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Zusammenfassung

In der vorliegenden Arbeit untersuchen wir statistische Abhängigkeitsmodellierung mittels
eines hierarchischen Ansatzes: Um Modellflexibilität und -sparsamkeit auszugleichen, wird
Abhängigkeit in Form von Copulas für Gruppen von Variables in verschiedenen hierar-
chischen Ebenen spezifiziert, und werden Informationen über Ebenen hinweg durch die
Kendall-Verteilungsfunktionen der Copulas aggregiert. Da Kendall-Verteilungsfunktionen
die multivariaten Gegenstücke zur univariaten Wahrscheinlichkeitsintegral-Transforma-
tion sind, ahmt unser Ansatz klassische Copula-Modellierung mit univariaten Rändern
nach. Das sich ergebende Abhängigkeitsmodell nennen wir ,,hierarchische Kendall-Copu-
la“, untersuchen seine Eigenschaften und vergleichen es mit alternativen Modellen. Für
die statistische Inferenz entwickeln wir geeignete Instrumente und Techniken. Während
Likelihood-basierte Methoden aufgrund eines expliziten Ausdrucks der Dichte praktikabel
sind, ist das Simulieren von hierarchischen Kendall-Copulas besonders anspruchsvoll. Wir
untersuchen das Simulationsproblem detailliert und leiten geschlossene Lösungen für be-
stimmte Copula-Klassen her. Für den allgemeinen Fall werden approximative Methoden
eingeführt und sorgfältig evaluiert.

Zwei wichtige Arten finanziellen Risikos werden in dieser Arbeit betrachtet: syste-
misches und operationelles Risiko. Zur Einschätzung der systemische Relevanz von Finanz-
instituten schlagen wir vor, die Vernetzung der Institute im Market mittels multivariater
Copulas zu analysieren. Für diese leiten wir neue bedingte Simulationsverfahren her, die
wir nutzen, um einen Stress-Test des Marktes für Credit Default Swaps durchzuführen.

Schließlich entwickeln wir ein flexibles Abhängigkeitsmodell für quantitatives opera-
tionelles Risikomanagement. Die Modellbestandteile werden bezüglich relevanter Eigen-
schaften untersucht und geeignete Empfehlungen werden abgegeben. Anhand von Daten
über operationelle Schäden von italienischen Banken sind wir dann in der Lage, die
Auswirkungen der Modellierungsentscheidungen auf das operationelle Risikokapital ab-
zuschätzen.
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Abstract

In this thesis, we study statistical dependence modeling using a hierarchical approach:
To balance model flexibility and parsimony, dependence is specified in terms of copulas
for groups of variables in different hierarchical levels, and information across levels is
aggregated by the Kendall distribution functions of the copulas. As Kendall distribution
functions are the multivariate analogs of the univariate probability integral transform, our
approach mimics classical copula modeling with univariate margins. We call the resulting
dependence model “hierarchical Kendall copula”, investigate its properties and compare
it with alternative models. For the statistical inference, we develop appropriate tools
and techniques. While likelihood-based methods are feasible due to an explicit expression
of the density, sampling from hierarchical Kendall copulas is particularly challenging.
We explore the sampling problem in detail and derive closed-form solutions for certain
classes of copulas. For the general case, approximate methods are introduced and carefully
evaluated.

Two important types of financial risk are considered in this thesis: systemic and op-
erational risk. For the assessment of the systemic relevance of financial institutions, we
propose to analyze the interconnectedness of the institutions in the market using mul-
tivariate copulas. For these, we derive new conditional sampling procedures, which we
exploit to conduct a stress test of the market for credit default swaps.

Finally, we develop a flexible dependence model for quantitative operational risk man-
agement. The model components are investigated with regard to a range of relevant prop-
erties and appropriate recommendations are given. Based on operational loss data from
Italian banks, we are then able to assess the effect of the modeling decisions on the oper-
ational risk capital.
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1 Introduction

The modeling of dependencies among quantities of interest is an important topic in many
areas such as finance and actuarial science but also in the natural and social sciences.
Only the accurate measurement of joint probabilities allows for a diligent assessment and
management of critical events. Especially joint tail probabilities, which characterize the
joint behavior of variables in extreme situations, need to be thoroughly evaluated, as they
importantly influence decision making.

Classically, the multivariate normal distribution has been central to statistical depen-
dence modeling. Dependencies are then specified in terms of correlation coefficients, which
however only measure the linear dependence of variables. Moreover, dependencies in the
tails are not appropriately accounted for (see McNeil et al. (2005)). Today, it is there-
fore common to use copulas for dependence modeling. According to the famous theorem
of Sklar (1959), any multivariate distribution function can be expressed in terms of its
marginal distribution functions and a copula, which is a multivariate distribution function
on the unit hypercube with uniformly distributed margins, and which contains all infor-
mation on the dependence structure. From a modeling perspective, this hence allows to
construct flexible multivariate distributions by individually combining different margins
and a suitably chosen copula, which specifies the between-variable dependence structure.

While many different copulas with appealing properties are available and well-inves-
tigated in the bivariate case (see Joe (1997) and Nelsen (2006)), standard multivariate
copulas are often rather restrictive or have an excessive number of parameters. The Gaus-
sian copula, which is derived from the multivariate normal distribution, therefore still is
a popular choice in higher-dimensional applications—but is also frequently criticized for
its limitations (see Salmon (2009) for a critical discussion about the role of the Gaus-
sian copula in the financial crisis of 2007–2009). While the Student’s t copula, which is
similarly derived from the multivariate Student’s t distribution, may add some flexibility,
in particular with respect to the handling of the tails, the need for more flexible depen-
dence models is strong. However, not only flexibility but also parsimony is of particular
importance here, since it ensures that a model stays interpretable and computationally
tractable also in higher dimensions.

One of the most promising approaches to flexible multivariate dependence modeling is
the concept of pair copula constructions, as originally proposed by Joe (1996, 1997). A
vine copula, which is a graph theoretical model to define such a pair copula construction
(see Bedford and Cooke (2001, 2002)), is built up by a quadratic number of bivariate
copulas as building blocks. Since the bivariate copulas can be of arbitrary types, highly
flexible multivariate copulas can be constructed. Vine copulas are however generally non-
parsimonious, so that model selection tools such as truncation are needed to reduce the
model complexity (see Brechmann et al. (2012)). Moreover, the interpretation of the
intertwined model components may be difficult especially in higher dimensions.

1



1 Introduction

In this thesis, we explore an alternative approach: In order to balance model flexibility
and parsimony, we propose a hierarchical construction, which yields an inherently more
parsimonious model. Variables are grouped in different hierarchical levels and the distri-
bution of the groups (or clusters) of variables is specified in terms of lower-dimensional
copulas. This within-group information is aggregated into univariate quantities, in terms
of which between-group dependence is then quantified at the next level. In particular, we
propose to use the Kendall distribution function to aggregate the groups, since it is the
multivariate analog to the probability integral transform for univariate random variables
and therefore naturally mimics the theorem of Sklar (1959) for multivariate margins. For
this reason, we refer to the model as “hierarchical Kendall copula”.

Obviously, such hierarchical Kendall copulas are straightforward to interpret in terms
of within- and between-group dependence. Furthermore, the lower-dimensional copulas as
building blocks can be copulas of arbitrary types as in a vine copula, so that within- and
between-group dependence can be specified quite flexibly. Of course, such an approach is
particularly appealing, when variables exhibit a natural hierarchical structure. Neverthe-
less, even if this is not the case, hierarchical Kendall copulas (with appropriately selected
groups) may be used as a parsimonious and potentially flexible multivariate dependence
model.

As a newly proposed statistical model, the properties and special cases of hierarchical
Kendall copulas are investigated and illustrations are given. Most importantly, we derive
the density of a hierarchical Kendall copula, which is of convenient form and therefore facil-
itates likelihood-based inference. Although Archimedean copulas themselves are typically
inappropriate for higher-dimensional dependence modeling, they are attractive choices for
the copulas of groups of variables in a hierarchical Kendall copula, since calculations then
turn out to be rather straightforward.

Sampling is however challenging even in the case of Archimedean building blocks. The
problem of sampling from hierarchical Kendall copulas essentially boils down to sampling
from a random vector given that it lies in a particular level set of its copula, which is
generally a difficult problem. We derive closed-form solutions for Archimedean copulas,
for the copula by Plackett (1965) as well as for Archimax copulas (see Capéraà et al.
(2000)), of which the popular extreme value copulas are a special case. For other copulas,
we propose three approximate approaches, which are compared in a simulation study.
Furthermore, we develop tools for model selection of hierarchical Kendall copulas and
analyze the effect of copula misspecification.

As noted above, an accurate assessment of dependencies is very important in many
areas. In light of the financial crisis of 2007–2009 and the Western sovereign debt crisis,
this especially applies to the banking and insurance sector, which is heavily reliant on
a prudent risk management. In this thesis, we analyze both classical and more recently
proposed multivariate copulas for the modeling of two types of financial risk that have
attracted considerable attention recently: systemic and operational risk. In addition, we
also look at the market risk of stock portfolios.

The risk of a loss due to changes in the market price of a portfolio of assets is referred
to as market risk. Clearly, the market risk is strongly influenced by the interdependencies
of the assets: the more diversified the portfolio, the smaller the market risk. To measure
these interdependencies, a statistical model needs to be set up. This model is then used
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to determine the required market risk capital to be held in order to withstand extreme
losses. We consider an equity portfolio of the 30 constituents of the most important
German stock market index DAX and analyze it using hierarchical and non-hierarchical
copulas. Especially hierarchical models can conveniently exploit the grouping of stocks
according to industry sectors. In a forecasting study, we show how to forecast the one day
ahead portfolio Value-at-Risk on a daily basis using the respective underlying multivariate
copula. This allows for an assessment whether the chosen dependence model produces
adequate risk capital figures. It is shown that this is, in fact, the case for appropriately
selected hierarchical Kendall copulas.

The notion of systemic relevance of financial institutions is central in the discussion
about lessons learned from the financial crisis (see Financial Stability Board et al. (2009)).
Both the banking as well as the insurance industry are dealing with this issue, in an effort
to identify systemically important institutions and reduce the systemic risk in the inter-
national financial market. As systemic risk is closely related to the interconnectedness
of institutions, we develop copula-based methods for stress testing in order to analyze
contagion effects among financial institutions. For this purpose, we derive new condi-
tional simulation algorithms for the individual Student’s t copula by Luo and Shevchenko
(2010) and for Archimedean and vine copulas, which then also facilitate conditional sam-
pling from a hierarchical Kendall copula. Such a hierarchical copula arises as a natural
dependence model in our case study of credit default swap spreads of 38 important fi-
nancial institutions from all over the world. Using different multivariate copulas (also
non-hierarchical ones), we then carry out a systemic risk stress testing exercise and gain
new insights into the systemic relevance of the institutions.

Finally, operational risk covers a diverse range of risks, which are mainly due to failed
or inappropriate internal processes (see Basel Committee on Banking Supervision (2006)),
and which are typically classified with respect to a range of different event types. Examples
are losses incurred through fraud or system failures. Similar to market or credit risk,
financial institutions are required to set aside capital to cover such losses. Because of data
heterogeneity and scarcity, the measurement of operational risk is however difficult. In
particular, it is still not fully analyzed how dependencies among different business lines
and event types are characterized and how they influence risk capital figures. Therefore, we
develop a model for quantitative operational risk management, which explicitly takes into
account data scarcity and allows to flexibly model heterogeneous pairwise dependence (in
the tails) of the losses. We carefully discuss the modeling challenges and identify reasonable
choices for the model components. Especially the individual Student’s t copula turns out
to constitute an appealing model in the proposed framework. Using real-world data from
Italian banks, we are then able to determine the impact of explicit dependence modeling
among operational loss categories on risk capital figures.

Outline of the thesis

In Chapter 2 we provide the necessary background for the rest of the thesis. We state the
definition of a copula and of related quantities, which allow to characterize the dependence
among random variables. In the following, we discuss relevant classes of copulas and state

3



1 Introduction

their properties: elliptical copulas, the individual Student’s t copula, Archimedean copulas,
extreme value and Archimax copulas, the Plackett copula, and finally vine copulas, which
are treated in detail.

Hierarchical Kendall copulas are introduced in Chapter 3, which is mainly based
on Brechmann (2013a). We first discuss different choices of aggregation functions and
argue why we believe that the Kendall distribution function is a reasonable choice for the
purpose of aggregating groups of random variables. After stating the model definition,
we investigate properties and special cases of hierarchical Kendall copulas and derive an
explicit expression for the density. Furthermore, illustrative examples are provided and
the model is compared with hierarchical Archimedean copulas, which are constructed in
a similar way.

In the next step, statistical inference techniques for hierarchical Kendall copulas are
developed. A general sampling algorithm is stated and appropriate estimation methods
are discussed. In particular, we propose a sequential estimation algorithm, which is evalu-
ated in a simulation study. To stabilize numerical calculations, we suggest to use a simple
transformation in the aggregation step. Subsequently, we treat tools for the selection of
appropriate groups using hierarchical clustering, for which we propose a suitable metric,
and for the sequential selection of copulas. The risk of copula misspecification is investi-
gated in a simulation study. Finally, the results of the in-sample market risk analysis of
the stock market index DAX are presented.

Chapter 4 is devoted entirely to the problem of sampling from hierarchical Kendall
copulas. It is mainly based on Brechmann (2013b) with some material taken from Brech-
mann (2013a). The problem can be solved using top-down and bottom-up approaches. We
first discuss top-down sampling from a general perspective and derive closed-form solutions
for Archimedean and Archimax copulas as well as for the Plackett copula. Alternatively,
a procedure for rejection-like sampling is proposed. In the following, we introduce and
discuss two methods for bottom-up sampling: sample reordering and density resampling,
which can also be used for hierarchical Kendall copulas with arbitrary building blocks.

Since the two bottom-up sampling methods and top-down rejection-like sampling are
approximate approaches, we assess them in a simulation study. Based on a range of eval-
uation criteria, the methods and different choices of control parameters are compared and
recommendations for the practical use of them are derived. With the sampling procedures
at hand, the market risk study of the previous chapter is then continued. It is shown
how to forecast the one day ahead portfolio Value-at-Risk, in terms of which different
dependence models are compared according to appropriate tests.

In Chapter 5, which is mainly based on Brechmann, Hendrich, and Czado (2013), we
develop methods for stress testing financial institutions to assess their systemic relevance.
As the proposed methodology requires the conditional simulation from copulas, we dis-
cuss appropriate approaches for the copulas considered in this thesis. While the cases of
the Gaussian and of the Student’s t copula are well-known, we derive new methods for
the individual Student’s t copula and for Archimedean and vine copulas as well as for
hierarchical Kendall copulas. In the case study, the methodology is then used to conduct
a systemic risk stress test of 38 important financial institutions.

Chapter 6 is based Brechmann, Czado, and Paterlini (2013) and presents our new
model for quantitative operational risk management. We develop a zero-inflated depen-
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dence model and carefully discuss the different model components. In particular, the
copula choice is examined in terms of four relevant properties that a flexible model for
operational losses should exhibit. Further, the zero-inflation components of the model
have to be modeled by a multivariate binary distribution, for which we also propose a
copula approach. The impact of the modeling decisions is then investigated in terms of
risk capital figures for operational losses of Italian banks.

Finally, Chapter 7 provides a brief conclusion and mentions two specific directions
of future research: the relationship of hierarchical Kendall copulas to multivariate return
periods and the hierarchical dependence modeling using a factor approach.
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2 Preliminaries

In this chapter, we present a range of concepts that are used throughout the thesis. Most
importantly, we define copulas and describe important properties. Thereby, we mainly
follow the reference books by Joe (1997) and by Nelsen (2006). We then discuss popular
classes of copulas and finally introduce vine copulas as a mean to construct flexible higher-
dimensional copulas.

2.1 Copulas and dependence measures

A d-dimensional copula is a multivariate distribution function on the unit hypercube,
[0, 1]d, with uniformly distributed margins. Copulas arise as the natural tool for statistical
dependence modeling through Sklar’s Theorem.

Theorem 2.1 (Sklar, 1959). Let X = (X1, ..., Xd)
′ ∼ F, where Xj ∼ Fj, j = 1, ..., d.

Then there exists a d-dimensional copula C such that

F (x) = C(F1(x1), ..., Fd(xd)), x := (x1, ..., xd)
′ ∈ (R ∪ {−∞,∞})d. (2.1)

If F1, ..., Fd are continuous, then C is unique. Conversely, if C is a d-dimensional copula and
F1, ..., Fd are distribution functions, then F defined by (2.1) is a d-dimensional distribution
function with marginal distribution functions F1, ..., Fd.

Proof: See Nelsen (2006, Theorem 2.10.9). �

Sklar’s Theorem hence establishes the link between multivariate distribution functions
and their univariate margins. All information about the dependence among the variables
is captured by the copula. In this thesis, we assume that F is absolutely continuous and
F1, ..., Fd are strictly increasing. Then it holds for the d-dimensional density f of F and
the univariate densities fj of Fj, j = 1, ..., d, that

f(x) = c(F1(x1), ..., Fd(xd))
d∏

j=1

fj(xj), x ∈ (R ∪ {−∞,∞})d, (2.2)

where c is the density of the copula C.
If the components of X are independent, the corresponding copula is called the inde-

pendence copula.

Example 2.2 (Independence copula). The independence copula is defined as

Π(u) =
d∏

j=1

uj, u := (u1, ..., ud)
′ ∈ [0, 1]d.
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2 Preliminaries
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Figure 2.1: A scatter plot of a sample from the bivariate independence copula (left panel),
contour lines of the bivariate independence copula (middle panel), and contour
lines of its density combined with standard normal margins (right panel). At
the points on a contour line, the copula and its density with standard normal
margins are constant, respectively (see Appendix A for more details).

It obviously has uniform margins and density π given by

π(u) = 1, u ∈ [0, 1]d.

The independence copula and its density are illustrated in Figure 2.1.
It holds that, if X has the copula C, then X1, ..., Xd are independent if and only if

C = Π. �

The two important boundary cases of counter- and comonotonicity (perfect negative
and positive dependence, respectively) are given through the Fréchet-Hoeffding bounds.

Theorem 2.3 (Fréchet-Hoeffding bounds.). Let C be a d-dimensional copula. Then it
holds

W (u) ≤ C(u) ≤M(u) ∀u ∈ [0, 1]d,

where
W (u) = max{u1 + ...+ ud − d+ 1, 0},

and
M(u) = min{u1, ..., ud}. (2.3)

Proof: See Nelsen (2006, Theorem 2.10.12) �

The upper Fréchet-Hoeffding bound M is a copula, the comonotonicity copula. If
U = (U1, ..., Ud)

′ ∼ M , then it holds that P (U1 = U2 = ... = Ud) = 1. The lower
Fréchet-Hoeffding bound W is however only a copula if d = 2. In this case, it is called
the countermonotonicity copula and it holds that P (U1 = −U2) = 1 if (U1, U2)′ ∼ W .
Nevertheless, W is the best possible lower bound in any dimension (see Nelsen (2006,
Theorem 2.10.13)).

Copulas can also be characterized with respect to different notions of symmetry. Here,
we consider two such notions: reflection symmetry and exchangeability.
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2.1 Copulas and dependence measures
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Figure 2.2: Scatter plots of data simulated from a reflection symmetric and exchangeable
copula (left panel), from an exchangeable copula, which is not reflection sym-
metric (middle panel), and from a copula, which is neither reflection symmetric
nor exchangeable (right panel).

Definition 2.4 (Reflection symmetry). A copula C is called reflection symmetric (or
radially symmetric) if it follows from U ∼ C that also 1−U ∼ C, where 1 := (1, ..., 1)′.

Definition 2.5 (Exchangeability). A copula C is called exchangeable (or permutation
symmetric) if U ∼ C implies that also (Uσ(1), ..., Uσ(d))

′ ∼ C for any permutation σ :
{1, ..., d} → {1, ..., d}.

In the bivariate case, we will refer to an exchangeable copula also as symmetric copula,
because it holds for an exchangeable bivariate copula that

C(u1, u2) = C(u2, u1) ∀(u1, u2)′ ∈ [0, 1]2.

The two notions of symmetry are illustrated in Figure 2.2.

To summarize the dependence information among two variables (X1, X2)′ ∼ F in single
numbers, it is common to use association measures. The most common ones are Kendall’s
τ (Kendall, 1938) and Spearman’s ρS (Spearman, 1904). Both depend only on the copula
C of (X1, X2)′ (see Nelsen (2006, Theorems 5.1.3 and 5.1.6)).

Remark 2.6 (Kendall’s τ and Spearman’s ρS). Kendall’s τ is given by

τ(C) = 4

∫

[0,1]2
C(u1, u2) dC(u1, u2)− 1, (2.4)

and Spearman’s ρS by

ρS(C) = 12

∫

[0,1]2
C(u1, u2) du1 du2 − 3 = 12

∫

[0,1]2
u1u2 dC(u1, u2)− 3. (2.5)

It holds that τ(C) ∈ [−1, 1] and ρS(C) ∈ [−1, 1]. �

9



2 Preliminaries

Due to these relationships, parameters of copulas are often calibrated according to a
specific value of Kendall’s τ or Spearman’s ρS.

The dependence in the tails of the joint distribution can be characterized using the lower
and upper tail dependence coefficients, which are also purely copula-based measures (see
Joe (1993) and Nelsen (2006, Theorem 5.4.2)). They measure the strength of dependence
in the lower-left and upper-right quadrant of [0, 1]2, respectively.

Remark 2.7 (Tail dependence coefficients). The lower tail dependence coefficient is given
as

λL(C) = lim
t↓0

P (X2 ≤ F−1
2 (t)|X1 ≤ F−1

1 (t)) = lim
t↓0

P (U2 ≤ t|U1 ≤ t) = lim
t↓0

C(t, t)

t
, (2.6)

where we used that, according to the probability integral transform, Uj = F (Xj) ∼
U(0, 1), j = 1, 2, and (U1, U2)′ ∼ C. Similarly, the upper tail dependence coefficient is
given as

λU(C) = lim
t↑1

P (X2 > F−1
2 (t)|X1 > F−1

1 (t)) = lim
t↑1

P (U2 > t|U1 > t)

= lim
t↑1

1− 2t+ C(t, t)

1− t = 2− lim
t↑1

1− C(t, t)

1− t .
(2.7)

Since λL(C) and λU(C) are both probabilities, it holds that λL(C), λU(C) ∈ [0, 1]. �

A copula C is said to be lower (upper) tail dependent if λL(C) > 0 (λU(C) > 0). Oth-
erwise, the copula is lower (upper) tail independent. If the copula is reflection symmetric,
the two tail dependence coefficients coincide. An additional characterization of the tail
behavior of copulas using the notion of the tail order is given by Hua and Joe (2011).

Alternative concepts of dependence can be found in Joe (1997, Chapter 2). One such
notion is TP2 dependence, which provides a quite specific characterization of positive
dependence.

Definition 2.8 (TP2 dependence). A bivariate copula density c is called totally positive
of order 2 (TP2) if

c(u1, u2) c(w1, w2) ≥ c(u1, w2) c(w1, u2),

for all (u1, u2)′, (w1, w2)′ ∈ [0, 1]2 with w1 > u1 and w2 > u2.

If a copula has a TP2 density, this means that there is a higher likelihood of observing
a pair with low values and one with high values than two pairs with low and high values.
TP2 dependence is a rather strong notion of positive dependence, since it implies a range
of other concepts (see Joe (1997, Theorem 2.3)).

If a specific bivariate copula can only model positive dependence, or if it is lower tail
dependent but upper tail independent, it can be rotated to obtain a new copula with
negative dependence or with upper tail dependence, respectively. There are three possible
rotations, which we define counterclockwisely.

• Rotation by 90 degrees: Let (U1, U2)′ ∼ C90. If (1 − U1, U2)′ ∼ C, then C90 is the
copula rotated by 90 degrees. It is given by

C90(u1, u2) = u2 − C(1− u1, u2), (u1, u2)′ ∈ [0, 1]2.

10



2.1 Copulas and dependence measures
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Figure 2.3: Scatter plots of data simulated from a copula (left panel) and its rotations by
90 degrees (middle panel) and 180 degrees (right panel).

• Rotation by 180 degrees: Let (U1, U2)′ ∼ C180. If (1− U1, 1− U2)′ ∼ C, then C180 is
the copula rotated by 180 degrees or the survival copula. It is given by

C180(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2), (u1, u2)′ ∈ [0, 1]2.

• Rotation by 270 degrees: Let (U1, U2)′ ∼ C270. If (U1, 1− U2)′ ∼ C, then C270 is the
copula rotated by 270 degrees. It is given by

C270(u1, u2) = u1 − C(u1, 1− u2), (u1, u2)′ ∈ [0, 1]2.

Clearly, if a copula is reflection symmetric, then it coincides with its survival version. The
rotation of copulas is illustrated in Figure 2.3

Finally, we consider one more quantity that is closely related to each copula. In the
univariate case it is known that U1 = F1(X1) ∼ U(0, 1), as already used above. Multivari-
ate distribution functions also provide a mapping to [0, 1], but F (X) is not uniform in
general. Its distribution can be characterized using the notion of the Kendall distribution
function.

Definition 2.9 (Kendall distribution function). The Kendall distribution function of a
copula C is defined as

K(z;C) = P (C(U) ≤ z), z ∈ [0, 1], (2.8)

where U ∼ C.

It follows that the distribution of F (X) is the Kendall distribution function of the
corresponding copula C,

P (F (X) ≤ z) = P (C(F1(X1), ..., Fd(Xd)) ≤ z)

= P (C(U) ≤ z) = K(z;C), z ∈ [0, 1],

where Uj = Fj(Xj), j = 1, ..., d.
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2 Preliminaries

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

K
(z

;C
)

Figure 2.4: Example of a Kendall distribution function. The gray area illustrates the lower
and upper bounds of the Kendall distribution function.

Kendall distribution functions were first studied in two dimensions by Genest and Rivest
(1993) and in more generality by Barbe et al. (1996). It holds that limz↑0K(z;C) = 0 as
well as

z ≤ K(z;C) ≤ 1, z ∈ [0, 1]. (2.9)

While the second inequality holds simply by the definition of a distribution function, the
first is a consequence of Theorem 2.10 and Corollary 2.11 stated below. The lower bound
is, in fact, the Kendall distribution function of the comonotonicity copula: If U ∼ M ,
then

K(z;M) = P (M(U) ≤ z) = P (U1 ≤ z) = z, z ∈ [0, 1].

On the other hand, the upper bound corresponds to the extreme case of perfect negative
dependence, where the Kendall distribution function is constant at 1, that is, K(z;W ) = 1
for all z ∈ [0, 1]. This is illustrated in Figure 2.4, which shows an example of a Kendall
distribution function.

It immediately follows from Equation (2.8) that the Kendall distribution function de-
scribes the distribution of the level sets of a copula,

L(z;C) = {u ∈ [0, 1]d : C(u) = z}, z ∈ (0, 1). (2.10)

They can be used to illustrate copulas (see Figure 2.1 and Appendix A). In the bivariate
case, level sets are also called contour lines.

The computation of the Kendall distribution function for a given copula is however
complicated in general. Imlahi et al. (1999) provide a recursive formula, for which we
need to introduce the notion of the copula quantile function, as studied also in Chakak
and Ezzerg (2000). Define C(·|u1, ..., ud−1) := C(u1, ..., ud−1, ·), then the copula quantile
function is the inverse C−1(·|u1, ..., ud−1). It holds that

C(u1, ..., ud−1, C
−1(z|u1, ..., ud−1)) = z

for z ∈ (0, 1). For ease of notation, we define C(·|u1, ..., ur) := C(u1, ..., ur, ·, 1, ..., 1) for
r = 1, ..., d− 2, and C−1(z|∅) := z for z ∈ (0, 1). Note that this notation is different from
that in Imlahi et al. (1999), where C−1 is used to denote the copula level set L(·;C) and
the copula quantile function is denoted by ψ.

12



2.1 Copulas and dependence measures

Theorem 2.10 (Recursive formula of the Kendall distribution function). For the Kendall
distribution function of the d-dimensional copula C, it holds for z ∈ [0, 1] that

K(z;C)

= K(z;C1,...,d−1) +

∫ 1

z

∫ 1

C−1(z|u1)

...

∫ 1

C−1(z|u1,...,ud−2)

∫ C−1(z|u1,...,ud−1)

0

c(u1, ..., ud) dud...du1,

(2.11)

where c is the copula density and C1,...,d−1 is the copula of the first d − 1 variables. If
d = 2, then C1,...,d−1 = C1 is the distribution function of U1, which is uniform. Therefore,
K(z;C1) = z for all z ∈ [0, 1].

Proof: See Imlahi et al. (1999, Proposition 1). As an illustration, we show here the case
d = 2. It holds that

K(z;C) = P (C(U1, U2) ≤ z) = P (C(U1, U2) ≤ z, U1 ≤ z) + P (C(U1, U2) ≤ z, U1 > z).

Since U1 ≤ z implies C(U1, U2) ≤ z, we get for the first term that

P (C(U1, U2) ≤ z, U1 ≤ z) = P (U1 ≤ z) = z = K(z;C1).

For the second term we calculate

P (C(U1, U2) ≤ z, U1 > z) =

∫ 1

z

P (C(U1, U2) ≤ z|U1 = u1) du1

=

∫ 1

z

P (U2 ≤ C−1(z|u1)|U1 = u1) du1 (2.12)

=

∫ 1

z

∫ C−1(z|u1)

0

c(u1, u2) du2 du1,

which proves Equation (2.11) in the bivariate case. �

An immediate corollary of Theorem 2.10 is that the Kendall distribution function of a
d-dimensional copula is, for fixed z ∈ [0, 1], increasing in the dimension d.

Corollary 2.11 (Monotonicity of the Kendall distribution function). For the Kendall
distribution function of the d-dimensional copula C, it holds that

K(z;C) ≥ K(z;C1,...,d−1) ∀z ∈ [0, 1],

where C1,...,d−1 is the copula of the first d− 1 variables.

Proof: The integrand in Equation (2.11) is the copula density. Since densities are posi-
tive, the integral is positive and it holds that K(z;C)−K(z;C1,...,d−1) ≥ 0. �

It directly follows from this result that K(z;C) ≥ K(z;C1) = z, which proves the lower
bound in Equation (2.9).
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2 Preliminaries

Equation (2.11) requires high-dimensional integration and availability of the copula
quantile function in closed form. For general copulas, it is therefore not possible to easily
determine the Kendall distribution function. A convenient exception are Archimedean
copulas, as will be discussed in Section 2.4. There, we will also derive the Kendall distri-
bution function of the multivariate independence copula.

Even in the bivariate case, the calculation of the Kendall distribution function can be
challenging if the copula quantile function is not known. At least, Equation (2.11) can be
simplified using the following notation for the derivative of a bivariate copula with respect
to one of its arguments:

C1|2(u1|u2) :=
∂C(u1, u2)

∂u2

, and C2|1(u2|u1) :=
∂C(u1, u2)

∂u1

, (u1, u2)′ ∈ [0, 1]2. (2.13)

Obviously, it holds that

C1|2(u1|u2) = P (U1 ≤ u1|U2 = u2), and C2|1(u2|u1) = P (U2 ≤ u2|U1 = u1). (2.14)

These conditional distribution functions play a major role in the construction of vine
copulas (see Section 2.7).

Using this notation and Equation (2.12), we obtain for the Kendall distribution function
of a bivariate copula C and z ∈ [0, 1] that

K(z;C) = z +

∫ 1

z

C2|1(C−1(z|u1)|u1) du1. (2.15)

This is equivalent to an expression provided by Genest and Rivest (2001).

There is also a notable connection between Kendall’s τ and the Kendall distribution
function.

Remark 2.12 (Kendall’s τ and the Kendall distribution function). It holds that

τ(C)
(2.4)
= 4E(C(U1, U2))− 1 = 4

∫ 1

0

z dK(z;C)− 1 = 3− 4

∫ 1

0

K(z;C) dz, (2.16)

where the last equality is obtained through integration by parts. �

In the following, we now present and discuss the three most popular classes of copulas:
elliptical, Archimedean and extreme value copulas. In addition, the individual Student’s t
copula, which extends the popular standard Student’s t copula, and the Plackett copula,
which does not belong to either one of these three classes, are introduced. If known,
expressions for the Kendall’s distribution function, Kendall’s τ , Spearman’s ρS and the
tail dependence coefficients are provided. We concentrate on copulas that can model the
full range of positive (and negative) dependence, that is, copulas with τ(C), ρS(C) ∈ (0, 1)
or even τ(C), ρS(C) ∈ (−1, 1). Table 2.1 at the end of this chapter summarizes the
most important properties of the copulas and Appendix A provides graphical illustrations
similar to Figure 2.1.
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2.2 Elliptical copulas

2.2 Elliptical copulas

Elliptical copulas are very popular and often used, since they can be used also in higher di-
mensions and are straightforward to interpret. They arise by inversion of Sklar’s Theorem
(2.1), which shows that copulas can be constructed for arbitrary multivariate distribution
functions F and marginal distribution functions F1, ..., Fd as

C(u) = F (F−1
1 (u1), ..., F−1

d (ud)), u ∈ [0, 1]d. (2.17)

Elliptical copulas are obtained by letting F be an elliptical distribution function and
F1, ..., Fd the corresponding margins (see Fang et al. (1990), Frahm et al. (2003) and
McNeil et al. (2005)). The density of an elliptical copula is

c(u) =
f(F−1

1 (u1), ..., F−1
d (ud))∏d

j=1 fj(F
−1
j (uj))

, u ∈ [0, 1]d, (2.18)

which holds for any copula constructed according to Equation (2.17). For the Kendall
distribution function of elliptical copulas, however no closed-form expression is available,
which is mainly due to the fact that an elliptical distribution function typically involves
higher-dimensional integration.

It holds that all elliptical distributions, and hence also the derived copulas, are re-
flection symmetric. Therefore, lower and upper tail dependence coefficients of elliptical
copulas coincide. The most popular examples of elliptical copulas are the tail independent
Gaussian and the tail dependent Student’s t copula.

Example 2.13 (Gaussian copula). Let Φµ,Σ denote the distribution function of the mul-
tivariate normal distribution Nd(µ,Σ) with mean µ ∈ Rd and positive definite covariance
matrix Σ ∈ Rd×d. Its density is

φµ,Σ(x) = (2π)−d/2|Σ|−1/2 exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
, x ∈ Rd. (2.19)

Further, let Φ denote the distribution function of the standard normal distributionN1(0, 1)
and write ΦΣ := Φ0,Σ to shorten notation. Then, the Gaussian copula is defined as

C(u;R) = ΦR

(
Φ−1(u1), ...,Φ−1(ud)

)
, u ∈ [0, 1]d,

where R = (ρjk)j,k=1,...,d ∈ [−1, 1]d×d is a correlation matrix. The Gaussian copula there-
fore has d(d − 1)/2 parameters, unless a specific structure of the correlation matrix is
assumed. In the case of an exchangeable correlation matrix with ρjk = ρ ∈ (−1/(d−1), 1)
for all j, k = 1, ..., d, j 6= k, the Gaussian copula itself is exchangeable and has only one
parameter. Other parameterizations such as an autoregressive structure are also feasible.
If ρjk = 1 (ρjk = 0) for all j, k = 1, ..., d, j 6= k, then the Gaussian copula corresponds to
the comonotonicity (independence) copula. The bivariate countermonotonicity copula is
obtained for ρ12 = −1 if d = 2.
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2 Preliminaries

Using Equations (2.18) and (2.19), the density of the Gaussian copula is easily derived
as

c(u;R) = φR
(
Φ−1(u1), ...,Φ−1(ud)

) d∏

j=1

φ(Φ−1(uj))
−1

= |R|−1/2 exp

(
−1

2
x′(R−1 − Id)x

)
, u ∈ [0, 1]d,

(2.20)

where xj = Φ−1(uj), j = 1, ..., d. Further, φ is the density of the standard normal distri-
bution N1(0, 1) and φR that of the Nd(0, R) distribution, where 0 := (0, ..., 0)′.

In the bivariate case, the Gaussian copula has only one parameter: the off-diagonal
parameter of the correlation matrix R. It is typically denoted by ρ = ρ12. Kendall’s τ and
Spearman’s ρS can be expressed in terms of this parameter as

τ(ρ) =
2

π
arcsin (ρ) , and (2.21)

ρS(ρ) =
6

π
arcsin

(ρ
2

)
. (2.22)

Due to the reflection symmetry of the Gaussian copula, lower and upper tail dependence
coefficients are the same. They are both zero,

λL(ρ) = λU(ρ) = 0.

In other words, the Gaussian copula is tail independent. For ρ ≥ 0, it however has a TP2

density, which can be easily verified by plugging the density (2.20) for d = 2 into the
definition of TP2 dependence (see Definition 2.8).

In addition to reflection symmetry, the Gaussian copula is also symmetric in the bi-
variate case. Extensions to skew-elliptical distributions are not considered here (see, e.g.,
Genton (2004)). �

Example 2.14 (Student’s t copula). The Student’s t copula is an example of a tail de-
pendent elliptical copula—a property that is not surprising given the well-known property
that the univariate Student’s t distribution has heavier tails than the normal. The distri-
bution function of the multivariate Student’s t distribution Td(µ,Σ, ν) with mean µ ∈ Rd,
positive definite scale matrix Σ ∈ Rd×d and ν degrees of freedom is denoted by Tµ,Σ,ν and
its density by tµ,Σ,ν . The latter is given as

tµ,Σ,ν(x) = (νπ)−d/2|Σ|−1/2 Γ
(
ν+d

2

)

Γ
(
ν
2

)
(

1 +
1

ν
(x− µ)′Σ−1(x− µ)

)−(ν+d)/2

, x ∈ Rd,

where Γ is the gamma function (see Kotz and Nadarajah (2004) and Demarta and McNeil
(2005)). We assume that ν > 2, which ensures the existence of first and second moments.
As before, we define TΣ,ν := T0,Σ,ν and denote the distribution function of T1(0, 1, ν) by
Tν . Using this notation, the Student’s t copula is given as

C(u;R, ν) = TR,ν
(
T−1
ν (u1), ..., T−1

ν (ud)
)
, u ∈ [0, 1]d, (2.23)
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2.3 Individual Student’s t copula

with correlation matrix R ∈ [−1, 1]d×d and density

c(u;R, ν) = tR,ν
(
T−1
ν (u1), ..., T−1

ν (ud)
) d∏

j=1

tν(T
−1
ν (uj))

−1

= |R|−1/2 Γ
(
ν+d

2

)
Γ
(
ν
2

)d−1

Γ
(
ν+1

2

)d

∏d
j=1

(
1 +

x2j
ν

)(ν+1)/2

(
1 + 1

ν
x′R−1x

)(ν+d)/2
, u ∈ [0, 1]d,

where xj = T−1
ν (uj), j = 1, ..., d, and tν is the density of the univariate T1(0, 1, ν) distri-

bution and tR,ν that of the Td(0, R, ν) distribution. The copula has d(d− 1)/2 correlation
parameters and additionally the degrees of freedom parameter ν, that is, d(d − 1)/2 + 1
parameters in total. Like the Gaussian copula, the Student’s t copula is exchangeable
if the correlation matrix is exchangeable. Comonotonicity is obtained if ρjk = 1 for all
j, k = 1, ..., d, j 6= k, and countermonotonicity if ρ12 = −1 and d = 2. The independence
copula is not a special case of the Student’s t copula with ν <∞.

In the bivariate case, the Student’s t copula is therefore characterized by two param-
eters: the correlation parameter, which is denoted by ρ = ρ12, and ν. While there is no
closed-form expression of Spearman’s ρS in terms of the parameters, Kendall’s τ is given
by the same formula as for the Gaussian copula (see Equation (2.21)),

τ(ρ, ν) =
2

π
arcsin (ρ) , (2.24)

which does not depend on the degrees of freedom ν. Similar to the Gaussian copula,
the bivariate Student’s t copula is also symmetric, but, as mentioned above, it has tail
dependence. In particular, the lower and upper tail dependence coefficients are the same
due to the reflection symmetry and given by

λL(ρ, ν) = λU(ρ, ν) = 2Tν+1

(
−
√
ν + 1

√
1− ρ
1 + ρ

)
. (2.25)

It holds for fixed ρ that the larger the degrees of freedom ν are, the weaker the tail
dependence is (see also the right panel of Figure 2.5 below). This is due to the fact that
the Student’s t copula converges to the Gaussian copula if ν → ∞. Compared to the
Gaussian copula (see Figure A.3), the non-zero tail dependence coefficients leads to a
sharper shape of the density contour lines of the Student’s t copula in Figure A.4. �

Although the Student’s t copula is tail dependent, a major disadvantage is that the
tail dependence among pairs of variables is symmetric in both tails and governed by only
one parameter, which limits the flexibility of the tail behavior. The first issue is a general
disadvantage of elliptical copulas due to the reflection symmetry, but, to overcome the
second issue, Luo and Shevchenko (2010) recently proposed an extension of the standard
Student’s t copula, which is discussed in the following section.

2.3 Individual Student’s t copula

The individual Student’s t copula by Luo and Shevchenko (2010) extends the Student’s
t copula by allowing for multiple degrees of freedom parameters, so that more flexibility
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2 Preliminaries

in modeling tail dependencies is achieved. A special case of this individual Student’s t
copula is the grouped Student’s t copula, which was previously proposed by Daul et al.
(2003).

Before we introduce both copulas, we note that the multivariate Student’s t distribution
is a variance mixture of normals. If X ∼ Td(µ,Σ, ν), it can be represented as

X
d
= µ+WZ = µ+ (WZ1, ...,WZd)

′, (2.26)

where Z := (Z1, ..., Zd)
′ ∼ Nd(0,Σ) and the mixing variable W is independent of Z and

satisfies ν/W 2 ∼ χ2
ν . Luo and Shevchenko (2010) generalize this construction and define

the individual Student’s t distribution and copula.
As before, let Z ∼ Nd(0,Σ). Further, let Q be uniformly distributed on [0, 1] and

independent of Z. For constants νj > 2, j = 1, ..., d, we then define

Wj =
√
νj/F

−1
χ2 (Q; νj), j = 1, ..., d,

where F−1
χ2 (·; ν) denotes the inverse χ2 distribution function with ν degrees of freedom.

This means that W1, ...,Wd are perfectly positively dependent. In addition, it holds that
F−1
χ2 (Q; νj) ∼ χ2

νj
, so that we have νj/W

2
j ∼ χ2

νj
for all j = 1, ..., d.

The individual Student’s t distribution IT d(µ,Σ,ν) with mean µ ∈ Rd, positive defi-
nite scale matrix Σ ∈ Rd×d and multiple degrees of freedom ν = (ν1, ..., νd)

′ is then defined
as the distribution of the random vector X given by

X := µ+ (W1Z1, ...,WdZd)
′, (2.27)

which generalizes Equation (2.26). The univariate margins of X follow univariate Stu-
dent’s t distributions with νj degrees of freedom, j ∈ {1, ..., d}.

