-Q-EAS-E shows
very good agreement with the literature results, especially with the element SM2FΦ2 of
Mesecke-Rischmann [MR04] which also adopts a quadratic interpolation of the electric
potential in thickness direction. Schulz and Hwang/Park assume here that 5 pairs of elec-
trodes are used to measure the electric potential. This results in element-wisely constant
behavior of the electric potential. Slight deviations from a linear behavior of the electric
potential can be identified for element S-Q-EAS-E in Figure 7.8 at the support and the tip
of the bimorph beam. This is in accordance with other results in the literature [MR04],
while Chee et al. [CTS99] do not show these effects at support and tip.
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Figure 7.8: Bimorph.

7.2.2 Actor Test

The layers of the bimorph are attached to each other with opposite polarities (Figure
7.7). Thus applying an unidirectional electric field in the transverse direction, one layer
is contracting and one layer is expanding, which results in bending of the structure.
To this goal, an electric potential ∆ϕ = 1.0V is applied across the thickness. This leads
to an overall electric field ~E3 = −1000V/m. Thus due to the polarization as depicted in
Figure 7.7, the upper layer is contracting while the lower layer is expanding. In total, this
results in a lifting deformation of the bimorph tip.
Figure 7.9 demonstrates the perfect agreement of the results with the literature. The tip
displacement is v3 = 0.345µm which reflects the analytical solution of a piezoelectric
Bernoulli beam [TH93].

7.2.3 Mesh Distortion Test

Finally also mesh distortion effects shall be examined at the bimorph example according
to Sze and Pan [SP99]. Geometry and material parameters are chosen as before. However,
the baseline mesh is defined with four rectangular elements. The mesh is distorted de-
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Figure 7.9: Bimorph: Deflection behavior under applied electrical field.

pendent on the parameter s according to Figure 7.10. A statically determinate support is
adopted and again an electric field of ~E3 = −1000V/m is applied to the overall structure.
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Figure 7.10: Bimorph model with parameterized mesh distortion.

For comparison reasons, also the results of the elements H8D and H8DS of Sze and Pan
[SP99], as well as the element H8DS* of Sze and Ghali [SG93] are presented. H8D is
a hybrid hexahedral element that adopts enhanced assumed electric displacements be-
sides to the fields of displacements and electric potential. H8DS uses enhanced electric
displacements as well as enhanced assumed stresses to improve the element quality.
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In Figure 7.11 it can be observed that the elements H8D and H8DS are very sensitive
to mesh distortion. The elements have in common that the enhanced fields cannot ef-
ficiently eliminate shear locking for distorted meshes. Similar results are obtained by
the element S-EAS-E of this work, where the ANS improvement is intentionally omitted
for demonstration purposes. The element H8DS* uses a selective scaling technique to
alleviate shear locking effects which results in much better results [SG93].
The element S-Q-EAS-E has no stiffening effects in this example and reproduces the ana-
lytical result also in the case of high mesh distortion of a coarse mesh.
In general it can be concluded that also mixed elements should be enhanced by further
techniques like the ANS method in order to end up in robust formulations that can han-
dle distorted meshes. However, it shall be noted that the error does not increase beyond
any limits with growing distortion parameter s. Thus locking effects that depend from a
critical parameter have to be considered to be even more malicious in general. The sensi-
tivity of EAS elements goes back to the assumption of a constant metric for the definition
of the enhanced strains in equ. (4.125). Thus the passing of the patch test is obtained at
the cost of a higher mesh distortion sensitivity. Thus the combination of EAS, EAE and
ANS method is favorable.

Figure 7.11: Tip displacement of bimorph dependent from mesh distortion.
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7.2.4 Geometrically Nonlinear Bimorph Sensor

In many cases of piezoelectric actuation with small deformations, nonlinear kinematics
can be neglected and a linear analysis can be performed. However, especially in the case
of sensor applications, a geometrically nonlinear formulation is often indispensable. This
shall be demonstrated at a bimorph example.

The geometry is chosen as depicted in Figure 7.12. Just as in the bimorph examples be-
fore, the model consists of two identical uniaxial layers of PVDF material with opposite
polarities (Figure 7.7) and material parameters according to Table 7.7. The structure has
a clamped support at the left edge.
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l   = 0.20 m
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Figure 7.12: Nonlinear bimorph example: geometry and polarization.

The structure is now loaded with single-force loadings at the tip in e3-direction. In Figure
7.13, the relations of load-displacement, load-potential and potential displacement are
compared for the cases of linear and geometrically nonlinear analysis.

It can be observed that the related displacement for a measured electric potential dif-
ference would be strongly overestimated in the linear case. This effect is growing for
increasing tip displacement values. Only the geometrically nonlinear simulation is able
to represent arising normal stresses in the structure that are growing with increasing load
factor. These normal stresses in turn influence the electric potential differences due to the
electromechanic coupling.

As shown by Legner [Leg11], this effect is already visible at single layers of piezoelectric
material as in the case of the shear patch test in chapter 7.1.6. The normal stresses revealed
by the nonlinear kinematics are even needed there to receive any electric potential, as a
locking-free linear analysis leads to a vanishing electric potential according to Table 7.5.



7. Numerical Application Examples 149

Tip potential difference (V)

L
o

ad
 (

N
)

T
ip

 p
o

te
n

ti
a

l 
d

iff
er

e
n

ce
 (

V
)

Tip displacement (m)

Tip displacement (m)

L
o

a
d

 (
N

)

Figure 7.13: Nonlinear bimorph.
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7.3 Scordelis-Lo Roof

Piezoelectric elements are commonly used as substructures of larger mechanical struc-
tures. The presented finite element formulation allows for a seamless use for both piezo-
electric as well as pure mechanical parts of the observed structures. Thus the finite ele-
ment shall also be benchmarked with regards of pure structural behavior. To this goal,
two examples from the well-known shell obstacle course proposed by Belytschko et al.
[BSL+85] shall be applied in order to test the element’s robustness and accuracy in com-
plex strain states. As only small displacements occur, geometrically linear computations
are performed here.

v =v =01 2 L

e3 e1

e2

R

sym. b.c.sym. b.c.

free

40°

L  = 50.0

R  = 25.0

t   = 0.25
8E  = 4.32  10

  = 0.0

.

Figure 7.14: Scordelis-Lo roof: Self weight of 90.0 is subjected to the model. The ends are sup-
ported by rigid diaphragms.

The benchmark of the Scordelis-Lo roof considers a section of a cylindrical shell. It is
supported by rigid diaphragms at its ends, whereas the side edges are free. The roof is
subjected to a uniform gravity load. The problem setup and parameters are depicted in
Figure 7.14. Due to symmetry, it is sufficient to model only one quarter of the geometry.
The vertical displacement at the midpoint of the side edge v2 = −0.3024 is given as the
reference solution [BSL+85].
A convergence study is performed where different mesh refinements and different ele-
ment versions are adopted. This allows for a concise investigation of locking phenomena
that appear as reduced or highly reduced rate of convergence. The Scordelis-Lo roof is
especially useful to test the element ability to accurately solve membrane stress states.
As the main part of the strain energy is membrane strain energy, the representation of
inextensional modes is not critical here.
Figure 7.15 shows that an element improvement for shear locking is strongly needed. The
element S-EAS44404 fails to reach a reasonable result quality even for the finest meshes.
Element S-Q-EAS44404 shows already for coarse discretizations with 5 nodes per side a
very good performance that is comparable to 9-noded elements of the literature [BSL+85].
The element S-Q-EAS44404 converges to v2 = −0.3014. As this example predominantly
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activates membrane action, also the element S-Q-EAS04404 without enhanced membrane
strain modes is tested. However, as it can be seen, these enhanced modes are only acti-
vated for very coarse meshes. It should also be considered that linear elements (3 noded,
4-noded) are known to be almost completely free of membrane locking.

Figure 7.15: Scordelis-Lo roof: Convergence of the absolute value of the vertical displacement at
the mid-side of the free edge.

Figure 7.16: Scordelis-Lo roof: Resulting deformation v2 of the element S-Q-EAS44404 at a mesh
with 17 nodes along the side (deformation scaled by factor 10).

The element S-Q-EAS40000 would show practically the same performance as the element
S-Q-EAS44404. Thus additional bending strain enhancements, linear shear strains en-
hancements as well as enhanced normal strains in thickness direction are not needed in
this example. This also means that curvature thickness locking is not critical in this ex-
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ample. All in all it can be identified that the element is able to efficiently converge in
this example, as long as shear locking is eliminated. The latter can be done either by the
ANS method or the EAS method, while both approaches result in the same quality of
convergence in this example.

7.4 Pinched Cylinder

As second pure structural example, the pinched cylinder from the shell obstacle course
proposed by Belytschko et al. [BSL+85] is applied. Figure 7.17 shows the model that is
supported by rigid diaphragms at the ends and subjected to two opposite point loads in
the middle. The pinched cylinder example is a good test for both inextensional bending
modes as well as well as inextensional bending tests. As reference solution, the radial
displacement under the point loads is given to be v2 = 1.8248 · 10−5 [BSL+85]. Due to
symmetry, only one eighth of the geometry is modeled.
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Figure 7.17: Pinched Cylinder, model and problem setup: Equal and opposite single forces are
subjected to the model at its midspan. The ends are supported by rigid diaphragms.

Figure 7.18 shows the convergence curves. The enhanced element S-Q-EAS44404 reaches
at a mesh density of 30 nodes per side a displacement v2 = 1.8153 · 10−5. The related
deformation plot can be seen in Figure 7.19. Again, several element versions with in-
tentionally deactivated element enhancements are tested to evaluate different locking
phenomena.
The element S-EAS44404 without transverse shear locking remedy shows again a very
low convergence speed. Furthermore, S-Q-EAS44004 reveals the effect of curvature thick-
ness locking. The element reaches only a value of v2 = 1.6255 · 10−5 at the highest mesh
density. The reason is the missing EAS enhancements of linear normal strains in thick-
ness direction. Element S-Q-EAS40404 shows nearly the same behavior as the element
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S-Q-EAS44404. Thus the enhanced bending strain modes are not needed in this example
of a regular mesh. Similarly, also the enhanced assumed membrane modes and linear
shear modes are of lower importance in this example.

Figure 7.18: Pinched cylinder: Convergence of the radial displacement at the point load position.

Figure 7.19: Pinched cylinder: Resulting deformation using the element S-Q-EAS44404 (deforma-
tion scaled by factor 2 · 106).
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7.5 Virtual Design Loop of a Smart Tent

The objective pursued in this example is to design a smart 4-point tent that adopts active
control to suppress vibrations in the membrane under external loading [FDI+10, FWB10,
FB10]. This example presents all steps for the simulation and design of a smart mem-
brane structure and will demonstrate how these steps are combined in one simulation
environment. The smart tent example illustrates the methods presented in chapter 5 and
verifies the applicability.

7.5.1 Design of the Passive Structure

  

 

 
a) Initial shape:                                                         b) Step 1:

 

c) Step 2:                                                                    d) Step 3:

 

 e) Final shape:                                                           f) Final shape (top view):

Nodal supports

 

Edge cable

Membrane

Figure 7.20: Smart 4-point tent: form finding steps and final geometry.

The design process starts with numerical methods of form finding (see also chapter 5.2.2).
The guy ropes as well as the pillars are defined as materialized, flexible boundary con-
ditions of the tensile structure. For the form finding process, only the prestress and the
boundary conditions have to be provided. Figure 7.20 as well as Figure 7.21 demonstrate
the fast convergence to the final shape, despite of the low quality of the initial geometry.
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Figure 7.21: Smart 4-point tent: convergence of midpoint over form finding steps.

As the next step, the cutting pattern generation is performed (see also chapter 7.22). Tak-
ing the practical manufacturing process into account, the structure is divided into cutting
patterns of reasonable size and with small loss of material. Geodesic lines are adopted
for the definition of the cutting lines. The flattening process is performed with the in-
verse engineering method which is based on the description of the underlying mechan-
ical problem of the cutting pattern generation [LWB08, Lin09]. The three-dimensional
surface, which is defined through the form finding process, represents the final structure
after manufacturing. For this surface the coordinates in three dimensional space and the
finally desired prestress state are known. The inverse engineering method determines
the surface in a flat two dimensional space which minimizes the difference between the
elastic stresses arising through the construction and manufacturing process and the final
wanted prestress. Thus the cutting pattern generation leads to an optimization problem,
were the positions of the nodes in the two-dimensional space are the design variables.

 

a) Geodesic lines                b) Dividing into Patterns         c) Flattening (Inverse Engineering) 

Figure 7.22: Smart 4-point tent: cutting pattern process.
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The method is applicable for different element types and is able to consider different
material models and arbitrary prestress states. Beyond that, also elastic structural compo-
nents that are not directly affected by the cutting pattern generation, are integrated in this
design phase, as e.g. the supporting trusses of the tent model. This allows for realistic
stress and deformation state of the final structure.

7.5.2 Nonlinear Transient Analysis

The next step of the virtual design and simulation process is the geometrically nonlinear
transient analysis of the materialized representation of the found membrane shape. The
span of the tent is 15.0 m. The material parameters are listed in Table 7.8.

Membrane: ETFE E = 3.00 · 108N/m2 , strength: 4.5 · 107N/m2

σpre = 2.5 · 105N/m2

Edge cables: Steel E = 1.30 · 1011N/m2

σpre = 3.3 · 107N/m2

Guy ropes: textile material E = 1.30 · 109N/m2

σpre = 6.0 · 107N/m2

Table 7.8: Smart 4-point tent: Material parameters.

 a) Time step 184:                                                 

b) Time step 203:                                               

Figure 7.23: Smart 4-point tent: deformations at characteristic time steps of a nonlinear transient
analysis of the passive structure under pressure load in 5th eigenfrequency (deformation scaled
by factor 5).
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A pressure load of 20.0N/m2 in 5th eigenfrequency (2.83Hz) is applied to the tent struc-
ture. A nonlinear Newmark-β algorithm is used for time integration. The Rayleigh damp-
ing parameters according to equ. (5.17) are set to α1 = 1.27016 and α2 = 0.0043862 which
reflects 10% damping at the first two natural eigenfrequencies of the structure.
As it can be identified in Figure 7.23, the structure exhibits significant deformations al-
ready for small pressure loads. This is also due to the fact that low prestresses have been
chosen in this example for demonstration purposes.