The individual Student’s t copula is then obtained by inverting Sklar’s Theorem (see
Equation (2.17)) for the IT d(0, R,ν) distribution with correlation matrix R ∈ [−1, 1]d×d

and distribution function

FX(x;R,ν) =

∫ 1

0

P (X1 ≤ x1, ..., Xd ≤ xd|Q = q) dq

=

∫ 1

0

P (W1Z1 ≤ x1, ...,WdZd ≤ xd|Q = q) dq

=

∫ 1

0

P

(
Z1 ≤

x1

w1(q)
, ..., Zd ≤

xd
wd(q)

)
dq

=

∫ 1

0

ΦR

(
x1

w1(q)
, ...,

xd
wd(q)

)
dq,

where wj(q) =
√
νj/F

−1
χ2 (q; νj), j = 1, ..., d. Hence, the corresponding copula has the form

C(u;R,ν) =

∫ 1

0

ΦR

(
x1

w1(q)
, ...,

xd
wd(q)

)
dq, u ∈ [0, 1]d,
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2.3 Individual Student’s t copula

where xj = T−1
νj

(uj). Its density is given for u ∈ [0, 1]d by

c(u;R,ν) =

∫ 1

0

φR

(
x1

w1(q)
, ...,

xd
wd(q)

)( d∏

j=1

wj(q)

)−1

dq

× (νπ)d/2
Γ
(
ν
2

)d

Γ
(
ν+1

2

)d
d∏

j=1

(
1 +

x2
j

νj

)(νj+1)/2

.

(2.28)

The limiting cases (co-/countermonotonicity) are the same as for the standard Student’s
t copula.

Each component of an individual Student’s t copula hence has an individual degrees of
freedom parameter, so that the individual Student’s t copula has a total of d(d− 1)/2 + d
parameters. The standard Student’s t copula is obtained when ν1 = ν2 = ... = νd. A
special case is also the grouped Student’s t copula with fixed degrees of freedom for
groups of variables (see Daul et al. (2003)): For example, in the case of two groups of size
d1 and d2 = d− d1, respectively, it holds that ν1 = ... = νd1 and νd1+1 = ... = νd.

The bivariate individual Student’s t copula is characterized by the correlation parameter
ρ = ρ12 and the two degrees of freedom parameters ν1 and ν2. Kendall’s τ is approximately
given by

τ(ρ, ν1, ν2) ≈ 2

π
arcsin (ρ) , (2.29)

as for the Gaussian and the standard Student’s t copula. According to Daul et al. (2003)
and Luo and Shevchenko (2010), the approximation error is typically very small. For
Spearman’s ρS no such approximate expression is known.

The individual Student’s t copula is also reflection symmetric. The tail dependence
coefficients are given by

λL(ρ, ν1, ν2) = λU(ρ, ν1, ν2) = Ω(ρ, ν1, ν2) + Ω(ρ, ν2, ν1), (2.30)

with

Ω(ρ, ν1, ν2) =

∫ ∞

0

fχ2(t; ν1 + 1) Φ

(
−B(ν1, ν2)tν1/(2ν2) − ρt1/2√

1− ρ2

)
dt,

B(ν1, ν2) =

(
2ν2/2Γ((1 + ν2)/2)

2ν1/2Γ((1 + ν1)/2)

)1/ν2

,

where fχ2(·; ν) denotes the χ2 density function with ν degrees of freedom. If ν = ν1 = ν2,
this reduces to Equation (2.25) for the standard Student’s t copula with ν degrees of
freedom. As before, small degrees of freedom indicate stronger tail dependence. It holds
that λL(ρ, ν

(1)
j , νk) > λL(ρ, ν

(2)
j , νk) if ν

(2)
j > ν

(1)
j > νk, j, k ∈ {1, 2}, j 6= k, and similarly

for the upper tail dependence coefficient (see Figure 2.5).
In contrast to the Student’s t copula, the bivariate individual Student’s t copula is not

symmetric if ν1 6= ν2. This is intuitively clear, since ν1 and ν2 are parameters attached to
the different variables. According to Luo and Shevchenko (2010), this asymmetry is most
pronounced in the tails of the copula and less so in the main body of the copula, other
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Figure 2.5: Lower tail dependence coefficient of the individual Student’s t copula with
ρ = 0.7 and different choices of degrees of freedom ν1 and ν2. The right
panel shows the case, where ν = ν1 = ν2, which corresponds to the standard
Student’s t copula.

than for example in the right panel of Figure 2.2. The asymmetry is therefore not well
visible from the plots in Figure A.5.

To summarize, the individual Student’s t copula extends the standard Student’s t copula
in order to obtain additional flexibility in the tails of a multivariate random vector. It is
however also reflection symmetric, so that lower and upper tail dependence coefficients
coincide. To overcome this limitation, we consider alternative classes of copulas in the
following.

2.4 Archimedean copulas

An Archimedean copula is characterized by a generator ϕ and given by

C(u;ϕ) = ϕ−1 (ϕ(u1) + ...+ ϕ(ud)) , u ∈ [0, 1]d, (2.31)

where the generator ϕ : [0, 1] → [0,∞) is a continuous and strictly decreasing function,
which satisfies ϕ(1) = 0. According to McNeil and Nešlehová (2009), ϕ generates a d-
dimensional Archimedean copula if and only if its inverse ϕ−1 is d-monotone on [0,∞).
This means that

(i) ϕ−1 is differentiable on [0,∞) up to the order d− 2,

(ii) (−1)k(ϕ−1)(k)(t) ≥ 0 for k = 0, 1, ..., d− 2 and for any t ∈ [0,∞), and

(iii) (−1)d−2(ϕ−1)(d−2) is non-increasing and convex on [0,∞).

A generator ϕ is called completely monotone if ϕ−1 has derivatives of all orders and satisfies
(−1)k(ϕ−1)(k)(x) ≥ 0 for k ≥ 0 and any x ∈ [0,∞). Completely monotone generators
can generate Archimedean copulas in any dimension (see Kimberling (1974), Joe (1997)
and Nelsen (2006)). Due to the central role of the inverse generator ϕ−1, Archimedean
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copulas are also often defined in terms of ψ := ϕ−1 in the literature. Here, we will use the
parameterization in terms of ϕ.

An alternative characterization result of Archimedean copulas is provided by McNeil
and Nešlehová (2009). They show that

(ϕ(U1), ..., ϕ(Ud))
′ d= RS, (2.32)

where S = (S1, ..., Sd)
′ is uniformly distributed on the d-dimensional unit simplex,

Sd−1 = {x ∈ Rd
≥0 :

∑d
j=1 xj = 1} ⊂ [0, 1]d. (2.33)

Further, the radial part R =
∑d

j=1 ϕ(Uj) ≥ 0 is independent of S and has distribution FR,

which can be determined through the inverse Williamson transform of ϕ−1 (see McNeil
and Nešlehová (2009) for more details).

A simple example of an Archimedean copula is the independence copula (see Exam-
ple 2.2). It can be represented through the generator ϕ(t) = − log t, which is obviously
completely monotone.

A d-dimensional Archimedean copula is absolutely continuous if (ϕ−1)(d−1) exists and
is absolutely continuous on (0,∞) (see McNeil and Nešlehová (2009, Proposition 4.2)).
Its density is given by

c(u;ϕ) = (ϕ−1)(d) (ϕ(u1) + ...+ ϕ(ud))
d∏

j=1

ϕ′(uj), u ∈ [0, 1]d. (2.34)

This expression requires the calculation of (ϕ−1)(d), which is typically very complex. Hofert
et al. (2012) provide explicit functional expressions for common Archimedean generators,
such as those that will be discussed below.

It immediately follows from Equation (2.31) that the copula quantile function of an
Archimedean copula is conveniently given by

C−1(z|u1, ..., ud−1;ϕ) = ϕ−1

(
ϕ(z)−

d−1∑

j=1

ϕ(uj)

)
, z ∈ (0, 1). (2.35)

The Kendall distribution function of a d-dimensional Archimedean copula is of more
complicated form. Barbe et al. (1996) and McNeil and Nešlehová (2009) show that it is
given in terms of the generator ϕ and higher order derivatives of its inverse ϕ−1 as

K(z;ϕ) =





(−ϕ(0))d−1

(d−1)!
(ϕ−1)

(d−1)
− (ϕ(0)) if z = 0,

z +
d−2∑
k=1

(−ϕ(z))k

k!
(ϕ−1)(k)(ϕ(z)) + (−ϕ(z))d−1

(d−1)!
(ϕ−1)

(d−1)
− (ϕ(z)) if z ∈ (0, 1],

(2.36)

where (ϕ−1)
(d−1)
− denotes the left-hand derivative of ϕ−1 of order d−1. Again, availability of

explicit functional expressions of (ϕ−1)(k) for common Archimedean generators (see Hofert
et al. (2012)) renders feasible a computationally efficient computation of the Kendall
distribution function.
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Figure 2.6: Kendall distribution functions of the independence (left panel), the Clayton
(middle panel) and the Gumbel copula (right panel) for d ∈ {2, ..., 10}. The
parameters of the Clayton and the Gumbel copula are chosen according to a
Kendall’s τ of 0.5.

It has been shown by Genest and Rivest (1993) that bivariate Archimedean copulas are
uniquely characterized by their Kendall distribution functions. Genest, Nešlehová, and
Ziegel (2011) recently extended this result to the trivariate case and strongly conjecture
that this holds in general.

Equation (2.36) now also allows to derive the Kendall distribution function of the
independence copula with generator ϕ(t) = − log t as

K(z; Π) = z + z
d−1∑

k=1

(−1)k

k!
(log z)k , z ∈ [0, 1],

since ϕ−1(t) = e−t and hence (ϕ−1)(k)(t) = (−1)ke−t, so that (ϕ−1)(k)(ϕ(z)) = (−1)kz.
It depends on the dimension of the copula as illustrated in the left panel of Figure 2.6,
which shows the Kendall distribution function of the d-dimensional independence copula
for different choices of d.

In the bivariate case, it holds for Archimedean copulas that

K(z;ϕ) = z − ϕ(z)

ϕ′(z)
, z ∈ [0, 1], (2.37)

which can also directly be derived using Equation (2.15) and noting that C2|1(u2|u1;ϕ) =
ϕ′(u1)/ϕ′(C(u1, u2;ϕ)). Then,

K(z;ϕ) = z +

∫ 1

z

C2|1(C−1(z|u1;ϕ)|u1;ϕ) du1 = z +

∫ 1

z

ϕ′(u1)

ϕ′(z)
du1 = z − ϕ(z)

ϕ′(z)
,

since ϕ(1) = 0. Using Equation (2.16), Kendall’s τ can therefore be expressed as

τ(ϕ) = 1 + 4

∫ 1

0

ϕ(z)

ϕ′(z)
dz. (2.38)
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2.4 Archimedean copulas

A similar expression for Spearman’s ρS is not known. The tail dependence coefficients can
be written as

λL(ϕ) = lim
s→∞

ϕ−1(2s)

ϕ−1(s)
, and λU(ϕ) = 2− lim

s↓0

1− ϕ−1(2s)

1− ϕ−1(s)
,

which follows by a simple reparameterization of Equations (2.6) and (2.7) with t = ϕ−1(s).
It also follows from Equation (2.31) that Archimedean copulas are exchangeable. This

means that all lower dimensional margins of an Archimedean copula have the same dis-
tribution. In particular, all pairs of variables are identically distributed. As this is a quite
strict assumption, Archimedean copulas are mostly used in the bivariate case—or as bi-
variate building blocks of vine copulas (see Section 2.7). A non-exchangeable extension
are hierarchical Archimedean copulas, which are also called nested Archimedean copulas
(see Section 3.3.1).

In the following, we present four popular Archimedean copulas, which exhibit different
properties, especially with respect to their tail behavior: the Clayton, the Gumbel, the
Frank and the Joe copula. Explicit density expressions are provided for the important
bivariate case. In addition, all four copulas have TP2 densities (if θ > 0 in the case of the
Frank copula).

Example 2.15 (Clayton copula). The generator of the Clayton copula (see Clayton
(1978) and also Kimeldorf and Sampson (1975) and Cook and Johnson (1981)) is ϕ(t; θ) =
θ−1(t−θ − 1). If θ > 0, the copula is completely monotone and given by

C(u; θ) =
(
u−θ1 + ...+ u−θd − d+ 1

)−1/θ
, u ∈ [0, 1]d.

The extension to negative parameters is not considered here (ϕ is d-monotone if θ ≥
−1/(d − 1)). The limiting cases of the Clayton copula are independence if θ → 0 and
comonotonicity if θ →∞.

The Kendall distribution function of the multivariate Clayton copula is illustrated in
the middle panel of Figure 2.6. In the bivariate case, the density of the Clayton copula
can be obtained as

c(u1, u2; θ) = (1 + θ)(u1u2)−1−θ (u−θ1 + u−θ2 − 1
)−1/θ−2

, (u1, u2)′ ∈ [0, 1]2.

The corresponding Kendall’s τ is given by

τ(θ) =
θ

θ + 2
.

In terms of tail dependence, it turns out that the Clayton copula is lower tail dependent
but upper tail independent. The tail dependence coefficients are

λL(θ) = 2−1/θ, λU(θ) = 0.

The Clayton copula is hence the first example of a reflection asymmetric, and thus tail
asymmetric, copula. This is reflected in the shape of the scatter plots and the contour
lines in Figure A.6. �
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Example 2.16 (Gumbel copula). Unlike the Clayton copula, the Gumbel copula (see
Gumbel (1960)) is upper tail dependent. Its generator is defined as ϕ(t; θ) = (− log t)θ,
which is completely monotone for θ ≥ 1. The d-dimensional Gumbel copula is then given
by

C(u; θ) = exp
(
−
(
(− log u1)θ + ...+ (− log ud)

θ
)1/θ
)
, u ∈ [0, 1]d,

and, similar to the Clayton copula, the limiting cases of the Gumbel copula are indepen-
dence if θ = 1 and comonotonicity if θ →∞.

The Kendall distribution function of the d-dimensional Gumbel copula for different
choices of d is shown in the right panel of Figure 2.6. The density of the Gumbel copula
in the bivariate case can be derived as

c(u1, u2; θ) =
C(u1, u2; θ)

u1u2

((log u1)(log u2))θ−1

((− log u1)θ + (− log u2)θ)2−1/θ

×
((

(− log u1)θ + (− log u2)θ
)1/θ

+ θ − 1
)
, (u1, u2)′ ∈ [0, 1]2.

While there is again no known closed-form expression of Spearman’s ρS, Kendall’s τ is
given by

τ(θ) = 1− 1

θ
.

Finally, the Gumbel copula is also reflection asymmetric and, as noted above, exhibits
upper tail dependence but no lower tail dependence:

λL(θ) = 0, λU(θ) = 2− 21/θ,

which also translates to the shape of the contour lines in Figure A.7. �

Example 2.17 (Frank copula). The generator of the Frank copula (see Frank (1979)),
ϕ(t; θ) = − log((e−θt − 1)/(e−θ − 1)), is completely monotone for θ > 0. It defines the
copula

C(u; θ) = −1

θ
log

(
1 +

∏d
j=1(e−θuj − 1)

(e−θ − 1)d−1

)
, u ∈ [0, 1]d. (2.39)

The Frank copula converges to independence and to comonotonicity if θ → 0 and θ →∞,
respectively. In the bivariate case, Equation (2.39) also yields a valid copula for θ < 0, so
that also negative dependence can be covered. Then, the countermonotonicity copula is
the limiting case if θ → −∞.

The density of its bivariate version is

c(u1, u2; θ) = θ(e−θ − 1)
e−θ(u1+u2)

(e−θ − 1 + (e−θu1 − 1)(e−θu2 − 1))2 , (u1, u2)′ ∈ [0, 1]2.

The corresponding Kendall’s τ can be derived in terms of the so-called Debye function,
which is defined by

Dk(x) =
k

xk

∫ x

0

tk

et − 1
dt, x ∈ R \ {0}, k ∈ N.
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2.4 Archimedean copulas

Then,

τ(θ) = 1 +
4

θ
(D1(θ)− 1).

The Frank copula is also an example of a copula with a simplified expression for Spear-
man’s ρS,

ρS(θ) = 1− 12

θ
(D1(θ)−D2(θ)).

Similar to the Gaussian copula, the Frank copula is reflection symmetric in the bivariate
case (but not for d ≥ 3; see Joe (1997, Section 7.1.7)) and does not exhibit any tail
dependence,

λL(θ) = λU(θ) = 0.

Nevertheless, the shape of the contour lines of the copula is rather non-elliptical in contrast
to the Gaussian copula (see Figure A.8). �

Example 2.18 (Joe copula). The Joe copula (see Joe (1993)) is yet another example of an
upper tail dependent Archimedean copula. Its generator is ϕ(t; θ) = − log

(
1− (1− t)θ

)
,

which implies the copula

C(u; θ) = 1−
(

1−
d∏

j=1

(
1− (1− uj)θ

)
)1/θ

, u ∈ [0, 1]d,

for θ > 1. As for the Gumbel copula, the limiting case of the Joe copula for θ → 1 is the
independence copula, while comonotonicity is obtained for θ →∞.

For (u1, u2)′ ∈ [0, 1]2, the density of the bivariate Joe copula is

c(u1, u2; θ) =
(
(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ

)1/θ−2

× (1− u1)θ−1(1− u2)θ−1

×
(
θ − 1 + (1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ

)
.

(2.40)

Using a result by Schepsmeier (2010, Section 2.3.2), the corresponding Kendall’s τ can be
obtained as

τ(θ) =

{
1 + 2

2−θ

(
Ψ(2)−Ψ

(
2
θ

+ 1
))

if θ 6= 2,

1−Ψ′(2) if θ = 2,
(2.41)

where Ψ is the digamma function, which is defined as the logarithmic derivative of the
gamma function. The tail dependence coefficients are the same as for the Gumbel copula
and given by

λL(θ) = 0, λU(θ) = 2− 21/θ.

Although both the Gumbel and the Joe copula are reflection asymmetric and upper tail
dependent Archimedean copulas, the shape of their contour lines is quite different (see
Figure A.9), so that it is actually sensible to consider both copulas. �

There are also other popular Archimedean copulas such as the Ali-Mikhail-Haq copula
(see Ali et al. (1978)), but here we concentrate on the four presented ones, because we be-
lieve that they reasonably capture common dependence patterns. A worthwhile extension,
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which is not treated here in detail, are the two parameter BB copulas by Joe (1997, Sec-
tion 5.2). They include extensions of the presented copulas, such as the Clayton-Gumbel
(BB1) or the Joe-Clayton (BB7) copula, which are also Archimedean and exhibit different
non-zero lower and upper tail dependence coefficients.

2.5 Extreme value and Archimax copulas

Extreme value copulas are the asymptotic limits of component-wise maxima (see Pickands
(1981) and the overview by Gudendorf and Segers (2010)). Let X i = (Xi1, ..., Xid)

′, i =
1, ..., n, be n independent copies of a d-dimensional random vector X with copula C0 and
define Mn,j := max{X1j, ..., Xnj}. Then, the copula of Mn = (Mn,1, ...,Mn,d)

′ is

C0(n)(u) := C0

(
u

1/n
1 , ..., u

1/n
d

)n
, u ∈ [0, 1]d.

A copula C is called an extreme value copula if there exists a copula C0 such that

C0(n)(u)
n→∞−−−→ C(u) ∀u ∈ [0, 1]d. (2.42)

The copula C0 is then said to lie in the domain of attraction of C.
In the bivariate case, an extreme value copula can be uniquely identified by a univariate

function, the dependence function by Pickands (1981). Let A : [0, 1]→ [0.5, 1] be convex
and satisfy max{t, 1− t} ≤ A(t) ≤ 1 for all t ∈ [0, 1]. Then,

C(u1, u2;A) = exp

(
log(u1u2)A

(
log u2

log(u1u2)

))
, (u1, u2)′ ∈ [0, 1]2, (2.43)

is an extreme value copula. The converse statement is also true: If C is an extreme value
copula, then there exists a function A with the above stated properties, such that C can
be written as in (2.43).

An extreme value copula C is symmetric if and only if the Pickands dependence function
A is symmetric about 0.5, since

A(t) = A(1− t) ∀t ∈ [0, 1] ⇔ A

(
log u2

log(u1u2)

)
= A

(
log u1

log(u1u2)

)
∀(u1, u2)′ ∈ [0, 1]2

⇔ C(u1, u2;A) = C(u2, u1;A) ∀(u1, u2)′ ∈ [0, 1]2.

The bounds on the Pickands dependence function A correspond to the cases of indepen-
dence and comonotonicity. The independence copula can be represented as an extreme
value copula with A(t) = 1 for all t ∈ [0, 1]. Similarly, A(t) = max{t, 1−t} is the Pickands
dependence function of the comonotonicity copula. This is illustrated in Figure 2.7, which
also shows an example of an asymmetric Pickands dependence function.

The unique characterization (2.43) of extreme value copulas allows to conveniently
derive quantities like the density and the Kendall distribution function in terms of the
Pickands dependence function A. Assuming that A is twice differentiable, the density of
an extreme value copula is given for (u1, u2)′ ∈ [0, 1]2 by

c(u1, u2;A) =
C(u1, u2;A)

u1u2

(
A(t)2 + (1− 2t)A′(t)A(t)− (1− t)t

(
A′(t)2 − A′′(t)

log(u1u2)

))
,
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Figure 2.7: Example of an asymmetric Pickands dependence function. The gray area il-
lustrates the lower and upper bounds of the Pickands dependence function.

where t = t(u1, u2) := log u2/ log(u1u2). Further, according to Ghoudi et al. (1998), the
Kendall distribution function is

K(z;A) = z(1 + (τ(A)− 1) log z), z ∈ [0, 1], (2.44)

where τ(A) is the Kendall’s τ of an extreme value copula,

τ(A) =

∫ 1

0

t(1− t)
A(t)

dA′(t), (2.45)

assuming that A′ exists. This means that the Kendall distribution function is the same
for all extreme value copulas with the same Kendall’s τ .

According to Hürlimann (2003), Kendall’s τ can alternatively be determined as

τ(A) =

∫ 1

0

(2t− 1)A(t)A′(t) + t(1− t)A′(t)2

A(t)2
dt, (2.46)

which does not involve the second derivative of A. Furthermore, Hürlimann (2003) also
provides a simplified expression of Spearman’s ρS in terms of the Pickands dependence
function (see also Capéraà et al. (1997)):

ρS(A) = 12

∫ 1

0

1

(1 + A(t))2
dt− 3.

These expressions for Kendall’s τ and Spearman’s ρS however only seldom lead to closed-
form expressions in terms of copula parameters.

Finally, the lower and upper tail dependence coefficients of extreme value copulas take
on particularly convenient forms, namely

λL(A) =

{
1 if A(0.5) = 0.5,

0 otherwise,
λU(A) = 2(1− A(0.5)),
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which follows from a straightforward calculation according to Remark 2.7. This means
that extreme value copulas are lower tail independent expect for the case of comono-
tonicity, where A(0.5) = 0.5. The strength of the upper tail dependence is determined
by the Pickands dependence function A evaluated at 0.5. Except for the boundary cases
of independence and comonotonicity, extreme value copulas are therefore not reflection
symmetric.

In the literature, a wide range of different extreme value copulas has been proposed
either as the asymptotic limit of a common copula according to Equation (2.42) or directly
in terms of a Pickands dependence function A, exploiting Equation (2.43). For instance,
the Student’s t copula (see Example 2.14) lies in the domain of attraction of the so-
called t-EV copula (see Demarta and McNeil (2005) and Nikoloulopoulos et al. (2009)).
Archimedean copulas lie in the domain of attraction of the Gumbel copula (see Example

2.16) if− lims↓0
sϕ′(1−s)
ϕ(1−s) ∈ [1,∞] exists (see Genest and Rivest (1989)). The Gumbel copula

is actually the only copula that is both an Archimedean and an extreme value copula. Its
Pickands dependence function is

A(t; θ) =
(
tθ + (1− t)θ

)1/θ
, t ∈ [0, 1], (2.47)

which is symmetric about 0.5.
An overview of other extreme value copulas can be found, e.g., in Eschenburg (2013),

where it is also shown that many common extreme value copulas all model very similar
dependence patterns (see also Genest, Kojadinovic, Nešlehová, and Yan (2011)). Most
flexibility is added by allowing for asymmetry. A famous example of such a copula is the
Tawn copula, which is an extension of the Gumbel copula.

Example 2.19 (Tawn copula). The Pickands dependence function of the copula by Tawn
(1988) is

A(t; θ, ψ1, ψ2) = (1− ψ2)(1− t) + (1− ψ1)t+
(
(ψ1(1− t))θ + (ψ2t)

θ
)1/θ

, t ∈ [0, 1],

where θ ≥ 1 and ψ1, ψ2 ∈ [0, 1]. If ψ1 = ψ2 = 1, the Tawn copula coincides with the
Gumbel copula (see Equation (2.47)). The independence copula is a special case for θ = 1
or ψ1 = 0 or ψ2 = 0. Furthermore, if θ →∞, the Tawn copula converges to the Marshall-
Olkin copula (see Marshall and Olkin (1967)), which can be defined in terms of the
following Pickands dependence function:

A(t;ψ1, ψ2) = max{1− ψ1(1− t), 1− ψ2t}, t ∈ [0, 1],

where ψ1, ψ2 ∈ [0, 1].
The Tawn copula is asymmetric if ψ1 6= ψ2. This is illustrated in Figure 2.7, which,

in fact, shows the Pickands dependence function of the Tawn copula for θ = 2, ψ1 = 1
and ψ2 = 0.5. In contrast to the asymmetry of the individual Student’s t copula, which
is strongest in the tails, the asymmetry of the Tawn copula is more distinct and very
well visible in Figure A.10. According to Khoudraji (1995), the Tawn copula can also be
written as

C(u1, u2; θ, ψ1, ψ2) = u1−ψ1

1 u1−ψ2

2 C(uψ1

1 , uψ2

2 ; θ),
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2.5 Extreme value and Archimax copulas

where C(·, ·; θ) is a Gumbel copula with parameter θ. As this construction yields a valid
copula for any choice of C(·, ·; θ), it can also be seen as a general device to define asym-
metric copulas.

The choice of the asymmetry parameters ψ1 and ψ2 also influences the possible range of
Kendall’s τ . Since the Kendall’s τ of the Tawn copula is increasing in θ and the Marshall-
Olkin copula is the boundary case if θ →∞, it holds that

τ(θ, ψ1, ψ2) ≤ τ(ψ1, ψ2) =
ψ1ψ2

ψ1 + ψ2 − ψ1ψ2

,

where τ(ψ1, ψ2) denotes the Kendall’s τ of the Marshall-Olkin copula (see Embrechts
et al. (2003)). Similarly, the Spearman’s ρS of the Tawn copula is bounded above by the
Spearman’s ρS of the Marshall-Olkin copula, which is denoted by ρS(ψ1, ψ2):

ρS(θ, ψ1, ψ2) ≤ ρS(ψ1, ψ2) =
3ψ1ψ2

2ψ1 + 2ψ2 − ψ1ψ2

.

While the lower tail dependence coefficient is zero, the upper tail dependence coefficient
is also strongly dependent on ψ1 and ψ2:

λL(θ, ψ1, ψ2) = 0, λU(θ, ψ1, ψ2) = ψ1 + ψ2 − (ψθ1 + ψθ2)1/θ.

For fixed θ, the upper tail dependence coefficient is maximal if ψ1 = ψ2 = 1, which
corresponds the boundary case of the Gumbel copula. �

An extension of both the classes of extreme value and of bivariate Archimedean copulas
was proposed by Capéraà et al. (2000). They define an Archimax copula for (u1, u2)′ ∈
[0, 1]2 as

C(u1, u2;ϕ,A) = ϕ−1

(
(ϕ(u1) + ϕ(u2))A

(
ϕ(u2)

ϕ(u1) + ϕ(u2)

))
, (2.48)

where ϕ is a 2-monotone Archimedean generator (see Section 2.4) and A is a Pickands
dependence function. If A(t) = 1 for all t ∈ [0, 1] (Pickands dependence function of the in-
dependence copula), then the Archimax copula (2.48) becomes the bivariate Archimedean
copula with generator ϕ (see Equation (2.31)). Conversely, if ϕ(t) = − log t (generator
of the independence copula), it corresponds to the extreme value copula with Pickands
dependence function A (see Equation (2.43)).

Capéraà et al. (2000) show that the Kendall distribution function of an Archimax copula
is given by

K(z;ϕ,A) = K(z;ϕ) + (z −K(z;ϕ)) τ(A), z ∈ [0, 1], (2.49)

where K(·;ϕ) is the Kendall distribution function of the corresponding Archimedean
copula (see Equation (2.37)) and τ(A) is the Kendall’s τ of the corresponding extreme
value copula (see Equation (2.45) or (2.46)). Similarly, the Kendall’s τ of an Archimax
copula can be derived as

τ(ϕ,A) = τ(ϕ) + (1− τ(ϕ)) τ(A),

where τ(ϕ) is given in Equation (2.38).
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2.6 Plackett copula

The Plackett copula (see Plackett (1965) and Mardia (1970)) is an example of a copula
that does not belong to either one of the popular classes of elliptical, Archimedean and
extreme value copulas, which were discussed before. It is derived through the constant
cross-product ratio

C(u1, u2;α)(1− u1 − u2 + C(u1, u2;α))

(u1 − C(u1, u2;α))(u2 − C(u1, u2;α))
= α + 1, (u1, u2)′ ∈ [0, 1]2,

where α ∈ (−1,∞) \ {0}. This results in

C(u1, u2;α) =
1

2α

(
1 + α(u1 + u2)−

√
(1 + α(u1 + u2))2 − 4α(α + 1)u1u2

)
. (2.50)

If α → −1, the Plackett copula converges to the countermonotonicity copula, while
comonotonicity is obtained for α→∞. The independence copula is the limit as α→ 0.

The density of the Plackett copula is given by

c(u1, u2;α) =
(α + 1)(1 + α(u1 + u2 − 2u1u2))

((1 + α(u1 + u2))2 − 4α(α + 1)u1u2)3/2
, (u1, u2)′ ∈ [0, 1]2, (2.51)

and also the copula quantile function is available in closed form as

C−1(z|u;α) = z
1 + α(u− z)

z + (α + 1)(u− z)
, z ∈ (0, 1). (2.52)

Using this expression, an explicit but cumbersome expression of the Kendall distribution
function can be derived (see Appendix B.3).

In contrast to most other copulas, the Plackett copulas does not possess an explicit
formula for Kendall’s τ but for Spearman’s ρS (see Nelsen (2006, Exercise 5.8)):

ρS(α) =
α + 2

α
− 2(α + 1)

α2
log(α + 1).

Similar to the Gaussian and the bivariate Frank copula, the Plackett copula is also reflec-
tion symmetric and tail independent, which is visible in Figure A.11. It holds that

λL(α) = λU(α) = 0.

It is also a symmetric copula, which directly follows from Equation (2.50).
Another copula that does not belong to either one of the most popular classes of copulas

is the Farlie-Gumbel-Morgenstern (FGM) copula,

C(u1, u2;α) = u1u2 (1 + α(1− u1)(1− u2)) , (u1, u2)′ ∈ [0, 1]2, (2.53)

where α ∈ [−1, 1]. It can be interpreted as first-order approximation to the Plackett
copula (2.50) (see Nelsen (2006, Exercise 3.39)). Its range of Kendall’s τ is however rather
limited, since

τ(α) =
2α

9
∈ [−2/9, 2/9], (2.54)

as shown in Nelsen (2006, Example 5.2). It therefore has to be used carefully.
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2.7 Vine copulas

Vine copulas are multivariate copulas that are defined through a cascade of bivariate
copulas, so-called pair copulas. Recursive conditioning ensures that such a pair copula
construction (PCC) yields a valid multivariate distribution. We first discuss this general
idea of constructing multivariate copulas and have a closer look at a critical assumption
that is often made. Vines then provide a convenient graphical model to organize PCCs
and we briefly treat statistical inference techniques for this model class.

2.7.1 Pair copula constructions

PCCs were originally proposed by Joe (1996, 1997) as so-called mixtures of conditional
distributions. Bedford and Cooke (2001, 2002) and Aas et al. (2009) picked up the idea
to construct flexible multivariate copulas. We begin with a trivariate example.

Let X = (X1, X2, X3)′ ∼ F . The multivariate density f of X can then be decomposed
as

f(x1, x2, x3) = f1(x1) f2|1(x2|x1) f3|1,2(x3|x1, x2), (x1, x2, x3)′ ∈ R3. (2.55)

With Sklar’s Theorem (2.2) it follows that

f2|1(x2|x1) =
f1,2(x1, x2)

f1(x1)
=
c1,2(F1(x1), F2(x2)) f1(x1) f2(x2)

f1(x1)

= c1,2(F1(x1), F2(x2)) f2(x2),

(2.56)

where C1,2 is the bivariate copula of the pair (1, 2). In the same way, it holds that

f3|1,2(x3|x1, x2) =
f2,3|1(x2, x3|x1)

f2|1(x2|x1)

=
c2,3;1(F2|1(x2|x1), F3|1(x3|x1)|x1) f2|1(x2|x1) f3|1(x3|x1)

f2|1(x2|x1)

= c2,3;1(F2|1(x2|x1), F3|1(x3|x1)|x1) f3|1(x3|x1)

(2.56)
= c2,3;1(F2|1(x2|x1), F3|1(x3|x1)|x1) c1,3(F1(x1), F3(x3)) f3(x3),

(2.57)

where Fj|1, j = 2, 3, can be expressed in terms of Cj|1 as defined in Equation (2.13),

Fj|1(xj|x1) =
∂F1,j(x1, xj)

∂x1

1

f1(x1)
=
∂C1,j(F1(x1), Fj(xj))

∂x1

(
∂F1(x1)

∂x1

)−1

=
∂C1,j(F1(x1), Fj(xj))

∂F1(x1)
= Cj|1(Fj(xj)|F1(x1)).

(2.58)

Thus, we have decomposed the density f of X in terms of the marginal densities and the
three bivariate copulas C1,2, C1,3 and C2,3;1 with densities c1,2, c1,3 and c2,3;1, respectively.
The copula C2,3;1 should not be confused with C2,3|1, which we use to denote the conditional
distribution function of (U2, U3)′|U1 (see Examples 2.20 and 2.21 below).
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Note that the copula C2,3;1 depends on variable 1 not only through its arguments
Cj|1, j = 1, 2, but also directly. To facilitate the statistical inference of PCCs, it is
typically assumed that

C2,3;1(·, ·|x1) = C2,3;1(·, ·). (2.59)

We treat this so-called simplifying assumption in more detail in Section 2.7.2.
Under the simplifying assumption, we can construct a flexible multivariate copula by

choosing the pair copulas C1,2, C1,3 and C2,3;1 independently of each other and from
different copula classes (see Sections 2.2–2.6). The density c of the corresponding three-
dimensional copula C of X is then given for (u1, u2, u3)′ ∈ [0, 1]3 by

c(u1, u2, u3) = c1,2(u1, u2) c1,3(u1, u3) c2,3;1(C2|1(u2|u1), C3|1(u3|u1)). (2.60)

Clearly, this construction can also be done in higher dimensions. We extend the above
example and let d = 4. Then we can decompose the density f of X = (X1, ..., X4)′ as in
Equation (2.55),

f(x1, x2, x3, x4) = f1(x1) f2|1(x2|x1) f3|1,2(x3|x1, x2) f4|1,2,3(x4|x1, x2, x3), (2.61)

where (x1, x2, x3, x4)′ ∈ R4. In other words, we add X4 to the decomposition of the trivari-
ate density (2.55). The first three terms are treated exactly as above, and we similarly
proceed with f4|1,2,3, where we now assume the simplifying assumption (2.59) to hold. We
have that

f4|1,2,3(x4|x1, x2, x3) =
f3,4|1,2(x3, x4|x1, x2)

f3|1,2(x3|x1, x2)

= c3,4;1,2(F3|1,2(x3|x1, x2), F4|1,2(x4|x1, x2)) f4|1,2(x4|x1, x2),

(2.62)

where f4|1,2 is decomposed as f3|1,2 in (2.57) in terms of copulas C1,4 and C2,4;1 and the
marginal density f4. Hence, we obtain a PCC in terms of the four marginal densities
f1, ..., f4, three copulas C1,2, C1,3 and C1,4 of unconditional pairs of variables as well as
three copulas C2,3;1, C2,4;1 and C3,4;1,2 of conditional pairs. The arguments of the copula
C3,4;1,2, Fj|1,2 for j = 3, 4, are given as follows:

Fj|1,2(xj|x1, x2) = Cj|1,2(Fj(xj)|F1(x1), F2(x2)),

where Cj|1,2 is the distribution function of Uj given U1 and U2. As shown, e.g., in Czado
(2010), Cj|1,2 can be determined iteratively in terms of the pair copulas of the decompo-
sition,

Cj|1,2(uj|u1, u2) = Cj|2;1(Cj|1(uj|u1)|C2|1(u2|u1)), (u1, u2, uj)
′ ∈ [0, 1]3, (2.63)

where

Cj|2;1 =
∂C2,j;1(u2, uj)

∂u2

, (2.64)

as in Equation (2.13). This means that only the pair copulas C1,2, C1,j and C2,j;1 are
required to compute Cj|1,2 and Fj|1,2 for j = 3, 4.

32



2.7 Vine copulas

Using the recursive density decomposition (2.55), we can hence derive d-dimensional
PCCs for any d ≥ 3. This however requires some choices with respect to the order of the
variables in the PCC. In fact, we already did a few such choices above: It starts with the
decomposition (2.55), where an order of the variables has to be chosen. Then, in (2.57)
we could also condition on variable 2 and similarly in (2.62), where even more choices are
possible. In order to organize possible decompositions, we therefore discuss vines, which
link PCCs to a graph theoretical model.

2.7.2 Simplifying assumption

Although the simplifying assumption (2.59) of PCCs is commonly made to facilitate the
statistical inference, a diligent statistical analysis of the assumption was missing until
recently. A first discussion on the simplifying assumption of PCCs is due to Hobæk Haff
et al. (2010), who provide first examples and results, which were recently refined by
Stöber et al. (2013). The Clayton copula (see Example 2.15) is, in fact, an example of a
copula, which can be represented as a simplified PCC. We illustrate this result here in
the trivariate case.

Example 2.20 (Trivariate Clayton copula). We consider the trivariate Clayton cop-
ula C(·, ·, ·; θ) with θ > 0 and derive its PCC to see if it is of simplified type. Let
U ∼ C(·, ·, ·; θ), then the distribution of (U2, U3)′ conditioned on U1 = u1 is given for
(u1, u2, u3)′ ∈ [0, 1]3 by

C2,3|1(u2, u3|u1; θ) =
∂

∂u1

C(u1, u2, u3; θ) =
(
u−θ1 + u−θ2 + u−θ3 − 2

)−1/θ
u−θ−1

1 ,

and similarly Cj|1(uj|u1; θ) = (u−θ1 + u−θj − 1)−1/θu−θ−1
1 for j = 2, 3. Therefore, we obtain

C−1
j|1 (uj|u1; θ) =

(
(u
−θ/(θ+1)
j − 1)u−θ1 + 1

)−1/θ

, j = 2, 3.

This yields the following expression for the copula of (U2, U3)′|U1 = u1:

C2,3;1(u2, u3|u1; θ) = C2,3|1

(
C−1

2|1(u2|u1; θ), C−1
3|1(u3|u1; θ)|u1; θ

)

=
(
u
−θ/(θ+1)
1 + u

−θ/(θ+1)
2 − 1

)−(θ+1)/θ

= C
(
u2, u3; θ

θ+1

)
,

which is a bivariate Clayton copula with parameter θ/(θ + 1). In particular, the copula
C2,3;1 is independent of the value u1, so that the trivariate Clayton copula is a PCC of
simplified type.

According to Stöber et al. (2013), the d-dimensional Clayton copula can, in fact, be
represented as a simplified PCC for any d ≥ 3. It is even shown to be the only Archimedean
copula of simplified type, when the generator is twice continuously differentiable on the
set where it is positive. This is especially true if d ≥ 4 (see Section 2.4). �
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This however means that all other Archimedean copulas cannot be represented as a
simplified PCC. An example involving the trivariate Frank copula is provided in Stöber
et al. (2013). An example of a non-Archimedean copula, which is also not of simplified
type is given in the following.

Example 2.21 (Trivariate FGM copula). A simple trivariate extension of the bivariate
FGM copula (2.53) can be defined as

C(u1, u2, u3;α) = u1u2u3(1 + α(1− u1)(1− u2)(1− u3)), (u1, u2, u3)′ ∈ [0, 1]3, (2.65)

where α ∈ [−1, 1]. If U ∼ C(·, ·, ·;α), then U1, U2 and U3 are pairwise independent but
not mutually (if α 6= 0). The conditional distribution of (U2, U3)′ given U1 = u1 is given
by

C2,3|1(u2, u3|u1;α) =
∂

∂u1

C(u1, u2, u3;α) = u2u3(1 + α(1− 2u1)(1− u2)(1− u3)).

Since Cj|1(uj|u1;α) = uj for j = 2, 3 due to the pairwise independence, we obtain for the
corresponding copula that

C2,3;1(u2, u3|u1;α) = C2,3|1(u2, u3|u1;α)

= u2u3(1 + α(1− 2u1)(1− u2)(1− u3))

= C(u2, u3;α(u1)),

which can be recognized as a bivariate FGM copula with parameter α(u1) = α(1− 2u1).
In other words, the trivariate FGM copula (2.65) cannot be represented as a simplified
PCC. Moreover, we can quantify the extent to which the FGM copula is of non-simplified
type. According to Equation (2.54) for the bivariate FGM copula, the Kendall’s τ of the
conditioned copula C2,3;1 can be determined as

τ(α(u1)) =
2α(1− 2u1)

9
,

which ranges linearly between 2α/9 (u1 = 0) and −2α/9 (u1 = 1). If |α| = 1, then the
range is maximal and given by 4/9 ≈ 0.44. �

Acar et al. (2012) also investigate non-simplified PCCs and take a first step in building
PCCs of non-simplified structure in three dimensions. Their non-parametric approach is
however not straightforward to generalize to d-dimensional PCCs, so that it is yet an open
question how to deal with non-simplified PCCs in arbitrary dimensions.

Apart from the Clayton copula, it is also known that the multivariate Gaussian and
the Student’s t copula are of simplified type (see Stöber et al. (2013)). In particular, the
parameters of the copulas Cj,k;`1,...,`m of conditional pairs of variables are the corresponding
partial correlations ρj,k;`1,...,`m , which can be computed recursively (see Kurowicka and
Cooke (2003) and also Lewandowski et al. (2009)), and, in the case of the Student’s t
copula with ν degrees of freedom, the degrees of freedom of the pair copulas are ν +m.

34



2.7 Vine copulas

2.7.3 Vines

Bedford and Cooke (2001, 2002) introduced vines as a graph theoretical model to organize
different PCCs. A graph is defined in terms of a set of nodes N and a set of edges
E connecting these nodes, that is, E ⊂ N × N . Vines are based on trees, which are
particular graphs with a unique sequence of edges between each two nodes (also known
as connected acyclic graphs). A regular vine is then defined as follows.

Definition 2.22 (Regular vine). A set of linked trees V = (T1, T2, ..., Td−1) is called a
regular vine (R-vine) on d elements if the following three conditions are satisfied.

(i) T1 is a tree with nodes N1 = {1, ..., d} and a set of d− 1 edges denoted by E1.

(ii) For i = 2, ..., d− 1, Ti is a tree with nodes Ni = Ei−1 and edge set Ei.

(iii) For i = 2, ..., d − 1, if a = {a1, a2} and b = {b1, b2} are two nodes in Ni, which are
connected by an edge, then exactly one of the ais equals one of the bis (proximity
condition).

In other words, the proximity condition requires that the edges corresponding to two
connected nodes in tree Ti share a common node in tree Ti−1. This ensures that the vine
decomposition into bivariate copulas, which is given below, is well-defined, that is, that
the corresponding PCC is, in fact, a valid decomposition.