7.5.3 Model Order Reduction

In the context of controller design, a flexible membrane structure represents a MIMO
system (compare section 5.4), where the application of nonlinear and large-scale finite
element models is not suitable. Thus a linearization and model order reduction is per-
formed.
Thus a eigenvalue analysis is performed for the linearized tent model. The six lowest
eigenmodes of the structure are presented in Figure 7.24.

  

  

 

 

 

  

  

 

a) Eigenmode 1 (1.214 Hz):                                 b) Eigenmode 2 (1.301 Hz):

c) Eigenmode 3 (2.340 Hz):                                  d) Eigenmode 4 (2.457 Hz):

e) Eigenmode 5 (2.832 Hz):                                  f) Eigenmode 6 (3.072 Hz):

Figure 7.24: Smart 4-point tent: lowest six eigenmodes (scaled deformation and highlighted via
contour plot).
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It can be observed that the first two eigenmodes are very similar due to the doubly sym-
metric shape of the structure. However, the related eigenfrequencies do not coincide.
This is mainly due to the effect of the different realizations of the lower and upper mem-
brane supports. It can also be identified in eigenmode 4 that the elastic behavior of the
guy ropes contributes to the deformational behavior of the overall structure (see contour
plot in Figure 7.24 d). Furthermore, an evaluation of all eigenmodes confirms that the
vibrations of the membrane predominantly act in the out-of plane direction.

Based on the modal truncation approach as shown in chapter 5.4, the presented 4-point
tent model is reduced from 2881 degrees of freedom to 10 modal degrees of freedom.
Using the reduced model in a transient analysis allows for a first evaluation of the per-
formed model order reduction and an investigation of induced errors. Figure 7.25 shows
exemplarily the displacement plot of the membrane midpoint at a transient analysis of
the tent subjected to a half-sin pressure load of q = 50N/m2 in the 4th eigenfrequency of
the structure. The results of the nonlinear full-order FE model, the linearized full-order
FE model and the linearized reduced model are compared. It can be observed that the
linearization leads to an overestimation of the deformation, as displacement-dependent
stiffness contributions are neglected. Beyond that, it can be seen that the reduced model
is not able to exactly reproduce the initial deformation behavior, as the contributions of
higher modes are missing. However, in general a good matching of the reduced model
can be observed in this test example.

Figure 7.25: Smart 4-point tent: Transient analysis results of the tent midpoint in the case of (a)
the full-order nonlinear, (b) the full-order linear, (c) the reduced FE model of the passive structure.
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7.5.4 Selection and Placement of Actuators and Sensors

It has been discussed in chapter 5.6 that the selection and placement of sensors and actu-
ators plays a decisive role in the design process of smart structures. This decision highly
affects the controllability and observability of the controlled structure and has great influ-
ence on the required control effort to satisfy a given design objective and thus on the effi-
ciency of the control system. Beyond that, attaching many sensors, actuators or dampers
directly on the membrane is not recommended, as this disturbs the optimal membrane
stress state and results in a heavier system. Thus sensor and actuator design has to con-
sider the membrane characteristics.

As already explained in section 5.2 and verified in section 7.5.3, the vibrations of mem-
branes act predominantly in out-of-plane direction, because the membrane’s in-plane
mode frequencies are much higher than those in the out-of-plane direction. Based on the
evaluation of the dominant eigenmodes and the related overall observation index accord-
ing to equ. (5.40) in chapter 5.6, the positions of 9 laser-based displacement sensors for
the 4-point tent are positioned according to Figure 7.26. It should be mentioned that this
is already a relatively large number of sensors. Depending on the applied disturbance
load, comparable vibration control quality can also be reached with considerably less
sensors. For example, in the shown test case in section 7.5.6, similar vibration reduction
could be achieved using only the sensors 1-5. However, for evaluation reasons and good
observation quality in controller design, the 9 sensors according to Figure 7.26 are used
in the sequel of this example.

Actuator 1

Actuator 4

Actuator 2

Actuator 3
Sensor 1

Sensor 2

Sensor 3

Sensor 5

Sensor 4

Sensor 6

Sensor 7

Sensor 8

Sensor 9
Displacement sensors

Force actuators

Figure 7.26: Smart 4-point tent: positioning of displacement sensors and force actuators.

The question of type and placement of effective actuators seems to be crucial, because at-
taching actuators directly on the membrane is in general not recommended due to detrac-
tion of the optimal membrane stress state. However, the presented form finding method



7. Numerical Application Examples 160

itself suggests already reasonable actuator types and places: It has been shown that the
form finding algorithm is a very effective alternative for the design of surface structures.
The final stresses σ under load and the boundaries Γ of the structure are the major shap-
ing parameters which have to be given and which clearly define the resulting geometry
x as shape of equilibrium [FDI+10]. These parameters can be chosen according to the
individual preferences, e.g. depending on material, cross section, available design space,
geometric restrictions etc. Beyond that, the prestress values and support conditions are
as major shaping parameters predestinated to act as shape control parameters. By adap-
tively modifying the shape of the structure via the mentioned shaping parameters it is
possible to maintain optimal behavior with respect to a specified criterion, like vibration
reduction, while external effects like loading conditions are changing.

Accordingly, four force actuators at the lower support cables have been chosen for the
4-point tent (Figure 7.26). Actuators 1 and 3 act in-plane to the membrane and actuators
2 and 4 act in out-of-plane direction. From the mechanical point of view, these two ac-
tuator groups have in general two different types of effects on the membrane structure:
The in-plane actuators manipulate the prestress of the membrane, while the out-of-plane
actuators actually change via deformation the Gaussian curvature of the structure.
Summing up, the sensor and actuator positioning driven by form finding characteristics
leads in this example to non-collocated sensors and actuators, as the different modal con-
tributions to the displacement field can be best observed within the membrane, while
actuator forces should be positioned at the supported corners of the tent.

7.5.5 Controller Design

The linearization at the operating state (prestressed membrane including permanent
loads) and the modal truncation have been preparation steps to derive linearized state
and output equations suitable for controller design.

x =A x +B u +E fc c c c c c

y=Cx c

Kalman

Estimator
-Kc

~xcuc

y

LQG regulator

f(t)

.

Figure 7.27: Smart 4-point tent: block diagram for closed-loop control with a LQG regulator.
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The state space matrices A, B, E and C are derived from the data provided by the finite
element model according to equ. (5.31) and equ. (5.31) in chapter 5.7. The matrices D and
F are set to be zero.