Two sub-classes of R-vines have been studied extensively in the literature: canonical
vines (C-vines) and drawable vines (D-vines) (see Kurowicka and Cooke (2006) and Aas
et al. (2009)). C-vines are characterized by a root node in each tree Ti, i ∈ {1, ..., d− 1},
which has degree d − i. In other words, the root node is connected to all other nodes of
the tree. D-vines, on the other hand, are uniquely characterized through their first tree,
which is, in graph theoretical terms, a path. This means that each node is connected to
at most two other nodes. Therefore the order of the elements in the first tree defines the
complete D-vine tree sequence, while C-vines are defined through the order of the root
nodes.

Some more definitions are needed to introduce R-vine copulas: The complete union Ae
of an edge e = {a, b} ∈ Ei in tree Ti of an R-vine V is defined by

Ae = {v ∈ N1 : ∃em ∈ Em, m = 1, ..., i− 1, such that v ∈ e1 ∈ · · · ∈ ei−1 ∈ e} .

The conditioning set associated with e = {a, b} is defined as De := Aa ∩ Ab and the
conditioned sets associated with e = {a, b} are defined as Ce,a := Aa\De and Ce,b := Ab\De.
Bedford and Cooke (2001) showed that the conditioned sets are singletons, and we will
therefore refer to edges by their labels {j(e), k(e)|D(e)} := {Ce,a, Ce,b|De}. An exemplary
R-vine on five elements with edge labels is shown in Figure 2.8.

Given these sets, we can specify an R-vine copula by associating a (conditional) pair
copula to each edge of the R-vine.

Definition 2.23 (Regular vine copula). The random vector U = (U1, ..., Ud)
′ with uni-

form margins is said to be distributed according to the d-dimensional R-vine copula
C(·;V ,B,θ) if
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Figure 2.8: An R-vine on five elements with edge labels.

(i) V is an R-vine on d elements (see Definition 2.22),

(ii) B = B(V) =
{
Cj(e),k(e);D(e) : e ∈ Ei, i = 1, ..., d− 1

}
is a set of

(
d
2

)
= d(d − 1)/2

copula families identifying the conditional distributions of (Uj(e), Uk(e))
′|UD(e), where

UD(e) = {U` : ` ∈ D(e)} is the sub-vector of U with indices in D(e), and

(iii) θ = θ(B(V)) =
{
θj(e),k(e);D(e) : e ∈ Ei, i = 1, ..., d− 1

}
is the set of parameters,

corresponding to the copulas in B(V).

Therefore the full specification of an R-vine copula consists of three layers: the regular
vine tree structure V , the pair copula families B = B(V) and the pair copula parameters
θ = θ(B(V)). R-vine copulas that differ in the tree structure or in at least one pair copula
family represent in general different statistical models. The density of an R-vine copula
can be calculated as described in the following theorem.

Theorem 2.24 (Regular vine copula density). Let C(·;V ,B,θ) be a d-dimensional R-vine
copula. Then its density is given for u ∈ [0, 1]d by

c(u;V ,B,θ) =
d−1∏

i=1

∏

e∈Ei

cj(e),k(e);D(e)

(
Cj(e)|D(e)(uj(e)|uD(e)), Ck(e)|D(e)(uj(e)|uD(e))

)
, (2.66)

where the copula Cj(e),k(e);D(e) has parameter(s) θj(e),k(e);D(e) and C`|D(e) is the conditional
distribution function of U`|UD(e), ` ∈ {j(e), k(e)}.

Proof: See Bedford and Cooke (2001, Theorem 3). �
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The conditional distribution functions as arguments of the pair copulas can be deter-
mined recursively tree-by-tree as in Equation (2.63) using the relationship

Cj(e)|D(e)

(
uj(e)|uD(e)

)
= CCe,a|De

(
uCe,a |uDe

)

= CCa,a1 |Ca,a2 ;Da

(
CCa,a1 |Da

(
uCa,a1 |uDa

)
| CCa,a2 |Da

(
uCa,a2 |uDa

))
,

(2.67)

where e = {a, b} with a = {a1, a2} as before and

CCa,a1 |Ca,a2 ;Da

(
uCa,a1 |uCa,a2

)
=
∂CCa,a1 ,Ca,a2 ;Da

(
uCa,a1 , uCa,a2

)

∂uCa,a2
, (2.68)

as in Equation (2.64). Similarly Ck(e)|D(e) is obtained. Further, if i = 1 (first tree), we have
that

Cj(e)|D(e)(uj(e)|uD(e)) = Cj(e)|∅(uj(e)|u∅) = uj(e),

and similarly for Ck(e)|D(e), so that the pair copulas corresponding to the first R-vine tree
are, in fact, unconditional ones. Note that only conditional distributions Cj|k;D and Ck|j;D
of pair copulas Cj,k;D in lower order trees are required for the recursive calculation. In the
context of vine copulas, these conditional distributions are also often called h-functions,
of which explicit expressions for many common bivariate copulas are given, e.g., in Aas
et al. (2009). More details on the recursion (2.67) can be found in Dißmann et al. (2013).

Theorem 2.24 relates vine copulas to PCCs as introduced in Section 2.7.1. In fact, the
four-dimensional PCC derived there corresponds to the vine copula defined through the
four-dimensional sub-vine on the elements 1, 2, 3 and 4 of the R-vine in Figure 2.8. This
sub-vine corresponds to a C-vine with root node order 1, 2, 3, 4 as shown in Figure 2.9,
which better illustrates the role of the root nodes in each tree.

If e ∈ Ei in a C-vine with root node order 1, ..., d, then it holds that j(e) = i, k(e) =
i + k, k = 1, ..., d − i, and D(e) = {1, ..., i − 1} (see also Czado (2010)). Therefore, we
can rewrite the density of an R-vine copula (2.66) for a C-vine copula C(·;V ,B,θ) and
u ∈ [0, 1]d as

c(u;V ,B,θ)

=
d−1∏

1=1

d−i∏

k=1

ci,i+k;1,...,i−1(Ci|1,...,i−1(ui|u1, ..., ui−1), Ci+k|1,...,i−1(ui+k|u1, ..., ui−1)),
(2.69)

where the arguments Ci+k|1,...,i−1, k = 0, ..., d − i, are calculated as in Equation (2.67).
More precisely, we obtain

Ci+k|1,...,i−1(ui+k|u1, ..., ui−1)

= Ci+k|i−1;1,...,i−2

(
Ci+k|1,...,i−2(ui+k|u1, ..., ui−2)|Ci−1|1,...,i−2(ui−1|u1, ..., ui−2)

)
,

(2.70)

where we have according to Equation (2.68) that

Ci+k|i−1;1,...,i−2(ui+k|ui−1) =
∂Ci−1,i+k;1,...,i−2(ui−1, ui+k)

∂ui−1

(2.71)
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Figure 2.9: A C-vine on four elements with edge labels corresponding to the PCC of
Section 2.7.1.

for i = 2, ..., d− 1 and k = 0, ..., d− i.
An alternative principle to define PCCs is using directed acyclic graphs (DAGs) as

investigated by Hanea et al. (2006) and Bauer et al. (2012). We do not follow this approach
here. More details on vine copulas can also be found in Kurowicka and Cooke (2006),
Czado (2010) and Kurowicka and Joe (2011).

2.7.4 Statistical inference

An algorithm for sampling from a given R-vine copula is provided in Dißmann et al. (2013).
For the special cases of C- and D-vines, simpler algorithms can be found in Aas et al.
(2009). Estimation of vine copula parameters θ = θ(B(V)) can be based on maximum
likelihood techniques, since the log likelihood expression is computationally well tractable.
Appropriate algorithms for R-vine copulas and C- and D-vine copulas are also given in
Dißmann et al. (2013) and Aas et al. (2009), respectively (see also Hobæk Haff (2012,
2013) and Stöber and Schepsmeier (2013)).

A common approach to quickly obtain parameter estimates is a sequential method,
which only requires bivariate maximum likelihood estimation. According to this method,
first the parameters of the pair copulas in the first tree are estimated. Given the estimated
parameters, those of the pair copulas in the second tree are estimated, and so on. Such
parameter estimates often provide good starting values for a joint estimation of all copula
parameters.

The selection of vine copulas is very demanding: Both an appropriate tree structure
V as well as adequate pair copulas B = B(V) need to be chosen. Since the number of

different d-dimensional regular vines is excessive (d!/2 × 2(d−2
2 ) as shown by Morales-

Nápoles (2011)) and the pair copulas can be chosen from arbitrary classes, the class of
vine copulas is so large that an exhaustive examination of all possible models is virtually
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impossible, unless d is very small. Recently, Dißmann et al. (2013) proposed a sequential
top-down selection procedure, which selects vine trees as well as pair copulas such that
the strongest dependencies among the variables in terms of Kendall’s τ are captured in
the first trees.

Algorithm 2.25 (Sequential R-vine copula selection). Let a sample (umj)m=1,...,N, j=1,...,d

of size N be given. The margins are assumed to be uniformly distributed.

(i) Calculate the empirical Kendall’s τ value denoted by τ̂j,k based on (umj, umk)m=1,...,N

for all variable pairs {j, k}, 1 ≤ j < k ≤ d.

(ii) Select the maximum spanning tree in terms of the absolute empirical Kendall’s τ
values, that is,

T1 = argmax
T=(N,E) spanning tree

∑

e∈E

|τ̂j(e),k(e)|,

where a spanning tree is a tree on all nodes 1, ..., d.

(iii) For each edge e ∈ E1:

a) Select a copula Cj(e),k(e).

b) Estimate the corresponding parameter(s) θj(e),k(e).

c) Calculate Cj(e)|k(e)(um,j(e)|um,k(e)) and Ck(e)|j(e)(um,k(e)|um,j(e)) for m = 1, ..., N .

(iv) For i = 2, ..., d− 1:

a) Calculate the empirical Kendall’s τ value denoted by τ̂j(e),k(e)|D(e) based on
(Cj(e)|D(e)(um,j(e)|um,D(e)), Ck(e)|D(e)(um,k(e)|um,D(e)))m=1,...,N for all conditional
variable pairs {i(e), j(e)|D(e)} that can be part of tree Ti, that is, all edges EP
fulfilling the proximity condition.

b) Among the edges EP , select the maximum spanning tree in terms of the abso-
lute empirical Kendall’s τ values, that is,

Ti = argmax
T=(N,E) spanning tree with E⊂EP

∑

e∈E

|τ̂i(e),j(e)|D(e)|.

c) For each edge e ∈ Ei:
i. Select a copula Cj(e),k(e);D(e).

ii. Estimate the corresponding parameter(s) θj(e),k(e);D(e).

iii. According to Equation (2.67), calculate Cj(e)|k(e)∪D(e)(um,j(e)|um,k(e)∪D(e))
and Ck(e)|j(e)∪D(e)(um,k(e)|um,j(e)∪D(e)) for m = 1, ..., N using Cj(e)|k(e);D(e)

and Ck(e)|j(e);D(e), respectively.

For the selection of pair copulas, often the Akaike information criterion (AIC) by Akaike
(1973) or the Bayesian information criterion (BIC) by Schwarz (1978) are proposed (see
Brechmann (2010, Section 5.4.4) for a comparison study of different selection criteria).
Furthermore, this algorithm can be modified to select a C-vine copula rather than a
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general R-vine copula. For this, select each root node such that it maximizes the sum of
absolute empirical Kendall’s τ values with respect to the other variables (see Czado et al.
(2012)).

Sequential selection in this way also leads to the idea of R-vine copula truncation,
where pair copulas in higher order trees are set to independence copulas to reduce the
model complexity (see Brechmann et al. (2012)). An overview of R-vine selection meth-
ods, including a bottom-up vine tree selection algorithm based on partial correlations by
Kurowicka (2011) and Bayesian approaches, can be found in Czado et al. (2013). Imple-
mentations of a wide range of inference techniques for C- and D-vine copulas are available
in the R-package CDVine (Schepsmeier and Brechmann, 2011; Brechmann and Schep-
smeier, 2013) and for R-vine copulas in the R-package VineCopula (Schepsmeier et al.,
2012).
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3 Hierarchical Kendall copulas

While there is substantial need for dependence models in higher dimensions, most existing
models quickly become rather restrictive and barely balance parsimony and flexibility.
Hierarchical constructions may improve on that by grouping variables in different levels.
In this chapter, the new class of hierarchical Kendall copulas is proposed and discussed.
After deriving properties of the general model formulation, statistical inferences techniques
for hierarchical Kendall copulas are developed and evaluated. This chapter is mainly based
on Brechmann (2013a).

3.1 Introduction

Although dependence modeling using copulas has made significant progress in the last
years, many of the standard, and also of the newly proposed, copula models however turn
out to be rather restrictive in higher dimensions, which makes it virtually impossible to use
them for very large data sets as required, for example, in financial or spatial applications.
While standard multivariate elliptical copulas such as the Gaussian and the Student’s
t (see Section 2.2) require the specification of the full correlation matrix and can only
account for symmetric dependence, multivariate Archimedean copulas (see Section 2.4)
are even more restrictive by assuming exchangeability and imposing that all multivariate
margins are the same. One common procedure to approach such problems therefore is
grouping data, for example, by industry sectors or nationality. Such copula models include
the grouped Student’s t copula by Daul et al. (2003) (see Section 2.3), elliptical copulas
with two-factor correlation structure (one group-specific and one overall factor; see, e.g.,
Gregory and Laurent (2004)) and hierarchical Archimedean copulas, which were initially
proposed by Joe (1993, 1997). Especially such hierarchical structures are very appealing
and received considerable attention lately (see, e.g., Hofert (2010)).

A major issue of any copula model is to find a good balance between parsimony and
flexibility. While elliptical copulas require an enormous number of parameters for spec-
ifying the correlation matrix (the number of parameters grows quadratically with the
dimension), Archimedean and also hierarchical Archimedean copulas are much more par-
simonious, since the number of parameters is at most linear in the dimension. Nevertheless,
such restrictions may be severe, since hierarchical Archimedean copulas are at the same
time limited to the class of Archimedean copulas as building blocks. Similarly, an elliptical
copula with structured correlation matrix has to satisfy positive definiteness constraints
and is limited to an elliptical dependence structure, which in particular implies reflection
symmetry.

Vine copulas, which constitute another class of non-hierarchical multivariate copulas
(see Section 2.7), gain their flexibility from using a quadratic number of bivariate copulas
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3 Hierarchical Kendall copulas

of arbitrary types as building blocks. Therefore, they may also severely suffer from extreme
numbers of parameters in higher dimensions. While the selection of independence copulas
as building blocks or even truncation methods (see Brechmann et al. (2012)) may be
used to counteract such problems, we focus here on hierarchical constructions, which are
inherently more parsimonious.

The purpose of this paper is to introduce the new class of hierarchical Kendall copulas
as a flexible but yet parsimonious dependence model. It is built up by copulas for groups
(clusters) of variables in different hierarchical levels. In particular—and in contrast to
hierarchical Archimedean copulas—, the choice of copulas and their parameters is not
restricted. With vine copulas the model shares the property that building blocks can
be copulas of arbitrary types. Hierarchical Kendall copulas therefore provide a new and
attractive option to model dependence patterns between large numbers of variables.

The name “hierarchical Kendall copula” is chosen to stress the central role of the
Kendall distribution function (see Definition 2.9) in the model formulation. The Kendall
distribution function is the multivariate analog to the probability integral transform for
univariate random variables. In combination with the copula, it is used to aggregate the
(dependence) information of a group of variables. As noted in Section 2.1, it was first
studied by Genest and Rivest (1993) in the bivariate case and in more detail by Barbe
et al. (1996). Other accounts on it can be found, amongst others, in Imlahi et al. (1999),
Genest and Rivest (2001) and Nelsen et al. (2003) as well as in the copula goodness-of-fit
literature (see, e.g., Wang and Wells (2000) and Genest et al. (2006)).

It has been shown by Genest et al. (1995) that the only copula that gives a valid
multivariate distribution for non-overlapping multivariate marginals (each variable be-
longs to exactly one group) is the independence copula. That is, if in Sklar’s Theorem
(2.1) non-overlapping multivariate distribution functions instead of univariate ones are
plugged into the copula C, this copula can only be the independence copula. Marco and
Ruiz-Rivas (1992) state conditions how a distribution function with specified multivariate
marginals can be constructed; the easiest case being that margins are max-infinitely di-
visible, which includes distributions based on Archimedean copulas. Hierarchical Kendall
copulas circumvent such issues through aggregation facilitated by the copula and the
Kendall distribution function.

The model, which we call hierarchical Kendall copula, has previously been mentioned
by Anjos and Kolev (2005), who however do not further develop the model in terms of
statistical properties and inference. The work presented here is completely independent of
theirs and develops properties and inference techniques for hierarchical Kendall copulas.
Sampling from hierarchical Kendall copulas is treated in detail in Chapter 4.

The features of hierarchical dependence models in general and of hierarchical Kendall
copulas in particular are attractive to different areas of applications. In finance and in-
surance, risk capital needs to be aggregated over different levels of business lines and op-
erating entities, which introduces a natural hierarchy with different dependencies across
levels (see the discussion in Section 6.4.5). Also in other financial areas, there is a need for
such models. For instance, hierarchical Archimedean copulas have previously been used
by Hofert and Scherer (2011) for the pricing of collateralized debt obligations. For the
purpose of market risk portfolio management, a substantial 30-dimensional application
to German stock returns is presented at the end of this chapter, showing the need for
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3.2 Hierarchical copulas and aggregation functions

careful dependence modeling and a good in-sample fit of hierarchical Kendall copulas.
The out-of-sample performance is considered in Section 4.5.

Nonetheless, the model is not limited to applications in finance and insurance, but
may be used in any area that deals with some kind of clustered data such as geographic
or temporal clusters. For instance, in hydrology Kendall distribution functions are used
to characterize multivariate return periods (see Salvadori et al. (2011)) and hierarchical
Kendall copulas may be used to relate different return periods to each other (see Chapter
7 for more details).

The remainder of the chapter is organized as follows. In Section 3.2 we first discuss the
general idea of aggregating information of groups of variables to construct a hierarchical
dependence model and examine different aggregation functions. The new model based
on aggregation through the copula and the Kendall distribution function is then intro-
duced and discussed in Section 3.3. A comparison to hierarchical Archimedean copulas
is provided in Section 3.3.1, and statistical inference techniques for hierarchical Kendall
copulas are presented in the following. A general sampling algorithm is given in Section
3.4 (with a detailed discussion in Chapter 4), and Section 3.5 treats the estimation of the
parameters of a hierarchical Kendall copula. The appropriate selection of the components
of a hierarchical Kendall copula is discussed in Section 3.6. The financial application is
finally presented in Section 3.7, before Section 3.8 concludes.

3.2 Hierarchical copulas and aggregation functions

Our approach to hierarchical dependence modeling that we will pursue here is the follow-
ing: In order to balance flexibility and parsimony and also to allow for interpretability
of a multivariate dependence model, groups of variables are aggregated into univariate
quantities, in terms of which between-group dependence is quantified. Therefore, we in-
vestigate how to appropriately summarize the information of a random vector. Since
all continuous random variables can be transformed to be uniformly distributed us-
ing the probability integral transform, we directly consider a continuous random vec-
tor U := (U1, ..., Ud)

′ ∈ [0, 1]d, where Uj ∼ U(0, 1), j = 1, ..., d, and assume that it is
absolutely continuous.

Summarizing multivariate information in a single quantity is a common problem, for
example, in the social sciences, engineering and economics, and it exists a diverse litera-
ture on the subject (see, amongst others, Calvo et al. (2002), Beliakov et al. (2008) and
Grabisch et al. (2009)). We call H an aggregation function if it maps a multivariate value
u ∈ [0, 1]d to a univariate one, H(u) ∈ R. Here, we concentrate on aggregation functions
with H(u) ∈ [0, 1]. Clearly, if the values of an aggregation function are bounded, it can
be standardized to take on values in [0, 1]. Moreover, we focus on aggregation functions
H such that H(U) has a continuous distribution function FH(U). This guarantees that we
can again apply the probability integral transform to H(U) and use a continuous copula
to specify the between-group dependence.

Making use of such an aggregation function, we can constructively define the corre-
sponding two-level hierarchical copula as follows.
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3 Hierarchical Kendall copulas

Definition 3.1 (Hierarchical copula). Let U1, ..., Un ∼ U(0, 1) and let C0, C1, ..., Cn1 be
copulas of dimension n1, d1, ..., dn1 , respectively, where di ≥ 1, i = 1, ..., n1, and n =∑n1

i=1 di. We define the cumulative sum mi =
∑i

j=1 dj, i = 1, ..., n1, and m0 = 0 as
well as U i := (Umi−1+1, ..., Umi)

′ and Vi := FHi(U i)(Hi(U i)) for i = 1, ..., n1. Under the
assumptions that

A1: U 1, ...,Un1 are mutually independent conditionally on (V1, ..., Vn1)
′, and

A2: the conditional distribution of U i|(V1, ..., Vn1)
′ is the same as the conditional distri-

bution of U i|Vi for all i = 1, ..., n1,

the random vector (U1, ..., Un)′ is said to be distributed according to the hierarchical
copula CH with aggregation functions H1, ..., Hn1 , cluster copulas C1, ..., Cn1 and nesting
copula C0 if

(i) U i ∼ Ci ∀i ∈ {1, ..., n1},

(ii) (V1, ..., Vn1)
′ ∼ C0.

This definition is straightforward to extend to the case of k hierarchical levels. We
consider this in more detail in the next section. For the discussion of aggregation functions,
it is sufficient to work with this two-level definition of a hierarchical copula.

The intuition behind the two assumptions A1 and A2 is that, given the information
of the nesting variables V1, ..., Vn1 , the clusters U 1, ...,Un1 are independent of each other
and also of other nesting variables, since the dependence among the clusters is explained
through the “representatives” V1, ..., Vn1 . In other words, V1, ..., Vn1 can be interpreted
as unobserved factors, whose joint behavior determines the dependence of the different
clusters. In finance, such factors may be, for instance, industry sectors.

Now, the question is what an adequate aggregation function H to summarize the infor-
mation of a d-dimensional random vector U should look like. We consider the following
examples:

(i) The minimum Hmin,

Hmin(u) = min{u1, ..., ud}, u ∈ [0, 1]d.

(ii) The maximum Hmax,

Hmax(u) = max{u1, ..., ud}, u ∈ [0, 1]d.

(iii) The arithmetic mean Ha,

Ha(u) =
1

d

d∑

j=1

uj, u ∈ [0, 1]d.

(iv) The weighted arithmetic mean Hwa with weights ωj > 0, j = 1, ..., d,

Hwa(u) =
1∑d
j=1 ωj

d∑

j=1

ωjuj, u ∈ [0, 1]d.
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Figure 3.1: Level sets of the arithmetic mean, of the geometric mean and of the Gumbel
copula with parameter chosen according to a Kendall’s τ of 0.5.

(v) The geometric mean Hg,

Hg(u) =

(
d∏

j=1

uj

)1/d

, u ∈ [0, 1]d.

(vi) The weighted geometric mean Hwg with weights ωj > 0, j = 1, ..., d,

Hwg(u) =

(
d∏

j=1

u
ωj
j

)1/
∑d
j=1 wj

, u ∈ [0, 1]d.

In contrast to the sum, the product is also a possible aggregation function mapping to
[0, 1]. This also holds for any copula C. Especially, let C be the copula of U . Then, we
also consider a seventh aggregation function.

(vii) The copula HC ,
HC(u) = C(u), u ∈ [0, 1]d.

The level sets of the arithmetic mean, L(z,Ha), of the geometric mean, L(z,Hg), and
of the Gumbel copula, L(z,HC) = L(z, C), are illustrated in Figure 3.1 (see Equation
(2.10)).

In order to examine the usefulness of different aggregation functions, we consider some
basic properties.

Definition 3.2 (Properties of aggregation functions). Let H : [0, 1]d → [0, 1] be an
aggregation function. Then H satisfies the boundary conditions if

(A1) H(0) = 0,

(A2) H(1) = 1, and

(A3) it reduces to the identity function H(u) = u, u ∈ [0, 1], in the degenerate case that
d = 1.
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3 Hierarchical Kendall copulas

Further, H is called

(A4) monotone if H(u) ≤ H(v) for every u,v ∈ [0, 1]d such that uj ≤ vj for all j =
1, ..., d.

(A5) strictly monotone if H(u) < H(v) for every u,v ∈ [0, 1]d such that uj ≤ vj for all
j = 1, ..., d, and at least one uj < vj, j ∈ {1, ..., d}.

(A6) permutation symmetric if H(u) = H(uσ(1), ..., uσ(p)) for every u ∈ [0, 1] and any
permutation σ : {1, ..., d} → {1, ..., d}.

All seven examples of aggregation functions that we consider here satisfy the boundary
conditions (A1)–(A3). Especially boundary condition (A3) is important, since a degen-
erate group of size 1, that is, a single random variable, should not be altered by the
aggregation function. The considered aggregation functions are also all monotone, which
is desirable, since larger input values should result in larger aggregated values. However,
Hmin and Hmax are not strictly monotone. Further, the functions Hwa, Hwg and HC are
the only aggregation functions, which are not necessarily permutation symmetric. The
function HC is permutation symmetric if and only if the copula C is exchangeable, while
Hwa and Hwg are permutation symmetric if and only if ω1 = ω2 = ... = ωd.

For the purpose of aggregating the information of random vectors, it is reasonable to
demand strict monotonicity (A5), since an increase in at least one component of the input
values should increase the aggregated value and not leave it unchanged. This rules outHmin

and Hmax. Further, if the random vector U is non-exchangeable, the aggregation function
H should not be permutation symmetric (A6) in order to reflect this non-exchangeability.
This also rules out Ha and Hg, so that only Hwa, Hwg and HC appear to be sensible choices.
In contrast to HC , it is however unclear how to choose the weights of Hwa and Hwg, such
that the non-exchangeability of U is reflected appropriately. In addition, the distribution
of the univariate random variables Hwa(U) and Hwg(U) is difficult to determine even in
the bivariate case. For (U1, U2)′ ∼ C, it holds that

P (Hwa(U1, U2) ≤ z) = P (ω1U1 + ω2U2 ≤ z(ω1 + ω2))

=

∫ 1

0

P (ω1U1 + ω2U2 ≤ z(ω1 + ω2)|U1 = u1) du1

=

∫ 1

0

C2|1

(
z +

ω1

ω2

(z − u1) | u1

)
du1, z ∈ [0, 1],

where C2|1 is defined in Equation (2.13). In the same way, it holds that

P (Hwg(U1, U2) ≤ z) =

∫ 1

0

C2|1

(
z

(
z

u1

)ω1/ω2

| u1

)
du1, z ∈ [0, 1].

These expressions are similar to the derivation of the Kendall distribution function (see
Definition 2.9), which is the distribution function ofHC(U) = C(U) (see Equation (2.15)).
Although its derivation is generally also rather complicated, there are closed-form expres-
sions for common classes of copulas such as Archimedean copulas (see Equation (2.36)),
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extreme value and Archimax copulas (see Equations (2.44) and (2.49)) and the Plackett
copula (see Appendix B.3).

Furthermore, using the copula as aggregation function has the attractive interpretation
that the definition of the hierarchical copula (see Definition 3.1) mimics Sklar’s Theorem
(2.1) for multivariate non-overlapping margins, since the Kendall distribution function
constitutes the multivariate analog of the univariate probability transform in the sense
that C(U) ∼ K(·;C) and K(C(U);C) ∼ U(0, 1). We therefore concentrate on the cop-
ula and its Kendall distribution function for the construction of a flexible hierarchical
dependence model.

3.3 Model formulation and properties

We now restate Definition 3.1 using copulas and their Kendall distribution functions as
aggregation functions. Although this model has previously been formulated by Anjos and
Kolev (2005), it has—to the best of our knowledge—not yet been treated in detail or used
for statistical inference. We choose the name “hierarchical Kendall copula” to stress the
central role the Kendall distribution function plays in the constructive model formulation.

Definition 3.3 (Hierarchical Kendall copula). Let U1, ..., Un ∼ U(0, 1) and let C0, C1,
..., Cn1 be copulas of dimensions n1, d1, ..., dn1 , respectively, where di ≥ 1, i = 1, ..., n1,
and n =

∑n1

i=1 di. Further, let K1, ..., Kn1 denote the Kendall distribution functions corre-
sponding to C1, ..., Cn1 , that is, Ki(·) := K(·;Ci), i = 1, ..., n1. We define the cumulative
sum mi =

∑i
j=1 dj, i = 1, ..., n1, and m0 = 0 as well as U i := (Umi−1+1, ..., Umi)

′ and
Vi := Ki(Ci(U i)) for i = 1, ..., n1. Under the assumptions that

A1: U 1, ...,Un1 are mutually independent conditionally on (V1, ..., Vn1)
′, and

A2: the conditional distribution of U i|(V1, ..., Vn1)
′ is the same as the conditional distri-

bution of U i|Vi for all i = 1, ..., n1,

the random vector U := (U1, ..., Un)′ is said to be distributed according to the hierarchical
Kendall copula CK with cluster copulas C1, ..., Cn1 and nesting copula C0 if

(i) U i ∼ Ci ∀i ∈ {1, ..., n1},

(ii) (V1, ..., Vn1)
′ ∼ C0.

The distribution function CK of U will be characterized in terms of its density below.
First, we discuss the construction, which is illustrated in Figure 3.2, in more detail and
provide examples. Note that C0 is in general not the copula of U = (U1, ..., Un)′ but of
(V1, ..., Vn1)

′, which are uniform random variables due to Ci(U i) ∼ Ki for all i = 1, ..., n1.
The nesting copula C0 then essentially models the co-movement of the copula level sets
(2.10) of the different clusters. The dimensionality of the clusters, which can be of different
size, is “normalized” through the Kendall distribution functions. Further, the nesting
copula C0 and the cluster copulas C1, ..., Cn1 can be chosen independently. They can be
arbitrary copulas, for example, from the classes discussed in Chapter 2. A special case of
hierarchical Kendall copulas is the upper Fréchet-Hoeffding bound.
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3 Hierarchical Kendall copulas

(V1, ..., Vn1)
′ ∼ C0

V1 := K1(C1(U1)) ∼ U(0, 1) V2 := K2(C2(U 2)) ∼ U(0, 1) · · · Vn1 := Kn1(Cn1 (Un1)) ∼ U(0, 1)

U1 := (U1, ..., Um1)
′ ∼ C1 U2 := (Um1+1, ..., Um2)

′ ∼ C2 · · · Un1 := (Umd−1+1, ..., Umn1
)′ ∼ Cn1

U1, ..., Un

Figure 3.2: Illustration of a two-level hierarchical Kendall copula (see Definition 3.3).

Example 3.4 (Upper Fréchet-Hoeffding bound). Let CK be a hierarchical Kendall cop-
ula, where the clusters are comonotonic and the nesting copula is also the upper Fréchet-
Hoeffding bound C0(v1, ..., vn1) = M(v1, ..., vn1) = min{v1, ..., vn1} (see Theorem 2.3).
Since the Kendall distribution function of the comonotonicity copula is the identity func-
tion, it holds that Vi = min{Umi−1+1, ..., Umi} and therefore CK = M . In other words, the
upper Fréchet-Hoeffding bound belongs to the class of hierarchical Kendall copulas. �

In the case of Archimedean clusters, we can give a particularly convenient representation
of the multivariate distribution of the random vector U .

Remark 3.5 (Hierarchical Kendall copula with Archimedean clusters). Let U be dis-
tributed according to a hierarchical Kendall copula CK, where the cluster copulas C1, ...,
Cn1 are Archimedean with generators ϕ1, ..., ϕn1 , respectively. According to the character-
ization by McNeil and Nešlehová (2009) (see Equation (2.32)), it holds for all i = 1, ..., n1,
that

(ϕi(Umi−1+1), ..., ϕi(Umi))
′ d= RiS

(i),

where S(i) = (S
(i)
1 , ..., S

(i)
di

)′ is uniformly distributed on the di-dimensional unit simplex

Sdi−1 (see Equation (2.33)) and the radial part Ri =
∑di

j=1 ϕi(Umi−1+j) is independent of

S(i). As a result we can represent the random vector U = (U1, ..., Un)′ as

U
d
= (ϕ−1

1 (R1S
(1)
1 ), ..., ϕ−1

1 (R1S
(1)
d1

), ϕ−1
2 (R2S

(2)
1 ), ..., ϕ−1

2 (R2S
(2)
d2

), ..., ϕ−1
n1

(RdS
(n1)
dn1

))′,

(3.1)
where Ri = ϕi(K

−1
i (Vi)) for i = 1, ..., n1, since by the definitions of Ci, Vi and Ri,

Vi = Ki(Ci(Umi−1+1, ..., Umi))

= Ki

(
ϕ−1
i

(∑di
j=1 ϕi(Umi−1+j)

))
= Ki(ϕ

−1
i (Ri)).

In other words, if all clusters are Archimedean, dependence among the clusters is intro-
duced solely through the dependence between the radial variables of the different clusters.
In particular, if the nesting copula C0 is also Archimedean with generator ϕ0 and cor-
responding radial variable R0, we have for i = 1, ..., n1 that Vi = ϕ−1

0 (R0S
(0)
i ), where

S
(0)
1 , ..., S

(0)
n1 are uniformly distributed on the n1-dimensional unit simplex Sn1−1. Hence,
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Figure 3.3: A sample of size 1000 from a four-dimensional hierarchical Kendall copula with
bivariate Clayton and Gumbel clusters and Frank nesting copula. The lower
triangle shows contour lines of the pairwise empirical densities with standard
normal margins (the corresponding axes range from −3 to 3).

the radial variables of the clusters, Ri, can be expressed through R0 and uniform random
variables on the simplex.

Equation (3.1) also motivates to speak of a “grouped Archimedean copula” similar
to the grouped Student’s t copula by Daul et al. (2003) (see Section 2.3). In contrast
to the grouped Student’s t copula, where between-group dependence depends on the
correlation matrix and on the degrees of freedom parameters of the different groups, a
hierarchical Kendall copula explicitly controls this between-group dependence through
the nesting copula. This is also the case for the hierarchical Archimedean copula, which
will be discussed in Section 3.3.1. �

We now provide an illustrative example of a hierarchical Kendall copula with Archime-
dean clusters.

Example 3.6 (Hierarchical Kendall copula with Archimedean clusters). Let CK be a four-
dimensional hierarchical Kendall copula with d1 = d2 = 2. The bivariate cluster copulas
are chosen as Clayton (see Example 2.15) with parameter θ1 = 1.33 and Gumbel (see
Example 2.16) with parameter θ2 = 1.67 (both parameters correspond to a Kendall’s τ of
0.4). The nesting copula is set as a Frank (see Example 2.17) with parameter θ0 = 11.41
(Kendall’s τ of 0.7). Figure 3.3 shows a sample of size 1000 from this hierarchical Kendall
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3 Hierarchical Kendall copulas

copula. It shows the typical features of lower tail dependence for the pair U 1 = (U1, U2)′

(Clayton copula) and of upper tail dependence for the pair U 2 = (U3, U4)′ (Gumbel
copula). The between-cluster dependence looks reflection symmetric as implied by the
Frank copula. Corresponding empirical between-cluster Kendall’s τ values lie between
0.45 and 0.47. �

The illustration in Example 3.6 also provides an example where the between-cluster
dependence is stronger than the within-cluster dependence. This case cannot be modeled
using hierarchical Archimedean copulas, as will be discussed in Section 3.3.1.

The two-level construction given in Definition 3.3 can also be extended to an arbitrary
number of levels.

Remark 3.7 (Hierarchical Kendall copula with k levels). Let U1, ..., Un ∼ U(0, 1) and let
nj, j = 1, ..., k − 1, denote the number of clusters per level j, such that n1 ≥ n2 ≥ ... ≥
nk−1. Further, let the nesting copula C0 be nk−1-dimensional and let the nested cluster

copulas C
(j)
i , j = 1, ..., k − 1, i = 1, ..., nj, be of dimension d

(j)
i ≥ 1, where n =

∑n1

i=1 d
(1)
i

and nj−1 =
∑nj

i=1 d
(j)
i for j = 2, ..., k−1. The index i runs over the nj clusters of each level

j. The Kendall distribution function corresponding to C
(j)
i , j = 1, ..., k − 1, i = 1, ..., nj,

is denoted by K
(j)
i , that is, K

(j)
i (·) := K(·;C(j)

i ). We define the cumulative sum m
(j)
i =∑i

`=1 d
(j)
` for i = 1, ..., nj, and m

(j)
0 = 0. Under independence assumptions as in Definition

3.3, the random vector U = (U1, ..., Un)′ is said to be distributed according to the k-level

hierarchical Kendall copula CK with nested cluster copulas C
(j)
i , j = 1, ..., k − 1, i =

1, ..., nj, and nesting copula C0 if

(i) U i := (U
m

(1)
i−1+1

, ..., U
m

(1)
i

)′ ∼ C
(1)
i ∀i ∈ {1, ..., n1},

(ii) V
(1)
i := K

(1)
i (C

(1)
i (U i)) ∀i ∈ {1, ..., n1},

(iii) for j = 2, ..., k − 1:

a) V
(j−1)
i := (V

(j−1)

m
(j)
i−1+1

, ..., V
(j−1)

m
(j)
i

)′ ∼ C
(j)
i ∀i ∈ {1, ..., nj},

b) V
(j)
i := K

(j)
i (C

(j)
i (V

(j−1)
i )) ∀i ∈ {1, ..., nj},

(iv) (V
(k−1)

1 , ..., V
(k−1)
nk−1 )′ ∼ C0.

In particular, the clusters U 1, ...,Un1 at the lowest level (j = 1) are assumed to be

mutually independent given the “representatives” V
(j)
i , j = 1, ..., k − 1, i = 1, ..., nj.

An example of a three-level hierarchical Kendall copula is shown in Figure 3.4. In this
case, we define

U
(1)
i := (U ′

m
(2)
i−1+1

, ...,U ′
m

(2)
i

)′, i = 1, ..., d2.

Then the assumptions are

A(1)
1 : U

(1)
1 , ..,U (1)

n2
are mutually independent conditionally on (V

(2)
1 , ..., V

(2)
n2 )′;

A(1)
2 : the conditional distribution of U

(1)
i |(V (2)

1 , ..., V
(2)
n2 )′ is the same as the conditional

distribution of U
(1)
i |V (2)

i for all i = 1, ..., n2;
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(
V

(2)
1 , ..., V

(2)
n2

)′ ∼ C0

V
(2)
1 := K

(2)
1 (C

(2)
1 (V

(1)
1 )) ∼ U(0, 1) · · · V

(2)
n2 := K

(2)
n2 (C

(2)
n2 (V

(1)
n2

)) ∼ U(0, 1)

V
(1)
1 :=

(
V

(1)
1 , ..., V

(1)

m
(2)
1

)′
∼ C

(2)
1 · · · V (1)

n2
:=

(
V

(1)

m
(2)
n2−1+1

, ..., V
(1)

m
(2)
n2

)′
∼ C

(2)
n2

V
(1)
1 := K

(1)
1 (C

(1)
1 (U 1)) ∼ U(0, 1) · · · V

(1)
ℓ := K

(1)
ℓ (C

(1)
ℓ (U ℓ)) ∼ U(0, 1) · · ·

U1 :=
(
U1, ..., Um

(1)
1

)′ ∼ C
(1)
1 · · · U ℓ :=

(
U
m

(1)
ℓ−1+1

, ..., U
m

(1)
ℓ

)′ ∼ C
(1)
ℓ · · ·

U1, ..., Un

Figure 3.4: Illustration of a three-level hierarchical Kendall copula (see Remark 3.7) with

m
(2)
1 = `.

A(2)
1 : U

m
(2)
i−1+1

, ...,U
m

(2)
1

are mutually independent conditionally on (V
(2)
i ,V

(1)′
i )′ for all

i = 1, ..., n2;

A(2)
2 : the conditional distribution of U

m
(2)
i−1+j
|(V (2)

i ,V
(1)′
i )′ is the same as the conditional

distribution of U
m

(2)
i−1+j
|(V (2)

i , V
(1)

m
(2)
i−1+j

)′ for all i = 1, ..., n2, j = 1, ..., d
(2)
i .

Their interpretation is essentially the same as for the assumptions A1 and A2 stated in
Definition 3.3. Such a three-level model will be considered in Chapter 5.

Also note that a k-level hierarchical Kendall copula could be used to construct higher-
dimensional dependence models solely in terms of bivariate copulas. �

For simplicity and illustrative reasons, we mainly restrict our exposition here to the
case of k = 2 hierarchical levels. It will be sketched how to generalize all derivations and
methods, which are developed in the following, to the general k-level case.

The two independence assumptions A1 and A2 of Definition 3.3 provide a natural
structure for hierarchical dependence models and allow to derive the density function of
a hierarchical Kendall copula as stated in the following theorem. Densities of the copulas
C0, ..., Cn1 are denoted by c0, ..., cn1 , respectively.

Theorem 3.8 (Density of a hierarchical Kendall copula). Let U be distributed according
to a hierarchical Kendall copula CK with cluster copulas C1, ..., Cn1 and nesting copula
C0. The density function cK of CK is then given as follows:

cK(u) = c0(K1(C1(u1)), ..., Kn1(Cn1(un1)))

n1∏

i=1

ci(ui), u ∈ [0, 1]n, (3.2)

where ui := (umi−1+1, ..., umi)
′, i = 1, ..., n1.
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3 Hierarchical Kendall copulas

Proof: It holds that

CK(u) = P (U ≤ u)

=

∫

[0,1]n1
P (U ≤ u|V1 = v1, ..., Vn1 = vn1) c0(v1, ..., vn1) dv1...dvn1 . (3.3)

By applying assumption A1 first and then assumption A2, we obtain

P (U ≤ u|V1 = v1, ..., Vn1 = vn1) =

n1∏

i=1

P (U i ≤ ui|V1 = v1, ..., Vn1 = vn1)

=

n1∏

i=1

P (U i ≤ ui|Vi = vi)

=

n1∏

i=1

FU i|Vi(ui|vi).

Using this result, Equation (3.3) simplifies to

CK(u) =

∫

[0,1]n1

(
n1∏

i=1

FU i|Vi(ui|vi)
)
c0(v1, ..., vn1) dv1...dvn1 . (3.4)

Further, we denote by U i,−mi , i ∈ {1, ..., n1}, the (di − 1)-dimensional sub-vector of
U i = (Umi−1+1, ..., Umi)

′ with element Umi removed, that is,U i,−mi = (Umi−1+1, ..., Umi−1)′.
Since Vi = Ki(Ci(U i)) ∼ U(0, 1) by definition and according to the change of variables
U i 7→ (U ′i,−mi , Ki(Ci(U i)))

′, it then holds that

fU i,−mi |Vi(ui,−mi |vi) = fU i,−mi ,Vi(ui,−mi , vi)

= ci(umi−1+1, ..., umi−1, C
−1
i (K−1

i (vi)|ui,−mi))

× ∂

∂vi
C−1
i (K−1

i (vi)|ui,−mi),
(3.5)

if vi ≤ Ki(Ci(umi−1+1, ..., umi−1, 1)). This yields

FU i|Vi(ui|vi) =

∫ umi−1

0

...

∫ umi−1+1

0

fU i,−mi |Vi(wi,−mi |vi) 1{C−1
i (K−1

i (vi)|wi,−mi )≤umi}
dwi,−mi .