The actual design of an appropriate regulator is performed in Matlab/Simulink. Thus a
data interface between Matlab and Carat++ has been implemented in order to establish
an automated simulation and design framework.
A Kalman estimator is used to obtain a state variable estimation x̃c of the plant model
based on the information of the sensors placed on the membrane. Based on the estima-
tion of the state, the state feedback gain Kc is used to generate the actuator signal (Figure
7.27). The feedback gain matrix is determined according to equ. (5.51) in chapter 5.7.
The sampling interval for discrete-time control is chosen to be T=0.01 sec. A pressure
load of q = 20N/m2 in the 5th eigenfrequency of the structure is applied as reference
disturbing load case. Thus the possibility of resonance is provided. The weighting ma-
trices for the optimal LQG controller design have been chosen like that: Q = I5x5 and
R = 0.01 · I4x4.
The following simulation results were obtained in Matlab/Simulink (Fig. 7.28). The dis-
placement amplitude is reduced by a factor of 2.6 at sensor 1 and 2, by a factor of 2.3
at sensor 3 and 4, and by a factor of 5.2 at sensor 5 (midpoint of the membrane). Error
sources like measurement errors induced by the sensing device have been ignored in this
example.

  

 

a) Sensor 1 and 2:

b) Sensor 3 and 4:

c) Sensor 5:
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Figure 7.28: Smart 4-point tent: sensor values for uncontrolled (thin line) and controlled (bold-
printed line) system simulation in Matlab.
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7.5.6 Nonlinear Simulation including Control

The described smart tent model is now simulated including closed-loop control based on
the full-order and geometrically nonlinear FE model. For time integration, the implicit
Newmark-β method is chosen. Again, a pressure load of q = 20N/m2 in the 5th eigen-
frequency of the structure is applied as disturbing load case. Control is activated at time
step 200.

Figure 7.29: Smart 4-point tent: Displacement of the membrane midpoint at a geometrically non-
linear transient analysis including control (control starts at time step 200).

Figure 7.29 shows the resulting displacement of the membrane midpoint. Via control, a
reduction of the amplitude of the midpoint displacement by a factor of 2.4 is obtained.
Thus the vibration reduction factor is smaller compared to the predicted factor of the
reduced model of the controller design, as described in chapter 7.5.5. However, still a
successful vibration reduction can be achieved in the nonlinear full-order model simula-
tion.
Beyond that, it can be identified that the vibration of the midpoint is a bit shifted towards
positive displacement values due to the control action. This is due to the fact that the
actuators are only positioned at the lower tension cables of the 4-point tent (compare Fig-
ure 7.26 in chapter 7.5.4).
The vibration reduction of the overall model can be observed in Figure 7.30. Here, the
deformation plots for time steps with maximum amplitude for the uncontrolled case and
the controlled case are compared. The deformation is additionally highlighted via the
contour plot with equal scaling for both pictures.



7. Numerical Application Examples 163

 a) Without control (time step 184):                                                 

b) With active control (time step 203):                                               

Figure 7.30: Smart 4-point tent: Deformation plot for time steps with maximum amplitude for the
uncontrolled case (a) and the controlled case (b).

7.5.7 Overview of the Design Process

Summing up, this example of a four point tent has demonstrated the overall virtual de-
sign loop of a smart structure including closed-loop control. An overview of the design
process is given in Figure 7.31.
The overall design process is based on the finite element model and starts with the design
of the passive structure. Using the numerical methods of form finding and cutting pat-
tern generation, optimal membrane shapes can be designed that include decisive aspects
of the manufacturing process.
The simulation of the full-order passive system allows for investigation and design im-
provement of the uncontrolled model before aspects of the smart structure are focused.
The modal analysis is used in the context of two decisive design steps: First of all, it is
the basis for an optimal sensor positioning according to an optimal observability index.
Second, it forms the basis for the modal truncation that is needed as preliminary step for
controller design.
Based on the reduced state space model, the finite element model-based controller de-
sign can be performed. The controller evaluation in the virtual model happens in two
stages: First, the controller is directly tested in the environment of the linearized and
reduced model of the controller design. Second, the controller is integrated in a nonlin-
ear transient simulation of the full-order model in order to perform controller testing
in a more detailed and realistic model setup. Controller design has been conducted in
Matlab/Simulink. All other steps of the design and simulation process (Figure 7.31) are
performed in the software Carat++.
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Figure 7.31: Smart 4-point tent: Overview of the overall design process.

The shown controller design approach based on the finite element model as well as the
sensor and actuator positioning based on the observability and controllability indices
according to chapter 5.6 are also applicable in the same way to structures with bending
stiffness and piezoelectric actuation. Examples are provided in the literature e.g. by
Gabbert et al. [GTK06, GNW08].
While the smart 4-point tent example mainly addresses questions of the overall design
loop of structures with closed-loop control, the next example shall extend the presented
design framework to finite element-based structural optimization in the context of static-
aeroelastic shape control of a solid-state piezo-actuated variable-camber morphing wing.
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7.6 Solid-State Variable-Camber Morphing Wing

In the past decades, smart materials have been widely and successfully tested in the
context of controlling smooth and continuous aerodynamic control surfaces [BBA+11].
These continuous control surfaces can be superior to conventional discrete trailing-edge
control techniques due to higher aerodynamic efficiency, reduced number of parts, re-
duced complexity, and thus reduced maintenance and fabrication costs. Despite of the
proven feasibility of piezoelectric materials in small unmanned aircraft, virtual design
and aeroelastic tailoring in a numerical environment is still a major challenge.
In this example, the three-dimensional static-aeroelastic simulation and design of a solid-
state piezo-actuated variable-camber morphing wing for low Reynolds number regimes
is presented [FMBB13, Fis13b]. The airfoil employs surface-induced forces via smart ma-
terial actuators. The coupled fluid structure interaction is considered in order to integrate
the aerodynamic loads in the airfoil design process. Parameter-free structural optimiza-
tion is used in order to integrate a flexible, generic and efficient optimization technique
in the early stage of design.

7.6.1 Static Aeroelastic Model Setup

7.6.1.1 Structural Simulation

The basis for the development of the simulation model is provided by a real wing model
(Figure 7.32) built and tested by Bilgen and Friswell [BSFF11, BF12].

a)                                                               b)

Figure 7.32: Variable-camber tapered wing [BF12]: Installation in the wind tunnel (a) and defor-
mation response for selected choices of piezoelectric excitation (b).
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The continuity in the wing surface is achieved by using a single substrate layer that is
completely surrounding the shape (Figure 7.33 a). This substrate forms the surface of the
airfoil and it serves as the host material for the piezoelectric actuators.

The structure is completely modeled with composite shell elements that cover the lay-
ers of both substrate material and piezoceramic material (Figure 7.33 b). The baseline
geometry is a tapered wing with a NACA 0012 profile when unactuated and without
any external loads. The wing has a span of 248mm, a root chord length of 177mm and
a tip chord length of 128mm. The model contains 9877 composite shell elements with
a total of 59.724 degrees of freedom. This wing surface structure is pinned to a three-
dimensional spar structure that provides line support conditions in spanwise direction at
two locations of the cross section.

a)                                                                                b)

Figure 7.33: Structural airfoil model: Variable thicknesses to allow for optimum thickness ratio
(a) and 3D realization of the 2D design (b).