Plugging this expression for the conditional distribution function of U i given Vi = vi into
Equation (3.4) and substituting vi by wmi = C−1

i (K−1
i (vi)|wi,−mi) for i = 1, ..., n1 then

leads to

CK(u) =

∫ un

0

...

∫ u1

0

(
n1∏

i=1

ci(wi)

)
c0(K1(C1(w1)), ..., Kd(Cd(wd))) dw,

where we used that vi = Ki(Ci(wi)), i = 1, ..., n1. Taking derivatives with respect to
u1, ..., un therefore gives the desired result. �
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3.3 Model formulation and properties

As the following remark shows, the proof of Theorem 3.8 can also be stated directly in
terms of densities.

Remark 3.9 (Alternative proof of Theorem 3.8). Using the notation from above, it holds
according to assumptions A1 and A2 that

fU1,−m1 ,...,Un1,−mn1 |V1,...,Vn1
(u1,−m1 , ...,un1,−mn1 |v1, ..., vn1)

=

n1∏

i=1

fU i,−mi |V1,...,Vn1 (ui,−mi |v1, ..., vn1)

=

n1∏

i=1

fU i,−mi |Vi(ui,−mi |vi),

(3.6)

where the expression for fU i,−mi |Vi , i = 1, ..., n1, is derived in Equation (3.5) using the

change of variables U i 7→ (U ′i,−mi , Ki(Ci(U i)))
′. Using the inverse of this change of vari-

ables, that is, (U ′i,−mi , Vi)
′ 7→ (U ′i,−mi , C

−1
i (K−1

i (Vi)|U i,−mi))
′, then yields the following

expression of the density cK of U :

cK(u) = fU1,...,Un1
(u1, ...,un1)

= fU1,−m1 ,V1,...,Un1,−mn1 ,Vn1
(u1,−m1 , K1(C1(u1)), ...,un1,−mn1 , Kn1(Cn1(un1)))

×
n1∏

i=1

∂

∂umi
Ki(Ci(ui))

= c0(K1(C1(u1)), ..., Kn1(Cn1(un1)))

× fU1,−m1 ,...,Un1,−mn1 |V1,...,Vn1
(u1,−m1 , ...,un1,−mn1 |K1(C1(u1)), ..., Kn1(Cn1(un1)))

×
n1∏

i=1

∂

∂umi
Ki(Ci(ui))

(3.6)
= c0(K1(C1(u1)), ..., Kn1(Cn1(un1)))

×
n1∏

i=1

fU i,−mi |Vi(ui,−mi |Ki(Ci(ui)))
∂

∂umi
Ki(Ci(ui))

(3.5)
= c0(K1(C1(u1)), ..., Kn1(Cn1(un1)))

×
n1∏

i=1

ci(ui)
∂

∂vi
C−1
i (K−1

i (vi)|ui,−mi)
∣∣∣
vi=Ki(Ci(ui))

∂

∂umi
Ki(Ci(ui)). (3.7)

In the next step, we explicitly calculate the two last terms. For the very last term, we
immediately get

∂

∂umi
Ki(Ci(ui)) = FU i,−mi |Umi (ui,−mi |umi)K

′
i(Ci(ui))

Further, we have

∂

∂vi
C−1
i (K−1

i (vi)|ui,−mi) =
(
FU i,−mi |Umi (ui,−mi |C

−1
i (K−1

i (vi)|ui,−mi))K ′i(K−1
i (vi))

)−1
,
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3 Hierarchical Kendall copulas

so that

∂

∂vi
C−1
i (K−1

i (vi)|ui,−mi)
∣∣∣
vi=Ki(Ci(ui))

=
(
FU i,−mi |Umi (ui,−mi |umi)K

′
i(C(ui))

)−1
.

As a result, the two derivatives in Equation (3.7) cancel each other out and we obtain
that

cK(u) = c0(K1(C1(u1)), ..., Kn1(Cn1(un1)))

n1∏

i=1

ci(ui),

which proves Theorem 3.8. �

The density of a k-level hierarchical Kendall copula (see Remark 3.7) can be derived
similarly.

Remark 3.10 (Density of a k-level hierarchical Kendall copula). The arguments of The-
orem 3.8 can be iterated to derive the density of a k-level hierarchical Kendall copula.
By first conditioning on the aggregated variables of level k− 1, V

(k−1)
1 , ..., V

(k−1)
nk−1 , then on

those of level k − 2 and so on up to level 1, an expression similar to Equation (3.2) is
obtained.

For instance, the density of the three-level hierarchical Kendall copula can be derived
along the lines of the proof of Theorem 3.8 as

cK(u) = c0(v
(2)
1 , ..., v(2)

n2
)

n2∏

i=1


c(2)

i

(
v

(1)
i

) d
(2)
i∏

j=1

c
(1)

m
(2)
i−1+j

(
u
m

(2)
i−1+j

)



= c0(v
(2)
1 , ..., v(2)

n2
)

n2∏

i=1

c
(2)
i

(
v

(1)
i

) n1∏

j=1

c
(1)
j (uj) ,

(3.8)

where v
(1)
i = (v

(1)

m
(2)
i−1+1

, ..., v
(1)

m
(2)
i

)′, i = 1, ..., n2, with components v
(1)
i = K

(1)
i (C

(1)
i (ui)), i =

1, ..., n1. Further, v
(2)
i = K

(2)
i (C

(2)
i (v

(1)
i )), i = 1, ..., n2.

This means that the density of a three-level hierarchical Kendall copula also conve-
niently decomposes into the product of the densities of the (nested) cluster copulas and of
the nesting copula, where the arguments are obtained through the repeated application
of Kendall distribution functions. �

Another important special case of hierarchical Kendall copulas can easily be stated
using Theorem 3.8.

Example 3.11 (Independence copula). Let CK be a hierarchical Kendall copula, where
both cluster and nesting copulas are independence copulas. Since the independence copula
has density equal to 1 (see Example 2.2), it follows that cK(u) = 1. This means that the
independence copula also belongs to the class of hierarchical Kendall copulas. �

Theorem 3.8 also allows to formulate the following corollary, which summarizes the
marginal properties of hierarchical Kendall copulas.
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Corollary 3.12 (Margins of a hierarchical Kendall copula). The same notation as in
Theorem 3.8 is used.

(i) Bivariate margins: Let k, ` ∈ {1, ..., n}, k 6= `. Without loss of generality let k < `.

a) If Uk and U` are in the same cluster i, their marginal distribution function
CK,k` is the bivariate (k, `)-margin of Ci denoted by Ci,k`, that is,

CK,k`(uk, u`) = Ci,k`(uk, u`) := Ci(1, ..., 1, uk, 1, ..., 1, u`, 1, ..., 1), (3.9)

where (uk, u`)
′ ∈ [0, 1]2.

b) If Uk and U` are in different clusters i and j, respectively, their marginal dis-
tribution function CK,k` is

CK,k`(uk, u`) =

∫ uk

0

∫ u`

0

∫

[0,1]di+dj−2
c0,ij(Ki(Ci(wi)), Kj(Cj(wj)))

× ci(wi) cj(wj) dwi,−k dwj,−` dw` dwk,

(3.10)

where (uk, u`)
′ ∈ [0, 1]2 and c0,ij is the density of the (i, j)-margin of C0.

(ii) Multivariate margins: The marginal distribution function of the cluster U i is Ci.

Proof: Statements (i) a) and (ii) directly follow from Definition 3.3, statement (i) b) from
Theorem 3.8. �

More general multivariate margins involving variables from different clusters can be
derived as in Equation (3.10).

Remark 3.13 (Mixture representation). As a consequence of Corollary 3.12 (i) b), bi-
variate marginal distributions where the variables are in different clusters can be regarded
as a kind of continuous mixture of the nesting copula C0. The density of CK,k` as defined
above is given for (uk, u`)

′ ∈ [0, 1]2 by

cK,k`(uk, u`) =

∫

[0,1]di+dj−2
c0,ij(Ki(Ci(ui)), Kj(Cj(uj))) ci(ui) cj(uj) dui,−k duj,−`, (3.11)

where the mixing density weights are given by the product ci(ui) cj(uj).
This representation complements the results of Remark 3.5. Equation (3.1) shows that

hierarchical Kendall copulas with Archimedean cluster copulas can be represented as
transformed mixtures of uniform distributions on unit simplices. �

Clearly, the copula CK,k` of two variables in different clusters is not available explicitly
(see Equations (3.10) and (3.11)). To better understand the between-cluster dependence,
the following theorem provides a characterization result in terms of TP2 dependence (see
Definition 2.8).
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Theorem 3.14 (TP2 dependence of hierarchical Kendall copulas). The copula CK,k` of
(Uk, U`)

′, where Uk and U` are in different clusters i and j, respectively, has a TP2 density
if the bivariate (i, j)-margin of C0 denoted by C0,ij has a TP2 density.

Proof: For all (uk, u`)
′, (wk, w`)

′ ∈ [0, 1]2 with wk > uk and w` > u`, we have to show
that

cK,k`(uk, u`) cK,k`(wk, w`) ≥ cK,k`(uk, w`) cK,k`(wk, u`). (3.12)

Since Ci and Cj are strictly monotone, it holds that Ki(Ci(wi)) > Ki(Ci(ui)) and
Kj(Cj(wj)) > Kj(Cj(uj)). Therefore, the TP2 property of c0,ij yields

c0,ij(Ki(Ci(ui)), Kj(Cj(uj))) c0,ij(Ki(Ci(wi)), Kj(Cj(wj)))

≥ c0,ij(Ki(Ci(ui)), Kj(Cj(wj))) c0,ij(Ki(Ci(wi)), Kj(Cj(uj))).
(3.13)

According to Equations (3.11) and (3.13), we then have

cK,k`(uk, u`) cK,k`(wk, w`)

=

∫

[0,1]di+dj−2

∫

[0,1]di+dj−2
c0,ij(Ki(Ci(ui)), Kj(Cj(uj))) c0,ij(Ki(Ci(wi)), Kj(Cj(wj)))

× ci(ui) cj(uj) ci(wi) cj(wj) dui,−k duj,−` dwi,−k dwj,−`

≥
∫

[0,1]di+dj−2

∫

[0,1]di+dj−2
c0,ij(Ki(Ci(ui)), Kj(Cj(wj))) c0,ij(Ki(Ci(wi)), Kj(Cj(uj)))

× ci(ui) cj(wj) ci(wi) cj(uj) dui,−k dwj,−` dwi,−k duj,−`

= cK,k`(uk, w`) cK,k`(wk, u`),

which proves the statement (3.12). �

Since the Frank copula with positive parameter has a TP2 density, this means that
cK,13, cK,14, cK,23 and cK,24 in Example 3.6 are TP2.

As noted above, the multivariate distribution of U = (U1, ..., Un)′ defined through a
hierarchical Kendall copula is in general not the copula C0 but given through Equation
(3.3). We showed that the important special cases of independence as well as of comono-
tonicity are hierarchical Kendall copulas (see Examples 3.4 and 3.11), while in general
dependence between clusters ranges between these cases and can also be negative. It is
yet an open question which other common multivariate distributions can be represented
as hierarchical Kendall copulas with non-trivial cluster sizes (that is, there is at least one
cluster i ∈ {1, ..., n1} with more than one element (di > 1) or, in others words, the number
of clusters n1 is smaller than the number of variables n). For example, when choosing clus-
ter and nesting copulas as Gaussian, then it is clear from the density expression (3.2) that
the resulting hierarchical Kendall copula will not be multivariate Gaussian (unless the
nesting copula is the independence copula). Similarly, hierarchical Archimedean copulas
are different from hierarchical Kendall copulas—with positive and negative implications
as discussed next.
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3.3.1 Comparison with hierarchical Archimedean copulas

The class of hierarchical (or nested) Archimedean copulas, which extends standard Archi-
medean copulas (2.31) to non-exchangeability, also allows for a nested modeling of clusters
of variables. Borrowing the notation of Definition 3.3, let C0 be an n1-dimensional Archi-
medean copula with generator ϕ0 and C1, ..., Cn1 Archimedean copulas of dimension di ≥ 1
and with generator ϕi for i = 1, ..., n1. Then the two-level partially nested Archimedean
copula is defined as

C(u;ϕ0, ϕ1, ..., ϕn1) = C0(C1(u1), ..., Cn1(un1)), u ∈ [0, 1]n. (3.14)

Together with the so-called fully nested Archimedean copulas, which are not considered
here, this copula forms the class of hierarchical Archimedean copulas (see, e.g., Joe (1993,
1997), McNeil (2008), Hofert (2010), Savu and Trede (2010) and Okhrin et al. (2013)).
The extension to k hierarchical levels is straightforward (see Remark 3.7).

The hierarchical Archimedean copula defined in Equation (3.14) can be written in terms
of the generators ϕ0, ..., ϕn1 as

C(u;ϕ0, ϕ1, ..., ϕn1)

= ϕ−1
0

(
ϕ0

(
ϕ−1

1

(∑d1
j=1 ϕ1(uj)

))
+ ...+ ϕ0

(
ϕ−1
n1

(∑dn1
j=1 ϕn1(umn1−1+j)

)))
.

According to Joe (1993, 1997) and McNeil (2008), a sufficient condition for C(·;ϕ0, ..., ϕn1)
to be a copula is that the derivative of ϕ0◦ϕ−1

i is completely monotone for all i = 1, ..., n1.
If all generators are of the same type, this typically translates to parameter restrictions.
For the four copulas presented in Section 2.4 (Clayton, Gumbel, Frank with positive pa-
rameter, and Joe), a sufficient condition is that θ0 ≤ min{θ1, ..., θn1}, where θi is the
parameter of the generator ϕi, i = 0, ..., n1. This means that hierarchical Archimedean
copulas require stronger within-cluster than between-cluster dependence (see also Joe
(1997, Corollary 4.2)). This is not the case for hierarchical Kendall copulas (see Example
3.6). Furthermore, hierarchical Archimedean copulas are, of course, limited to Archime-
dean copulas as building blocks, while hierarchical Kendall copulas can be built up by
any possible copula.

Nevertheless, Archimedean copulas have many useful properties. For instance, their re-
lationship to Laplace transforms can be used to conveniently sample from hierarchical
Archimedean copulas as described in McNeil (2008) and Hofert (2010, 2011). Hierarchical
Kendall copulas also benefit from many of these properties. It will be shown in Chapter 4
that closed-form sampling of hierarchical Kendall copulas is feasible, when cluster copulas
are Archimedean. Hierarchical Kendall copulas with Archimedean cluster copulas are fur-
ther particularly easy to estimate, since Kendall distribution functions are known in closed
form for Archimedean copulas. For that reason they also provide a closed-form density
function, which is numerically tractable even in higher dimensions (see Equation (3.8) for
the case of three hierarchical levels) and also for other building blocks than Archimedean
copulas. The density expression of hierarchical Archimedean copulas is however hardly
accessible in general (see Savu and Trede (2010)). This is illustrated in the following
example.
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3 Hierarchical Kendall copulas

Example 3.15 (Density of a hierarchical Archimedean copula). Let C(·;ϕ0, ϕ1, ϕ2) be
a four-dimensional hierarchical Archimedean copula with d1 = d2 = 2. As in Savu and
Trede (2010), we derive the corresponding density using the chain rule as

c(u;ϕ0, ϕ1, ϕ2)

=
∂2c0(v1, v2)

∂v1∂v2

∣∣∣∣
v1=C1(u1,u2), v2=C2(u3,u4)

C1,2|1(u2|u1)C1,1|2(u1|u2)C2,4|3(u4|u3)C2,3|4(u3|u4)

+
∂c0(v1, v2)

∂v1

∣∣∣∣
v1=C1(u1,u2), v2=C2(u3,u4)

C1,2|1(u2|u1)C1,1|2(u1|u2) c2(u3, u4)

+
∂c0(v1, v2)

∂v2

∣∣∣∣
v1=C1(u1,u2), v2=C2(u3,u4)

c1(u1, u2)C2,4|3(u4|u3)C2,3|4(u3|u4)

+ c0(C1(u1, u2), C2(u3, u4)) c1(u1, u2) c2(u3, u4),

where u ∈ [0, 1]4 and Ci,k|`, i ∈ {1, 2}, k, ` ∈ {1, ..., 4}, is the conditional distribution
function of Uk|U` (see Equations (2.13) and (2.14)). While the last term resembles the
density of a corresponding hierarchical Kendall copula, the other three terms complicate
density evaluations. Clearly, additional terms occur in higher dimensions. For this rea-
son, Hofert and Pham (2013) recently proposed an alternative approach using Laplace
transforms, which may yield a more tractable density expression at least for the case of a
moderate number of nesting levels. �

Multivariate margins of hierarchical Kendall copulas are not directly available (see
Corollary 3.12). This is different for hierarchical Archimedean copulas, as it can be directly
inferred from Equation (3.14). If variables Uk and U` are in the same cluster i, then
(Uk, U`)

′ ∼ Ci,k`, which is similar to the case of hierarchical Kendall copulas (see Equation
(3.9)). On the other hand, if Uk and U` are in different clusters i and j, respectively,
then (Uk, U`)

′ ∼ C0,ij, while in the case of a hierarchical Kendall copula this marginal
distribution has to be obtained using integration as in Equation (3.10).

Example 3.16 (Bivariate margin of hierarchical Archimedean and Kendall copulas).
Let U1, ..., U4 be distributed according to a hierarchical Kendall copula or hierarchical
Archimedean copula with bivariate Gumbel cluster and nesting copulas (d1 = d2 = 2):
(U1, U2)′ ∼ C1, (U3, U4)′ ∼ C2 and C0 denotes the nesting copula. Figure 3.5 illustrates
the marginal density of (U1, U3)′ in both cases. It shows contour lines of the marginal
density of the pair (Φ−1(U1),Φ−1(U3))′, which has standard normal margins according to
the inverse probability integral transform. Parameters are chosen as θ1 = 3 (Kendall’s
τ of 0.67) and θ2 = 4 (Kendall’s τ of 0.75) for the bivariate cluster copulas C1 and
C2, respectively, and θ0 = 2 (Kendall’s τ of 0.5) for the nesting copula C0. Apparently,
the difference between the distributions is minor. The contour lines corresponding to the
hierarchical Archimedean copula are slightly sharper in the upper right corner, implying
a stronger joint tail behavior. �

Note that in the example the parameters of the cluster copulas are larger than that
of the nesting copula, as required for the hierarchical Archimedean copula to yield a
valid multivariate distribution (θ0 ≤ min{θ1, θ2}). This is not needed for the hierarchical
Kendall copula.
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3.4 Sampling

z1

z 2

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 3.5: Contour lines of the marginal density of (Φ−1(U1),Φ−1(U3))′, where U1, ..., U4

are distributed according to a hierarchical Kendall copula (black dashed line)
or hierarchical Archimedean copula (gray line) with Gumbel cluster and nest-
ing copulas.

Finally, the nesting copula C0 of a hierarchical Kendall copula is also not closed under
addition and removal of cluster components U`, which is contrary to hierarchical Archime-
dean copulas. This is because the Kendall distribution function is not independent with
respect to the dimension (see Theorem 2.10 and Corollary 2.11). That is, if a random
variable Un+1 is added to cluster i ∈ {1, ..., d}, the transformation Ki changes and thus
Vi also does so, even if Ci is Archimedean; similarly if a random variable is removed from
a cluster.

3.4 Sampling

We now develop inference techniques for hierarchical Kendall copulas. First, simulation is
treated, then estimation and model selection. The following general simulation procedure
describes how to sample from a given hierarchical Kendall copula.

Algorithm 3.17 (Simulation of hierarchical Kendall copulas). Let CK be a hierarchical
Kendall copula with cluster copulas C1, ..., Cn1 and nesting copula C0.

(i) Sample (v1, ..., vn1)
′ from C0.

(ii) Set zi = K−1
i (vi) for i = 1, ..., n1.

(iii) Sample ui from U i|Ci(U i) = zi for i = 1, ..., n1.

(iv) Return u = (u′1, ...,u
′
n1

)′.

The algorithm proceeds by first sampling the level zi of the level set of each cluster (top
of Figure 3.2) and then sampling from each cluster given this level set L(zi;Ci) (bottom
of Figure 3.2). The procedure is therefore also referred to as top-down sampling. It can
easily be generalized to the case of k hierarchical levels.
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3 Hierarchical Kendall copulas
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Figure 3.6: Left panel: scatter plot of a sample from a bivariate Clayton copula with pa-
rameter θ = 2 (Kendall’s τ of 0.5) on the level set at z = 0.2. The correspond-
ing contour line is shown in gray. Middle and right panel: three-dimensional
scatter plot and pairwise scatter plots of a sample from a trivariate Clayton
copula with parameter θ = 2 on the level set at z = 0.2.

Remark 3.18 (Simulation of k-level hierarchical Kendall copulas). Algorithm 3.17 for
two levels can be iterated to simulate from a k-level hierarchical Kendall copula (see
Remark 3.7).

(i) Sample (v
(k−1)
1 , ..., v

(k−1)
nk−1 )′ from C0.

(ii) For j = k − 1, ..., 2:

a) Set z
(j)
i = (K

(j)
i )−1(v

(j)
i ) for i = 1, ..., nj.

b) Sample v
(j−1)
i from V

(j−1)
i |C(j)

i (V
(j−1)
i ) = z

(j)
i for i = 1, ..., nj.

(iii) Set z
(1)
i = (K

(1)
i )−1(v

(1)
i ) for i = 1, ..., n1.

(iv) Sample ui from Ui|C(1)
i (U i) = z

(1)
i for i = 1, ..., n1.

(v) Return u = (u′1, ...,u
′
n1

)′.

Hence, the algorithm essentially proceeds from the top to the bottom of Figure 3.4. �

Given that simulation from the copula C0 is feasible, sampling from hierarchical Kendall
copulas thus amounts to the more general question of sampling from a distribution
U |C(U) = z, where C is the copula of a marginally uniform random vector U :=
(U1, ..., Ud)

′ and z ∈ (0, 1). In other words, we want to sample from a multivariate distri-
bution given a specific level set L(z;C) at level z as illustrated in Figure 3.6. This problem
is discussed in detail in Chapter 4, where different methods are discussed and closed-form
solutions for Archimedean, Archimax and Plackett copulas are derived. Alternatively, dif-
ferent approximate methods are proposed, where also a bottom-up approach is followed
in contrast to the top-down algorithm, which is presented here.
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3.5 Estimation

In light of Sklar’s Theorem (2.1), it is common in dependence modeling to transform data
(xk1, ..., xkn)′, k = 1, ..., N, to [0, 1]n using the marginal distribution functions Fj, j =
1, ..., n, that is, we compute ukj = Fj(xkj). In most cases, Fj is unknown, so that this
transformation needs to be based on a parametric or a non-parametric estimate, which
introduces uncertainty into the modeling.

Here, we concentrate on the parametric modeling of the margins. In this case, the
parameters of the margins and the dependence model can either be estimated jointly or,
when this is not feasible, sequentially using the estimation method of inference functions
for margins (IFM) by McLeish and Small (1988) and Joe and Xu (1996) (see also Joe
(2005)). In the IFM method, first the marginal parameters are estimated and then the

dependence parameters given the estimated margins F̂j, j = 1, ..., n.
More precisely, let CK be a hierarchical Kendall copula with cluster and nesting copulas

C0, C1, ..., Cn1 and density function cK (3.2). Further, we denote the parameter(s) of copula

Ci by θi for i = 0, ..., n1. According to the IFM method, we then set ûkj = F̂j(xkj), k =
1, ..., N, j = 1, ..., n, and estimate the parameters θ0,θ1, ...,θn1 by maximizing the log
likelihood expression `K, which conveniently decomposes into separate sums (see Theorem
3.8):

`K(θ0,θ1, ...,θn1 ; (ûk1, ..., ûkn)′k=1,...,N)

=
N∑

k=1

log cK(ûk1, ..., ûkn;θ0,θ1, ...,θn1)

=
N∑

k=1

log c0(K1(C1(ûk1;θ1);θ1), ..., Kn1(Cn1(ûkn1 ;θn1);θn1);θ0)

+

n1∑

i=1

N∑

k=1

log ci(ûki;θi)

=: `0(θ0,θ1, ...,θn1 ; (ûk1, ..., ûkn)′k=1,...,N) +

n1∑

i=1

`i(θi; (ûki)k=1,...,N),

(3.15)

where ûki := (ûkmi−1+1, ..., ûkmi)
′, k = 1, ..., N, i = 1, ..., n1.

The asymptotic covariance matrix of resulting parameter estimates is given by the
inverse Godambe information matrix, which is unfortunately typically very cumbersome to
compute. To see this, observe that the log likelihood `K (3.15) depends on the parameters
of the cluster copula both through the density of the cluster copula as well as through
the arguments of the nesting copula. For such situations, Joe and Xu (1996) propose a
jackknife estimate of the asymptotic covariance. In financial applications, as in Section 3.7,
the margins are however often time-dependent. In this case, a stationary block bootstrap
can be used to calculate approximate standard errors (see Politis and Romano (1994) and
Gonçalves and White (2004)).

The hierarchical construction given in Definition 3.3 and the log likelihood expression
(3.15) also directly lead to a sequential estimation procedure of hierarchical Kendall copu-
las, which avoids higher-dimensional maximum likelihood estimation. This is similar to the
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3 Hierarchical Kendall copulas

sequential estimation of vine copulas, which only requires bivariate maximum likelihood
estimation (see Section 2.7.4).

Algorithm 3.19 (Sequential estimation of hierarchical Kendall copulas). Let CK be a
hierarchical Kendall copula with cluster and nesting copulas C0, C1, ..., Cn1 and denote
the parameter(s) of copula Ci by θi for i = 0, ..., n1. Corresponding sequential estimates

θ̂i, i = 0, ..., n1, are then obtained as follows.

(i) For each cluster i ∈ {1, ..., n1} estimate θi based on (ûki)k=1,...,N by maximum
likelihood, that is, maximize `i(θi; (ûki)k=1,...,N) as defined in Equation (3.15) with
respect to θi.

(ii) Estimate θ0 based on the pseudo observations

v̂ki := Ki(Ci(ûki; θ̂i); θ̂i), k = 1, ..., N, i = 1, ..., n1, (3.16)

by maximum likelihood, that is, maximize `0(θ0, θ̂1, ..., θ̂n1 ; (ûk1, ..., ûkn)′k=1,...,N) as
defined in Equation (3.15) with respect to θ0.

This two-step estimation procedure immediately generalizes to a k-step estimation ap-
proach for k-level hierarchical Kendall copulas as defined in Remark 3.7. Resulting esti-
mates may be used as starting values for a joint maximum likelihood estimation of the
dependence parameters. In order to evaluate and compare their finite sample behavior in
comparison with maximum likelihood estimates, we perform a large scale Monte Carlo
study. For this, we simulate from a four-dimensional hierarchical Kendall copula (two
bivariate clusters; margins are assumed to be known) and then estimate the parameters
according to the following methods:

• Sequential estimation;

• Maximum likelihood estimation (MLE) with known starting values (true parame-
ters);

• MLE with sequentially estimated starting values.

The cluster copulas C1 and C2 are chosen as Clayton, Gumbel or Frank; the nesting
copula C0 as Gaussian, Student’s t (ten degrees of freedom), Clayton, Gumbel or Frank.
Parameters are determined according to Kendall’s τ values of 0.4 and 0.7. Sample sizes are
250, 500 and 1000 and the number of repetitions is 100. Estimation accuracy is compared
based on the mean squared error of the estimated nesting copula parameter θ0, which
is transformed to Kendall’s τ , so that values are on a comparable scale. The results are
shown in Figure 3.7 for the case of Clayton and Gumbel cluster copulas and in Appendix
C for the other five possible combinations of cluster copulas, which yield very similar
results. An illustrative sample of size 1000 for the case of Clayton and Gumbel cluster
copulas (Kendall’s τ of 0.4) and Frank nesting copula (Kendall’s τ of 0.7) is shown in
Figure 3.3 (see Example 3.6).

It turns out that the results are essentially independent of the chosen cluster copula
family. Similarly, the choice of the parameters of the cluster copulas does not have a great
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Figure 3.7: Mean squared errors (MSEs) of θ̂0 (in terms of Kendall’s τ) for the three
estimation procedures. Cluster copula 1: Clayton. Cluster copula 2: Gumbel.
Notation for the x-axes: (τ0,τ1,τ2), where L := 0.4 and H := 0.7. The range of
the y-axes is chosen such that the MSEs are comparable.
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3 Hierarchical Kendall copulas

influence on the results, while larger parameters of the nesting copula (stronger depen-
dence) mean more accurate results. Overall, there is hardly any difference between the
three estimation procedures. In particular, this means that sequential estimation provides
good starting values for the joint estimation of the dependence parameters.

3.5.1 Stabilizing transformation

A numerical issue in the calculation of the log likelihood `K (3.15) that may occur for
larger cluster sizes di is due to the shape of the Kendall distribution function. According
to Corollary 2.11, the Kendall distribution function of a d-dimensional copula increases for
fixed z ∈ [0, 1] in the dimension d. This can lead to boundary issues for values close to zero
(see, in particular, the shape of the Kendall distribution functions of the independence
and of the Gumbel copula, which are shown in Figure 2.6). As a remedy we propose to
apply a stabilizing transformation in the calculation of v := K(C(u);C) for some data
u ∈ [0, 1]d.

For this, let b : [0, 1]→ R be a strictly monotone function. This particularly implies that
b is invertible with inverse b−1 : R→ [0, 1]. If we choose b such that K◦b−1 : R→ [0, 1] and
b◦C : [0, 1]d → R are numerically stable, then we propose to calculate v by K(b−1(w);C),
where w := b(C(u)). Obviously, it holds that

K(b−1(w);C) = K(b−1(b(C(u)));C) = K(C(u);C) = v.

Thus, the essential question is how to find an appropriate stabilizing transformation for
a given copula. We first illustrate this in a small example and then propose a general
solution.

Example 3.20 (Stabilizing transformation for the independence copula). The value of
the independence copula along the diagonal u = u1, u ∈ [0, 1], is Π(u, ..., u) = ud. If
we choose b(z) = z1/d, z ∈ [0, 1], the transformation normalizes the dimension along this
diagonal, since (b◦Π)(u, ..., u) = b(Π(u, ..., u)) = u. In fact, this also stabilizes the Kendall
distribution function in the sense that the calculation of K ◦ b−1 is more stable (see the
left panel of Figure 3.8 in comparison to the left panel of Figure 2.6). �

Motivated by this example, we define the diagonal of a copula C as

D(u;C) = C(u1), u ∈ [0, 1],

and propose to use the stabilizing transformation

b(z) = D−1(z;C), z ∈ [0, 1],

in order to normalize the dimension in the calculation of K(C(u);C) for u ∈ [0, 1]d.
The middle and the right panel of Figure 3.8 show the stabilized Kendall distribution
functions, K ◦ D, of the Clayton and the Gumbel copula, respectively. The stabilizing
effect is evident in comparison to Figure 2.6.
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Figure 3.8: Numerically stabilized Kendall distribution functions of the independence (left
panel), the Clayton (middle panel) and the Gumbel copula (right panel) for
d ∈ {2, ..., 10}. The parameters of the Clayton and the Gumbel copula are
chosen according to a Kendall’s τ of 0.5.

3.6 Model selection

In practical applications, the clusters U i = (Umi−1+1, ..., Umi)
′, i = 1, ..., n1, have to be

identified. In cases where they are not given from the data, such as industry sectors in
financial data (see Section 3.7), common clustering techniques can be used (see, e.g.,
Hastie et al. (2009)). If a multi-level hierarchical Kendall copula is considered, hierarchi-
cal clustering methods may be particularly helpful. In hierarchical clustering, the use of
an appropriate metric to measure the closeness between (groups of) variables is essential.
Although it is not necessarily required by a hierarchical Kendall copula that within-cluster
dependence is stronger than between-cluster dependence (see Example 3.6), clusters are
typically identified as groups of variables that are strongly dependent. We therefore pro-
pose to use the following metric between the variables j1 and j2, which is inspired by
Gower (1966) and Mantegna (1999), who however use the linear correlation coefficient,

d(j1, j2) =
√

1− ρ̂S,j1j2 , (3.17)

where ρ̂S,j1j2 is the empirical Spearman’s ρS (2.5) based on the observations (xkj1 , xkj2)
′,

k = 1, ..., N . Thus, the stronger the dependence between the variables j1 and j2, the
smaller is d(j1, j2). Obviously, d(j1, j2) = 0 if the variables j1 and j2 are comonotonic,
that is, if xkj1 = xkj2 for all k = 1, ..., N . Further, it holds that d(j1, j2) = d(j2, j1)
(symmetry) and d(j1, j2) ≤ d(j1, j3) + d(j3, j2) for another variable j3. The validity of the
triangle inequality follows from the fact that ρ̂S,j1j2 is the correlation coefficient of the
ranks rj(k) of the observations xkj, k = 1, ..., N, j ∈ {j1, j2}, and it holds that

ρ̂S,j1j2 = 1− 6

N(N2 − 1)

N∑

k=1

(rj1(k)− rj2(k))2 .

Therefore, we have that

√
1− ρ̂S,j1j2 =

(
6

N(N2 − 1)

)1/2
(

N∑

k=1

(rj1(k)− rj2(k))2

)1/2

,
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which is, up to a multiplicative factor, the Euclidean distance between the ranks, so that
the triangle inequality is trivially satisfied.

Hierarchical clustering further requires the choice of a linkage criterion to determine the
distance between groups of variables. Classical average linkage clustering simply uses the
mean distance between the elements of the groups. In the setting of hierarchical Kendall
copulas, it is however more natural to form the pseudo observations (3.16) based on purely
empirical versions of the copula and the Kendall distribution function and then compute
the distance (3.17) between them. This means that we form

v̂ki := K̂i(Ĉi(ûki)), k = 1, ..., N, i = 1, ..., n1, (3.18)

where Ĉi is the empirical copula of the observations ûki, k = 1, ..., N, which is given by

Ĉi(ui) =
1

N

N∑

k=1

1{ûkmi−1+1≤umi−1+1,...,ûkmi≤umi}, ui ∈ [0, 1]di .

Further, K̂i is the empirical Kendall distribution function based on ẑki = Ĉi(ûki), k =
1, ..., N, and hence defined as

K̂i(z) =
1

N

N∑

k=1

1{ẑki≤z}, z ∈ [0, 1].

Then the distance (3.17) between clusters i1 and i2 can be computed based on the empirical
Spearman’s ρS of v̂ki1 and v̂ki2 , k = 1, ..., N .

Example 3.21 (Hierarchical clustering). Let ûkj, k = 1, ..., N, j = 1, ..., 4, be given ob-
servations of a four-dimensional random vector. In a first step, we calculate the distance
d(j1, j2) given in Equation (3.17) for all j1, j2 = 1, ..., 4, j1 6= j2, based on the obser-
vations. Assume that d(1, 2) < min{d(1, 3), d(1, 4), d(2, 3), d(2, 4), d(3, 4)}. Therefore, we
first group the variables 1 and 2.

To update the distances after the grouping, we calculate pseudo observations v̂k1, k =
1, ..., N, as in Equation (3.18), where the size of the first cluster is d1 = 2. Then we
calculate the empirical Spearman’s ρS of v̂k1 and ûkj, k = 1, ..., N, for j = 3, 4 and denote
the resulting values by ρ̂S,{12}3 and ρ̂S,{12}4, respectively. Based on these empirical values,
we also get the distances d({12}, 3) and d({12}, 4), respectively.

If now d(3, 4) < min{d({12}, 3), d({12}, 4)}, then we also group variables 3 and 4.
Distances could again be updated by calculating the pseudo observations v̂k2, k = 1, ..., N,
as in Equation (3.18) with cluster size d2 = 2. Calculating the empirical Spearman’s ρS
of v̂k1 and v̂k2, k = 1, ..., N, gives the between-cluster distance d({12}, {34}).

If however d({12}, 3) < min{d(3, 4), d({12}, 4)}, then variable 3 joins the first cluster
and the distance between the cluster {1, 2, 3} and the variable 4 could be calculated
based on the empirical Spearman’s ρS of v̂k1 and ûk4, k = 1, ..., N, where v̂k1 has to be
recalculated using Equation (3.18), since now d1 = 3. �

Measuring association between multivariate random vectors through aggregation via the
copula and the Kendall distribution function is, along with other association measures,
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Figure 3.9: Cluster dendograms corresponding to the two cases discussed in Example 3.21.

also discussed by Grothe et al. (2011). In contrast to average linkage, it however does
not ensure that the closeness between grouped variables is monotone decreasing with
increasing level of the merger. The process of the merger is typically illustrated in a
binary tree, which is called a dendogram and represents the closeness between cluster
members. Exemplary dendograms illustrating Example 3.21 are shown in Figure 3.9 (see
also Sections 3.7 and, especially, 5.3).

Since Kendall distributions may become almost degenerate at 0 for very large clusters
(see Corollary 2.11), the size of the clusters should be chosen carefully. This issue is
mitigated by the stabilizing transformation proposed in Section 3.5.1. In addition, already
under medium positive dependence the convergence to the constant function at 1 is very
slow (see Figure 2.6), so that the numerical issues are minor.

In the next step, copulas have to be selected for the clusters. Due to the hierarchical
nature of the model, higher order levels depend on copulas in lower levels, so that a careful
selection of the cluster copulas is necessary. A possible approach is a stepwise selection
similar to the sequential estimation procedure outlined in Algorithm 3.19, that is, the
nesting copula C0 is selected based on pseudo observations.

Algorithm 3.22 (Sequential selection of hierarchical Kendall copulas). Let n1 clusters
of size di ≥ 1, i = 1, ..., n1, be given. Cluster and nesting copulas of a hierarchical Kendall
copula are then sequentially selected as follows.

(i) For each cluster i ∈ {1, ..., n1} select Ci and estimate its parameter(s) θi based on
(ûki)k=1,...,N .

(ii) Select C0 and estimate its parameter(s) θ0 based on the pseudo observations v̂ki, k =
1, ..., N, i = 1, ..., n1 (see Equation (3.16)).

Typical copula selection criteria are the AIC and the BIC, which are both likelihood-
based and penalize the log likelihood for the number of parameters. Goodness-of-fit tests
can also be used (see Genest et al. (2009) and Berg (2009)), in particular to verify the
fit. Further, Algorithm 3.22 can also be easily generalized to select cluster and nesting
copulas of multi-level hierarchical Kendall copulas (see Remark 3.7).
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The proposed procedure is similar to selection approaches of hierarchical Archimedean
copulas (3.14) (see Okhrin et al. (2013)) and of vine copulas (see Section 2.7.4 and Diß-
mann et al. (2013)). Since the selection based on pseudo observations however induces
uncertainty in the selection of the nesting copula, we perform a misspecification study.

3.6.1 Copula misspecification

To analyze the effect of misspecification of the cluster and nesting copulas, we resume
the setting of the simulation study in Section 3.5 and simulate samples of size 1000 from
four-dimensional hierarchical Kendall copulas with cluster copulas C1 and C2 chosen as
Clayton, Gumbel or Frank, and the nesting copula C0 as Gaussian, Student’s t (ten degrees
of freedom), Clayton, Gumbel or Frank. Parameters are again determined according to
Kendall’s τ values of 0.4 and 0.7 and the number of repetitions is 100.

In addition, we simulate from a range of alternative multivariate copulas to investigate
how well these copulas can be approximated by a hierarchical Kendall copula. We consider
four-dimensional regular vine copulas (see Section 2.7) with first tree pair copulas chosen
as C1,2 = C1, C2,3 = C0 and C3,4 = C2 and second and third tree pair copulas chosen as
C1,3|2 = C2,4|3 = C1,4|2,3 = C0. The parameters of the first three copulas are determined
according to a Kendall’s τ of τ1, τ0 and τ2, respectively; the parameters of the latter three
are chosen according to a decreasing value of Kendall’s τ compared to the copula C2,3:
If τj,k|D denotes the Kendall’s τ corresponding to the pair copula Cj,k|D, then we choose
τ1,3|2 = τ2,4|3 = 2τ0/3 and τ1,4|2,3 = τ0/3. Such a pair copula construction mimics, to some
extent, a hierarchical dependence model, but without having explicit between-cluster de-
pendence. Furthermore, we simulate from hierarchical Archimedean copulas (3.14) with
Clayton, Gumbel and Frank cluster and nesting copulas. This is however only possible
if τ0 ≤ min{τ1, τ2}, since the between-cluster dependence cannot be stronger than the
within-cluster dependence. Finally, we also consider four-dimensional Gaussian and Stu-
dent’s t copulas (ten degrees of freedom) with correlation matrices structured according
to the respective Kendall’s τ values for within- and between-cluster dependence. In order
to ensure positive definiteness of the correlation matrices, Kendall’s τ values however have
to be adapted when between-cluster dependence is 0.7. Then, within-cluster dependence
is set to either 0.6 for both clusters or to 0.7 and 0.5 for the different clusters.

The effect of misspecification is examined in terms of the Kullback-Leibler divergence
(see Kullback and Leibler (1951)) between the true (simulated) model and the alternative
models fitted by maximum likelihood estimation. The results are illustrated in Figures
3.10 and 3.11. First of all, they show that the hierarchical Kendall copulas provide a
very good fit if the cluster copulas are identified correctly. This means that the effect
of the uncertainty with respect to the selection of the nesting copula based on pseudo
observations is not severe. These results also hold when the true model is a hierarchical
Archimedean copula, which apparently can be well approximated by a hierarchical Kendall
copula (see also Figure 3.5).

Differences between the models become more distinct with increasing dependence in
terms of Kendall’s τ . In particular, the Clayton copula is rather different from the other
copulas (see, e.g., the shape of the scatter plots in Figure 3.3) and therefore harder to
approximate by a misspecified model. As a result, the elliptical copulas are also best
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Figure 3.10: Illustration of mean Kullback-Leibler divergences (part 1): light colors indi-
cate a small divergence, dark colors a large divergence (black corresponds to
the maximum divergence of 1.839). Notation for the x- and y-axes: (C0,C1,C2)
with Gaussian (N), Student’s t (T), Clayton (C), Gumbel (G), and Frank (F)
copulas; vine copulas are indicated by ‘V’, hierarchical Archimedean copulas
by ‘HAC’. Columns correspond to the true models, rows to the fitted models.
Notation for the panel titles: (τ0,τ1,τ2), where L := 0.4 and H := 0.7.