The Macro-Fiber Composite (MFC) actuator is chosen to form the active surfaces. The
MFC actuators were originally developed at NASA Langley Research Center and offer
structural flexibility and high actuation authority [HW03]. The inplane poling and in-
plane voltage actuation allows the MFC to utilize the 33 piezoelectric effect, which is
higher than the 31 effect used by traditional PZT actuators with through the thickness
poling [HKGG93]. The MFC can elongate up to 1800ppm if operated at the maximum
voltage rate of -500V to +1500V. The wing has 3 active sections around the cross section
(Figure 7.33) with 5 sections each in the spanwise direction (Figure 7.34).

a) top view:                                                                  b) bo�om view:

Figure 7.34: Structural airfoil model: 5 active sections at top surface (a) and 10 active sections at
bottom surface (b).
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The MFCs have a thickness of 0.3mm. The piezoelectric layer is modeled as an or-
thotropic linear elastic material with a Young’s Modulus of 30.336 GPa in chord direc-
tion and 15.336 GPa in the other directions. For comparison reasons with earlier work
of Bilgen et al., the substrate material is modeled as orthotropic material with a Young’s
modulus of 290 GPa in chord direction [BSFF11]. A Young’s modulus of 145 GPa in the
other directions is assumed here. The 33 mode interdigitated MFC actuator is modeled
as a 31 PZT ceramic of the same actuation strain at the maximum voltage rate of -500V to
+1500V. The applied voltage is modeled with nonzero Dirichlet boundary conditions.

7.6.1.2 Fluid Simulation

The fluid simulation is conducted with the open source software package OpenFOAM
2.1.x, using the SIMPLE algorithm, a steady-state solver for incompressible turbulent
flow. Different angles of attack are examined for a flow velocity of 20m/s and a Reynolds
number Re = 2.85 · 105.
The fluid domain is built with an own parameterized generator that creates a readable
file for the structured meshing tool blockMesh of OpenFOAM. This mesh generator is
derived from an existing 3D C-grid mesh generator [MAC] and allows for independent
definitions of root and tip cross sections. The configuration variables controlling the mesh
and wing geometry are fully parameterized (see Figure 7.35 a) and can be varied in batch
mode. This allows for an automated fluid mesh update in the case of optimization runs.

a)                                                                                                         b)

Figure 7.35: 3D CFD simulation: Parameterization for automated meshing (a) and computational
fluid domain (b).

The fluid domain (Figure 7.35 b) spans 3.5m× 1.6m× 0.248m and contains 3.5× 106 cells.
In a first setup, the fluid domain ends at the wing tip. Thus a correction for the wing tip
vortices has to be taken in account according to the lifting-line theory. The cells next to
the airfoil boundary have a thickness of 3 · 10−6m (see also Figure 7.36 b), which leads to a
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Figure 7.36: 3D C-grid mesh for CFD simulation with OpenFOAM (a) and fluid mesh near the
leading edge (b).

maximum non-dimensional wall distance y+ of 0.6. Consequently, no wall functions are
used. For the fluid simulation, a Reynolds Averaged Navier-Stokes (RANS) model with
the k-ω-SST turbulence model is chosen. The turbulence parameters for the free stream
(k = 0.0006 m

s2 ; ω = 40 1
s2 ) are derived from the turbulence intensity of 0.1% measured in

wind tunnel experiments [BF12, BLF13] .

As a preliminary step, the fluid model is evaluated via comparison with experimental
data. Figure 7.37 shows the 3D lift coefficient of experiments [BF12, BLF13], numerical
analysis and thin airfoil theory for different angles of attack. Simulation results and val-
ues from thin airfoil theory are modified with a factor AR/(AR+2) according to lifting-
line theory where AR denotes the aspect ratio. As expected, the lift-coefficient for the
3D simulations are smaller than for the 2D case. In general, the 3D simulation results
are superior to the thin airfoil theory in matching the experimental results. Accordingly,
Figure 7.38 shows the drag coefficients for varying angle of attack. CFD simulation re-
sults and thin airfoil theory are calculated with the following approximation according
to lifting-line theory [Pra18]:

Cd = Cd0 +
C2

l
AR · π · e (7.5)

where e = 0.85 is assumed. The 3D simulation results with OpenFOAM match the exper-
imental data in a satisfying manner. Slight differences in the setups (e.g. chord lengths,
assumed AR) as well as restrictions of the experimental setup and the chosen simulation
model have to be considered.

7.6.1.3 Static-Aeroelastic Coupling

In order to solve the 3D fluid structure interaction problem and in order to transfer data
between the non-matching meshes of the structure and the fluid, the code EMPIRE can be
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Figure 7.37: Evaluation of lift coefficient: CFD simulation with OpenFOAM at Re=285000 com-
pared with thin airfoil theory and experimental data

Figure 7.38: Evaluation of drag coefficient: CFD simulation with OpenFOAM at Re=285000 com-
pared with thin airfoil theory and experimental data.
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used [SWB12]. It provides a MPI-based communication and flexible data mapping in or-
der to transfer updated pressure distributions to the structural code and newly calculated
aero-loaded deformed airfoil shapes back to the fluid code.

7.6.2 Parameter-Free Optimization of the Wing

In general, the numerical treatment of shape and sizing optimization requires a suitable
parameterization. Typically, optimization variables are the control nodes of an additional
CAGD model. However, this results in high modeling effort due to the redesign of CAGD
geometries during the optimization steps. In order to integrate gradient-based shape
and sizing optimization in an early stage of design, CAGD-free (also called "parameter-
free" or "FE-based") optimization methods are adopted. The design variables are directly
defined on the finite element model, which eliminates the need for an additional CAGD
model [FMB12b]. In general, all parameters of the finite element model can be chosen
as design variables: e.g. the finite element nodes can be used for shape optimization,
or parameters like finite element thicknesses of fiber orientations for sizing optimization.
The CAGD-free optimization is very flexible, easy to be defined, needs no additional
model and can be integrated in an early stage of the design process.

First order gradient information is computed by an exact semi-analytical approach
[BFD08, BFF10]. Regularization and filtering is performed to overcome arising singu-
larities due to the highly non-convex design spaces [FWB13]. To overcome the problem
of an increasing numerical cost due to the large design space, the design sensitivities for
objectives and constraints are evaluated via adjoint formulations [BFLW09]. Here the sen-
sitivity of the response functional is obtained directly, with no intermediate computation
of derivatives of the state variables.