71



3 Hierarchical Kendall copulas

HLL

N
C

C

T
C

C

C
C

C

G
C

C

F
C

C

N
G

G

T
G

G

C
G

G

G
G

G

F
G

G

N
F

F

T
F

F

C
F

F

G
F

F

F
F

F

V
(N

C
C

)

V
(T

C
C

)

V
(C

C
C

)

V
(G

C
C

)

V
(F

C
C

)

V
(N

G
G

)

V
(T

G
G

)

V
(C

G
G

)

V
(G

G
G

)

V
(F

G
G

)

V
(N

F
F

)

V
(T

F
F

)

V
(C

F
F

)

V
(G

F
F

)

V
(F

F
F

)

H
A

C
(C

)

H
A

C
(G

)

H
A

C
(F

) N T

FFF
GFF
CFF
TFF
NFF
FGG
GGG
CGG
TGG
NGG
FCC
GCC
CCC
TCC
NCC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

True

F
itt

ed

HLH

N
C

C

T
C

C

C
C

C

G
C

C

F
C

C

N
G

G

T
G

G

C
G

G

G
G

G

F
G

G

N
F

F

T
F

F

C
F

F

G
F

F

F
F

F

V
(N

C
C

)

V
(T

C
C

)

V
(C

C
C

)

V
(G

C
C

)

V
(F

C
C

)

V
(N

G
G

)

V
(T

G
G

)

V
(C

G
G

)

V
(G

G
G

)

V
(F

G
G

)

V
(N

F
F

)

V
(T

F
F

)

V
(C

F
F

)

V
(G

F
F

)

V
(F

F
F

)

H
A

C
(C

)

H
A

C
(G

)

H
A

C
(F

) N T

FFF
GFF
CFF
TFF
NFF
FGG
GGG
CGG
TGG
NGG
FCC
GCC
CCC
TCC
NCC

0.0

0.5

1.0

1.5

True

F
itt

ed

HHH

N
C

C

T
C

C

C
C

C

G
C

C

F
C

C

N
G

G

T
G

G

C
G

G

G
G

G

F
G

G

N
F

F

T
F

F

C
F

F

G
F

F

F
F

F

V
(N

C
C

)

V
(T

C
C

)

V
(C

C
C

)

V
(G

C
C

)

V
(F

C
C

)

V
(N

G
G

)

V
(T

G
G

)

V
(C

G
G

)

V
(G

G
G

)

V
(F

G
G

)

V
(N

F
F

)

V
(T

F
F

)

V
(C

F
F

)

V
(G

F
F

)

V
(F

F
F

)

H
A

C
(C

)

H
A

C
(G

)

H
A

C
(F

) N T

FFF
GFF
CFF
TFF
NFF
FGG
GGG
CGG
TGG
NGG
FCC
GCC
CCC
TCC
NCC

0.0

0.5

1.0

1.5

True

F
itt

ed

Figure 3.11: Illustration of mean Kullback-Leibler divergences (part 2): light colors indi-
cate a small divergence, dark colors a large divergence (black corresponds to
the maximum divergence of 1.839). Notation for the x- and y-axes: (C0,C1,C2)
with Gaussian (N), Student’s t (T), Clayton (C), Gumbel (G), and Frank (F)
copulas; vine copulas are indicated by ‘V’, hierarchical Archimedean copulas
by ‘HAC’. Columns correspond to the true models, rows to the fitted models.
Notation for the panel titles: (τ0,τ1,τ2), where L := 0.4 and H := 0.7.
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3.7 Application: Returns of major German stocks

approximated by hierarchical Kendall copulas with Gumbel and Frank components. Hi-
erarchical Kendall copulas with elliptical nesting copula and Gumbel or Frank cluster
copulas are very close in terms of the Kullback-Leibler divergence even if clusters are
heterogeneous. The non-hierarchical vine copulas are naturally more difficult to approx-
imate by hierarchical Kendall copulas. Especially when the cluster copulas C1 and C2

are selected in the same way as the pair copulas C1,2 and C3,4, respectively, hierarchical
Kendall copulas may however be quite close in terms of the Kullback-Leibler divergence.

3.7 Application: Returns of major German stocks

Finance is a major field, where copulas are used for dependence modeling (see, e.g., Cheru-
bini et al. (2004)). Often financial data exhibits some kind of clustering structure such as
industry sectors and national stock markets. For such data, hierarchical Kendall copulas
are very suitable. To investigate the usefulness of this newly proposed class of dependence
models and to illustrate the presented inference techniques, the most important German
stock market index DAX is analyzed.

3.7.1 Data

The DAX is composed of 30 major German stocks. For these we identified ten indus-
try sectors: financials (Allianz, Commerzbank, Deutsche Bank, Deutsche Börse, Munich
Re), chemicals (BASF, Bayer, K+S, Linde), healthcare (Fresenius, Fresenius Medical
Care, Merck), automobile (BMW, Daimler, Volkswagen), industrials (MAN, Siemens,
ThyssenKrupp), retail and consumer goods (Adidas, Beiersdorf, Henkel, Metro), IT and
communications (Deutsche Telekom, Infineon, SAP), utilities (E.ON, RWE), transporta-
tion and logistics (Deutsche Post, Lufthansa), and building materials (HeidelbergCement).
For all 30 stocks, more than six years of log returns (January 4, 2005 to July 22, 2011)
are considered, where the time series are split into a training set of N = 1158 observa-
tions (before August 7, 2009) and a testing set of 500 observations, which will be used for
out-of-sample validation of our models in Section 4.5. Three time series of stock prices
and corresponding log returns are shown in Figure 3.12.

3.7.2 Marginal modeling

As it is common in finance, we analyze the log returns using copula-GARCH models (see,
e.g., Jondeau and Rockinger (2006), Patton (2006) and Liu and Luger (2009)). Following
the IFM method (see Section 3.5), we preliminarily fit time series models to the marginal
time series rtj, t = 1, ..., N, j = 1, ..., 30, and then work with the standardized residuals,
which are transformed to marginally uniform data by the probability integral transform.
In particular, we choose marginal GARCH(1,1) models with Student’s t innovations to
capture volatility clustering as observed in Figure 3.12:

rtj = µj + εtj,

εtj = σtjZtj,

σ2
tj = ωj + αjε

2
t−1,j + βjσ

2
t−1,j,

(3.19)
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Figure 3.12: Stock prices (top) and corresponding log returns (bottom) of Allianz, BMW
and Siemens from January 2005 to July 2011.

where Ztj ∼ T̃1(νj) for t = 1, ..., N and j = 1, ..., 30. Here, T̃1(ν) denotes the univariate
standardized Student’s t distribution with ν degrees of freedom and distribution function
T̃ν (in contrast to the Student’s t distribution T1(0, 1, ν), which has variance ν/(ν − 2)).

After estimation of the model parameters µj, ωj, αj, βj and νj for j = 1, ..., 30, the
standardized residuals are given by

ẑtj =
rtj − µ̂j
σ̂tj

,

and we set ûtj := T̃ν̂j(ẑtj), t = 1, ..., N, j = 1, ..., 30. The model fits have been validated
with appropriate tests such as the Ljung-Box and the Kolmogorov-Smirnov test.

3.7.3 Dependence modeling

Although cluster selection is not needed here, we now illustrate the selection proce-
dures developed in Section 3.6. Using the transformed standardized residuals ûtj, t =
1, ..., N, j = 1, ..., 30, we perform hierarchical clustering with the metric (3.17) and av-
erage linkage as well as aggregation using the empirical copulas and Kendall distribution
functions of the clusters. The resulting dendograms are shown in Figure 3.13. For instance,
the utility and the healthcare sector can easily be identified. This is not the case for the
chemical and the IT companies.

74



3.7 Application: Returns of major German stocks

F
re

se
ni

us
 M

ed
ic

al
 C

ar
e

F
re

se
ni

us M
er

ck
V

ol
ks

w
ag

en
H

ei
de

lb
er

gC
em

en
t

K
+

S
B

ei
er

sd
or

f
D

eu
ts

ch
e 

Te
le

ko
m

E
.O

N
R

W
E

In
fin

eo
n

H
en

ke
l

M
et

ro
D

eu
ts

ch
e 

B
ör

se
A

di
da

s
D

eu
ts

ch
e 

P
os

t
B

ay
er

Li
nd

e
S

A
P

Lu
fth

an
sa

B
M

W
D

ai
m

le
r

A
lli

an
z

M
un

ic
h 

R
e

C
om

m
er

zb
an

k
D

eu
ts

ch
e 

B
an

k B
A

S
F

S
ie

m
en

s M
A

N
T

hy
ss

en
K

ru
pp

0.
5

0.
6

0.
7

0.
8

Average linkage
D

is
ta

nc
e

M
er

ck
V

ol
ks

w
ag

en
K

+
S

H
ei

de
lb

er
gC

em
en

t
B

ei
er

sd
or

f
H

en
ke

l
M

et
ro

B
ay

er
E

.O
N

R
W

E
D

eu
ts

ch
e 

Te
le

ko
m

In
fin

eo
n

D
eu

ts
ch

e 
P

os
t

A
di

da
s

D
eu

ts
ch

e 
B

ör
se

S
A

P
Li

nd
e

M
A

N
T

hy
ss

en
K

ru
pp

B
A

S
F

Lu
fth

an
sa

S
ie

m
en

s
A

lli
an

z
M

un
ic

h 
R

e
C

om
m

er
zb

an
k

D
eu

ts
ch

e 
B

an
k

B
M

W
D

ai
m

le
r

F
re

se
ni

us
 M

ed
ic

al
 C

ar
e

F
re

se
ni

us

0.
50

0.
60

0.
70

0.
80

Aggregation with copula and Kendall dist. function

D
is

ta
nc

e

Figure 3.13: Dendograms of the DAX constituents according to average linkage (left
panel) and aggregation using the empirical copulas and Kendall distribution
functions of the clusters (right panel).

Sectors Fin. Chem. Healthc. Auto. Ind. Retail IT Util. Transp.

Size 5 4 3 3 3 4 3 2 2
Mean Kendall’s τ 0.41 0.33 0.21 0.39 0.38 0.26 0.28 0.56 0.29
Deg. of freedom 8.80 10.70 22.96 12.65 8.13 10.07 8.74 4.63 7.22

Table 3.1: Sector size, mean pairwise empirical Kendall’s τ values and estimated degrees
of freedom of a Student’s t copula for each cluster.

Although both dendograms are quite similar, this is also an example, where hierarchical
clustering using the aggregation with the empirical copulas and Kendall distribution func-
tions does not yield clusters that have a monotone decreasing closeness with increasing
level of the merger (see the right panel of Figure 3.13).

Table 3.1 shows the mean pairwise empirical Kendall’s τ and the estimated degrees of
freedom of a multivariate Student’s t copula (see Example 2.14) for each cluster. Evidently,
within-sector dependence is variable, since some clusters are more homogeneous than
others. Also strong tail dependence, as indicated by small degrees of freedom, cannot be
found in all clusters.

We then fit different hierarchical Kendall copulas to the training data set. Results (log
likelihood, AIC, BIC) are reported in Table 3.2, both for sequential and for joint parameter
estimation, of which the finite sample behavior is investigated in the simulation study
in Section 3.5. As cluster copulas, we consider three different Archimedean copulas to
account for different dependence structures as typically observed in financial data: Clayton
with lower tail dependence, Gumbel with upper tail dependence and Frank without tail
dependence (see Section 2.4). For the nesting copulas, we also investigate Gaussian and
Student’s t copulas, where the fits of the Gaussian copula to the aggregated pseudo
observations of the different sectors turn out to be always inferior to those of the Student’s
t copula and are therefore not displayed here. The different specified models are shown in
the first column of Table 3.2.

For comparison, we also fit classical multivariate Gaussian and Student’s t copulas with
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Seq. est. Joint est.
Copula (cluster, nesting) # Par. log lik. log lik. AIC BIC

Hier. Kendall (Clayton, Student’s t) 55 6656.50 6677.73 -13245.46 -12967.47
Hier. Kendall (Gumbel, Student’s t) 55 6989.32 6992.29 -13874.57 -13596.58
Hier. Kendall (Frank, Student’s t) 55 7185.70 7190.29 -14270.58 -13992.58

Hier. Kendall (Clayton, Clayton) 10 5452.34 5471.09 -10922.17 -10871.63
Hier. Kendall (Gumbel, Gumbel) 10 5860.74 5862.93 -11705.85 -11655.31
Hier. Kendall (Frank, Frank) 10 6003.60 6005.56 -11991.12 -11940.58

Gaussian 435 - 8487.71 -16105.41 -13906.73
Student’s t 436 - 8906.14 -16940.28 -14736.54
Grouped Student’s t 445 8934.42 - -16978.85 -14729.62

R-vine (with pairw. indep. tests) 287 - 9204.77 -17835.54 -16384.91
R-vine 509 - 9512.29 -18006.58 -15433.87

Table 3.2: Log likelihoods according to sequential and joint estimation, numbers of pa-
rameters, AIC and BIC values of the copulas. AIC and BIC values are based
on the joint estimation (if available).

unstructured correlation matrix as well as a grouped Student’s t copula with ten different
parameters for the degrees of freedom of the sectors (see Section 2.3). In addition, an
R-vine copula is selected using the algorithm by Dißmann et al. (2013) (see Algorithm
2.25), where adequate pair copulas are chosen from the following list: Gaussian, Student’s
t, Clayton, Gumbel and Frank as well as rotations by 90, 180 and 270 degrees of the
reflection asymmetric copulas (see Table 2.1 and Figure 2.3). We also consider a more
parsimonious model specification, where the bivariate independence copula is potentially
selected according to an independence test of each pair. R-vine copula parameters are
estimated jointly by maximum likelihood. This is however not the case for the parameters
of the grouped Student’s t copula because of the numerical complexity of the density
expression (2.28). Daul et al. (2003) therefore propose to independently estimate the
degrees of freedom for the different sectors (see Table 3.1). But this approach does not
allow to estimate the degrees of freedom parameter of the building materials sector, which
has only one member. Moreover, we detect a significant improvement in the fit, when
the degrees of freedom parameters are estimated jointly given the estimated correlation
matrix of the standard Student’s t copula. Interestingly, we find that the jointly estimated
degrees of freedom are at least 50% higher than the independently estimated ones reported
in Table 3.1. This implies a weaker joint tail behavior. Similarly, the estimated degrees
of freedom of the standard Student’s t copula are rather high: ν̂ = 21.41. The approach
by Daul et al. (2003) therefore seems to underestimate the degrees of freedom of the
sectors, since it ignores between-sector (tail) dependence, which is typically weaker than
within-sector (tail) dependence.

In contrast, a 30-dimensional hierarchical Archimedean copula cannot be fitted due to
the dependence restrictions of hierarchical Archimedean copulas (see Section 3.3.1): While
there is moderate dependence within some clusters (see Table 3.1), there is still consider-
able and, especially, heterogeneous dependence among clusters (the pairwise Kendall’s τ
values of the aggregated pseudo observations range between 0.15 and 0.51), which cannot
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3.7 Application: Returns of major German stocks

(Clayton, Student’s t) (Gumbel, Student’s t) (Frank, Student’s t)
Estimate Std. Error Estimate Std. Error Estimate Std. Error

Financials 0.757 0.050 1.531 0.036 3.816 0.210
Chemicals 0.568 0.048 1.396 0.033 2.915 0.197
Healthcare 0.323 0.043 1.215 0.028 1.810 0.191
Automobile 0.780 0.055 1.489 0.040 3.775 0.237
Industrials 0.748 0.075 1.505 0.056 3.634 0.303
Retail 0.417 0.037 1.276 0.028 2.189 0.168
IT and comm. 0.396 0.053 1.304 0.033 2.401 0.218
Utilities 1.486 0.146 2.057 0.111 6.829 0.544
Transportation 0.461 0.085 1.325 0.054 2.669 0.325
Between-sector 0.197–0.626 0.023–0.044 0.257–0.733 0.019–0.043 0.248–0.704 0.020–0.043
Deg. of freedom 15.702 1.214 12.790 0.971 19.597 1.559

(Clayton, Clayton) (Gumbel, Gumbel) (Frank, Frank)
Estimate Std. Error Estimate Std. Error Estimate Std. Error

Financials 0.771 0.051 1.543 0.037 3.946 0.210
Chemicals 0.585 0.049 1.397 0.032 3.047 0.199
Healthcare 0.295 0.042 1.242 0.026 2.003 0.182
Automobile 0.785 0.056 1.501 0.040 3.897 0.238
Industrials 0.799 0.078 1.531 0.058 3.880 0.304
Retail 0.426 0.039 1.293 0.027 2.394 0.167
IT and comm. 0.391 0.058 1.330 0.032 2.664 0.215
Utilities 1.468 0.153 2.075 0.110 6.912 0.543
Transportation 0.458 0.103 1.365 0.054 2.981 0.329
Between-sector 0.464 0.034 1.409 0.028 2.979 0.165

Table 3.3: Parameter estimates and their estimated standard errors for the hierarchical
Kendall copulas (based on the training set). For the entries of the correlation
matrix of the Student’s t copulas, ranges are reported.

be modeled using a hierarchical Archimedean copula.

The hierarchical Kendall copulas therefore benefit from not having this restriction on
the within- and between-cluster dependence. Moreover, ten-dimensional Student’s t nest-
ing copulas appear more reasonable than Archimedean nesting copulas (with only one
parameter) due to the varying pairwise between-cluster dependence. With respect to the
cluster copulas, the Frank copula is, according to the AIC, superior to the copulas with
asymmetric tail dependence (Clayton, Gumbel). Hence, the hierarchical Kendall copula
with Frank cluster copulas and Student’s t nesting copula is the best model selected ac-
cording to the sequential procedure outlined in Algorithm 3.22. For the six considered
hierarchical Kendall copulas, parameter estimates and their standard errors according to
the stationary bootstrap by Politis and Romano (1994) with an average block length of
20 observations and 2000 samples can be found in Tables 3.3 and 3.4, showing that there
is significant within- and between-sector dependence.

In comparison to multivariate Gaussian and Student’s t copulas, hierarchical Kendall
copulas perform quite well, in particular, when taking into account the enormous num-
ber of parameters of these models. The additional flexibility of the grouped Student’s t
copula leads only to a weak improvement in the model fit and, according to the BIC,
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3 Hierarchical Kendall copulas

(Clayton, Student’s t) (Gumbel, Student’s t) (Frank, Student’s t)
Kendall’s τ Std. Error Kendall’s τ Std. Error Kendall’s τ Std. Error

Financials 0.275 0.013 0.347 0.015 0.374 0.016
Chemicals 0.221 0.014 0.284 0.017 0.300 0.017
Healthcare 0.139 0.016 0.177 0.019 0.195 0.019
Automobile 0.281 0.014 0.328 0.018 0.371 0.018
Industrials 0.272 0.019 0.335 0.024 0.360 0.024
Retail 0.173 0.013 0.217 0.017 0.232 0.016
IT and comm. 0.165 0.018 0.233 0.020 0.253 0.021
Utilities 0.426 0.023 0.514 0.026 0.555 0.025
Transportation 0.187 0.027 0.245 0.029 0.278 0.029
Between-sector 0.126–0.431 0.017–0.030 0.166–0.524 0.018–0.031 0.160–0.497 0.018–0.031
Deg. of freedom 15.702 1.214 12.790 0.971 19.597 1.559

(Clayton, Clayton) (Gumbel, Gumbel) (Frank, Frank)
Kendall’s τ Std. Error Kendall’s τ Std. Error Kendall’s τ Std. Error

Financials 0.278 0.013 0.352 0.015 0.384 0.016
Chemicals 0.226 0.014 0.284 0.016 0.311 0.017
Healthcare 0.128 0.016 0.195 0.017 0.214 0.018
Automobile 0.282 0.014 0.334 0.018 0.380 0.018
Industrials 0.285 0.020 0.347 0.024 0.379 0.023
Retail 0.176 0.013 0.226 0.016 0.252 0.016
IT and comm. 0.164 0.020 0.248 0.018 0.277 0.020
Utilities 0.423 0.025 0.518 0.025 0.558 0.024
Transportation 0.186 0.033 0.267 0.027 0.306 0.028
Between-sector 0.188 0.011 0.290 0.014 0.305 0.014

Table 3.4: Kendall’s τ values of the parameter estimates (see Table 2.1) and their esti-
mated standard errors for the hierarchical Kendall copulas (based on the train-
ing set). For the entries of the correlation matrix of the Student’s t copulas,
ranges are reported.

the standard Student’s t copula is even superior. The number of parameters of elliptical
copulas could be reduced significantly by using correlation matrices structured according
to an appropriate factor model. These however have to be fitted carefully in order to
satisfy positive definiteness constraints. Overall the R-vine copulas provide the best fit,
since they constitute the most flexible models. But if no independence copulas are used as
building blocks, the resulting R-vine copula is even less parsimonious than the elliptical
copulas. Moreover, the vine copulas are not straightforward to interpret, especially not in
terms of sectoral dependence.

Given that the highly parameterized multivariate elliptical and vine copulas can be
regarded as the current state-of-the-art models for financial return data, we focus on
these models and investigate if the more parsimonious hierarchical Kendall copulas are
competitive with them in more detail in a Value-at-Risk forecasting study in Section
4.5. The good in-sample results obtained here are in line with the misspecification study
in Section 3.6.1, where hierarchical Kendall copulas with elliptical nesting and Frank or
Gumbel cluster copulas are shown to be reasonably close to multivariate elliptical models
and, to some extent, to vine copulas.
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3.8 Conclusion

3.8 Conclusion

In this chapter, we introduce and discuss the new class of hierarchical Kendall copulas.
By grouping variables in different hierarchical levels, it provides an appealing construc-
tion principle for high-dimensional dependence models. It is shown that the important
special cases of independence as well as of comonotonicity belong to this model class. For
Archimedean cluster copulas, a stochastic representation is given and differences to hierar-
chical Archimedean copulas are investigated. Most importantly, the density of hierarchical
Kendall copulas is derived.

Thereafter, statistical inference techniques for hierarchical Kendall copulas are devel-
oped. In particular, a general simulation algorithm is provided and parameter estimation
methods are discussed. The availability of the density of hierarchical Kendall copulas
renders feasible estimation using maximum likelihood techniques. Methods for the selec-
tion of clusters and of appropriate cluster and nesting copulas are also proposed. Finally,
we show that a model with Archimedean cluster copulas and Student’s t nesting copula
performs very well in a substantial financial application.

In the next chapter, we develop different approaches to sampling from hierarchical
Kendall copulas. Both closed-form procedures as well as approximate methods are derived
and compared. At the end of the chapter, the analysis of dependencies among returns of
major German stocks is continued.
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4 Sampling from hierarchical
Kendall copulas

Sampling from a hierarchical Kendall copula involves simulation of a random vector given
that it lies in a particular level set of its copula, which is generally a non-trivial prob-
lem. We derive closed-form approaches for Archimedean, Archimax and Plackett copulas
and propose approximate sampling procedures for cases where no such closed-form ap-
proach is available. This chapter is mainly based on Brechmann (2013b). The material on
Archimedean copulas is taken from Brechmann (2013a).

4.1 Introduction

Sampling from different classes of copulas has been a major subject of the copula literature
of the last years. For instance, Archimedean and nested Archimedean copulas have been
treated in Whelan (2004), McNeil (2008) and Hofert (2008, 2011), while solutions for
vine copulas have been discussed in Kurowicka and Cooke (2006), Aas et al. (2009) and
Dißmann et al. (2013). For an overview, we refer to Mai and Scherer (2012).

According to Algorithm 3.17 given in Section 3.4, sampling from a hierarchical Kendall
copula involves the distribution of a random vector given that it lies in a particular level
set. Explicit solutions for this distribution are generally hard to find. Nevertheless, we
provide general guidelines for this issue and develop closed-form sampling procedures for
Archimedean, Archimax and Plackett copulas. In addition, we propose three approximate
sampling methods, which are not restricted to any particular copula class: rejection-like
sampling, sample reordering, and density resampling, where the latter two will be referred
to as bottom-up approaches—in contrast to the top-down procedure of Algorithm 3.17.
An overview of the different approaches that are developed is provided in Figure 4.1. The
sampling accuracy of the approximate approaches is evaluated in a simulation study and
we show how hierarchical Kendall copulas can be used to forecast the Value-at-Risk of a
stock portfolio. This continues the investigation of Section 3.7.

The problem of simulating from a random vector given that it lies in a particular level
set is not exclusively a problem in sampling from hierarchical Kendall copulas. Recently,
Salvadori et al. (2011) proposed a notion of a multivariate return period that identifies
copula level sets as the critical sets of extreme events, e.g., in hydrology (see also Gräler
et al. (2013) and the discussion in Chapter 7). To simulate events that lie in such a critical
set, the top-down sampling approach discussed in this chapter can be used. Especially
extreme value copulas such as the asymmetric Tawn copula (see Example 2.19) are of
interest in this context. As they are a special case of Archimax copulas, a closed-form
sampling approach for extreme value copulas is presented in this chapter.
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4 Sampling from hierarchical Kendall copulas

Top-down sampling (Section 4.2) Bottom-up sampling (Section 4.3)

Conditional inverse sampling
(Sections 4.2.1–4.2.3: Archimedean,
extreme value, Archimax, Plackett)

Projected distribution
sampling (Section 4.2.1:

Archimedean)

Rejection-like
sampling

(Section 4.2.4)

Sample
reordering

(Section 4.3.1)

Density
resampling

(Section 4.3.2)

Exact Approximate

Figure 4.1: Overview of the available sampling methods. Copulas that allow for closed-
form approaches are indicated in brackets.

The remainder of the chapter is organized as follows. Section 4.2 presents general guide-
lines for top-down sampling and develops top-down sampling procedures of Archimedean,
Archimax and Plackett copulas. Rejection-like sampling, as an approximate top-down
approach, is proposed in Section 4.2.4. Section 4.3 then discusses the two approximate
bottom-up simulation algorithms. The three approximate methods are then evaluated and
compared in Section 4.4, and the Value-at-Risk forecasting study is presented in Section
4.5. Section 4.6 concludes.

4.2 Top-down sampling

The general top-down sampling procedure is described in Algorithm 3.17. Since it es-
sentially inverts the model formulation in Definition 3.3, we consider it as the canon-
ical approach for sampling from hierarchical Kendall copulas. It amounts to sampling
from a random vector given a particular level set (2.10) of its copula. Hence, we need
to derive the distribution of U |C(U) = z, where U := (U1, ..., Ud)

′ ∼ C and C is a
d-dimensional copula. We present two approaches to this problem: the conditional in-
verse method and the explicit characterization of the distribution projected to the level
set L(z;C) = {u ∈ [0, 1]d : C(u) = z}. Solutions for certain classes of copulas are then
discussed in the following. Alternatively, approximate rejection-like sampling can be used.

A common method to sample from a multivariate distribution is the conditional inverse
method (see, e.g., Devroye (1986)). For this, we need to determine the iterative conditional
distribution functions of U |C(U) = z, that is, the distribution functions of

U1|C(U) = z,

U2|(U1 = u1, C(U) = z),

...

Ud−1|(U1 = u1, ..., Ud−2 = ud−2, C(U ) = z).

The distribution function of Ud|(U1 = u1, ..., Ud−1 = ud−1, C(U ) = z) does not need to be
determined because the value of Ud is uniquely given through the conditioning variables by
ud = C−1(z|u1, ..., ud−1). The corresponding conditional distribution functions are denoted
by FUj |U1,...,Uj−1,C(U)(·|u1, ..., uj−1, z) and densities by fUj |U1,...,Uj−1,C(U)(·|u1, ..., uj−1, z) for
j = 1, ..., d− 1, respectively. This yields the following algorithm.
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4.2 Top-down sampling

Algorithm 4.1 (Conditional inverse method). Let C be a d-dimensional copula and
z ∈ (0, 1).

(i) Sample w1, ..., wd−1 independently from the uniform distribution.

(ii) For j = 1, ..., d− 1: uj = F−1
Uj |U1,...,Uj−1,C(U)(wj|u1, ..., uj−1, z).

(iii) Set ud = C−1(z|u1, ..., ud−1).

(iv) Return (u1, ..., ud)
′.

Hence, the problem is to determine the conditional distribution functions, which are
generally not given in closed form.

Theorem 4.2 (Conditional distributions). Let U ∼ C, where C is a d-dimensional
copula. Then it holds for all j = 1, ..., d − 1, (u1, ..., uj−1)′ ∈ [0, 1]j−1, z ∈ (0, 1) and
u ∈ (C−1(z|u1, ..., uj−1), 1) that

FUj |U1,...,Uj−1,C(U)(u|u1, ..., uj−1, z) =

∫ u
C−1(z|u1,...,uj−1)

gj(u1, ..., uj, z) duj
∫ 1

C−1(z|u1,...,uj−1)
gj(u1, ..., uj, z) duj

, (4.1)

where

gj(u1, ..., uj, z) =

∫ 1

C−1(z|u1,...,uj)
...

∫ 1

C−1(z|u1,...,ud−2)

g̃(u1, ..., ud−1, z) dud−1...duj+1, (4.2)

and g̃(u1, ..., ud−1, z) = c(u1, ..., ud−1, C
−1(z|u1, ..., ud−1)) ∂

∂z
C−1(z|u1, ..., ud−1).

Proof: The idea is to derive the conditional density fUj |U1,...,Uj−1,C(U)(·|u1, ..., uj−1, z) and
then integrate to obtain the distribution function. We observe that

fUj |U1,...,Uj−1,C(U)(uj|u1, ..., uj−1, z) =
fU1,...,Uj ,C(U)(u1, ..., uj−1, uj, z)

fU1,...,Uj−1,C(U)(u1, ..., uj−1, z)
. (4.3)

According to the change of variables U 7→ (U1, ..., Ud−1, C(U))′ similar as in Equation
(3.5), we have that

fU1,...,Ud−1,C(U)(u1, ..., ud−1, z) = c(u1, ..., ud−1, C
−1(z|u1, ..., ud−1))

∂

∂z
C−1(z|u1, ..., ud−1)

= g̃(u1, ..., ud−1, z).

Therefore, the numerator can be rewritten as

fU1,...,Uj ,C(U)(u1, ..., uj, z)

=

∫ 1

C−1(z|u1,...,uj)
fU1,...,Uj+1,C(U)(u1, ..., uj+1, z) duj+1

= ... =

∫ 1

C−1(z|u1,...,uj)
...

∫ 1

C−1(z|u1,...,ud−2)

fU1,...,Ud−1,C(U)(u1, ..., ud−1, z) dud−1...duj+1

=

∫ 1

C−1(z|u1,...,uj)
...

∫ 1

C−1(z|u1,...,ud−2)

g̃(u1, ..., ud−1, z) dud−1...duj+1

= gj(u1, ..., uj, z).
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4 Sampling from hierarchical Kendall copulas

Figure 4.2: Distribution of U |C(U) = z for the Clayton copula. The left panel shows
the level set L(z;C) for z = 0.2 and the right panel illustrates the univariate
probability density on L(z;C). The parameter of the Clayton copula is chosen
according to a Kendall’s τ of 0.5 (θ = 2).

Further, the denominator of (4.3) then reads as

fU1,...,Uj−1,C(U)(u1, ..., uj−1, z) =

∫ 1

C−1(z|u1,...,uj−1)

gj(u1, ..., uj, z) duj.

In the case j = 1, this is simply the density expression of the Kendall distribution function
(see Definition 2.9).

Finally, we obtain the expression for the conditional distribution function (4.1) by in-
tegration over (4.3). �

In general, the conditional distribution functions given in Equation (4.1) do not allow
for explicit expressions. Especially if the copula quantile function C−1(·|u1, ..., uj) is not
available in closed form, such as for common elliptical copulas, Equation (4.1) hardly
simplifies.

In such cases, a potential alternative may be to directly consider the distribution of
U ∼ C projected to the (d − 1)-dimensional level set L(z;C) ⊂ [0, 1]d. This (d − 1)-
dimensional distribution ofU |C(U) = z is illustrated for the Clayton copula (see Example
2.15) in Figure 4.2.

To derive an explicit characterization of this distribution, it is promising if a stochastic
representation of the copula is available (see, e.g., Equation (2.26) for the Student’s t
copula and Equation (2.32) for Archimedean copulas). In fact, both elliptical and Archi-
medean copulas can be traced back to the same underlying distribution: the Dirichlet
distribution.

Remark 4.3 (Dirichlet distribution). The d-dimensional Dirichlet distribution D(α) with
parameter vector α = (α1, ..., αd)

′, αj > 0, j = 1, ..., d, is a distribution on the d-
dimensional unit simplex Sd−1 (see Equation (2.33)). We write S := (S1, ..., Sd)

′ ∼ D(α)
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4.2 Top-down sampling

if S has density

fD(s;α) =
Γ
(∑d

j=1 αj

)

∏d
j=1 Γ (αj)

d∏

j=1

s
αj−1
j , s := (s1, ..., sd)

′ ∈ Sd−1.

If d = 2, the Dirichlet distribution reduces to the beta distribution, of which it is the
multivariate generalization (see, e.g., Fang et al. (1990) and Kotz et al. (2000)). �

If α1 = ... = αd = 1, then the Dirichlet distribution is the uniform distribution on
Sd−1. McNeil and Nešlehová (2009) show that Archimedean copulas are the survival cop-
ulas of random vectors X with so-called `1-norm symmetric distribution, which can be
represented as

X
d
= RS, (4.4)

where S ∼ D(1, ..., 1) and the radial variable R is a non-negative random variable inde-
pendent of S (see Fang et al. (1990)). This yields the representation (2.32).

Conversely, an elliptically distributed random vector X with mean µ ∈ Rd and positive
definite scale matrix Σ ∈ Rd×d can be represented as (see Fang and Fang (1988) and
Hashorva et al. (2007))

X
d
= µ+RA′

(
I1S

1/2
1 , ..., IdS1/2

d

)′
, (4.5)

where S ∼ D(1
2
, ..., 1

2
) and A ∈ Rd×d such that A′A = Σ. Further, R is a non-negative ran-

dom variable independent of S, and I1, ..., Id are independent and identically distributed
with P (I1 = −1) = P (I1 = 1) = 0.5. They are also independent of S and of R. The

random vector (I1S
1/2
1 , ..., IdS1/2

d )′ is therefore uniformly distributed on the d-dimensional

unit sphere {x ∈ Rd :
∑d

j=1 x
2
j = 1}. As introduced in Section 2.2, elliptical copulas are

the copulas of elliptically distributed random vectors.
The major difference in the stochastic representations of Archimedean and elliptical

copulas in terms of the Dirichlet distribution lies in the random signs Ij, j = 1, ..., d. While
the radial variable of `1-norm symmetric random vectors (4.4) uniquely characterizes level
sets of the distribution, this is not the case for elliptical distributions (4.5). As a result, we
will be able to explicitly derive the distribution ofU |C(U) = z, when C is an Archimedean
copula, but not when it is elliptical.

4.2.1 Archimedean copulas

Closed-form top-down sampling procedures for an Archimedean copula C(·;ϕ) with gen-
erator ϕ can be derived both using the conditional inverse method and by explicitly
characterizing the distribution of U |C(U ;ϕ) = z, as noted above. We begin with the
conditional inverse method, where particularly convenient expressions can be obtained
for the conditional distribution functions FUj |U1,...,Uj−1,C(U), j = 1, ..., d− 1 (see Theorem
4.2).

85



4 Sampling from hierarchical Kendall copulas

Lemma 4.4 (Conditional distributions of Archimedean copulas). Let U ∼ C(·;ϕ), where
C(·;ϕ) is a d-dimensional Archimedean copula with generator ϕ. Then it holds for all
j = 1, ..., d− 1, (u1, ..., uj−1)′ ∈ [0, 1]j−1, z ∈ (0, 1) and u ∈ (C−1(z|u1, ..., uj−1;ϕ), 1) that

FUj |U1,...,Uj−1,C(U ;ϕ)(u|u1, ..., uj−1, z;ϕ) =

(
1− ϕ(u)

ϕ(z)−∑1≤i<j ϕ(ui)

)d−j

. (4.6)

Proof: See Appendix B.1 for two proofs. One involves Theorem 4.2 and the other exploits
properties of the Dirichlet distribution (see Remark 4.3). �

Lemma 4.4 allows to use the conditional inverse method to sample from Archimedean
copulas, for which the conditional distribution functions can easily be inverted in closed
form.

Algorithm 4.5 (Conditional inverse method for Archimedean copulas). Let C(·;ϕ) be a
d-dimensional Archimedean copula with generator ϕ and z ∈ (0, 1).

(i) Sample w1, ..., wd−1 independently from the uniform distribution.

(ii) For j = 1, ..., d− 1: uj = ϕ−1((1− w1/(d−j)
j )(ϕ(z)−∑1≤i<j ϕ(ui))).

(iii) Set ud = ϕ−1(ϕ(z)−∑1≤i<d ϕ(ui)).

(iv) Return (u1, ..., ud)
′.

In Step (iii) the copula quantile function as defined in Equation (2.35) is used. Illus-
trations of samples from bivariate and trivariate Clayton copulas generated according to
this algorithm can be found in Figure 3.6.

As noted above, we can also explicitly consider the distribution of U on a level set.
The following result is an immediate consequence of the stochastic representation of Ar-
chimedean copulas in terms of `1-norm symmetric distributions (see Equations (2.32) and
(4.4)).

Proposition 4.6 (Projected distribution of Archimedean copulas). Let U ∼ C(·;ϕ),
where C(·;ϕ) is a d-dimensional Archimedean copula with generator ϕ. Then it holds for
z ∈ (0, 1) that

(U |C(U ;ϕ) = z)
d
=
(
ϕ−1(S1ϕ(z)), ..., ϕ−1(Sdϕ(z))

)′
, (4.7)

where S = (S1, ..., Sd)
′ is uniformly distributed on the unit simplex Sd−1, that is, S ∼

D(1, ..., 1) (see Remark 4.3).

Proof: According to Equation (2.32), we have the representation (ϕ(U1), ..., ϕ(Ud))
′ d

=
RS, where R =

∑d
j=1 ϕ(Uj) = ϕ(C(U ;ϕ)) is the radial part, which is independent of S.

Fixing the level set L(z;ϕ) is therefore equivalent to setting R = ϕ(z), so that we obtain
Equation (4.7). �
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4.2 Top-down sampling

Equation (4.7) for the distribution of an Archimedean copula projected to a level set is
particularly appealing, since it does not depend on the radial variable and its distribution,
which may not be available in closed form. This result can be used to provide an alternative
sampling algorithm for U |C(U ;ϕ) = z, which can be shown to be equivalent to Algorithm
4.5, when using explicit expressions for the observations (s1, ..., sd)

′ from S in terms of
uniform random variables (see Hering (2011, Lemma 3.1.8)).

Algorithm 4.7 (Projected distribution sampling for Archimedean copulas). Let C(·;ϕ)
be an Archimedean copula with generator ϕ and z ∈ (0, 1).

(i) Sample (s1, ..., sd)
′ from S.

(ii) For j = 1, ..., d: uj = ϕ−1(sjϕ(z)).

(iii) Return (u1, ..., ud)
′.

Algorithms 4.5 and 4.7 can both also be used to sample from an Archimedean cop-
ula C(·;ϕ). For this, we need to sample the level of the level set from the correspond-
ing Kendall distribution function K(·;ϕ) (see Equation (2.36)). This can be done, for
example, by independently drawing an additional uniform observation wd and setting
z = K−1(wd;ϕ) prior to the other steps. An equivalent version of this result has previ-
ously been stated in Wu et al. (2007), which has been restated by Hering (2011) in the
setting of the work by McNeil and Nešlehová (2009), as we use it in Algorithm 4.7.

4.2.2 Extreme value and Archimax copulas

For bivariate extreme value and Archimax copulas as introduced in Section 2.5, a variant
of the conditional inverse method (see Algorithm 4.1) can be used in order to circumvent
that there is no known closed-form copula quantile function in general. We first state it
for the more general class of Archimax copulas (2.48) and then explicitly formulate it for
the special case of extreme value copulas (2.43).

Let (U1, U2)′ ∼ C(·, ·;ϕ,A), where C(·, ·;ϕ,A) is ϕ is an Archimedean generator and A
is a Pickands dependence function. Furthermore, define

T := ϕ(U2)/(ϕ(U1) + ϕ(U2)) and Z := C(U1, U2;ϕ,A).

Instead of directly sampling from U1|Z = z, the idea is to first sample t from T |Z = z
and then solve the equations ϕ(u2)/(ϕ(u1) + ϕ(u2)) = t and C(u1, u2;ϕ,A) = z for u1

and u2, which hence constitute observations from (U1, U2)′|Z = z.
Assuming that all required derivatives exist, it holds according to Capéraà et al. (2000,

Proposition 5.1) that

P (T ≤ t, Z ≤ z) = K(z;ϕ)

(
t+ t(1− t)A

′(t)

A(t)

)
+ (z −K(z;ϕ)) τA(t), t, z ∈ [0, 1],

where K(z;ϕ) = z−ϕ(z)/ϕ′(z) is the Kendall distribution function of the corresponding
Archimedean copula with generator ϕ (see Equation (2.37)) and

τA(t) =

∫ t

0

s(1− s)
A(s)

dA′(s).
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4 Sampling from hierarchical Kendall copulas

In the case t = 1, this is the Kendall’s τ of the extreme-value copula with Pickands
dependence function A, that is, τ(A) = τA(1) (see Equation (2.45) or (2.46)). It follows
that the distribution function FT |Z of T |Z = z is given by

FT |Z(t|z;ϕ,A) := P (T ≤ t|Z = z) =
k(z;ϕ)

(
t+ t(1− t)A′(t)

A(t)

)
+ (1− k(z;ϕ)) τA(t)

k(z;ϕ) + (1− k(z;ϕ)) τ(A)
,

where k(z;ϕ) = K ′(z;ϕ) = ϕ(z)ϕ′′(z)/(ϕ′(z))2 is the density of the Kendall distribution
function of the bivariate Archimedean copula with generator ϕ.

Following the idea outlined above, this gives the following conditional simulation algo-
rithm for Archimax copulas.

Algorithm 4.8 (Conditional inverse method for Archimax copulas). Let C(·, ·;ϕ,A)
be an Archimax copula with generator ϕ and Pickands dependence function A and let
z ∈ (0, 1).

(i) Sample w from the uniform distribution.

(ii) Set t = F−1
T |Z(w|z;ϕ,A).

(iii) Set u1 = ϕ−1
(

(1− t)ϕ(z)
A(t)

)
and u2 = ϕ−1

(
tϕ(z)
A(t)

)
.

(iv) Return (u1, u2)′.

As can be easily verified, the values u1 and u2 in Step (iii), in fact, solve the equations
ϕ(u2)/(ϕ(u1) + ϕ(u2)) = t and C(u1, u2;ϕ,A) = z.

In the case of extreme value copulas (ϕ(t) = − log t), the conditional distribution func-
tion FT |Z simplifies to

FT |Z(t|z;A) =
log z

(
t+ t(1− t)A′(t)

A(t)

)
− (1 + log z) τA(t)

log z − (1 + log z) τ(A)
.

Algorithm 4.8 can then be restated for extreme value copulas as follows.

Algorithm 4.9 (Conditional inverse method for extreme value copulas). Let C(·, ·;A)
be an extreme value copula with Pickands dependence function A and let z ∈ (0, 1).

(i) Sample w from the uniform distribution.

(ii) Set t = F−1
T |Z(w|z;A).

(iii) Set u1 = z(1−t)/A(t) and u2 = zt/A(t).

(iv) Return (u1, u2)′.

Figure 4.3 shows samples from different Tawn copulas (see Example 2.19) generated
according to this algorithm. It illustrates the effect of asymmetry on the contour line and
on the samples on the contour line.

In both algorithms, inverses of FT |Z have to be obtained numerically, since a closed-form
inversion is not feasible in general. Moreover, Algorithm 4.8 can, of course, also be used
for sampling from Archimedean copulas if A(t) = 1 for all t ∈ [0, 1] (see Section 4.2.1).
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4.2 Top-down sampling
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Figure 4.3: Scatter plots of samples from different Tawn copulas with a Kendall’s τ of 0.5
on the level set at z = 0.2. The corresponding contour lines are shown in gray.
The dashed line is the angle bisector.

4.2.3 Plackett copula

The conditional inverse method for the Plackett copula C(·, ·;α) with parameter α ∈
(−1,∞) \ {0} can be derived through a direct application of Theorem 4.2. The calcu-
lation of the conditional distribution function FU1|C(U1,U2;α)(·|z;α) for level z ∈ (0, 1) is
rather cumbersome but provides a closed-form expression. Its derivation can be found
in Appendix B.4. Algorithm 4.1 is then straightforward to apply. The copula quantile
function, as needed in Step (iii) of the conditional inverse algorithm, is given in Equation
(2.52).

For the FGM copula (see Equation (2.53)), a similar derivation as for the Plackett
copula is possible, but it does not lead to such a convenient closed-form expression of the
conditional distribution function.

While for Gaussian copulas no closed-form sampling procedure is known, the Plackett
copula may be used as an approximate substitute in the bivariate case, since the properties
of the Gaussian and the Plackett copula are quite similar (see Example 2.13, Section 2.6,
and, especially, Figures A.3 and A.11).

4.2.4 Rejection-like sampling

For classes of copulas, for which no closed-form solutions are available, such as the ellip-
tical copulas, approximate rejection-like sampling may be used to generate approximate
observations from U |C(U) = z: Instead of sampling from U |C(U) = z, we choose a small
number ε > 0 and sample from U |(z − ε < C(U) < z + ε). This is illustrated in the left
panel of Figure 4.4.

Algorithm 4.10 (Rejection-like sampling). Let C be a d-dimensional copula, z ∈ (0, 1)
and ε > 0.

(i) Sample u from C.

(ii) If |C(u)− z| < ε, return u. Otherwise go back to Step (i).
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Figure 4.4: Left panel: level set L(z;C) at z = 0.2 of the Clayton copula with parameter
θ = 2 (Kendall’s τ of 0.5). The dashed lines illustrate the non-rejection area
(z−ε, z+ε) for ε = 0.01. Middle and right panel: scatter plots of corresponding
samples generated through rejection-like sampling and closed-form conditional
inverse sampling (see Algorithm 4.5).

The middle panel of Figure 4.4 shows an exemplary sample from a Clayton copula for
z = 0.2. The error ε is chosen as 0.01. Notice in particular the difference to the closed-form
solution shown in the right panel of Figure 4.4, which is reproduced from Figure 3.6.

The accuracy of this approximate method can be controlled through the choice of ε > 0,
which is an upper bound on the absolute sampling error |C(u)− z|. The smaller ε is, the
more accurate the results are, but, at the same time, the higher the computing time is.
We will quantify this trade-off in the simulation study in Section 4.4.

Remark 4.11 (Improved acceptance ratio). The acceptance ratio of this sampling ap-
proach is rather small, since Lε(z, C) := {u ∈ [0, 1]d : C(u) ∈ (z − ε, z + ε)} is a quite
small subset of [0, 1]d. This is especially true in higher dimensions. One way to improve the
acceptance ratio is not to sample from the copula C directly but from its restriction to the
upper orthant [z−ε, 1]d, since for u ∈ Lε(z, C) it always holds that min{u1, ..., ud} > z−ε
due to the upper Fréchet-Hoeffding bound (2.3). Whether this actually improves the com-
putational efficiency of rejection-like sampling strongly depends on the efficiency of the
method to generate observations in the upper orthant. For the multivariate Gaussian cop-
ula this can be carried out using a Gibbs sampler for the multivariate normal distribution
truncated to [Φ−1(z−ε), 1]d (see Geweke (1991)). In high dimensions and if a large sample
size is required for a given level z, this may be advantageous to unrestricted sampling from
the copula. A similar approach is available for the Student’s t copula. �

4.3 Bottom-up sampling

In this section, we propose two methods for bottom-up sampling of hierarchical Kendall
copulas as alternatives to the top-down approach discussed above. Both approaches have
in common that they start by drawing a sample of multivariate independent observations.
These observations are then appropriately reordered (first method) or resampled (second
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4.3 Bottom-up sampling

method) such that they represent an approximate sample of the hierarchical Kendall
copula. This means that we essentially start at the bottom of Figure 3.2, which illustrates
the definition of hierarchical Kendall copulas (see Definition 3.3), and then adjust the
sample according to the hierarchical dependence structure of the model.

Here, the nature of the approximation to the true distribution is different to rejection-
like sampling, which allows to set an explicit error bound. When using either one of the
presented bottom-up sampling methods, convergence to the true distribution is only at-
tained with increasing sample sizes. In other words, in small samples the exact underlying
distribution is unknown, leading to potentially false conclusions. Such small-sample effects
are therefore investigated in the simulation study in Section 4.4.

4.3.1 Sample reordering

In the context of hierarchical dependence models, the use of sample reordering, which was
originally developed by Iman and Conover (1982), is proposed by Arbenz et al. (2012). The
idea of sample reordering is to independently sample margins and the copula and then to
reorder the independent margins according to the ranks of the dependent sample generated
from the copula. For hierarchical copulas, this may be used to reorder aggregated samples
from the different clusters according to a sample from the nesting copula. Bottom-up
sampling using sample reordering proceeds as follows.

Algorithm 4.12 (Sample reordering of hierarchical Kendall copulas). Let CK be a hier-
archical Kendall copula with cluster copulas C1, ..., Cn1 and nesting copula C0.

(i) Generate a sample (uIk)k=1,...,N of size N from the n-dimensional independence cop-
ula, where uIk := (uIk1, ..., u

I
kn)′, k = 1, ..., N .

(ii) Generate samples (u0
k,mi−1+1, ..., u

0
k,mi

)k=1,...,N , i = 1, ..., n1, of size N from the cluster
copulas C1, ..., Cn1 .

(iii) Set pj(k) =
∑N

`=1 1{u0`j≤u0kj} ∈ {1, ..., N}, the rank of u0
kj among (u0

1j, ..., u
0
Nj)
′, for

k = 1, ..., N and j = 1, ..., n.

(iv) Set uCpj(k),j = uI(k),j for k = 1, ..., N and j = 1, ..., n, where uI(k),j is the kth order

statistic of (uI1j, ..., u
I
Nj)
′ such that uI(1),j ≤ uI(2),j ≤ ... ≤ uI(N),j.

(v) Set vIki = Ki(Ci(u
C
k,mi−1+1, ..., u

C
k,mi

)) for k = 1, ..., N and i = 1, ..., n1.

(vi) Generate a sample (v0
k)k=1,...,N of size N from the nesting copula C0, where v0

k :=
(v0
k1, ..., v

0
kn1

)′, k = 1, ..., N .

(vii) Set qi(k) =
∑N

`=1 1{v0`i≤v0ki} ∈ {1, ..., N}, the rank of v0
ki among (v0

1i, ..., v
0
Ni)
′, and

ri(k) =
∑N

`=1 1{vI`i≤vIki} ∈ {1, ..., N}, the rank of vIki among (vI1i, ..., v
I
Ni)
′, for k =

1, ..., N and i = 1, ..., n1.

(viii) Return the observations uqi(j)(k),j = uIri(j)(k),j, k = 1, ..., N , where i(j) is the cluster

of variable j ∈ {1, ..., n}.
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4 Sampling from hierarchical Kendall copulas

In Steps (i)–(iv) a sample from each cluster copula Ci, i = 1, ..., n1, is generated using
the method by Iman and Conover (1982). Clearly, Steps (i), (iii) and (iv) are redundant
given Step (ii), but we include them, since they show how other margins than uniform
can be used instead. The final sample from the hierarchical Kendall copula is obtained
by reordering the original independent sample according to the independent aggregated
clusters in Step (v) and the dependent sample from the nesting copula C0 in Step (vi).
This means that the sample is reordered twice: first according to the cluster copulas, and
second according to the nesting copula. We illustrate the approach in an example.

Example 4.13 (Sample reordering). As in Example 3.6, let CK be a four-dimensional
hierarchical Kendall copula with d1 = d2 = 2, Clayton and Gumbel cluster copulas
with parameters θ1 = 1.33 and θ2 = 1.67, respectively, and a Frank nesting copula with
parameter θ0 = 11.41. To illustrate the sample reordering method of Algorithm 4.12, we
set N = 4 and assume that our sample has already been reordered according to the cluster
copulas C1 and C2, so that (uIk)k=1,...,4 = (uCk )k=1,...,4. Let the sample be given by

uI1 = uC1 = (0.2, 0.5, 0.6, 0.2)′,

uI2 = uC2 = (0.4, 0.1, 0.2, 0.3)′,

uI3 = uC3 = (0.3, 0.6, 0.1, 0.6)′,

uI4 = uC4 = (0.9, 0.7, 0.8, 0.5)′.

This yields the aggregated values

vI11 = K1(C1(0.2, 0.5)) = 0.30, vI12 = K2(C2(0.6, 0.2)) = 0.36,

vI21 = K1(C1(0.4, 0.1)) = 0.16, vI22 = K2(C2(0.2, 0.3)) = 0.27,

vI31 = K1(C1(0.3, 0.6)) = 0.43, vI32 = K2(C2(0.1, 0.6)) = 0.22,

vI41 = K1(C1(0.9, 0.7)) = 0.87, vI42 = K2(C2(0.8, 0.5)) = 0.68,

from which we obtain the ranks ri(k), k = 1, ..., 4, i = 1, 2, as

r1(1) = 2, r2(1) = 3,

r1(2) = 1, r2(2) = 2,

r1(3) = 3, r2(3) = 1,

r1(4) = 4, r2(4) = 4.

In the next step, we generate a sample (v0
k)k=1,...,4 from the nesting copula C0. Let this

sample and the corresponding ranks qi(k), k = 1, ..., 4, i = 1, 2, be given by

v0
1 = (0.1, 0.4)′, q1(1) = 1, q2(1) = 2,

v0
2 = (0.3, 0.7)′, q1(2) = 2, q2(2) = 4,

v0
3 = (0.7, 0.2)′, q1(3) = 3, q2(3) = 1,

v0
4 = (0.8, 0.5)′, q1(4) = 4, q2(4) = 3.
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4.3 Bottom-up sampling

These ranks are then used to reorder the sample (uIk)k=1,...,4, such that between-cluster
dependence is respected. We calculate

u11 = uq1(1),1 = uIr1(1),1 = uI21 = 0.4,

u12 = uq1(1),2 = uIr1(1),2 = uI22 = 0.1,

u13 = uq2(3),3 = uIr2(3),3 = uI13 = 0.6,

u14 = uq2(3),4 = uIr2(3),4 = uI14 = 0.2,

and similarly for k = 2, 3, 4. This yields

u1 = (0.4, 0.1, 0.6, 0.2)′,

u2 = (0.2, 0.5, 0.1, 0.6)′,

u3 = (0.3, 0.6, 0.8, 0.5)′,

u4 = (0.9, 0.7, 0.2, 0.3)′,

which constitutes the final sample. �

Strong uniform consistency of the sample reordering method as N → ∞ was recently
shown under certain regularity conditions on the aggregation function and on the copu-
las by Mainik (2012), who also gives convergence rates. These conditions are satisfied
by any component-wise non-decreasing aggregation function and by any copula with
bounded density. Aggregation using the copula and the Kendall distribution function
is component-wise non-decreasing, since copulas are multivariate distribution functions
and Kendall distribution functions are non-decreasing. However, most common copulas
such as the Gaussian, the Student’s t or the Clayton have unbounded density. In Mainik
(2012) convergence is shown for the Gaussian and the Clayton copula but remains an
open question for other families. We complement the results by showing that convergence
also holds for the bivariate Joe copula (see Example 2.18).

Remark 4.14 (Regularity conditions for the bivariate Joe copula). To show conver-
gence for the absolutely continuous Joe copula C(·, ·; θ) with θ > 1, we need to verify
the regularity conditions (15) and (16) of Mainik (2012). Condition (16) requires that∫ 1/2

0

√
logK(ε2) dε ≤ ∞, where K(ε) = esssup{c(u1, u2; θ) : (u1, u2)′ ∈ [ε, 1 − ε]2} and

c(·, ·; θ) is the density of the bivariate Joe copula (see Equation (2.40)):

c(u1, u2; θ) =
(
(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ

)1/θ−2
(4.8)

× (1− u1)θ−1(1− u2)θ−1 (4.9)

×
(
θ − 1 + (1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ

)
. (4.10)

According to Remark 4.1(a) of Mainik (2012), condition (16) is in particular satisfied if
K(ε) is polynomial. This holds, since the term in (4.10) is bounded by θ, (1− u1)θ−1 and
(1− u2)θ−1 in (4.9) are bounded by 1, and the term in (4.8) can be rewritten as

((
1− u1

1− u2

)θ
+

(
1− u2

1− u1

)θ
− 1

)1/θ−2

((1− u1)(1− u2))1−2θ ≤ ((1− u1)(1− u2))1−2θ ,
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which is a polynomial.
Condition (15) is more technical and can be verified exactly along the lines of Proposi-

tion 4.2 in Mainik (2012). The proof requires the derivation of the maximum of c(·, u2; θ)
for fixed u2 ∈ (0, 1). It is reached at

u∗1 = u∗1(u2) = max

{
1−

(
(1− u2)θ(1− (1− u2)θ − θ)

((1− u2)θ − 1)(θ − (1− u2)θ)

)1/θ

, 0

}
.

These results show that it is reasonable to use sample reordering for the bivariate Joe
copula, as we do it in the simulation study in Section 4.4. �

4.3.2 Density resampling

In contrast to the bottom-up method presented in the previous section, this method does
not modify the observations per variable but leaves them as they are. For copulas with
available density, the density resampling approach has been proposed by Kurowicka and
Cooke (2006, Section 6.4.3). The idea is to resample from a large number of independent
uniform observations according to probabilities proportional to the density evaluated at
the observations. Sampling efficiency can be increased if a good proposal distribution
is known, which approximates the distribution of interest and from which it is easy to
simulate. This has been named the sampling/importance resampling method by Rubin
(1987, 1988). Here, we formulate the density resampling method for hierarchical Kendall
copulas with density given in Equation (3.2) in terms of a general proposal distribution,
which is not necessarily the multivariate independence copula.

Algorithm 4.15 (Density resampling of hierarchical Kendall copulas). Let CK be a

hierarchical Kendall copula with density cK and let C̃ be the proposal copula with density
c̃. To generate a sample of size N , let Ñ � N .

(i) Generate a sample (wk)k=1,...,Ñ of size Ñ from the proposal copula C̃.

(ii) Resample N times from (wk)k=1,...,Ñ according to probabilities proportional to the
importance ratios,

rk :=
cK(wk)

c̃(wk)
, k = 1, ..., Ñ . (4.11)

That is, draw a sample Λ of size N without replacement from {1, ..., Ñ} according

to probabilities pk = rk/
∑Ñ

`=1 r`, k = 1, ..., Ñ .

(iii) Return the resulting sample (uk)k=1,...,N := (wk)k∈Λ.

If the proposal copula is not well-chosen, this is obviously rather inefficient, since Ñ then
should be chosen significantly larger than N to generate a reasonably good sample. In the
simulation study in Section 4.4, we therefore compare density resampling with two differ-
ent proposal copulas: the multivariate independence copula and the multivariate Gaussian
copula with appropriately chosen correlation matrix (see Example 2.13). Sampling from
a Gaussian copula as well as the evaluation of its density (2.20) are straightforward and
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can be implemented efficiently, so that samples and the importance ratios (4.11) can be
obtained conveniently. The Gaussian copula also allows for heterogeneous pairwise depen-
dence, which is needed to appropriately capture within- and between-cluster dependence
of a hierarchical Kendall copula.

But even if no reasonable proposal is available, density resampling with independence
copula proposal may be considered as an alternative to rejection-like sampling (Section
4.2.4) and also to sample reordering (Section 4.3.1), which may also require large samples
to generate an accurate sample. It is however important that the evaluation of the density
cK is computationally fast.

The finite sample performance and the computing time of all three approximate sam-
pling approaches are considered in a numerical study in the next section. Particular focus
is put on the choice of Ñ . We compare two different choices of Ñ relative to N for the
two proposal copulas, since no general rules how to adequately choose the ratio Ñ/N

are available for multivariate distributions. Clearly, the poorer the proposal copula C̃ is
chosen, the larger Ñ/N should be.

4.4 Simulation study

Three of the methods discussed here are approximate: rejection-like sampling (Section
4.2.4), sample reordering (Section 4.3.1) and density resampling (Section 4.3.2). We there-
fore perform a simulation study in order to assess these approaches to sampling from hier-
archical Kendall copulas. In particular, we investigate different choices of ε for rejection-
like sampling (see Algorithm 4.10) and of the proposal copula C̃ as well as of Ñ for density
resampling (see Algorithm 4.15); sample reordering does not require any choice of control
parameters.

The sampling procedures are compared based on a four-dimensional hierarchical Ken-
dall copula with bivariate Clayton and Joe cluster copulas and Gaussian nesting copula.
The cluster copulas are reflection asymmetric with lower and upper tail dependence,
respectively. The Gaussian nesting copula is tail independent. Parameters are chosen
according to a Kendall’s τ of τ0 = 0.5 for the Gaussian copula (medium dependence; copula
parameter of θ0 = 0.71) and τ1 = τ2 = 0.7 for the cluster copulas (strong dependence;
copula parameters of θ1 = 4.67 for the Clayton and θ2 = 5.46 for the Joe copula). In the
case of sample reordering, convergence for the Clayton and the Gaussian copula is shown
in Mainik (2012) and for the Joe copula in Remark 4.14.

As benchmark for the approximate methods, we generate a large sample (u0
k)k=1,...,N∗

(N∗ = 1 000 000) using closed-form conditional inverse sampling for Archimedean copulas
(see Algorithms 4.5, 4.7 and 4.8), since both the Clayton and the Joe copulas are Ar-
chimedean. As an illustration, a sample of size 1000 of this benchmark data is shown in
Figure 4.5.

To compare the different approaches, we generate samples (uk)k=1,...,N of different sizes
N ∈ {100, 200, 500, 1000, 2000} and compare different evaluation criteria. The following
six criteria are considered based on R = 1000 repetitions:
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Figure 4.5: A sample of size 1000 from the simulated benchmark data. Variables 1 and 2
form the first cluster with Clayton copula, variables 3 and 4 the second with
Joe copula. The lower triangle shows contour lines of the pairwise empirical
densities with standard normal margins (the corresponding axes range from
−3 to 3).

(i) Mean squared difference of pairwise Kendall’s τ values:

1

R

R∑

r=1

1

6

∑

1≤i<j≤4

(
τ̂

(r)
ij − τ̂ 0

ij

)2

,

where τ̂
(r)
ij is the empirical Kendall’s τ of the variables i and j in repetition r and

τ̂ 0
ij that of the benchmark data.

(ii) Mean squared difference of pairwise lower-tail Kendall’s τ values:

1

R

R∑

r=1

1

6

∑

1≤i<j≤4

(
τ̂

(r)
ij,L − τ̂ 0

ij,L

)2

,

where τ̂
(r)
ij,L is the empirical 20% lower-tail Kendall’s τ of the variables i and j in

repetition r and τ̂ 0
ij,L that of the benchmark data. The 20% lower-tail Kendall’s τ is

given for two uniform random variables U1 and U2 as the Kendall’s τ of (U1, U2|U1 <
0.2, U2 < 0.2). It is a rank-based version of the exceedance correlation coefficient
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4.4 Simulation study

by Longin and Solnik (2001) and Ang and Chen (2002) and serves as a measure of
lower tail behavior.

(iii) Mean squared difference of pairwise upper-tail Kendall’s τ values:

1

R

R∑

r=1

1

6

∑

1≤i<j≤4

(
τ̂

(r)
ij,U − τ̂ 0

ij,U

)2

,

where τ̂
(r)
ij,L is the empirical 20% upper-tail Kendall’s τ of the variables i and j in

repetition r and τ̂ 0
ij,L that of the benchmark data. The 20% upper-tail Kendall’s τ

is defined in an analogous way to the lower-tail Kendall’s τ and measures upper tail
behavior.

(iv) Mean squared difference of empirical copulas:

1

R

R∑

r=1

1

|∆|4
∑

v∈∆4

(
Ĉ(r)(v)− Ĉ0(v)

)2

,

where Ĉ(r) is the empirical copula of the sample (u
(r)
k )k=1,...,N in the rth repetition

and Ĉ0 that of the benchmark data. Further, ∆ is an equispaced partition of [0, 1]
of size |∆| = 25. Hence, in each repetition the empirical copulas are evaluated at
|∆|4 = 254 = 390 625 points of [0, 1]4.

(v) Mean squared difference of log likelihoods:

1

R

R∑

r=1

(
1

N

N∑

k=1

log cK
(
u

(r)
k

)
− 1

N∗

N∗∑

k=1

log cK
(
u0
k

)
)2

,

where u
(r)
k denotes the kth observations in the rth repetition and cK is the density

of the hierarchical Kendall copula (see Equations (3.2) and (3.15)) evaluated at the
true parameters. The log likelihoods are standardized by the sample sizes to allow
for comparison.

(vi) Mean squared difference of parameters:

1

R

R∑

r=1

1

3

∑

i∈{0,1,2}

(
τi(θ̂i)− τi

)2

,

where θ̂i are maximum likelihood estimates of θi, i = 0, 1, 2, which are transformed
to Kendall’s τ values using the respective relationships τi(·) implied by the copulas
(see Table 2.1).

While the first three criteria focus on data characteristics, namely the level of general
dependence as well as the lower and upper tail behavior, the fourth criterion directly
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4 Sampling from hierarchical Kendall copulas

compares the empirical copulas and the last two criteria investigate the effects on estima-
tion and model selection.

Based on these six criteria we evaluate and compare the three approximate procedures.
For rejection-like sampling we choose ε ∈ {10−2, 10−3, 10−4}, while for density resampling

we choose Ñ as a multiple of N , namely Ñ/N ∈ {100, 1000}. The proposal copula is
either chosen as the independence copula or as the Gaussian copula, where the entries
of the correlation matrix are chosen according to the Spearman’s ρS of the within- and
between-cluster dependence parameters (see Equation (2.22)). Using Corollary 3.12, the
Spearman’s ρS of the variables 1 and 3, which are in different clusters, is given by

ρS,13 = 12

∫

[0,1]2
u1u3 dCK,13(u1, u3)− 3

= 12

∫

[0,1]4
u1u3 c0(K1(C1(u1, u2)), K2(C2(u3, u4))) c1(u1, u2) c2(u3, u4) du− 3,

which can be solved numerically.
Simulation results for all three methods and all six criteria are shown in Table 4.1 and

illustrated in Figure 4.6. In addition, we report the mean computing time in seconds (on
a 2.6Ghz AMD Opteron). Standard errors of the evaluation criteria are shown in Table
4.2 and illustrated in Figure 4.7.

With respect to the data characteristics of Kendall’s τ as well as lower- and upper-tail
Kendall’s τ , rejection-like sampling and sample reordering give very similar results. Most
interestingly, the choice of the error ε in rejection-like sampling has only little influence on
the results. The choice of Ñ in relation to the sample sizeN for density resampling however
strongly influences the performance. Only if Ñ/N = 1000, the results are similarly good
as for the other two methods. The two proposal copulas lead to different results with
respect to lower- and upper-tail Kendall’s τ , where the Gaussian proposal copula yields
much better results, which are even similar to those of the other methods. This is not the
case for the independence proposal copula, which does not produce good results in the
tails. On the whole, it should be noted that the general dependence in terms of Kendall’s
τ is better approximated than tail behavior as measured by the lower- and upper-tail
Kendall’s τ . For larger sample sizes, the differences are however quite small, so that we
can conclude that simulation using rejection-like sampling, sample reordering and density
resampling with Gaussian proposal copula appropriately reproduces data characteristics.

Results are similar for the empirical copula. The criterion and the corresponding stan-
dard error are minimized when sample reordering is used, but also rejection-like sampling
and density resampling with Gaussian proposal copula work quite well. Density resam-
pling with independence proposal only yields reasonable results if Ñ/N = 1000, while

choosing Ñ/N = 100 is clearly too small. For rejection-like sampling, the performance
does not depend on the choice of ε.

In terms of log likelihoods and copula parameters, the results provide additional insights
which allow to better discriminate among the methods. While rejection-like sampling
does very well and shows little dependence on ε (there is a notable difference between
the choices of ε only for N = 100 and the log likelihood difference), sample reordering
strongly suffers from small sample sizes (in particular N ≤ 1000), where convergence of
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4.4 Simulation study

Rejection-like sampling Reor- Resamp. (indep.) Resamp. (Gauss.)

N ε=10−2 ε=10−3 ε=10−4 dering Ñ
N =102 Ñ

N =103 Ñ
N =102 Ñ

N =103

Mean squared difference of pairwise Kendall’s τ values (×103)

100 2.362 2.263 2.424 2.395 6.963 2.699 6.963 2.699
200 1.159 1.160 1.126 1.124 6.103 1.609 6.103 1.609
500 0.430 0.431 0.421 0.430 5.248 0.922 5.248 0.922

1000 0.234 0.233 0.232 0.216 4.863 0.663 4.863 0.663
2000 0.112 0.113 0.112 0.107 4.735 0.586 4.735 0.586

Mean squared difference of pairwise lower-tail Kendall’s τ values (×103)

100 55.711 55.805 56.455 57.177 110.640 68.250 59.538 57.619
200 21.198 21.168 22.788 20.847 44.197 27.489 22.674 21.684
500 7.409 7.591 7.622 7.233 20.077 11.244 7.946 7.937

1000 3.712 3.766 3.772 3.536 14.252 6.491 4.038 3.776
2000 1.779 1.821 1.779 1.782 11.765 4.401 2.058 1.927

Mean squared difference of pairwise upper-tail Kendall’s τ values (×103)

100 56.577 56.047 56.638 55.059 136.183 70.978 55.553 55.870
200 21.272 21.743 21.258 21.643 51.750 29.722 20.526 21.352
500 7.445 7.718 7.616 7.652 24.475 13.084 7.787 7.749

1000 3.393 3.550 3.623 3.595 17.682 8.075 3.663 3.603
2000 1.706 1.770 1.783 1.694 14.680 6.172 1.873 1.778

Mean squared difference of empirical copulas (×103)

100 1.067 1.062 1.069 0.838 1.380 1.057 1.018 1.053
200 0.524 0.521 0.524 0.427 0.987 0.539 0.547 0.541
500 0.212 0.212 0.212 0.171 0.692 0.263 0.230 0.205

1000 0.102 0.103 0.102 0.085 0.577 0.148 0.119 0.106
2000 0.051 0.051 0.051 0.042 0.541 0.105 0.068 0.056

Mean squared difference of log likelihoods (×103)

100 36.527 36.780 37.230 528.955 184.999 51.703 33.689 38.533
200 18.918 19.884 17.612 194.076 181.721 42.193 17.949 17.895
500 7.319 7.089 7.217 45.092 177.304 32.627 6.968 7.627

1000 3.749 3.745 3.667 14.724 171.343 29.305 3.653 3.527
2000 1.832 1.852 1.802 4.570 170.900 28.416 1.985 1.972

Mean squared difference of parameters (×103)

100 2.174 2.006 1.847 8.086 5.377 4.109 1.764 1.923
200 0.510 0.475 0.514 3.292 2.694 1.129 0.618 0.467
500 0.164 0.158 0.165 0.924 0.597 0.190 0.166 0.156

1000 0.086 0.081 0.083 0.356 0.339 0.105 0.085 0.077
2000 0.041 0.040 0.041 0.137 0.303 0.069 0.047 0.043

Mean computing time (in seconds)

100 0.598 4.258 40.289 0.007 0.140 1.437 0.212 2.055
200 0.975 6.035 52.812 0.008 0.287 3.072 0.449 4.180
500 2.000 9.335 83.587 0.013 0.754 10.520 1.062 13.143

1000 4.073 15.002 129.981 0.023 1.680 27.464 2.255 32.301
2000 9.168 27.645 210.657 0.040 4.224 76.565 5.277 84.362

Table 4.1: Evaluation criteria.
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4 Sampling from hierarchical Kendall copulas

Rejection-like sampling Reor- Resamp. (indep.) Resamp. (Gauss.)

N ε=10−2 ε=10−3 ε=10−4 dering Ñ
N =102 Ñ

N =103 Ñ
N =102 Ñ

N =103

Mean squared difference of pairwise Kendall’s τ values (×103)

100 2.196 2.135 2.365 2.306 5.964 2.917 5.964 2.917
200 1.111 1.093 1.150 1.034 4.119 1.865 4.119 1.865
500 0.399 0.412 0.390 0.392 2.464 0.921 2.464 0.921

1000 0.238 0.235 0.239 0.189 1.663 0.510 1.663 0.510
2000 0.106 0.102 0.108 0.094 1.189 0.379 1.189 0.379

Mean squared difference of pairwise lower-tail Kendall’s τ values (×103)

100 49.193 50.027 49.114 45.366 101.992 61.745 52.074 54.149
200 17.180 17.548 20.126 15.309 32.135 22.174 17.867 17.293
500 5.559 5.579 5.869 5.364 13.039 8.165 5.848 6.379

1000 2.846 2.929 2.822 2.656 8.496 4.507 2.983 2.909
2000 1.327 1.324 1.342 1.314 5.162 2.826 1.503 1.413

Mean squared difference of pairwise upper-tail Kendall’s τ values (×103)

100 54.669 57.262 56.159 43.434 122.226 65.793 49.342 51.126
200 17.869 16.943 16.899 16.714 37.416 23.327 16.704 16.249
500 5.640 5.834 5.616 5.581 15.778 9.753 5.805 5.849

1000 2.624 2.783 2.814 2.636 9.635 5.544 2.710 2.531
2000 1.294 1.384 1.339 1.244 5.973 3.690 1.365 1.410

Mean squared difference of empirical copulas (×103)

100 0.861 0.830 0.851 0.388 0.896 0.803 0.786 0.790
200 0.433 0.412 0.422 0.203 0.647 0.379 0.446 0.427
500 0.191 0.186 0.190 0.080 0.353 0.181 0.180 0.158

1000 0.075 0.074 0.074 0.039 0.235 0.103 0.093 0.079
2000 0.040 0.039 0.039 0.019 0.179 0.067 0.053 0.044

Mean squared difference of log likelihoods (×103)

100 54.395 54.627 53.474 469.152 119.981 66.208 49.007 53.798
200 26.886 29.732 26.105 186.001 86.097 44.472 25.372 24.996
500 9.904 9.939 10.479 45.945 56.774 25.852 11.055 10.618

1000 5.309 5.772 5.294 15.609 39.484 17.332 5.106 5.204
2000 2.542 2.507 2.472 5.262 27.097 12.605 3.145 2.757

Mean squared difference of parameters (×103)

100 6.104 5.822 5.442 6.146 10.188 9.042 5.143 5.522
200 1.605 1.300 1.792 2.759 7.259 4.406 2.386 1.317
500 0.157 0.145 0.149 0.780 2.070 0.196 0.164 0.140

1000 0.087 0.080 0.083 0.289 0.237 0.099 0.074 0.069
2000 0.038 0.038 0.039 0.112 0.163 0.065 0.040 0.038

Table 4.2: Standard errors of the evaluation criteria reported in Table 4.1.
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Figure 4.6: Illustration of the evaluation criteria reported in Table 4.1.
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Figure 4.7: Illustration of the standard errors of the evaluation criteria reported in Table
4.1 (see Table 4.2).
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the method cannot be assumed. This is reflected in large standard errors as well. Density
resampling with independence proposal also performs rather poorly in terms of the log
likelihood but does not suffer as heavily from small sample sizes as sample reordering.
Once again, the results clearly show that Ñ/N = 100 is not appropriate. This is different

for the Gaussian copula proposal, which also works well for Ñ/N = 100.
Finally, a look at the computing times reveals that rejection-like sampling with very

small ε is inefficient and also density resampling with Ñ/N = 1000 is quite time-con-
suming. Sample reordering, on the other hand, is computationally very efficient for any
sample size. This is due to the fact that no spare samples need to be generated, from
which the final sample is selected, as in the other two methods. Rejection-like sampling
with ε = 10−2 also has reasonable computing times even for larger sample sizes.

In summary, rejection-like sampling appears to work best and already a choice of ε =
10−2 seems to lead to a very good approximation. As the computing time strongly depends
on ε, these results are very beneficial for the method of rejection-like sampling; a choice
of ε = 10−2 requires only little computing time. For density resampling we compared
two choices of Ñ/N , which also determine the computing time. When an independence

proposal is used, only Ñ/N = 1000 gave satisfactory results, yet indicating that choices of

Ñ/N > 1000 may be necessary. But this would require an excessive computing time, even
when the density of the hierarchical Kendall copula is efficient to evaluate, as it is the case
here. Overall, based on the results of this simulation study, we cannot recommend the
use of density resampling with independence proposal for hierarchical Kendall copulas.
An appropriately chosen Gaussian copula proposal however showed a good performance
and can also be used with Ñ/N = 100. Furthermore, sample reordering also proved to
be a valid alternative to rejection-like sampling but only if sample sizes are sufficiently
large (at least N ≥ 2000), so that convergence of the method can be assumed. This is for
example the case when risk capital figures need to be simulated in finance and insurance,
as discussed in Arbenz et al. (2012) and in Section 4.5 below. The generation of such large
samples using sample reordering is very time-efficient.

If a closed-form solution as for Archimedean (Section 4.2.1), Archimax (Section 4.2.2)
or Plackett copulas (Section 4.2.3) is not available for the simulation of a hierarchical
Kendall copula, we therefore recommend to use either top-down rejection-like sampling
or, for sufficiently large sample sizes, bottom-up sample reordering. If the Gaussian copula
can be calibrated adequately as proposal copula, also density resampling may be used.

4.5 Application: Value-at-Risk forecasting of stock

portfolios

In Section 3.7 we analyzed the dependence among stock returns of the 30 constituents of
the most important German stock market index DAX. It turned out that a hierarchical
Kendall copula with Frank cluster copulas and Student’s t nesting copula quite well fits
the data of the training set of 1158 observations. In finance, interest is however not so much
in a good in-sample fit but rather in out-of-sample validation. A typical exercise for this is
Value-at-Risk (VaR) forecasting. If the distribution of negative returns is continuous, the
(1 − α)-VaR, α ∈ [0, 1], is the (1 − α)-quantile of the distribution of negative returns or

103



4 Sampling from hierarchical Kendall copulas

the α-quantile of the distribution of returns, respectively. For market risk management,
this value needs to be predicted on a daily basis. First, we describe how to carry this out.
Then, the models of Section 3.7 are evaluated using so-called VaR backtests.

To start with, we select a rolling window size N (e.g., four years), a forecast period
of length M and portfolio weights ωj, j = 1, ..., 30, with

∑30
j=1 ωj = 1 (the long-only

constraint ωj ≥ 0 is not required here). For each window {m, ..., N+m−1}, m = 1, ...,M,
we then proceed as follows to forecast the one day ahead Value-at-Risk at level 1−α using
a copula dependence model with GARCH(1,1) margins (see also Berg and Aas (2009),
Nikoloulopoulos et al. (2012) and Brechmann and Czado (2013)).

(i) We specify GARCH(1,1) models with Student’s t error distribution for the marginal
time series rtj, t = m, ..., N+m−1, j = 1, ..., 30, (see Equation (3.19)) and compute
standardized residuals ẑtj, as described in Section 3.7.2.

(ii) Using the estimated parameters, we compute the ex-ante GARCH variance forecast
for j = 1, ..., 30,

σ̂2
N+m,j = ω̂j + α̂jσ̂

2
N+m−1,j ẑ

2
N+m−1,j + β̂jσ̂

2
N+m−1,j. (4.12)

(iii) We fit a copula to the transformed standardized residuals ûtj := T̃ν̂j(ẑtj), t =

m, ..., N + m − 1, j = 1, ..., 30, where T̃ν denotes the distribution function of the
univariate standardized Student’s t distribution with ν degrees of freedom (see Sec-
tion 3.5 for the estimation of hierarchical Kendall copulas).

(iv) We repeat the following 10 000 times:

a) Observations (ûN+m,1, ..., ûN+m,30)′ are generated from the fitted copula as de-
scribed in this chapter.

b) We set ẑN+m,j = T̃−1
ν̂j

(ûN+m,j) for j = 1, ..., 30.

c) The sampled observations and the ex-ante GARCH variance forecasts (4.12)
are used to compute the ex-ante return forecast r̂N+m,j for j = 1, ..., 30,

r̂N+m,j = µ̂j + σ̂N+m,j ẑN+m,j.

d) The portfolio return forecast is then given by r̂N+m,P =
∑30

j=1 ωj r̂N+m,j.

(v) Finally, we compute the (1−α)-VaR of the portfolio return, VaRN+m,1−α(−r̂N+m,P ),
by taking the sample quantile at level α of the 10 000 portfolio return forecasts.

In Step (v) any other risk measure such as the expected shortfall could, of course, easily
be used instead.

When repeating this procedure on a daily basis, the parameters of the copula and the
GARCH margins are re-estimated for each window {m, ..., N + m − 1}, m = 1, ...,M .
Here, we choose a moving window of length N = 1158, which is the length of the training
set, and forecast the portfolio VaR for the M = 500 days of the testing set using the
above procedure. In particular, we consider an equally weighted portfolio of the 30 DAX
constituents, that is, ωj = 1/30, j = 1, ..., 30.

104



4.5 Application: Value-at-Risk forecasting of stock portfolios

Resulting forecasts can then be used to assess the prediction accuracy of a model. For
this, we consider the hit sequence of ex-post exceedances (Christoffersen, 1998),

It =

{
1 if − rt,P > VaRt,1−α(−r̂t,P ),

0 otherwise,
t = N + 1, ..., N +M, (4.13)

where rt,P denotes the ex-post observed portfolio return at time t. This sequence of
Bernoulli variables should exhibit two properties if the forecasts are accurate. First, the ex-
ceedances should occur independently, that is, not in clusters, and second, the proportion
of exceedances should approximately equal the VaR confidence level α (“unconditional
coverage”). The term “conditional coverage” encompasses both properties.

In the literature, a wide range of tests, so-called VaR backtests, for these properties has
been proposed (see, e.g., Campbell (2007) for a review). Since each test exhibits certain
advantages and disadvantages and there are no general guidelines of which test to use, we
recommend applying a battery of such tests to ensure that results are not biased in one
or the other direction. For example, the following tests may be considered.

(i) The proportion of failures test of unconditional coverage by Kupiec (1995) (UC):
Under the null hypothesis of unconditional coverage, it holds that the exceedances
IN+1, ..., IN+M have expectation α. Assuming independence of the exceedances, we
therefore test the null hypothesis

H0 : E(It) = α ∀t = N + 1, ..., N +M,

against the alternative that the expectation is different from α. For this, we use the
likelihood-ratio test statistic proposed by Christoffersen (1998),

LRuc := −2 log

(
(1− α)M−M1 αM1

(1− α̂)M−M1 α̂M1

)
, (4.14)

where M1 =
∑N+M

t=N+1 It is the observed number of exceedances and α̂ = M1/M is
the empirical exceedance probability. The test statistic LRuc asymptotically follows
a χ2 distribution with one degree of freedom, so that we reject H0 at level γ if
LRuc > F−1

χ2 (1− γ; 1), where F−1
χ2 (·; ν) denotes the inverse χ2 distribution function

with ν degrees of freedom

(ii) The Markov test of independence by Christoffersen (1998) (IND1): If exceedances
are independent, the probability of observing an exceedance should be independent
of whether or not there was an exceedance on the previous day. Christoffersen (1998)
proposes to investigate this by considering IN+1, ..., IN+M as a first-order Markov
chain with transition matrix (

1− p01 p01

1− p11 p11

)
,

where pij = P (It = j|It−1 = i), i, j ∈ {0, 1}. We then test the null hypothesis

H0 : p01 = p11,
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against the alternative that the transition probabilities p01 and p11 are different. If
Mij denotes the number of observations with value i followed by j for i, j ∈ {0, 1},
the corresponding likelihood-ratio test statistic is given by

LRind := −2 log

(
(1− p̂1)M00+M10 p̂M01+M11

1

(1− p̂01)M00 p̂M01
01 (1− p̂11)M10 p̂M11

11

)
, (4.15)

where p̂ij = Mij/(Mi0 + Mi1), i, j ∈ {0, 1}, and p̂1 = (M01 + M11)/(M00 + M10 +
M01 + M11) are the empirical transition probabilities. Similar to LRuc defined in
Equation (4.14), the test statistic LRind asymptotically follows a χ2 distribution
with one degree of freedom. We reject H0 at level γ if LRind > F−1

χ2 (1− γ; 1).

(iii) The joint test of conditional coverage by Christoffersen (1998) (CC1): Combining the
above two tests yields a test of conditional coverage, which tests the null hypothesis

H0 : IN+1, ..., IN+M are independent and identically distributed

and follow a Bernoulli distribution with probability α,

against the alternative that this is not the case. The appropriate likelihood-ratio
statistic is given by

LRcc := LRuc + LRind = −2 log

(
(1− α)M−M1 αM1

(1− p̂01)M00 p̂M01
01 (1− p̂11)M10 p̂M11

11

)
,

where LRuc and LRind are defined in Equations (4.14) and (4.15), respectively.
Christoffersen (1998) shows that this test statistic asymptotically follows a χ2 dis-
tribution with two degrees of freedom and we therefore reject H0 at level γ if
LRcc > F−1

χ2 (1− γ; 2).

(iv) The duration-based mixed Kupiec test of conditional coverage by Haas (2001)
(CC2): This test and the following two tests are based on the time between two
exceedances, the duration. Clearly, the durations should be independent of previ-
ous durations and have mean 1/α. For more details on the tests, we refer to the
corresponding references.

(v) The duration-based Weibull test of independence by Christoffersen and Pelletier
(2004) (IND2).

(vi) The duration-based GMM test of conditional coverage by Candelon et al. (2011)
with orders 2 and 5 (CC3 and CC4, respectively).

For model comparison, we focus on the following models: the independence copula, the
Gaussian and the Student’s copula, the fully specified R-vine copula (without indepen-
dence pair copulas) as well as the hierarchical Kendall copula with Frank cluster copulas
and Student’s t nesting copula, which provided the best fit among the examined hierarchi-
cal Kendall copulas in Section 3.7 (see Table 3.2). In addition, we consider a hierarchical
Kendall copulas with Gaussian cluster copulas and Student’s t nesting copula. In contrast
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Copula Level Exceed. UC IND1 IND2 CC1 CC2 CC3 CC4

Independence 99% 20.6% 0.00 0.04 0.00 0.00 0.00 0.00 0.00
95% 27.0% 0.00 0.15 0.03 0.00 0.00 0.00 0.00
90% 31.4% 0.00 0.17 0.03 0.00 0.00 0.00 0.00

Gaussian 99% 1.0% 1.00 0.75 0.79 0.95 0.35 0.93 1.00
95% 5.2% 0.84 0.09 0.74 0.23 0.35 0.98 1.00
90% 10.4% 0.77 0.46 0.87 0.73 0.03 0.29 0.73

Student’s t 99% 0.8% 0.64 0.80 0.21 0.87 0.93 0.75 0.95
95% 4.8% 0.84 0.12 0.73 0.29 0.39 0.89 1.00
90% 10.6% 0.66 0.53 0.85 0.74 0.05 0.31 0.73

R-vine 99% 1.0% 1.00 0.75 0.81 0.95 0.35 0.93 1.00
95% 5.4% 0.69 0.08 0.70 0.20 0.35 0.95 1.00
90% 10.6% 0.66 0.53 0.87 0.74 0.04 0.24 0.66

Hier. Kendall 99% 0.4% 0.13 0.90 0.46 0.31 0.35 0.43 0.82
(Frank, Student’s t) 95% 6.2% 0.23 0.04 0.76 0.06 0.21 0.55 0.92

90% 11.4% 0.31 0.52 0.81 0.48 0.03 0.22 0.64

Hier. Kendall 99% 1.0% 1.00 0.75 0.77 0.95 0.35 0.93 1.00
(Gaussian, Student’s t) 95% 5.4% 0.69 0.08 0.75 0.20 0.31 0.97 1.00

90% 11.2% 0.38 0.46 0.83 0.51 0.03 0.23 0.65

Table 4.3: P -values of VaR backtests for the hypotheses of independence and (un)condi-
tional coverage.

to Frank cluster copulas, this requires a lot more parameters and does not allow for sam-
pling using a closed-form procedure, but this also adds flexibility, since Gaussian cluster
copulas do not assume exchangeable within-sector dependence. For simulation, we use
rejection-like sampling with an error of ε = 10−2, which turned out to yield good results
in the simulation study in Section 4.4. Sampling methods for other copulas can be found,
e.g., in Mai and Scherer (2012). Backtesting results of the six models according to the
above tests can be found in Table 4.3. The time series of VaR forecasts and exceedances
are shown in Figure 4.8.