Focus of the optimization of a wing is usually the maximization of the lift-to-drag-ratio
and/or the minimization of weight. However, several constraining effects have to be con-
sidered. In the context of variable-camber wings, the structure must be stiff enough to
prevent flutter and divergence, but on the other hand it has to be compliant enough to al-
low for large motions to efficiently operate in a reasonable range of fluid conditions. For
the structural optimization of the described wing, the following setup is defined: The ge-
ometry according to the preceding section is used as initial geometry of the non-actuated
airfoil for the design process. The optimal actuated shape with maximum increase of the
cost function F:

F =
Cl√
Cd

(7.6)

can be obtained by a preliminary CFD optimization. Here Cl represents the lift coefficient
and Cd represents the drag coefficient. In this example, the geometry of the optimal
aerodynamic shape is derived from related results of Bilgen et al. [BSFF11] and assumed
to be given here.
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Then the optimization objective can be stated as minimization of the difference to the
given optimal aerodynamic shape under full actuation and aerodynamic loading. A flight
speed of 5m/s is assumed. Furthermore, a least squares approach is used to provide a
measure for the difference of the actual shape from the optimal shape in a total of 20
discrete points in 5 cross sections of the wing structure. In the case of a higher flight
speed, it is reasonable to define in the same manner a constraint condition to maintain
the initial shape without actuation under aerodynamic loading. This ensures a reasonable
design for both the actuated and the non-actuated airfoil structure.

The element thickness of the substrate is chosen as design variable. In order to provide
insight in an optimal material thickness distribution in an early design phase, each finite
element substrate thickness is taken as independent design variable which results in
9877 design variables. The thickness optimization is performed with a maximum design
update of 0.1mm per optimization step. The conjugate gradient method is applied as
optimization algorithm. The filter radius for gradient filtering is chosen to be 4.0cm. As
initial choice, a constant substrate thickness of 0.2mm all around the airfoil is assumed.
This initial choice is taken to investigate and benchmark the optimization technique
without any preliminary engineering decisions like modified substrate thickness at the
piezoelectric patches. A minimal thickness of 0.06mm is used as variable bound in the
optimization problem. Furthermore, as the material and geometry parameters are chosen
according to previous simulations and optimizations of a 2D setup [BSFF11], a compari-
son of these optimization results is possible.

a)                                                                                  b)

c)                                                                                  d)

Figure 7.39: Evolution of thickness optimization: Initial geometry (a) with constant thickness and
thickness distribution after 4, 7 and 10 optimization steps (figures b, c d).
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Figure 7.39 shows the evolution of the thickness distribution during the optimization
steps to reach the optimized design. Already after 7 optimization steps the leading edge
area converges to the minimal thickness bound of 0.06mm. This coincides with the thin
leading edge substrate thickness obtained with Genetic algorithms at the mentioned 2D
model setup of Bilgen et al. in earlier work [BSFF11]. The leading edge area with small
thickness turns into a compliant hinge to allow for the needed large actuation deforma-
tion. The substrate thickness at the areas of the upper piezoelectric patches decreases
only slightly to values around 0.18mm during the optimization steps. The trailing edge
area results in a thickness that increases from 0.25mm at the root to 0.35mm at the tip.
In general, different thickness distributions in spanwise direction are obtained. This is
due to the effect of changing pressure loads and piezoelectric actuation with changing
cross sections of the tapered wing geometry. The increase in thickness at the tip is related
to effects of the free edge: In order to guarantee the optimal shape at the very tip cross
section, the optimizer produced a stiffer structure here.

Fig. 7.40 shows the evolution of the deformed shapes under actuation and aeroelastic
loading during the thickness optimization. It can be seen that the chosen initial design
with constant substrate thickness of 0.2mm would have led to a poor aerodynamic per-
formance (Fig. 7.40 a). Furthermore, the initial design would have required to model
contact conditions to prevent self-intrusion. However, the initial self-intrusion is not of
importance, as the optimization leads steadily to the optimal aerodynamic shape (Fig.
7.40 d).

a)                                                                                  b)

c)                                                                                  d)

Figure 7.40: Evolution of deformed shape (actuated and aero-loaded) during thickness optimiza-
tion: Initial (infeasible) deformation shape (a) and deformation shapes after 4, 7 and 10 optimiza-
tion steps (figures b, c d).
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The evolution of the objective value (least-square formulation of difference to optimal
aerodynamic shape) during the optimization steps is presented in Figure 7.41. Only 10
optimization steps are needed in order to converge to an optimal substrate thickness
distribution.

Figure 7.41: Behavior of the objective value (least-square formulation of difference to optimal
aerodynamic shape under actuation) during the optimization steps.

Next, the model is prepared for a second optimization run that is meant to integrate
further manufacturing aspects and fine-tune the result. The leading edge area is set to
a thickness of 0.06mm and is taken out of the design space, as it had already reached
the given variable bound. Furthermore, in accordance to Figure 7.33 a, areas of fixed
substrate thickness are defined by evaluation of the results of the first optimization run
(Figure 7.39 d). The substrate thicknesses are chosen to be 0.18mm at the strips below
the patches (blue areas in Figure 7.42 a), 0.35mm at the trailing edge (brown areas) and
0.3mm at the areas between the piezoelectric patches and the leading edge (green areas).
The increased thickness areas at the tip are not transferred to this new model, as they are
local effects of the chosen objective that tries to exactly maintain a given optimal shape
also at the tip edge. This decision is also supportable, as a new increase of thickness in
this area is not prevented in the second optimization run.
The resulting model is subjected again to an element-wise optimization of the substrate
thickness (Figure 7.42). The substrate areas under the piezoelectric patches converge to
thicknesses of about 0.20mm which is considerably thinner than the other substrate areas
except the leading edge. This aspect coincides with the results of earlier studies on a 2D
model setup [BSFF11].
The trailing edge area results in a thickness that increases from 0.31mm at the tip to
0.42mm at the root. The trailing edge leads to thinner results compared to results at
the 2D model where a trailing edge thickness of 0.53mm was obtained. One reason is
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the stiffening effect of the slightly doubly curved structure, which can only be addressed
in the 3D model. In general it can be identified that the optimization leads to smooth
thickness distribution results that are easy to interpret.

a)                                                                                  b)

c)                                                                                  d)

Figure 7.42: Second optimization run that starts from patches with constant thicknesses based on
the results of the first optimization run: Initial thickness distribution (a), design update (b), final
thickness distribution (c) and deformation under actuation and aerodynamic load (d).

Figure 7.43: Evolution of the objective value (least-square formulation of difference to optimal
aerodynamic shape under actuation) during second optimization run starting from areas with
fixed substrate thickness.

Comparing Figure 7.41 and Figure 7.43, it can be observed that the predominant part
of the improvement of the objective value is already done in the first optimization run,
while the second optimization run creates a fine-tuned material distribution especially in
spanwise direction with low improvement of the overall objective value. However, the
effect of the second optimization run is especially visible at the maximum trailing edge
deflection which increases from 2.14cm to 2.94cm (compare Figure 7.40 d and 7.42 d).
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In total, both optimization runs lead finally to the given optimal aerodynamic shape un-
der actuation and fluid load (Figure 7.42).

In order to further enhance the presented aeroelastic simulation, the extension of the fluid
mesh domain beyond the wing tip is recommended. This leads to a 3D fluid model that
directly covers the wing tip vortices and the related losses in lift (Figure 7.44). Then the
corrections in section 7.6.1.2 according to the lifting-line theory would be dispensable.
However, the general approach of the overall simulation and design process shown in
this example would not be affected by this modification.

Figure 7.44: Velocity field of the wing: An extension of the fluid domain beyond the wing tip is
needed to capture the wing tip vortex and the resulting reduction of pressure.



Chapter 8

Conclusions and Outlook

In this work, a finite element based computational framework and related algorithms
for the virtual design and simulation of controlled smart piezoelectric and lightweight
structures has been presented.

After an introduction to smart structures in general and in particular to piezoelectric mate-
rials, the basic terms and relations of the electromechanical continuum have been defined
and deduced. An in-depth presentation of variational methods and related functionals
has been presented in order to provide the basis for the derivation of a new piezoelec-
tric finite element formulation. In this context, an extension of the modified Hu-Washizu
functional has been presented, which enlarges the idea of an orthogonality condition be-
tween enhanced strains and independent stresses to the electromechanical problem. The
electromechanical six-field Hu-Washizu functional can thus be reduced to a four-field for-
mulation before the discretization takes place. The numerical cost for the discretization,
calculation and static condensation of stresses and electric displacement field can be elim-
inated.
Furthermore, the different locking phenomena have been defined, interpreted and illus-
trated in a systematic analysis. The mechanical interpretation has been identified to be
the most helpful interpretation method, as the related identification of parasitic strains
and incompatible approximation spaces provides clear hints for the construction of en-
hanced element techniques. However, not only the well-known structural locking effects
have been discussed, but also the closely related effects of incompatible approximation
spaces of the electric field.
On this basis, a geometrically nonlinear piezoelectric composite shell element has been
developed. Using the combination of ANS method, EAS method and EAE method, an
efficient and robust concept for the avoidance of locking has been presented. The element
formulation is based on nonlinear, three-dimensional continuum theory. Thus it is pos-
sible to use arbitrary complete three-dimensional constitutive laws without reduction or
manipulation in nonlinear plate and shell analysis. A single-director formulation with
Reissner-Mindlin kinematics has been adopted, which integrates deformations in thick-
ness direction.
The efficiency and accuracy of the presented element has been demonstrated in several
examples. It has been shown that the element fulfills the two essential aims of finite ele-
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ment technology [Kos04]: the avoidance of locking effects and the avoidance of artificial
instabilities (ZEMs). The element also passes the diverse electromechanical patch tests.
Thus it fulfills the basic idea of a physically motivated patch test: A good element shall
solve simple problems exactly, both as a single element and as part of an arbitrary patch
of elements [Fel06].
Furthermore, it has been demonstrated that the multi-field elements based on the modi-
fied Hu-Washizu functional are rather sensitive to mesh distortions. The passing of the
patch test is paid by higher mesh distortion sensitivity. This is in accordance to MacNeal’s
statement of the limits of finite element perfectibility [Mac92b]. The insensitivity for mesh
distortions and the passing of the patch test can be identified as competing requirements.
However, it has been shown in this work that the combination of ANS method and EAS
method allows for an efficient formulation that both passes the patch test and eliminates
the high mesh distortion sensitivity. The static condensation on the element level of the
additional degrees of freedom of enhanced assumed strains and enhanced assumed elec-
tric field leads to an equation system that is not enlarged compared to the irreducible
form.

Beyond that, the overall design process of smart structures including closed-loop control
is focus of this work. In the context of control, special focus is put here on prestressed
membrane structures and their special issues in the context of controller design. Further-
more, an introduction to the overall simulation and design process of actively controlled
elastic structures has been given. Special focus has been put on the special characteristics
of prestressed membrane structures in the context of control and controller design. Con-
troller design is based on a state space model that is derived from the finite element model
and that preserves the geometrically nonlinear equilibrium state and eventual prestress
effects of the structure. Discrete time control with a linear-quadratic-Gaussian (LQG) reg-
ulator has been applied. The overall design loop has been completed and evaluated with
the nonlinear simulation of the structure including control.

A short introduction to the developed object-oriented software framework Carat++ has
been given that has been the basis to realize the overall simulation and design goal. It
turned out that the object-oriented programming paradigm indeed provided a reliable
basis for the complex multi-field problems focused in this work.

All in all, this work has presented methods and algorithms for different scales and scopes
of smart structures: A detailed discussion of piezoelectric finite element technology has
been provided in order to integrate the idea of piezoelectric actuation and sensing in
the simulation phase. However, also aspects of a holistic simulation and design loop of
lightweight elastic structures including control has been presented. In this context, the
overall virtual design process of an actively controlled smart tent structure has been pre-
sented, including the aspects of reasonable sensing, actuation and controller design. It
has been shown that a smart tent can efficiently reduce vibrations caused by external
loads via closed-loop control. In order to demonstrate the usage of piezoelectric actua-
tion in a real structure, the static-aeroelastic simulation and design of a shape adaptive
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solid-state piezo-actuated variable-camber morphing wing has been presented. This ex-
ample also extended the shown design framework to aeroelastic coupling and FE-based
structural optimization.

In general, the finite element-based structural optimization approach as shown in the
morphing wing example opens the door for further interesting research in this field: Sev-
eral more design variable types beyond the thickness can be investigated in the context
of smart adaptive structures, like optimal fiber orientation in case of composite material,
optimal applied voltage to different piezoelectric patches or optimal positioning of the
patches. In general, all these design variables can be covered by the parameter free struc-
tural optimization approach. In this context, the presented piezoelectric element is one
cornerstone to derive semi-analytic sensitivities for the structural responses under consid-
eration. Altogether, a profound design space can be established that helps to approach
the goal of a holistic virtual design process.
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Appendix A

Finite Element Shape Functions

The triangular and quadrilateral finite elements of this work belong to the class of La-
grange elements. The chosen definition of shape functions shall be presented in the
sequel. The node numbering and the positioning of the element coordinate system is
depicted in Figure A.1.

1

Triangular elements:

0  1 - 

0  1 - 





2

3





1 



2

3

1 2

34





1 2

34

4

56

5

6

7

8 9

Quadrilateral elements:

-1  1

-1  1

Figure A.1: Lagrange elements: Node numbering and element coordinate positioning.

A.1 Triangular Elements

3-Noded Triangular Element

N1 = 1− ξ − η , N2 = ξ , N3 = η (A.1)

6-Noded Triangular Element

N1 = (1− 2ξ − 2η) (1− ξ − η) , N2 = 2ξ2 − ξ (A.2)

N3 = 2η2 − η, N4 = 4
(
ξ − ξ2 − ξη

)
(A.3)

N5 = 4ξη, N6 = 4
(
η − η2 − ξη

)
(A.4)
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A.2 Quadrilateral Elements

4-Noded Quadrilateral Element

N1 =
1
4
(1− ξ) (1− η) , N2 =

1
4
(1 + ξ) (1− η) (A.5)

N3 =
1
4
(1 + ξ) (1 + η) , N4 =

1
4
(1− ξ) (1 + η) (A.6)

9-Noded Quadrilateral Element

N1 =
1
4

ξη (1− ξ) (1− η) , N2 = −1
4

ξη (1 + ξ) (1− η) (A.7)

N3 =
1
4

ξη (1 + ξ) (1 + η) , N4 = −1
4

ξη (1− ξ) (1 + η) (A.8)

N5 = −1
2

η
(
1− ξ2) (1− η) , N6 =

1
2

ξ (1 + ξ)
(
1− η2) (A.9)

N7 =
1
2

η
(
1− ξ2) (1 + η) , N8 = −1

2
ξ (1− ξ)

(
1− η2) (A.10)

N9 =
(
1− ξ2) (1− η2) (A.11)



Appendix B

Nomenclature

As different fields of research, such as shell element technology, piezoelectric materials,
as well as control theory a brought together in this work, care has to be taken about a
clear and concise nomenclature.
As far as possible, standard notations and definitions of the respective fields have been
reused. Differing identifiers have only been used to avoid duplicated meanings. A list of
the most important variables used throughout this work is given in table B.1.