In summary, none of the hypotheses of independence and (un)conditional coverage can
consistently be rejected for any of the VaR levels and for any of the models—except for the
multivariate independence copula, which is to be expected, since it completely ignores the
dependence among the stocks. Between the two considered hierarchical Kendall copulas
no significant difference can be detected. The weak lack of conditional coverage at the 90%
level, as detected by the mixed Kupiec test of Haas (2001), is not supported by the other
tests. Especially at the important 99% level, which is frequently used, the dependence
models provide accurate forecasts.

This shows that hierarchical Kendall copulas are as good as the common Gaussian and
Student’s t copulas and also as the more flexible R-vine copula when it comes to out-
of-sample validation. In particular, the hierarchical Kendall copula with Frank cluster
copulas and Student’s t nesting copula, which we consider here, is very parsimonious and
allows for closed-form calculations and very efficient sampling due to its Archimedean
clusters (see Section 4.2.1).
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Student's t copula
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Hierarchical Kendall copula (Frank, Student's t)
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Figure 4.8: Time series of log returns of the DAX portfolio with 90%/95%/99%-VaR fore-
casts of the six considered dependence models. VaR exceedances (4.13) are
marked by squares, circles and triangles, respectively.
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4.6 Conclusion

The methods proposed in this chapter complement the results of Chapter 3, where the
hierarchical Kendall copula is proposed as a new multivariate dependence model. We
discuss the problem of sampling from a hierarchical Kendall copula and provide general
guidelines how to solve it. While closed-form solutions can be derived for Archimedean,
Archimax and Plackett copulas, approximate procedures have to be used otherwise. Three
such approximate methods are proposed and evaluated in a simulation study. Especially
top-down rejection-like sampling or, for sufficiently large sample sizes, bottom-up sample
reordering can be recommended. The method of density resampling may be used if an
adequate proposal copula can be calibrated.

An out-of-sample study of stock portfolio returns shows that hierarchical Kendall cop-
ulas are able to forecast the Value-at-Risk similarly well as common elliptical copulas and
also as a flexible vine copula. These models can be considered as relevant benchmarks,
since they constitute state-of-the-art dependence models for financial returns.
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Since the financial crisis of 2007–2009 there is an active debate by regulators and academic
researchers on systemic risk, with the aim of preventing similar crises in the future or at
least reducing their impact. To investigate contagion effects among financial institutions,
we develop methods for stress testing by exploiting the underlying dependence structure.
New approaches for conditional copula simulation of the individual Student’s t copula,
of Archimedean copulas and of C-vine copulas are derived. The case of a hierarchical
Kendall copula is also discussed. The chapter is mainly based on Brechmann, Hendrich,
and Czado (2013).

5.1 Introduction

Dealing with the lessons learned from the financial crisis, the discussion about systemic
risk has become more and more important. The collapse of Lehman Brothers in 2008
showed that the sudden and uncontrolled breakdown of a global financial company not
only affected other financial institutions and seriously endangered the stability of the
global financial sector but also had a great impact on the real economy of several countries
around the world. As a result, the Financial Stability Board (FSB) developed guidelines
to assess the systemic importance of financial institutions, markets, and instruments. The
FSB defines systemic risk as “the risk of disruption to financial services that is (i) caused
by an impairment of all or parts of the financial system and (ii) has the potential to have
serious negative consequences for the real economy” (Financial Stability Board et al.,
2009). Furthermore, an institution, market, or instrument is regarded as systemic if “its
failure or malfunction causes widespread distress, either as a direct impact or as a trigger
for broader contagion” on the financial system and/or the real economy.

The systemic relevance of an institution can be assessed based on several criteria that
have been identified by the FSB. The three most important are size, lack of substitutabil-
ity, and interconnectedness: Financial institutions whose “distress or disorderly failure,
because of their size, complexity, and systemic interconnectedness, would cause signifi-
cant disruption to the wider financial system and economic activity” (Financial Stability
Board, 2011) are called systemically important. These institutions will face additional
regulatory measures to reduce the systemic risk imposed by them. The Basel Committee
on Banking Supervision (2011a) and the International Association of Insurance Supervi-
sors (2012) have developed methodologies to determine globally systemically important
banks and insurers, respectively. The assessment methodology for insurers differs to that
used for banks, since it takes into account the fundamental differences in the business
models of banks and insurance companies. While a systemic classification of insurers has
not been published yet, a list of globally systemically important banks is released on a
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yearly basis. In 2012, there were 28 banks on this list (Financial Stability Board, 2012).

Despite the popular expression “too big to fail”, it has been argued in recent literature
that the interconnectedness of an institution is much more important in the assessment
of systemic risk: Cont and Moussa (2010) and Cont et al. (2013) find that the impact of
the failure of an institution strongly depends on the interdependencies among institutions
and less on its size. Similarly, Markose et al. (2012) observe in their analysis of intercon-
nectedness in the US banking sector that only a few major institutions play a dominant
role in terms of network centrality and connectivity. With respect to contagion in the
US insurance sector, Park and Xie (2011) evaluate the impact of reinsurer downgradings
on US property-casualty insurers and conclude that a systemic crisis caused by rein-
surance transactions is rather unlikely. Billio et al. (2012) analyze the interdependencies
among financial institutions from different sectors using principle component analysis and
Granger-causality networks and detect an interesting asymmetry in the financial system,
as banks are more likely to transmit shocks than insurers, hedge funds or brokers-dealers.
Hence, in light of this research, it is more appropriate to speak of systemically important
institutions as “too (inter-)connected to fail”.

The exploration of contagion and interconnectedness is also the topic of this chapter. We
propose to use copulas to analyze interdependencies in the global financial market, notably
in the banking as well as in the insurance sector and not in both sectors in isolation, as it
is often done. In doing so, we aim to find out whether there are significant differences in
the dependence structure among banks and among (re-)insurers. As a statistical tool for
dependence modeling, copulas allow for an accurate analysis beyond linear correlations
and the common multivariate normal distribution. Therefore, we not only consider the
popular classes of Archimedean and elliptical copulas, but also the grouped Student’s
t copula, vine copulas as well as hierarchical Kendall copulas. These copulas allow to
take into account heterogeneous pairwise and tail dependencies more appropriately and
therefore overcome limitations of the elliptical copulas, which are typically used in higher-
dimensional dependence analysis. The grouped Student’s t copula and hierarchical Kendall
copulas also allow to explicitly respect groupings of variables, for instance, by sector and
by geographical region.

Stress testing is an important tool for the assessment and classification of systemic risk.
The systemic relevance of an institution is decisively determined by the potential impact
of its failure on other institutions. It is therefore crucial to analyze such stress situations
in the market by taking into account the interdependence among the institutions. Sta-
tistically speaking, we are interested in the following situation: Let X := (X1, ..., Xd)

′

be a random vector of risk quantities. Then we want to analyze the case X−r|Xr = xr,
r ∈ {1, ..., d}, where X−r denotes the random vector X without the rth component and
the event {Xr = xr} corresponds to a stress situation. For instance, let Xr be the company
value, then a stress situation occurs when xr is very small.

Such an analysis requires the availability of the conditional distribution ofX−r|Xr = xr,
given the specific underlying dependence model. As this distribution is typically not known
in closed form, conditional simulation algorithms are needed for the scenario analysis.
While these are straightforward and well-known in the case of elliptical copulas, we de-
rive appropriate methods for Archimedean and vine copulas as well as for the individual
Student’s t copula, which includes the grouped Student’s t copula as a special case. Hier-
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archical Kendall copulas then exploit the methods developed for the other classes, which
can form the building blocks of the hierarchical model specification.

The methodology developed in this chapter is used in a case study of 38 important fi-
nancial institutions from all over the world, among them 20 insurers and 18 banks. Their
credit default swap spreads, as market-based indicators of the credit worthiness, are sta-
tistically analyzed and appropriate multivariate dependence models are constructed. A
stress testing exercise then provides insights into the systemic relevance of the differ-
ent institutions. We detect differences among regional markets and, in addition, among
the banking and the insurance sector. Interestingly, the official classification of globally
systemically important banks is hardly reflected in the data. Furthermore, the analysis
reveals new results regarding the classification of insurers, which, however, can not yet be
compared to an official classification

The chapter is structured as follows. Conditional copula simulation procedures for the
classes of elliptical, Archimedean, C-vine and hierarchical Kendall copulas as well as for the
individual Student’s t copula are derived in Section 5.2. The case study is then presented
in Section 5.3, where the developed methods are used to conduct a systemic risk stress
test in Section 5.3.4. Section 5.4 concludes.

5.2 Conditional copula simulation

As noted in the introduction, we are interested in the following situation for systemic
risk stress testing. Let X = (X1, ..., Xd)

′ ∼ F be a continuous random vector and let
X−r denote the sub-vector of X having the rth component removed, r ∈ {1, ..., d}. Then
what is the distribution F−r|r of X−r|Xr = xr? If the event {Xr = xr} corresponds to an
extreme situation, this distribution describes the impact of the rth variable being stressed.

Using the stressed distribution F−r|r, we are then interested in calculating quanti-
ties like the conditional expected value E(X−r|Xr = xr) and the conditional variance
V ar(X−r|Xr = xr) to quantify size and variability of the impact. Similarly, quantiles
of X−r|Xr = xr are of interest to assess extreme cases. Since the calculation of these
quantities may not be feasible in closed form, it is often necessary to resort to statistical
simulation from F−r|r to calculate Monte Carlo estimates of the quantities of interest.

A general approach can be formulated using the conditional inverse method for sampling
from multivariate distributions (see also Section 4.2). Let Fj|1,...,j−1 denote the conditional
distribution function of Xj|(X1 = x1, ..., Xj−1 = xj−1) for j = 1, ..., d (for j = 1 the
conditioning set is empty) and, without loss of generality, let r = 1. Hence, the aim is to
sample x2, ..., xd from F−1|1, which is the conditional distribution of X−1|X1 = x1. We do
this through iterative sampling from the distribution of Xj|(X1 = x1, ..., Xj−1 = xj−1) for
j = 2, ..., d. For this, we sample w2, ..., wd independently from the uniform distribution
and set

xj = F−1
j|1,...,j−1(wj|x1, ..., xj−1), j = 2, ..., d, (5.1)

which then define observations from F−1|1.

This approach is very appealing if the conditional distribution functions Fj|1,...,j−1 can
be determined in closed form. In the case of a C-vine copula as the underlying copula of
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X, this is, in fact, possible (see Section 5.2.4 below). Before that, we discuss the popu-
lar classes of elliptical and Archimedean copulas as well as the more recently proposed
individual Student’s t copula. While the conditional simulation of elliptical copulas is well-
known, the procedures in the case of the individual Student’s t copula and Archimedean
copulas are more challenging and we derive new approaches here. Subsequently, condi-
tional simulation of hierarchical Kendall copulas is discussed, which exploits the results
for its building blocks as well as the sampling methods developed in Chapter 4.

Note that, if Uj := Fj(Xj) for j = 1, ..., d, then it is equivalent to sample from the
distribution ofX−r|Xr = xr or that ofU−r|Ur = ur where ur := Fr(xr), since observations
from the latter can be transformed back to the original level of the data by applying the
inverse distribution functions F−1

j , j ∈ {1, ..., d} \ {r}. We therefore concentrate on the
case U−r|Ur = ur. As above, we let r = 1 unless otherwise stated.

Bivariate copulas such as extreme value copulas and the Plackett copula are not dis-
cussed here, since conditional simulation is straightforward in this case: The sampling
approach using the conditional inverse method (5.1) then only requires the conditional
copulas C2|1 (2.14) (see also Equation (2.58)), which can be obtained by differentiation.

5.2.1 Elliptical copulas

For conditional simulation from elliptical copulas (see Section 2.2), it is advantageous to
transform the random variables by the respective inverse distribution functions. That is,
for the Gaussian copula set Yj := Φ−1(Uj), j = 1, ..., d, and y1 := Φ−1(u1) and for the
Student’s t copula set Yj := T−1

ν (Uj), j = 1, ..., d, and y1 := T−1
ν (u1). Then we sample

(y2, ..., yd)
′ from the corresponding conditional distribution function of Y −1|Y1 = y1 with

appropriate parameters. These observations are finally transformed by uj = Φ(yj) or
uj = Tν(yj), respectively, for j = 2, ..., d.

For the multivariate normal case the conditional distribution of Y −1|Y1 = y1 is well-
known (see, e.g., Kotz et al. (2000)). Let Y ∼ Nd(µ,Σ), where µ = (µ1,µ

′
−1)′ and

Σ =

(
σ11 σ′1
σ1 Σ(−1,−1)

)
,

where σ1 := (σ12, ..., σ1d)
′ and Σ(−1,−1) denotes the covariance matrix Σ with first row

and first column removed. Then Y −1|Y1 = y1 is again multivariate normal with modified
mean vector and covariance matrix:

Y −1|Y1 = y1 ∼ Nd−1(µ̃, Σ̃),

where
µ̃ = µ−1 + σ′1(y1 − µ1)/σ11 and Σ̃ = Σ(−1,−1) − σ1σ

′
1/σ11. (5.2)

Since the conditional distribution is hence known in closed form, expectation and variance
are given explicitly and simulation is only required if non-standard quantities need to be
obtained. For the conditional copula simulation set µ = 0 and Σ = R = (ρjk)j,k=1,...,d,
where R is the corresponding correlation matrix. Then, the conditional mean vector and
the conditional correlation matrix simplify to

µ̃ = ρ′1y1 and R̃ = R(−1,−1) − ρ1ρ
′
1, (5.3)
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where ρ1 := (ρ12, ..., ρ1d)
′ and R(−1,−1) denotes the correlation matrix R with the first row

and the first column removed.
The conditional distribution in the case of a multivariate Student’s t distribution is also

known in closed form. Let Y ∼ Td(µ,Σ, ν). Then (see, e.g., Kotz and Nadarajah (2004))

FY −1|Y1(y−1|y1; µ̃, Σ̃, ν + 1) = Tµ̃,Σ̃,ν+1

(√
ν + 1

ν + (y1 − µ1)2/σ11

y−1

)
,

where µ̃ and Σ̃ are defined in Equation (5.2) and Tµ̃,Σ̃,ν+1 is the distribution func-

tion of the Td−1(µ̃, Σ̃, ν + 1) distribution. This means that observations from FY −1|Y1
can be drawn by sampling (ỹ2, ..., ỹd)

′ from Td−1(µ̃, Σ̃, ν + 1) and then setting yj =

ỹj
√

(ν + (y1 − µ1)2/σ11)/(ν + 1) for j = 2, ..., d. To conditionally sample from a Student’s
t copula, set µ = 0 and Σ = R as before.

5.2.2 Individual Student’s t copula

Conditional simulation from an individual Student’s t copula (see Section 2.3) is however
not straightforward. We propose the following procedure: As before, transform the vari-
ables and the conditioning value such that Yj := T−1

νj
(Uj), j = 1, ..., d, and y1 := T−1

ν1
(u1).

Then Y ∼ IT d(0, R,ν). From the representation in Equation (2.27), we know that

Yj = WjZj, where Z ∼ Nd(0, R) and Wj =
√
νj/F

−1
χ2 (Q; νj) ∼ FWj

, j = 1, ..., d, with

Q ∼ U(0, 1). We exploit this representation to sample from Y −1|Y1 = Y1 using the fol-
lowing steps.

(i) Sample a value w1 from W1|Y1 = y1.

(ii) Extract the value q = FW1(w1), which is common to all mixing variables, and set
wj = F−1

Wj
(q) for j = 2, ..., d.

(iii) Compute the value of Z1 given Y1 = y1 and W1 = w1 as z1 = y1/w1 and use it to
sample (z2, ..., zd)

′ from Z−1|Z1 = z1 as described in Section 5.2.1.

(iv) Then (y2, ..., yd)
′, where yj = wjzj, j = 2, ..., d, are observations from Y −1|Y1 = y1.

Therefore, we need to find a way to sample from W1|Y1 = y1 and we need to determine
the distribution function FWj

, j = 1, ..., d. The latter is straightforward:

FWj
(wj; νj) = P

(√
νj/F

−1
χ2 (Q; νj) ≤ wj

)
= P

(
F−1
χ2 (Q; νj) ≥ νj/w

2
j

)

= 1− Fχ2(νj/w
2
j ; νj), wj > 0.

The corresponding density is therefore given by

fWj
(wj; νj) = fχ2

(
νj
w2
j

; νj

)
2νj
w3
j

, wj > 0. (5.4)
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To sample from W1|Y1 = y1, we propose to use the conditional inverse method and derive
the distribution FW1|Y1 via its density for w1 > 0,

fW1|Y1(w1|y1; ν1) =
fW1,Y1(w1, y1; ν1)

tν1(y1)
=
fW1,Z1

(
w1,

y1
w1

; ν1

)
1
w1

tν1(y1)
=
fW1(w1; ν1)φ

(
y1
w1

)
1
w1

tν1(y1)
,

where we applied the change of variables (W1, Y1)′ 7→ (W1, Y1/W1)′ and used that W1 and
Z1 are independent as well as that Y1 ∼ T1(0, 1, ν1) and Z1 ∼ N1(0, 1). The density of W1

is given in Equation (5.4). Hence,

FW1|Y1(w1|y1; ν1) =
1

tν1(y1)

∫ w1

0

fW1(x; ν1)φ
(y1

x

) 1

x
dx, w1 > 0.

As shown in Appendix B.5, we obtain after some calculations that

FW1|Y1(w1|y1; ν1) = 1− Fχ2

(
ν1 + y2

1

w2
1

; ν1 + 1

)
, w1 > 0,

which can easily be used for conditional inverse sampling.

Resulting observations (y2, ..., yd)
′ from Y −1|Y1 = Y1 are then transformed by uj =

Tνj(yj), j = 2, ..., d. For the sake of clarity, we summarize the presented conditional
simulation procedure in a compact algorithm.

Algorithm 5.1 (Conditional simulation from an individual Student’s t copula). Let
C(·;R,ν) be an individual Student’s t copula with correlation matrix R and degrees of
freedom ν. To generate observations given that {U1 = u1}, proceed as follows.

(i) Sample v from the uniform distribution.

(ii) Set y1 = T−1
ν1

(u1).

(iii) Set w1 =
√

(ν1 + y2
1)/(F−1

χ2 (1− v; ν1 + 1)).

(iv) Set q = FW1(w1) and wj = F−1
Wj

(q) for j = 2, ..., d.

(v) Set z1 = y1/w1 and sample (z2, ..., zd)
′ from Nd−1(µ̃, R̃), where µ̃ = ρ′1y1 and R̃ =

R(−1,−1) − ρ1ρ
′
1 (see Equation (5.3)).

(vi) Set yj = wjzj and uj = Tνj(yj) for j = 2, ..., d.

(vii) Return (u2, ..., ud)
′.

Using this algorithm the individual Student’s t copula as well as the grouped Student’s
t copula as a special case can be conveniently used for systemic risk stress testing.
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5.2.3 Archimedean copulas

If U ∼ C(·;ϕ), where C(·;ϕ) is an Archimedean copula with generator ϕ (see Section
2.4), then Mesfioui and Quessy (2008) show that the conditional distribution of Uj|(U1 =
u1, ..., Uj−1 = uj−1) for j = 2, ..., d is given by

Cj|1,...,j−1(uj|u1, ..., uj−1;ϕ) =
(ϕ−1)(j−1)

(∑j
i=1 ϕ(ui)

)

(ϕ−1)(j−1)
(∑j−1

i=1 ϕ(ui)
) , uj ∈ [0, 1]. (5.5)

The conditional inverse method (5.1) hence requires inversion of (ϕ−1)(j−1) for j = 2, ..., d,
which may be numerically rather challenging, although explicit functional expressions of
(ϕ−1)(j−1) for common Archimedean generators are provided in Hofert et al. (2012). We
therefore derive an alternative conditional sampling strategy.

Here, we use a trick and introduce the copula level set variable Z := C(U ;ϕ) ∈ [0, 1],
which is distributed according to the Kendall distribution function K(·;ϕ) (see Equa-
tion (2.36)). Instead of directly sampling from the conditional distribution of Uj|(U1 =
u1, ..., Uj−1 = uj−1) when using the conditional inverse method (5.1), the idea is to sam-
ple z from Z|U1 = u1 and use this to iteratively sample uj from Uj|(U1 = u1, ..., Uj−1 =
uj−1, Z = z) for j = 2, ..., d. That is, first the level z of the copula level set L(z;ϕ) is
sampled given the event {U1 = u1} and then the remaining variables are generated given
this level set and the event {U1 = u1}. This approach is beneficial, since the distribu-
tion function FUj |U1,...,Uj−1,Z of Uj|(U1 = u1, ..., Uj−1 = uj−1, Z = z) is known explicitly
(see Lemma 4.4) and can also be inverted in closed form. It is therefore numerically very
efficient to use it for the sampling strategy using the conditional inverse method (5.1).

Hence, the open question is how to sample from Z|U1 = u1 ∼ FZ|U1 . For this, we begin
with decomposing the density fZ|U1 corresponding to FZ|U1 as

fZ|U1(z|u1;ϕ) = fU1|Z(u1|z;ϕ) k(z;ϕ), z ∈ (0, 1), (5.6)

which holds, since U1 is uniform, so that fU1(u1) = 1, u1 ∈ (0, 1). The density k(·;ϕ) of
the Kendall distribution function (2.36) is derived as

k(z;ϕ) =
(−1)d−1

(d− 1)!
ϕ(z)d−1 ϕ′(z) (ϕ−1)(d)(ϕ(z)). (5.7)

Further, since Equation (4.6) for FUj |U1,...,Uj−1,Z also holds for j = 1 (with an empty
conditioning set), the density fU1|Z of U1|Z = z is given by

fU1|Z(u1|z;ϕ) = −(d− 1)

(
1− ϕ(u1)

ϕ(z)

)d−2
ϕ′(u1)

ϕ(z)
. (5.8)

Combining Equations (5.6), (5.7) and (5.8) then yields

fZ|U1(z|u1;ϕ) =
1

(d− 2)!
(ϕ(u1)− ϕ(z))d−2 ϕ′(u1)ϕ′(z) (ϕ−1)(d)(ϕ(z)),
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and

FZ|U1(z|u1;ϕ) =

∫ z

0

fZ|U1(y|u1;ϕ) dy

x=ϕ(y)
=

1

(d− 2)!
ϕ′(u1)

∫ ϕ(z)

ϕ(0)

(ϕ(u1)− x)d−2 (ϕ−1)(d)(x) dx, (5.9)

which we solve recursively using integration by parts (see Appendix B.2) to obtain

FZ|U1(z|u1;ϕ) = ϕ′(u1)
d−1∑

k=1

(ϕ(u1)− ϕ(z))k−1

(k − 1)!
(ϕ−1)(k)(ϕ(z)), z ∈ (0, 1). (5.10)

This closed-form expression is similar to that of the Kendall distribution function (see
Equation 2.36). It can then be used for conditional inverse sampling from Z|U1 = u1. This
means, in contrast to inversion of (ϕ−1)(j−1) for j = 2, ..., d, as in direct conditional inverse
sampling of Archimedean copulas using Equation (5.5), the only numerically challenging
step of this newly proposed strategy is the inversion of FZ|U1 , which is given in Equation
(5.10). The procedure can be summarized in the following algorithm, which is similar to
Algorithm 4.5 for sampling from an Archimedean copula on a given level set.

Algorithm 5.2 (Conditional simulation from an Archimedean copula). Let C(·;ϕ) be
an Archimedean copula with generator ϕ. To generate observations given that {U1 = u1},
proceed as follows.

(i) Sample w1, ..., wd−1 independently from the uniform distribution.

(ii) Set z = F−1
Z|U1

(w1|u1;ϕ).

(iii) For j = 2, ..., d− 1: uj = ϕ−1((1− w1/(d−j)
j )(ϕ(z)−∑1≤i<j ϕ(ui))).

(iv) Set ud = ϕ−1(ϕ(z)−∑1≤i<d ϕ(ui)).

(v) Return (u2, ..., ud)
′.

5.2.4 C-vine copulas

Among the large class of vine copulas (see Section 2.7) we focus here on the sub-class of
C-vine copulas, which leads to a particularly appealing conditional simulation algorithm.
Unconditional simulation from a C-vine copula can be carried out using the conditional
inverse method (5.1) and the conditional distribution functions Ci|1,...,i−1 of Ui|(U1 =
u1, ..., Ui−1 = ui−1) given in Equation (2.70), which we here restate for convenience. For
i = 2, ..., d− 1 and k = 0, ..., d− i it holds that

Ci+k|1,...,i−1(ui+k|u1, ..., ui−1)

= Ci+k|i−1;1,...,i−2

(
Ci+k|1,...,i−2(ui+k|u1, ..., ui−2)|Ci−1|1,...,i−2(ui−1|u1, ..., ui−2)

)
,

(5.11)

where ui+k ∈ [0, 1] and Ci+k|i−1;1,...,i−2 is defined in Equation (2.71).

118



5.2 Conditional copula simulation

The general sampling algorithm for C-vine copulas can be found in Aas et al. (2009).
Since this sampling strategy makes use of the order of the C-vine root nodes, it is straight-
forward to conditionally sample from U−1|U1 = u1. However, in contrast to elliptical and
Archimedean copulas, the case of U−r|Ur = ur for r > 1 needs to be considered explicitly,
since the variables of a C-vine copula cannot simply be reordered.

Now, let r > 1. Clearly, for i > r the sampling strategy of Ui|(U1 = u1, ..., Ur =
ur, ..., Ui−1 = ui−1) does not change. The question hence is how to sample from U1|(Ur =
ur), U2|(U1 = u1, Ur = ur),..., Ur−1|(U1 = u1, ..., Ur−2 = ur−2, Ur = ur). This means that
we need to compute the corresponding distribution functions Ci|1,...,i−1,r for 1 ≤ i < r. It
holds that

Ci|1,...,i−1,r(ui|u1, ..., ui−1, ur)

= Ci|r;1,...,i−1

(
Ci|1,...,i−1(ui|u1, ..., ui−1)|Cr|1,...,i−1(ur|u1, ..., ui−1)

)
,

(5.12)

where ui ∈ [0, 1]. Both arguments, Ci|1,...,i−1 and Cr|1,...,i−1, can be computed recursively
according to Equation (5.11), since r > i.

To make things more concrete, we consider an illustrative example of a five-dimensional
C-vine copula (the PCC of a four-dimensional C-vine can be found in Section 2.7.1).

Example 5.3 (Conditional simulation from a C-vine copula). Let d = 5 and r = 4. Hence,
we need to determine the conditional distribution functions C1|4, C2|1,4 and C3|1,2,4, while
C5|1,2,3,4 is the same as in standard C-vine copula simulation. The first term, C1|4, is
straightforwardly given through the copula C1,4, which is part of the C-vine PCC (2.69)
and therefore known. According to Equation (5.12), we further have that

C2|1,4(u2|u1, u4) = C2|4;1

(
C2|1(u2|u1)|C4|1(u4|u1)

)
, (5.13)

where the known copulas C1,2, C1,4 and C2,4;1 are used to obtain C2|1, C4|1 and

C2|4;1(u2|u4) =
∂C2,4;1(u2, u4)

∂u4

,

respectively. By using Equation (5.12) again, we also compute C3|1,2,4 as

C3|1,2,4(u3|u1, u2, u4) = C3|4;1,2

(
C3|1,2(u3|u1, u2)|C4|1,2(u4|u1, u2)

)
, (5.14)

where C3|1,2 and C4|1,2 are computed as in Equation (5.11). In particular, the copula
C3,4;1,2, which is part of the C-vine PCC (2.69), is used to derive

C3|4;1,2(u3|u4) =
∂C3,4;1,2(u3, u4)

∂u4

.

Sampling using the conditional inverse method (5.1) is then feasible: Let w1, w2, w3 and
w5 be independent observations from the uniform distribution. Then, we obtain

u1 = C−1
1|4(w1|u4),

u2 = C−1
2|1(C−1

2|4;1(w2|C4|1(u4|u1))|u1),

u3 = C−1
3|1(C−1

3|2;1(C−1
3|4;1,2(w3|C4|2;1(C4|1(u4|u1)|C2|1(u2|u1)))|C2|1(u2|u1))|u1),

by inverting the terms given in Equations (5.13) and (5.14), respectively, and finally u5

by inverting Equation (5.11) for i = 5 and k = 0. �

119



5 Systemic risk assessment

The general sampling algorithm can be written down as outlined in the following (see
Hendrich (2012)). This extends the standard C-vine simulation algorithm by Aas et al.
(2009), from where notation is adopted.

Algorithm 5.4 (Conditional simulation from a C-vine copula). Let C(·;V ,B,θ) be a
C-vine copula with root node order 1, ..., d. To generate observations given that {Ur =
ur}, r ≥ 1, proceed as follows.

(i) Let V = (vj,k)j,k=1,...,d be an auxiliary array.

(ii) Sample w1, ..., wr−1, wr+1, ..., wd independently from the uniform distribution.

(iii) Set vr,1 = ur.

(iv) For i = 1, ..., r − 1, r + 1, ..., d:

a) Set vi,1 = wi.

b) If i < r, then set vi,1 = C−1
i|r;1,...,i−1(vi,1|vr,i).

c) If i > r, then set vi,1 = C−1
i|k;1,...,k−1(vi,1|vk,k) for k = i− 1, ..., 1.

d) Set ui = vi,1.

e) If i < d, then set vi,`+1 = Ci|`;1,...,`−1(vi,`|v`,`) for ` = 1, ..., i− 1.

f) If i < r, then vr,i+1 = Cr|i;1,...,i−1(vr,i|vi,i).

(v) Return (u1, ..., ur−1, ur+1, ..., ud)
′.

This algorithm hence enables us to simulate from a C-vine copula conditionally on a
stress event to an arbitrary variable. It is of particularly convenient form for C-vine copu-
las, since C-vine trees are uniquely characterized by their root nodes. A similar algorithm
for general R-vines has not been formulated yet.

5.2.5 Hierarchical Kendall copulas

Finally, we consider hierarchical Kendall copulas, which we discussed in Chapters 3 and
4. Let U := (U1, ..., Un)′ ∼ CK, where CK is a hierarchical Kendall copula as defined in
Definition 3.3, and let {U1 = u1} be the stress event as before. This means that the shock
occurs in the first cluster. It then spreads to the other variables U−1 according to the
following sampling scheme.

Algorithm 5.5 (Conditional simulation from a hierarchical Kendall copula). Let CK be
a hierarchical Kendall copula with cluster copulas C1, ..., Cn1 and nesting copula C0. To
generate observations given that {U1 = u1}, proceed as follows.

(i) Sample (u2, ..., um1)
′ from (U2, ..., Um1)

′|U1 = u1.

(ii) Set v1 = K1(C1(u1)).

(iii) Sample (v2, ..., vn1)
′ from (V2, ..., Vn1)

′|V1 = v1.
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sample (v2, ..., vn1)
′ from

(V2, ..., Vn1)
′|V1 = v1

v1 = K1(C1(u1)) z2 = K−1
2 (v2) zn1 = K−1

n1
(vn1)

sample (u2, ..., um1)
′ from

(U2, ..., Um1)
′|U1 = u1

sample u2 from
U2|C2(U2) = z2

sample un1 from
Un1 |Cn1(Un1) = zn1

U1 = u1

· · ·

· · ·

Figure 5.1: Illustration of the conditional simulation method for hierarchical Kendall
copulas.

(iv) Set zi = K−1
i (vi) for all i = 2, ..., n1.

(v) Sample ui from U i|Ci(U i) ≡ zi for i = 2, ..., n1.

(vi) Return (u2, ..., un)′.

In Steps (i) and (iii), the methods discussed and developed in the previous sections can
be used for conditional copula sampling. Step (v) can be carried out using the top-down
procedures proposed in Section 4.2. The approach can also easily be extended to the case
of k hierarchical levels (see Remark 3.7). For two levels it is illustrated in Figure 5.1.

5.3 Application: CDS spreads of financial institutions

The purpose of our case study on interconnectedness in the financial market is threefold.
First, using appropriate statistical dependence models we carefully analyze the interde-
pendencies among major financial institutions in the banking as well as the insurance
sector and point out differences between these two sectors. Second, the developed statis-
tical models are used to stress test the global financial market in order to obtain new
insights with respect to the assessment and classification of systemically important insti-
tutions. Third, as we use credit default swap spreads for our analyses, we also investigate
whether such data is actually useful to analyze systemic risk. The developed methodol-
ogy is however independent of the data, which means that the first two questions can be
investigated using the same tools but different data.

5.3.1 Data

Recently, there has been active research on the connection of credit default swaps and sys-
temic risk. A credit default swap (CDS) is bilateral credit derivative contract, which allows
the trading of default risks of an underlying corporate or government entity. Since the pay-
off of a CDS contract is caused by the default on debt, CDS spreads are a market-based
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indicator of the credit worthiness of the reference entity. Rising CDS spreads indicate
growing default expectations of the other market participants regarding the referenced
entity. In fact, Hull et al. (2004) and Norden and Weber (2004) found that there is sta-
tistical evidence for the CDS market actually anticipating later rating announcements by
the credit rating agencies.

The relationship between CDS and systemic risk seems obvious: If there is a systemic
event in the market, default expectations of relevant institutions should rise, which is
then reflected in increasing CDS spreads. Authors have therefore developed measures of
systemic risk that are directly based on CDS spreads or the default probabilities derived
from these (see for instance Acharya et al. (2011), Huang et al. (2009), and Giglio (2011)).
CDS spreads have also been used to examine interdependencies among financial institu-
tions: see Markose et al. (2012), Rahman (2013), Kaushik and Battiston (2013), and Chen
et al. (2013). Nevertheless, none of the authors use copulas to account for non-standard
interdependencies among the institutions. This is one aim of our study.

As data for our statistical analyses we use senior CDS spreads with a maturity of
five years observed from January 2006 to October 2011 (N = 1371 daily observations),
which are obtained from Bloomberg. In the attempt of a balanced selection of companies
regarding their geographical region and sectoral belonging, we select 38 companies from
the financial sector for the analysis of their interdependence structure. Among these are
18 banks and 20 (re-)insurers from different countries in three major geographical regions
(abbreviations are shown in brackets):

(i) Systemically important banks according to the Financial Stability Board (2012):

• Europe: Banco Bilbao Vizcaya Argentaria (BBVA), Banco Santander (BS),
Barclays, BNP Paribas, Deutsche Bank (DB), Royal Bank of Scotland (RBS),
Société Générale (SG), Standard Chartered (SC), UBS, Unicredit

• USA: Citigroup, Goldman Sachs (GS), JP Morgan Chase (JPM)

• Asia-Pacific: Bank of China (BoC), Sumitomo Mitsui

Note that at the time of this analysis Banco Bilbao Vizcaya Argentaria and Standard
Chartered had not yet been officially classified as systemic; see Financial Stability
Board (2011).

(ii) Not systemically important banks:

• Europe: Intesa Sanpaolo

• Asia-Pacific: Kookmin Bank, Westpac Banking

(iii) (Re-)Insurers:

• Europe: Aegon, Allianz, Assicurazioni Generali, Aviva, AXA, Hannover Rück
(HR), Legal & General (LG), Munich Re (MR), Prudential, SCOR, Swiss Re
(SR), Zurich Insurance

• USA: ACE, Allstate, American International Group (AIG), Chubb, Hartford
Financial Services, XL Group

• Asia-Pacific: QBE Insurance, Tokio Marine (TM)
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Figure 5.2: CDS spreads (top) and corresponding log differences (bottom) of Allianz, JP
Morgan Chase and Westpac from January 2006 to October 2011.

For our analyses we use daily log differences of the CDS spreads of these 38 companies.
Three time series of CDS spreads and their log differences are shown in Figure 5.2.

5.3.2 Marginal modeling

To deal with the serial dependence in the marginal time series as well as the between-series
dependence, we employ the popular copula-GARCH approach as described in Section 3.7.2
and proceed according to the estimation method of inference functions for margins (IFM;
see Section 3.5).

The time series of the log differences of the CDS spreads show common features of
financial time series such as autocorrelation, leptokurtosis (heavy tails) and volatility
clustering (see Figure 5.2 and Hendrich (2012, Table 4.2)). To remove these characteristics,
we apply appropriate time series models. While often (ARMA-)GARCH models with
(skewed) Student’s t innovations provide good fits for financial time series (see, e.g., Chu
et al. (2010) for an application to the iTraxx CDS index), this is not the case here. For each
of the 38 time series we therefore separately consider extended GARCH models, such as
the asymmetric exponential GARCH by Nelson (1991) or GARCH-in-mean by Engle et al.
(1987), as well as non-standard innovations distributions like the generalized error, the
generalized hyperbolic and the normal inverse Gaussian. All model fits are then carefully
checked using a range of goodness-of-fit tests such as the Ljung-Box, the ARCH-LM or

123



5 Systemic risk assessment

S
um

ito
m

o
T

M
W

es
tp

ac
Q

B
E

B
oC

K
oo

km
in

C
iti

G
S

JP
M

LG
S

C
O

R
P

ru
de

nt
ia

l
S

C
M

R
H

R
A

eg
on

A
X

A
A

vi
va

A
lli

an
z

G
en

er
al

i S
R

Z
ur

ic
h

U
B

S
B

N
P

S
G

B
ar

cl
ay

s
R

B
S D

B
B

S
B

B
V

A
U

ni
cr

ed
it

In
te

sa
A

IG
A

C
E X
L

H
ar

tfo
rd

A
lls

ta
te

C
hu

bb

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Average linkage

D
is

ta
nc

e

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

3
−

0.
1

0.
1

0.
3

Metric multidimensional scaling

BS

BoC

BarclaysBNP

Citi

DB

GS
JPM

RBSSG

Sumitomo

UBSUnicreditBBVA
Intesa

Kookmin

SC

Westpac

AegonAllianz

AIG

AvivaAXAMRSRZurich

ACEAllstate

Generali

Chubb

HR

Hartford

LG
Prudential

QBE

SCOR

TM

XL

Figure 5.3: Hierarchical clustering with average linkage and metric multidimensional scal-
ing of the institutions according to the metric d(j, k) =

√
1− ρ̂S,jk defined in

Equation (3.17).

EU banks EU ins. US banks US ins. AP banks AP ins.

EU banks 0.51–0.84
EU ins. 0.36–0.63 0.41–0.77
US banks 0.33–0.41 0.28–0.41 0.60–0.64
US ins. 0.24–0.35 0.22–0.34 0.27–0.39 0.31–0.58
AP banks 0.12–0.30 0.14–0.32 0.10–0.24 0.15–0.28 0.18–0.41
AP ins. 0.13–0.27 0.15–0.29 0.13–0.22 0.14–0.27 0.21–0.43 0.20–0.20

Table 5.1: Ranges of empirical Spearman’s ρS values ρ̂S,jk within and between the sectors
in the different regions.

the Nyblom stability test. More details on the fitting process can be found in Hendrich
(2012, Section 5.1).

After adequately removing the serial dependence in each of the 38 univariate time series,
we investigate the dependence among the residuals ẑtj, t = 1, ..., N, j = 1, ..., 38. As we

fix the estimated margins following the IFM method, we set ûtj := F̂j(ẑtj), where F̂j is
the estimated innovations distribution of the jth time series.

5.3.3 Dependence modeling

To get a first impression of the interdependencies among the different institutions, we
calculate empirical Spearman’s ρS values, ρ̂S,jk, for all pairs j, k = 1, ..., 38, j < k, and
use metric multidimensional scaling to embed the institutions in the plane according to the
metric d(j, k) =

√
1− ρ̂S,jk defined in Equation (3.17) (see, e.g., Hastie et al. (2009)). This

means that the closer two institutions are to each other, the stronger is the dependence of
their CDS spreads. In addition, we perform hierarchical clustering with the metric d(j, k)
and average linkage. The resulting plots are shown in Figure 5.3. Ranges of the empirical
Spearman’s ρS values per geographical region and sector are shown in Table 5.1.

The hierarchical clustering and the multidimensional scaling show that there is clear
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Regions

0Europe0 000USA000 Asia-Pacific

EU banks EU ins. 0 US banks US ins. 0 AP banks AP ins.

Figure 5.4: Sectoral clustering of CDS spreads.

geographical clustering present among the CDS spreads: European institutions can be
found on the right of the multidimensional scaling plot, US institutions in the lower left
corner and institutions from the Asia-Pacific region in the upper left corner. Within these
regions there is also a clear separation of banks and insurers observable. Similar groupings
of institutions can be observed in the dendogram. Hence, all pairs of companies within
either one of the sectors show the strongest dependencies. Another interesting fact is that
the banks that have not been officially classified as systemically important do not play a
significantly different role than the other banks, as they cannot be explicitly distinguished
based on the hierarchical clustering and the multidimensional scaling. The classification
is not reflected here.

This exploratory look at the data illustrates that there are considerably different re-
lationships among the institutions depending on the geographical region and the sector.
Such heterogeneous dependencies cannot be appropriately captured using an Archime-
dean copula, which assumes exchangeability of all variables. While elliptical copulas are
more appropriate for this purpose, they are still somewhat restrictive by imposing sym-
metric tail dependence. In the literature, it is however often observed that in times of
crisis the dependence of joint negative events increases. For CDS spreads this means that
we may expect the presence of upper tail dependence, which reflects the joint probability
of extreme upward jumps in the expected default probabilities. In addition, the obvious
sectoral clustering of variables, which is illustrated in Figure 5.4, should be taken into
account.

We therefore consider a range of different models to account for these dependence
characteristics:

(i) the Gumbel and the Frank copula (see Examples 2.16 and 2.17), where the Gumbel
copula allows for upper tail dependence, but both copulas assume exchangeability;

(ii) the Gaussian and the Student’s t copula (see Section 2.2), which are reflection
symmetric and do not explicitly take into account the sectoral clustering of the
institutions;

(iii) the grouped Student’s t copula (see Section 2.3) with six sectors according to the
lowest level shown in Figure 5.4 and thus with more flexibility in the modeling of
the tails of the clusters;
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5 Systemic risk assessment

(iv) a C-vine copula (see Section 2.7), which allows for a very flexible modeling of het-
erogeneous and pairwise dependencies;

(v) three-level hierarchical Kendall copulas (see Chapter 3, especially Remark 3.7) with
clustering as illustrated in Figure 5.4 and with all cluster and nesting copulas chosen
either as Gumbel, as Frank or as Gaussian.

The hierarchical Kendall copulas are the only dependence models, which explicitly take
into account the three-level structure illustrated in Figure 5.4. The grouped Student’s t
copula can only model one level of grouping, so that we choose the most granular level
here (the six sectors in the different regions). In addition, it does not explicitly allow
to control the between-group dependence as hierarchical Kendall copulas do. All other
copulas are not of hierarchical nature.