Small Latin letters

b Body forces in actual configuration (units of an acceleration).
b0 Body forces in reference configuration (units of an acceleration).
d̄i Generalized vector of degrees of freedom of node i.
d̄ Generalized vector of degrees of freedom of the element.
~d i

0 Electric displacement resultant (constant part in θ3).
~d i

1 Electric displacement resultant (linear part in θ3).
~e Electric field in actual configuration.
~f

el
Electromagnetically induced volume forces.

g Metric tensor in actual configuration.
g3 = a3 Director.
h Shell thickness.
hL Composite layer thickness.
jel
0 Electric current density.

m Body mass.
~mel Electrically induced moment per unit volume.
mαβ Bending moments (static variables).
n Unit surface normal in actual configuration.
nαβ Membrane forces (static variables).
nα3 Shear forces (static variables).
q External surface load.
q̂0 Prescribed electric surface charge (reference configuration).
r Position vector (actual geometry).
t Cauchy stress vector.
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t̂ Vector of prescribed stresses in actual configuration.
t̂0 Vector of prescribed stresses in reference confiuration.
u Deformation field vector.
uc(t) control input.
û Vector of prescribed displacements (Dirichlet boundary condition).
v Displacement components of the nodal degrees of freedom.
w Director deformation components of the nodal degrees of freedom.
x Position vector of an material point in actual configuration.
xc State vector.
x̃c State variable estimation.
y Controlled variable, sensor values.
z Modal coordinates.

Large Latin letters

A Metric tensor of shell midsurface (reference configuration).
Ac (state space matrix).
Ai, Ai Co- and contravariant base vectors of shell midsurface

(defined in reference configuration).
A3 = G3 Director (reference configuration).
A 2-dimensional domain.
Ae Area of a finite shell element.
dA Differential area element.
Bu Matrix that links the degrees of freedom of the the actuator signal

to the time dependent function(s) of the control input.
B B-operator.
~B Magnetic flux density.
Bc (state space matrix).
Bαβ Curvature tensor.
C Material tensor.
Cc (state space matrix).
Cd Rayleigh damping matrix.
D Material tensor, integrated over thickness (shell theory).
~D Electric displacement field.
¯̃D Generalized strain matrix (EAS and EAE).
Dc (state space matrix).
E Young’s Modulus.
E Green-Lagrangian strain tensor.
Ec (state space matrix).
Eu Displacement-dependent Green-Lagrangian strain tensor

(compatible strains part in the modified Hu-Washizu functional).
Ẽ Enhanced assumed strain tensor acc. to modified Hu-Washizu functional.
~̃E Enhanced assumed electric field acc. to modified Hu-Washizu functional.
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~E Electric field tensor.
~Eϕ Electric potential-dependent electric field tensor

(compatible electric field in the modified Hu-Washizu functional).
Ef Matrix that links the degrees of freedom of the the external load

to the time dependent function(s) of the external load.
Ē Generalized vector of strains E and electrical field ~E.
F Deformation gradient.
Fc (state space matrix).
~Fc Coulomb force.
G Shear modulus.
G Metric tensor in reference configuration.
Gc Discrete-time system matrix (state space model).
H Electric enthalpy density.
Hc Discrete-time input matrix (state space model).
~H Magnetic field.
I Unity tensor.
I Electric current.
J Jacobian determinant.
Jc Performance index for controller design.
K Stiffness matrix.
Kc State feedback gain matrix.
L Angular Momentum.
L̄ Generalized coupling matrix (EAS and EAE method).
M Mass matrix.
M̃ Matrix of enhanced assumed strain modes.
~M Matrix of enhanced assumed electric field strength modes.
M̄ Generalized Matrix of enhanced strains and enhanced electrical field

strength terms.
N Unit surface normal in reference configuration.
P Material point.
P Piola-Kirchhoff stress tensor of first type.
P̄ Generalized load vector.
~P Polarization density.
Qc Weighting matrix of performance index.
Rc Weighting matrix of performance index.
R Position vector (reference geometry).
R̄ Inner mechanical forces.
¯̃R Inner electrical forces.
S 2nd Piola-Kirchhoff stress tensor.
S̄ Generalized vector of resulting static variables.
U Voltage.
dV Differential volume element.
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Wext
V Potential of volume loads.

Wext
A Potential of surface loads.

Wmech Strain energy density in the volume V.
WH Electric enthalpy density.
X Position vector of an material point in reference configuration.
Z Shell shifter tensor.

Small Greek letters

α Vector of EAS degrees of freedom.
~α Vector of EAE degrees of freedom.
αij Components of Green-Lagrange tensor that are constant in θ3.
~αi Components of electric field that are constant in θ3.
βij Components of Green-Lagrange tensor that are linear in θ3.
~βi Components of electric field that are linear in θ3.
γij Components of Green-Lagrange tensor that are quadratic in θ3.
δij Kronecker symbol.
ε0 Vacuum permittivity.
ε

ij
r Relative permittivity tensor.

εij Permittivity tensor.
εc Discrete-time external load matrix (state space model).
e

ijk Piezoelectric coupling tensor.
λ, µ Lamé constants.
λ1, λ2, µ1, µ2 Lagrange parameters.
λcrit Critical parameter.
µ̄ Determinant of shell shifter.
µk Controllability index of mode k.
µ
(
Xp
)

Overall controllability index of position Xp.
ν Poisson ratio.
νk Observability index of mode k.
ν
(
Xp
)

Overall observability index of position Xp.
ϕ Field of electric potential.
∆ϕ Electric potential difference in element thickness direction.
ϕ̂ Prescribed field of electric potential.
ρ Density (actual configuration).
ρ0 Density (reference configuration).
ρel

0 Electric charge density.
σ Cauchy stress tensor.
θ Coordinate (in co- or contravariant coordinate system).

Large Greek letters

Γ Domain boundary.
ΓS part of Γ that is subjected to prescribed stresses (loads).
Γu part of Γ that is subjected to prescribed displacements.
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Γ~D part of Γ that is subjected to prescribed electric displacements.
Γϕ part of Γ that is subjected to prescribed electric potential.
∆ Structural modal damping matrix.
Λ Spectral matrix.
Ψ Electric flux.
Ψ Modal matrix for model order reduction.
Πint potential energy.
Ω Three-dimensional body, domain.

Table B.1: Nomenclature of used variables.
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