Due to the numerically more complex evaluation of the log likelihood compared to the
standard Student’s t copula, the grouped Student’s t copula is only fitted sequentially as
described in Section 3.7.3. Similarly, we concentrate on a sequential fit of the hierarchical
Kendall copula with Gaussian cluster and nesting copulas (see Algorithm 3.19), since the
Kendall distribution function has to be calculated using Monte Carlo simulation. The
hierarchical Kendall copulas with Gumbel and Frank cluster and nesting copulas, for
which the Kendall distribution functions are known in closed form (see Equation (2.36)),
are estimated by joint maximum likelihood estimation of all dependence parameters.

The cluster and nesting copulas are fixed to be of the same type to limit the model
complexity. The three considered models still cover a reasonable range of dependence
patterns: Choosing only upper tail dependent Gumbel copulas as building blocks can
be seen as a worst case model, while Gaussian building blocks are more flexible in the
modeling of pairwise dependencies but assume tail independence. In fact, the sequential
procedure of Algorithm 3.22 for the selection of an appropriate hierarchical Kendall copula
almost yields the model with Gaussian cluster and nesting copulas. Only the fit of the
bivariate within-region copulas, which specify the between-sector dependence, could be
weakly improved by selecting a Gumbel copula for the US institutions and a Frank copula
for the European institutions. The fits of respective bivariate Gaussian copulas are however
very similar and actually yield a slightly higher log likelihood of the joint model in the
end, so that we do not consider the sequentially selected model any further. Student’s t
copulas are not considered as building blocks, since it is difficult to efficiently calculate
multivariate Student’s t probabilities (see Genz and Bretz (2009)) and hence to efficiently
evaluate the Student’s t copula (2.23). It is therefore computationally very inefficient to
obtain a Monte Carlo estimate of the Kendall distribution function.

The C-vine copula is selected according to the sequential selection algorithm by Czado
et al. (2012), which is a special case of Algorithm 2.25 (see Dißmann et al. (2013)). Appro-
priate pair copulas are selected using the AIC from the following list: Gaussian, Student’s
t, Clayton, Gumbel and Frank as well as rotations by 90, 180 and 270 degrees of the reflec-
tion asymmetric copulas (see Table 2.1 and Figure 2.3). To obtain a more parsimonious
model, the bivariate independence copula is also taken into account after performing an
independence test of each pair. Subsequent to the sequential model selection, parameters
are estimated jointly by maximum likelihood. We also fit an R-vine copula as described in
Algorithm 2.25. The model however does not improve over the C-vine copula, so that we
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5.3 Application: CDS spreads of financial institutions

Copula Log lik. # Par. AIC BIC

Gumbel 8640.22 1 -17278.45 -17273.22
Frank 8215.55 1 -16429.10 -16423.88
Gaussian 18326.53 703 -35247.07 -31575.09
Student’s t 19915.88 704 -38423.76 -34746.56
Grouped Student’s t∗ 20043.15 709 -38668.29 -34964.97
C-vine 20393.29 488 -39810.58 -37261.61
Hier. Kendall (Gumbel) 14206.19 10 -28392.38 -28340.15
Hier. Kendall (Frank) 13783.63 10 -27547.25 -27495.02
Hier. Kendall (Gaussian)∗ 17394.98 152 -34485.95 -33692.01

Table 5.2: Log likelihoods, numbers of parameters, AIC and BIC values of the copulas
estimated by maximum likelihood (an asterisk indicates a sequential fit).

do not consider it any further here (see Hendrich (2012, Section 6.3.5) for more details).
Note that especially in the first trees, where the strongest dependencies are modeled and
therefore the simplifying assumption (see Section 2.7.2) has the strongest impact, mainly
elliptical copulas are selected (see Hendrich (2012, Table 6.6)). We therefore expect that
the simplifying assumption is approximately reasonable here.

Table 5.2 shows log likelihoods and AIC and BIC values of the copula fits for our 38-
dimensional data set. The rather weak fits of the two considered Archimedean copulas
illustrate the inappropriateness of an exchangeable Archimedean copula here. According
to the AIC and the BIC, the C-vine copula can be regarded as the best model. In addition
to a higher log likelihood compared to the elliptical copulas, it also benefits from a smaller
number of parameters, which is achieved by using the independence copula for certain
conditional pairs. As noted above, the C-vine copula may also better account for potential
reflection asymmetry in the dependence structure, which is particularly important in the
analysis of stress situations. The grouped Student’s t copula also improves on the standard
Student’s t copula, which in turn provides a better fit than the Gaussian copula. In fact,
the estimated degrees of freedom are 14.71 and therefore clearly indicate the presence of
non-Gaussian dependence. The degrees of freedom per sector, as fitted for the grouped
Student’s t copula, range between 10.11 (European insurers) and 65.02 (insurers in the
Asia-Pacific region). As observed in Section 3.7.3, we again find that the ad-hoc approach
by Daul et al. (2003) would have underestimated the degrees of freedom of the different
sectors, since it ignores the between-sector dependence.

The fits of the hierarchical Kendall copulas are not as good as that of the C-vine cop-
ula. Nevertheless, the models are much more parsimonious and provide a straightforward
interpretation in terms of within- and between-sector dependence. In particular, the hi-
erarchical Kendall copula with Gaussian cluster and nesting copulas is quite flexible but
yet parsimonious, so that it provides a better fit than the Gaussian copula, when taking
into account the number of model parameters. On the other hand, the two hierarchical
Kendall copulas with Archimedean cluster and nesting copula show that, while standard
Archimedean copulas are obviously inappropriate here, they can lead to a quite good
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fit when used as building blocks of a hierarchical Kendall copula, which still constitutes
an extremely parsimonious model. In both cases, the Gumbel copula is superior to the
tail independent Frank copula. This underlines the importance of modeling upper tail
dependence here, as it has been pointed out above.

Looking more closely at the fitted C-vine copula, we observe that the ordering of the
institutions, which is implied by the selected root nodes, is less important here, since it is
strongly driven by the number of institutions selected among certain regions and sectors
and therefore does not directly provide an ordering of systemic importance. It is hence not
surprising that the European institutions Allianz, BNP Paribas and Zurich Insurance are
selected as the first three pivotal variables. Hartford Financial Services and JP Morgan
Chase are then the first US institutions in the ordering, while QBE Insurance is the first
institution from the Asia-Pacific region.

Interestingly, neither the exploratory analysis in Figure 5.3 nor the fitted models show
that interdependencies involving systemically important banks are structurally different
from those involving institutions that have not been classified as systemic. An additional
finding is that the dependence of US banks and European institutions is determined to
be higher than that of US insurers and European institutions. This indicates the, maybe
not surprising, fact that especially the US banking sector plays a systemically important
role in the financial market. This is in line with findings of Billio et al. (2012). To obtain
a more differentiated view on the systemic importance of specific institutions and sectors,
we conduct a stress testing exercise of the global CDS market.

5.3.4 Systemic risk stress test

According to the Financial Stability Board et al. (2009), a systemic crisis is defined as
the distress of a whole system caused by the failure of one institution and the subsequent
spreading of malfunction from one company to another. Hence, we now aim to further
investigate the possibility of contagion among the institutions in our sample. We perform a
simulation study to exploit the modeled dependence structure. More precisely, we assume
a stress situation for one of the institutions and simulate the resulting impact on the
remaining institutions as illustrated in Figure 5.5. In particular, we are interested to find
out whether there are significant differences regarding the type of the institution that is
stressed.

The fictitious stress situation that we analyze is a severe drop in the credit-worthiness
of one particular institution. Assuming that the market works properly, this would result
in a sharp increase of the CDS spreads for the company in question, since the market
participants expect its default and require higher risk premia. Such an increase, in turn,
would be reflected in large residuals of the fitted time series models for the log returns
of the CDS spreads and thus in quantiles of the respective distributions that are close
to one. This means that we are able to directly work on the copula level and not on the
original level of the data. For our simulation study we assume that the variable of interest,
Ur, r ∈ {1, ..., 38}, takes on the predefined quantile value of ur = 0.99. Given this stress
situation, we then use the methods developed in Section 5.2 to simulate the impact on
the remaining institutions in terms of quantiles of their innovations distributions. That is,
we draw observations from the distribution of U−r|Ur = ur. This simulation is repeated

128



5.3 Application: CDS spreads of financial institutions

Regions

0Europe0 000USA000 Asia-Pacific

EU banks EU ins. 0 US banks US ins. 0 AP banks AP ins.

Bank X

Figure 5.5: Illustration of contagion among the institutions if Bank X is in a stress
situation.

N ′ = 10 000 times for each institution and for the different copulas that have been fitted
in the previous section, where we exclude the Frank copula and the hierarchical Kendall
copula with Frank cluster and nesting copulas due to their weak fits. Especially conditional
sampling from the hierarchical Kendall copulas works exactly as shown in Figure 5.5 (see
also Figure 5.1), which illustrates the contagion effect among sectors and regions. This
underlines the rationale of using a hierarchical dependence model here. For the hierarchical
Kendall copula with Gaussian cluster and nesting copulas, we use rejection-like sampling
as described in Section 4.2.4. The sampling error is chosen as ε = 10−2, since this value
was shown to already yield accurate sampling results in the simulation study in Section
4.4. We denote the observations sampled conditionally on institution r being stressed by
ũk,j|r, j ∈ {1, ..., 38} \ {r}, k = 1, ..., N ′.

As an illustration, Figure 5.6 shows the mean impact per sector and region in the case
of JP Morgan Chase and Hartford Financial Services being stressed: For sector s (within
a specific region) with members Ms we define

µ̃s|r :=
1

N ′

N ′∑

k=1

ũk,s|r, (5.15)

where

ũk,s|r :=
1

|Ms \ {r}|
∑

j∈Ms\{r}

ũk,j|r, k = 1, ..., N ′.

This gives an indication which sectors are most strongly influenced by stress to institu-
tion r. Of course, this is only informative if the underlying copula is non-exchangeable:
The results obtained when using the (exchangeable) Gumbel copula are shown here only
for comparison, since they imply that each sector is impacted in the same way, an ob-
viously incorrect statement. As expected, JP Morgan Chase most strongly impacts the
US banking sector and Hartford Financial Services the US insurance sector as shown by
the non-exchangeable copulas. Interestingly, a stress to JP Morgan Chase influences the
US banking sector as well as European banks and insurers similarly strongly, while the
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Figure 5.6: Mean impact µ̃s|r (5.15) per sector and region according to different copulas
in the case of JP Morgan Chase (left panel) and Hartford Financial Services
(right panel) being stressed. An impact of 0.5 corresponds to independence,
since this is the mean of a uniform random variable.

impact of stress to Hartford Financial Services is stronger on US banks than on European
institutions. This underlines the previous statement that US banks play a systemically
important role in the global financial market.

Comparing the results of the non-exchangeable copulas, we observe that the tail de-
pendence implied by the standard and by the grouped Student’s t copula increases the
mean values in comparison to the Gaussian case. The outcomes according to both vari-
ants of the Student’s t copula are quite similar. The C-vine copula yields results that are
about the same as for the Gaussian copula, although the C-vine copula also accounts for
a reasonable degree of tail dependence. This indicates that the Student’s t copulas pos-
sibly overestimate the tail dependence, as also the grouped Student’s t copula still lacks
some flexibility here, which is however provided by the C-vine copula. The hierarchical
Kendall copula with Gumbel cluster and nesting copulas refines the inappropriate results
of the exchangeable Gumbel copula. As noted above, it can be considered as a worst
case model, which is confirmed by the rather large outcomes. On the other hand, the
outcomes according to the hierarchical Kendall copula with Gaussian cluster and nesting
copulas, which gives a quite good fit to the data, are mostly lower than those of the other
non-exchangeable copulas. For further insights, we now concentrate on this hierarchical
Kendall copula, which has a straightforward interpretation, and on the C-vine copula,
which is the best-fitting non-hierarchical copula.

To investigate the question which of the sectors in the market is most systemic, we use
both copulas to compute the mean impact of one sector s1 on another s2 as

µ̃s2|s1 :=
1

|Ms1|
∑

r∈Ms1

µ̃s2|r, (5.16)

which is shown in Table 5.3. Although the numbers according to the two copulas are
somewhat different, the resulting picture is essentially the same. The values confirm the
previous findings about the systemic role of US banks and also show that the impact of
a stressed bank is, in general, often stronger than that of a stressed insurer. This is quite
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Stress situation in
EU banks EU ins. US banks US ins. AP banks AP ins.

C-vine copula

Impact on EU banks 0.87 0.83 0.73 0.67 0.65 0.62
EU ins. 0.83 0.87 0.72 0.68 0.66 0.64
US banks 0.74 0.73 0.88 0.72 0.63 0.60
US ins. 0.68 0.69 0.73 0.79 0.64 0.62
AP banks 0.65 0.66 0.63 0.64 0.68 0.69
AP ins. 0.63 0.65 0.61 0.62 0.69 0.62

Hierarchical Kendall copula (Gaussian)

Impact on EU banks 0.88 0.79 0.66 0.63 0.58 0.59
EU ins. 0.79 0.87 0.66 0.63 0.58 0.59
US banks 0.68 0.68 0.88 0.69 0.58 0.59
US ins. 0.65 0.64 0.69 0.79 0.56 0.57
AP banks 0.61 0.60 0.59 0.57 0.68 0.62
AP ins. 0.63 0.63 0.61 0.59 0.63 0.63

Table 5.3: Mean impact µ̃s2|s1 (5.16) per sector (rows) of another sector being stressed
(columns) according to the C-vine copula and the hierarchical Kendall copula
with Gaussian cluster and nesting copulas.

interesting in light of the argumentation of the Geneva Association (2010) claiming that
insurers should not be treated as being similarly systemic as banks.

Finally, we move to the question of a possible classification of systemically important
institutions. Here, we concentrate on the two largest sectors: European banks and insur-
ers with eleven and twelve members, respectively. Among these institutions we not only
consider the mean impacts, µ̃EU-banks|r and µ̃EU-ins.|r, but also the corresponding confidence
intervals to better assess the differences in the conditional simulations. For this we com-
pute empirical quantiles from ũ`,s|r (see Equation (5.15)). The results are shown in Figure
5.7. According to our analysis the systemically most important banks are Barclays, Banco
Santander, BNP Paribas, Banco Bilbao Vizcaya Argentaria and Unicredit. The ranking of
insurers is slightly different depending on the chosen dependence model, but the following
six institutions can be identified as the most systemic ones: Allianz, Aviva, Assicurazioni
Generali, Zurich Insurance, Aegon and Swiss Re. Nevertheless, the differences among the
simulated values are quite small and the confidence intervals largely overlap. Also the two
considered models yield quite similar results here.

It should be noted that, by the time of this analysis, Banco Bilbao Vizcaya Argentaria
had not been officially classified as systemically important by the Financial Stability
Board (2011). The 2012 classification (Financial Stability Board, 2012) included the bank
and is therefore in line with our analysis. This however indicates that either a systemic
risk analysis should not solely be based on CDS spreads or that the classification of
the Financial Stability Board (2011, 2012) does not appropriately take into account the
observed interdependence among default probabilities as reflected by CDS spreads.

This partly answers the question whether CDS spreads are actually useful for systemic
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Figure 5.7: Top five banks (top row) and insurers (bottom row) impacting the European
banking and insurance sectors, respectively, in case of a stress situation ac-
cording to the C-vine copula and the hierarchical Kendall copula with Gaus-
sian cluster and nesting copulas. Mean values and 50% confidence bounds are
shown.

risk analysis. As a market-based indicator of the credit worthiness of an institution they
certainly contain important information to be taken into account. However, we found
that dependencies in the CDS market are strongly driven by geographical regions, which
hinders a global classification of systemically important institutions. The removal of this
geographical dependence in a copula framework is a prerequisite for further attempts to
classify institutions using CDS spreads and subject of ongoing research (see Krupskii and
Joe (2013a) for a recent copula-based approach to factor modeling, which exploits the
C-vine structure; more details can be found in Chapter 7).

5.4 Conclusion

We propose a copula-based approach to the analysis of interdependencies among financial
institutions for systemic risk measurement. For the purpose of stress testing the market,
we develop necessary conditional simulation procedures. In particular, we derive new
methods for Archimedean and for C-vine copulas as well as for the individual Student’s
t copula. The case of hierarchical Kendall copulas is also discussed and an appropriate
conditional simulation algorithm is presented.
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5.4 Conclusion

The application of these techniques in the analysis of the CDS spreads of 38 major
international banks and insurers gives new insights into their interconnectedness and the
closely related question of systemic relevance. In the dependence analysis we find evidence
of non-elliptical structures, which are important to take into account in stress situations.
We also find that banks are systemically more important than insurers. Particularly US
banks strongly influence the international financial market. The question whether CDS
spreads are actually useful for systemic risk analysis cannot be answered entirely: As a
market-based indicator of the credit worthiness of an institution, they contain important
information. However, they should not be the sole source of information for the assessment
of systemic relevance.

We finally also take a first step towards a classification of institutions according to
the performed stress test. It should nevertheless be kept in mind that the results also
depend on the selected sample, although it already includes major institutions of the
global financial market. The proposed methodology, especially the stress testing approach,
is however not limited to the presented case study, but can easily be applied to other
relevant data. A major purpose of such investigations certainly should be the further
assessment and classification of systemically important institutions according to some
appropriate systemic risk measure (see, e.g., Adrian and Brunnermeier (2011), Acharya
et al. (2011), and Bernard et al. (2013)).
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6 Operational risk measurement

Besides systemic risk assessment, a sound operational risk management is another impor-
tant issue that financial institutions are currently facing. In this chapter, we develop and
evaluate a flexible model for quantitative operational risk measurement, which explicitly
deals with data scarcity and heterogeneous pairwise (tail) dependence of losses. By con-
sidering flexible families of copulas, we can easily move beyond modeling bivariate depen-
dence among losses and estimate the total risk capital for the seven- and eight-dimensional
distributions of event types and business lines. The chapter is based on Brechmann, Czado,
and Paterlini (2013).

6.1 Introduction

The magnitude of operational losses observed in recent years and their potential systemic
effects has pointed out the need for the development of realistic and therefore often more
sophisticated quantitative risk management models (see Basel Committee on Banking
Supervision (2009b)). Among the main challenges in operational risk modeling, we have
the presence of very heterogeneous losses, usually classified in a matrix of 56 risk classes
(eight business lines (BLs) × seven event types (ETs); see Table 6.1 and Basel Committee
on Banking Supervision (2006)), scarcity of data and large numbers of zero losses for some
classes, short time series with extreme tails and the need to estimate quantiles at very high
confidence levels. In fact, banks are required to calculate the minimum capital requirement
as the 99.9%-Value-at-Risk of the loss distribution such that

MCR = VaR99.9%

(
56∑

j=1

Lj

)
, (6.1)

where Lj is the aggregate loss of one of the 56 BL-ET combinations. It is clear that
this quantity is influenced by the dependencies among the different risk classes. The
standard approach of the Basel Committee on Banking Supervision (2006) requires banks
to marginally calculate the risk capital of all 56 BL-ET combinations and then determine
the risk capital as the sum of these 56 figures, that is,

MCRBasel =
56∑

j=1

VaR99.9% (Lj) . (6.2)

This corresponds to the assumption of comonotonicity (perfect positive dependence)
among all 56 BL-ET combinations, which is often perceived by banks as a worst-case
scenario for the MCR, assuming that MCRBasel ≥ MCR. The question if the standard
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6 Operational risk measurement

No. Description

BL 1 Corporate Finance
2 Trading and Sales
3 Retail Banking
4 Commercial Banking
5 Payment and Settlement
6 Agency and Custody
7 Asset Management
8 Retail Brokerage

ET 1 Internal Fraud
2 External Fraud
3 Employment Practices & Workplace Safety
4 Clients, Products & Business Practices
5 Damage to Physical Assets
6 Business Disruption & System Failures
7 Execution, Delivery & Process Management

Table 6.1: Business lines (BLs) and event types (ETs) according to the Basel Committee
on Banking Supervision (2006).

Basel approach is too conservative has therefore been raised many times by practitioners
and researchers.

Regulators allow then, with due diligence, explicit dependence modeling under the
Advanced Measurement Approach (AMA): “Risk measures for different operational risk
estimates must be added for purposes of calculating the regulatory minimum capital require-
ment. However, the bank may be permitted to use internally determined correlations in
operational risk losses across individual operational risk estimates, provided it can demon-
strate to the satisfaction of the national supervisor that its systems for determining cor-
relations are sound, implemented with integrity, and take into account the uncertainty
surrounding any such correlation estimates (particularly in periods of stress). The bank
must validate its correlation assumptions using appropriate quantitative and qualitative
techniques” (Basel Committee on Banking Supervision, 2006, §669d). The supervisory
guidelines for the AMA banks (Basel Committee on Banking Supervision, 2011b) un-
derline that dependence modeling for operational risk is an evolving area, where many
approaches are currently used by banks with potential impact on the capital requirements.
Results from the 2008 Loss Data Collection Exercises (Basel Committee on Banking Su-
pervision, 2009a) suggest that among the AMA banks only 17% use correlation coeffi-
cients, while most rely on copulas (43%), with a preference for Gaussian copulas, and
31% AMA banks use other methods.

Research is high then on the regulators agenda to avoid spurious differences in exposure
estimates (see Basel Committee on Banking Supervision (2011b, §224)) and to provide
sound guidelines for dependence modeling in operational risk, explicitly suggesting to
move beyond Gaussian copulas and correlations coefficients. Theoretical and empirical
evidence so far has mostly supported the idea that the assumption of perfect positive
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6.2 Zero-inflated dependence model

dependence is unduly strong and using internally determined correlations, as Basel II
allows, could lead to lower the risk capital requirements while still providing adequate
coverage for future losses (see Artzner et al. (1999), Chapelle et al. (2008) and Frachot
et al. (2004)). However, recently Mittnik et al. (2013) have also shown that, despite only
for a small number of risk classes, modeling bivariate dependence could also lead to
increase the risk capital and tail dependence should not be ignored. What is the total
impact on risk capital of explicit dependence modeling among all BLs and ETs is still, to
our knowledge, a question with no answer, as estimating realistic multivariate operational
risk management models with more than two cells can be computationally challenging
and data are often scarce for model validation.

In this work, we aim at analyzing how much the risk capital estimate may change when
modeling dependencies in multivariate settings. That is, we consider the total impact of
dependence modeling within the eight- or seven-dimensional BL and ET distributions by
introducing a statistical model, which allows to explicitly consider the presence of extreme
tails, heterogeneous pairwise dependence and large numbers of zero observations. In par-
ticular, we propose a flexible approach that, inspired by the work of Deb et al. (2013) on
drug expenditures and Erhardt and Czado (2012) on dependent health insurance claims,
directly models the dependence between the aggregate losses in BL-ET combinations using
copulas. Since the non-occurrence of losses (zero events) also conveys information about
the dependence characteristics, we explicitly incorporated it to allow a more accurate
assessment of dependence. Finally, given that no excessive data aggregation is required,
parameter estimation can be based on the maximum amount of available observations.

By using real-world data from the Italian Database of Operational Losses (DIPO) in the
period from January 2003 to June 2011, we can provide new and much needed insights on
the impact of different dependence modeling strategies on total capital requirements and
their validation on real-world data. In fact, our results suggest that explicitly modeling
dependence and zero inflation can lead to a reduction, as often expected, of the total
regulatory capital, which might turn out to be up to 38% smaller than what the Basel
comonotonicity approach would prescribe.

The chapter is organized as follows. Section 6.2 introduces the modeling framework by
discussing separately the key components of our modeling strategy. Marginal modeling of
operational losses is briefly treated in Section 6.3, while Section 6.4 is devoted to a discus-
sion of relevant properties of major copula classes considered appropriate for operational
losses: We consider elliptical, Archimedean and vine copulas as well as the individual Stu-
dent’s t copula. Modeling dependence among zero events as additional model component
is described in Section 6.5, and the computation of risk measures to obtain operational
risk capital figures is subsequently discussed in Section 6.6. Section 6.7 finally provides the
results of the empirical investigation on real-world data from Italian banks, while Section
6.8 concludes.

6.2 Zero-inflated dependence model

Common characteristics of operational risk data can be summarized as follows: First,
if losses are modeled on a weekly or monthly basis, it may frequently occur that there
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6 Operational risk measurement

are no losses observed for a particular BL or ET. An excessive number of zero losses is
called zero inflation. Second, another important marginal property is that distributions of
operational losses per BL or ET may be heavy-tailed. This means that there is a significant
probability of extreme losses that has to be taken into account. Third, different BLs and
ETs are not independent. Most importantly, the type of dependence, especially the tail
dependence, may have a huge impact on risk capital estimates.

Since the heavy tails in the marginal distributions of operational losses have already
been extensively discussed in the literature (see, e.g., Chavez-Demoulin et al. (2006) and
Gourier et al. (2009)), we focus on the first and the third point and discuss appropriate
zero-inflated dependence models for aggregate operational losses.

Suppose that we want to model the multivariate distribution of d BLs, ETs or cells of the
8×7 BL-ET matrix. For brevity, we henceforth always speak of d cells with d ∈ {7, 8, 56}.
Let Lj ≥ 0, j = 1, ..., d, denote the aggregate loss of the jth cell. Then, we explicitly
model the presence of zero inflation in the aggregate loss by defining the following binary
random variable Yj ∼ PYj for each cell j ∈ {1, ..., d} as

Yj :=

{
1 if there is a zero loss in cell j,

0 otherwise.

This means that Yj is the zero inflation component of the otherwise positive continuous
part of Lj, which we denote by L+

j > 0. We obtain the following decomposition:

Lj = Yj × 0 + (1− Yj)L+
j = (1− Yj)L+

j ≥ 0. (6.3)

If PYj(0) = P (Yj = 0) = 1, then there is no zero inflation.
Inspired by the work of Deb et al. (2013) and Erhardt and Czado (2012), who build a

three-dimensional model for dependent health insurance claims, we introduce the multi-
variate zero-inflated density of L := (L1, ..., Ld)

′ and Y := (Y1, ..., Yd)
′ as

fY ,L(y, `) = pY (y) fL|Y (`|y)

= pY (y) f{L+
j , j ∈J (y)}(`j, j ∈ J (y)),

(6.4)

where y := (y1, ..., yd)
′ ∈ {0, 1}d, ` := (`1, ..., `d)

′ ∈ Rd
≥0 and

J (y) = {j ∈ {1, ..., d} : yj = 0}.
That is, J (y) contains all indices, for which the respective component of y is equal to 0.
In other words, these are the cells with non-zero events. The |J (y)|-dimensional density
of L+

j , j ∈ J (y), is denoted by f{L+
j , j ∈J (y)}; if J (y) = ∅, then f∅ := 1. The multivariate

binary probability mass function of Y is denoted by pY . More explicitly, we can write
Equation (6.4) also as

fY ,L(y, `) = pY (y)
(

1{y=(1,...,1)′} + 1{y=(0,1,...,1)′} fL+
1

(`1) + 1{y=(1,0,1,...,1)′} fL+
2

(`2)

+ ...+ 1{y=(1,...,1,0)′} fL+
d

(`d) + 1{y=(0,0,1,...,1)′} fL+
1 ,L

+
2

(`1, `2)

+ 1{y=(0,1,0,1,...,1)′} fL+
1 ,L

+
3

(`1, `3) + ...+ 1{y=(1,...,1,0,0)′} fL+
d−1,L

+
d

(`d−1, `d)

+ 1{y=(0,0,0,1,...,1)′} fL+
1 ,L

+
2 ,L

+
3

(`1, `2, `3) + ...+ 1{y=(0,...,0)′} fL+
1 ,...,L

+
d

(`)
)
.
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6.3 Marginal modeling

Clearly, only exactly one of the indicator functions is different from zero.
In this way, we separate the dependence of the zero inflation component from the

dependence of the positive losses. By applying Sklar’s Theorem (2.2) to f{L+
j , j ∈J (y)}, we

further obtain

f{L+
j , j ∈J (y)}(`j, j ∈ J (y)) = c{j ∈J (y)}(FL+

j
(`j), j ∈ J (y))

∏

j ∈J (y)

fL+
j

(`j),

where c{j ∈J (y)} is the copula density of C{j ∈J (y)}, the |J (y)|-dimensional margin of the
d-dimensional copula C for all cells. More explicitly, it holds that

C{j ∈J (y)}(uj, j ∈ J (y)) = C(v),

where uj ∈ [0, 1] for all j ∈ J (y) and v := (v1, ..., vd)
′ with

vj =

{
uj if j ∈ J (y),

1 otherwise,
j = 1, ..., d.

Then, it follows that we can state Equation (6.4) in terms of the copula C and its margins
as

fY ,L(y, `) = pY (y) c{j ∈J (y)}(FL+
j

(`j), j ∈ J (y))
∏

j ∈J (y)

fL+
j

(`j), (6.5)

where y ∈ {0, 1}d and ` ∈ Rd
≥0. This means that, as in the classical copula approach,

we can separate the dependence modeling defined by the copula from the modeling of
the marginal distributions. In addition, the multivariate binary distribution pY has to be
modeled to account for the zero inflation component. Appropriate choices for these three
model components are discussed in the following. We begin with the marginal distributions
(Section 6.3), then turn to the copula of positive losses (Section 6.4) and also treat the
zero loss distribution (Section 6.5).

6.3 Marginal modeling

The topic of marginal modeling of operational losses has already been extensively dis-
cussed in the literature (see, amongst others, Aue and Kalkbrener (2006)). We therefore
only briefly mention the most relevant points.

The aggregate loss Lj is the sum of the individual operational losses within a given cell
j ∈ {1, ..., d}, that is,

Lj =

Nj∑

m=1

Xmj,

with the number of losses Nj ∼ FNj and the independent and identically distributed
individual losses Xmj ∼ FXj , m = 1, ..., Nj. The severity distribution FXj is positive and
continuous and the frequency distribution FNj is a count distribution with support on
N0 = {0, 1, 2, ...}. The case Nj = 0 means that no losses are observed, that is, Lj = 0
(the empty sum is taken to be zero). As this case is explicitly taken into account by the
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6 Operational risk measurement

zero loss variable Yj, we denote the positive number of losses by N+
j ∈ N = {1, 2, ...} with

zero-truncated distribution FN+
j

. Therefore, we have

L+
j =

N+
j∑

m=1

Xmj.

Typical choices for FN+
j

are the zero-truncated Poisson and negative binomial distributions

(see, e.g., Grogger and Carson (1991)). As is commonly known, the Poisson distribution
assumes equidispersion, that is, it fixes mean and variance to be equal. Since this is a
very strict assumption, the negative binomial distribution may often be a more realistic
choice.

It is typically the case that operational losses below some threshold are not reported.
Therefore, only losses above a certain threshold are observed. In this case, the severity
distribution has to be translated to this threshold. Let F0 be an arbitrary positive con-
tinuous distribution, then translation to the threshold m > 0 means that we define the
severity distribution FXj for xj ∈ (m,∞) as

FXj(xj) =
F0(xj)− F0(m)

1− F0(m)
. (6.6)

An important issue of the distribution of individual operational losses is that it may be
heavy-tailed as noted above. Examples of heavy-tailed (or subexponential) distributions
are in particular the log normal, Pareto, Weibull (with shape parameter smaller than
1) and generalized Pareto, while the also commonly used gamma distribution is light-
tailed (see Embrechts et al. (1997)). Furthermore, according to a classification based on
moments, Pareto tails can be shown to be heavier than log normal tails. An alternative,
which is proposed in extreme value theory, is to use the generalized Pareto as explicit tail
distribution above a certain threshold, while a different distribution is used for the body
of the distribution (see Chavez-Demoulin et al. (2006) for more details).

6.4 Dependence modeling of positive losses

The between-cell copula is central to the model in order to appropriately respect depen-
dencies in operational risk data as stated above. In the simplest setting, the cells are
simply assumed to be either independent or perfectly positively dependent (see Example
2.2 and Theorem 2.3). As this is not necessarily the case, the question is what properties
a reasonable copula for operational losses should exhibit.

(i) Pairwise dependence: Dependence among different pairs of cells may be hetero-
geneous. Therefore the between-cell copula should be flexible enough to allow for
different strengths of dependence for different pairs. In particular, it should be non-
exchangeable (see Definition 2.5).

(ii) Tail dependence: The between-cell copula should allow for the modeling of tail de-
pendence (see Remark 2.7). The presence of upper tail dependence means that very
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6.4 Dependence modeling of positive losses

large losses tend to occur jointly rather than independently. We therefore focus on
upper tail dependence in the following.

(iii) Interpretability: Copulas may be specified in terms of many parameters with many
different meanings. For reasons of internal and external communication, for example
to the senior management or regulators, it is desirable to work with a model that
has parameters, whose meaning can actually be interpreted, for example, in terms
of Kendall’s τ (2.4), Spearman’s ρS (2.5) or the upper tail dependence coefficient
λU (2.7) (see Table 2.1 for an overview).

(iv) Computational tractability: To work with model (6.5) requires the availability of
all multivariate copula margins. This is particularly important for the statistical
inference, where the density expression is needed for likelihood-based techniques.

While most of the literature on dependence modeling of operational losses (see Dalla Valle
et al. (2008) and Giacometti et al. (2008)) and also practitioners (see Basel Committee on
Banking Supervision (2009a)) focus on elliptical copulas, we here more generally evaluate
a range of different multivariate copula models in light of the above four characteristics
and discuss how useful they are for modeling operational risk data. A summary of the
copulas characteristics is provided in Table 6.2 at the end of the discussion.

6.4.1 Elliptical copulas

The class of elliptical copulas is discussed in Section 2.2, while the extension of the stan-
dard Student’s t copula to multiple degrees of freedom is treated in Section 2.3. This
individual Student’s t copula is considered in the next section. Here, we look at the prop-
erties of standard elliptical copulas.

(i) Pairwise dependence: Pairwise dependence of Gaussian and Student’s t copulas can
be different for each pair. In the correlation matrix R ∈ [−1, 1]d×d each pair has a
corresponding entry.

(ii) Tail dependence: While the Gaussian copula does not exhibit any tail dependence,
the Student’s t copula has symmetric upper and lower tail dependence (see Equation
(2.25)).

(iii) Interpretability: As noted above, pairwise dependence is essentially determined by
the correlation matrix, whose entries can be directly related to Kendall’s τ (see
Equations (2.21) and (2.24)). Correlation parameters of the Gaussian copula can
also conveniently be interpreted in terms of Spearman’s ρS (see Equation (2.22)).
The tail dependence coefficient of the Student’s t copula of cells j and k depends
on the corresponding correlation parameter ρjk and the degrees of freedom ν >
2 (see Equation (2.25)). In other words, parameters of elliptical copulas are well
interpretable.

(iv) Computational tractability: The margins of elliptical copulas are again elliptical
of the same class. The correlation matrix is a sub-matrix of the full correlation
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6 Operational risk measurement

matrix. Although easily tractable density expressions are available, the statistical
inference is complicated by the fact that the correlation matrix has to be positive
definite. Good starting values for numerical optimization are often provided by
computing pairwise empirical Kendall’s τ estimates and then inverting Equation
(2.21) or (2.24), respectively.

The above properties present elliptical copulas as a rather appealing model for multivariate
operational losses. Their major disadvantage is however certainly that the Gaussian copula
does not exhibit any tail dependence, while the tail dependence of the Student’s t copula
is symmetric in both tails and governed by only one parameter for all pairs.

To illustrate the model defined in Equation (6.5) in terms of elliptical copulas, we
consider a trivariate example. If d = 3, then Equation (6.5) can be written as

fY ,L(y, `) = pY (y)
(

1{y=(1,1,1)′} + 1{y=(0,1,1)′} fL+
1

(`1)

+ 1{y=(1,0,1)′} fL+
2

(`2) + 1{y=(1,1,0)′} fL+
3

(`3)

+ 1{y=(0,0,1)′} c1,2(FL+
1

(`1), FL+
2

(`2)) fL+
1

(`1) fL+
2

(`2)

+ 1{y=(0,1,0)′} c1,3(FL+
1

(`1), FL+
3

(`3)) fL+
1

(`1) fL+
3

(`3)

+ 1{y=(1,0,0)′} c2,3(FL+
2

(`2), FL+
3

(`3)) fL+
2

(`2) fL+
3

(`3)

+ 1{y=(0,0,0)′} c(FL+
1

(`1), FL+
2

(`2), FL+
3

(`3)) fL+
1

(`1) fL+
2

(`2) fL+
3

(`3)
)
.

Hence, dependence is modeled by the trivariate copula C with bivariate margins C1,2, C1,3

and C2,3. If C is an elliptical copula with correlation matrix R = (ρjk)j,k=1,2,3 ∈ [−1, 1]3×3,
then each bivariate margin Cj,k, 1 ≤ j < k ≤ 3, is also elliptical of the same class and
has a 2× 2-correlation matrix with parameter ρjk. In case of the Student’s t copula, each
margin also has the same degrees of freedom as C.

To overcome the restrictions with respect to tail dependence even of the Student’s t
copula, we will consider two appropriate extensions: the individual Student’s t copula and
vine copulas. In addition, Archimedean copulas are also discussed for comparison.

6.4.2 Individual Student’s t copula

The individual Student’s t copula (see Section 2.3) generalizes the standard Student’s
t copula such that each variable has its own degrees of freedom parameter. This adds
flexibility for appropriately modeling the tails, as discussed in the following.

(i) Pairwise dependence: As an extension of the standard Student’s t copula, the pair-
wise dependence of the individual Student’s t copula can also vary between different
pairs. The dependence of a pair of variables is determined in terms of the correspond-
ing entry in the correlation matrix and by the two parameters for the degrees of
freedom of the variables.

(ii) Tail dependence: Due to the reflection symmetry, the tail dependence of the individ-
ual Student’s t copula is also symmetric in both tails. In contrast to the standard
Student’s t copula, it is decisively determined by the degrees of freedom of the
individual variables (see Equation (2.30)) and therefore more flexible.
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(iii) Interpretability: Kendall’s τ is approximately the same as for standard elliptical dis-
tributions (see Equation (2.29)) and therefore straightforward to interpret. The tail
dependence coefficients however do not possess a simple closed-form expression (see
Equation (2.30)), so that the interrelationship of the parameters and the strength
of tail dependence is not obvious in the first place (see Figure 2.5).

(iv) Computational tractability: Despite its more sophisticated structure, the individual
Student’s t copula is still computationally tractable. The margins are simply indi-
vidual Student’s t copulas with corresponding degrees of freedom parameters and
sub-matrix of the full correlation matrix. Furthermore, the multivariate density only
involves a one-dimensional integration (see Equation (2.28)).

The statistical inference of the individual Student’s t copula is therefore feasible
also in higher dimensions. To obtain good starting values for numerical optimiza-
tion, it is convenient to use inverted pairwise empirical Kendall’s τ values as for
elliptical copulas. For the individual degrees of freedom parameters, we propose to
preliminarily fit bivariate individual Student’s t copulas for each pair and then take
the average estimated degrees of freedom of each variable as starting value. In our
numerical examples, this typically provided reasonably good starting values, which
sped up the numerical optimization.

The individual Student’s t copula hence extends the standard Student’s t copula at the
critical point: Individual degrees of freedom parameters for each variable allow for a
more flexible range of tail dependence of the different pairs, while the assumption of one
common parameter for the degrees of freedom can be very restrictive if larger numbers of
variables are considered. On the other hand, the individual Student’s t copula is harder
to interpret in terms of its parameters. The statistical inference is also more difficult due
to a one-dimensional integration in the density expression.

6.4.3 Archimedean copulas

Archimedean copulas are introduced in Section 2.4. Their properties are:

(i) Pairwise dependence: Due to the exchangeability, each margin of an Archimedean
copula is again of the same copula type with the same parameter. That is, pairwise
dependence is fixed to be the same for all pairs.

(ii) Tail dependence: Depending on the chosen generator function, Archimedean copu-
las can exhibit different tail behavior (see Examples 2.15–2.18). For instance, the
Gumbel copula is upper tail dependent, while the Frank does not have any tail
dependence.

(iii) Interpretability: Parameters of Archimedean copulas can typically be expressed in
terms of Kendall’s τ . Closed-form expressions for the tail dependence coefficients in
terms of the parameters are often also available (see Table 2.1).

(iv) Computational tractability: The major advantage of Archimedean copulas is that
all margins are readily available and the copula often only depends on one or two
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parameters. This strongly simplifies the statistical inference (see also Hofert et al.
(2012)).

Clearly, because of the insufficient flexibility in modeling heterogeneous pairwise depen-
dence, Archimedean copulas are ruled out as reasonable models for multivariate opera-
tional losses when moving beyond the bivariate case.

6.4.4 Vine copulas

Vine copulas (see Section 2.7) are a completely different approach to construct multivari-
ate copulas and can also be used to generalize the Student’s t copula, as we will discuss
below. First, we go through the list of desirable properties.

(i) Pairwise dependence: Due to the flexibility in the choice of the pair copulas in the
decomposition, different pairs of cells can have very different dependence structures
such as asymmetry or tail dependence.

(ii) Tail dependence: Joe et al. (2010) show that for each pair of cells to have tail depen-
dence, it is sufficient for the unconditional bivariate copulas to have tail dependence.
That is, if for instance all d−1 copulas of unconditional pairs (pairs in the first vine
tree) are specified as Student’s t, then each pair of cells is tail dependent.

(iii) Interpretability: Interpretation of dependence patterns of vine copulas is complicated
by the fact that most pairs are specified conditionally. Only for the dependence of the
d−1 pairs in the first vine tree, which are specified unconditionally, interpretation is
as simple as for the multivariate copulas discussed previously. However, simulation
from vine copulas is very simple so that properties can be assessed empirically based
on sufficiently large simulated data sets.

(iv) Computational tractability: The statistical inference of vine copulas is in principle
rather straightforward, since the density of a vine copula is conveniently given in
terms of a product of bivariate copulas (see Equation (2.66)). For log likelihood
calculations, this nicely transforms into a sum of log copula densities.

To be useful for our multivariate operational loss model defined in Equation (6.5), we
however also require the margins of vine copulas. The availability of the multivariate
margins is unfortunately a major issue of vine copulas. Some margins are available
in closed form, such as those of the d − 1 unconditional pairs in the first vine tree
T1. Nevertheless, in most cases integration is needed to compute the margins. This
is especially true for the bivariate margins of the (d− 1)(d− 2)/2 conditional pairs
in vine trees T2, ..., Td−1. For example, in a three-dimensional vine copula with pair
copulas C1,2, C1,3 and C2,3;1 (see the example in Section 2.7.1, in particular Equation
(2.60)), the bivariate margin of the variables 2 and 3 is given for (u2, u3)′ ∈ [0, 1]2

by

c2,3(u2, u3) =

∫ 1

0

c(u1, u2, u3) du1

=

∫ 1

0

c1,2(u1, u2) c1,3(u1, u3) c2,3;1(C2|1(u2|u1), C3|1(u3|u1)) du1.
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6.4 Dependence modeling of positive losses

Archim. Gaussian Student’s t Indiv. t Vine

Pairwise dependence – + + + +
Tail dependence ◦ – ◦ + +
Interpretability + + + + ◦
Comput. tractability + + + ◦ –

Table 6.2: Overview of copula characteristics: positive (+), neutral (◦), and negative (–).

In the worst case, for the pair of cells {j, k} in the last vine tree Td−1, which has the
conditioning set {1, ..., d} \ {j, k}, (d− 2)-dimensional integration may be needed to
compute the corresponding bivariate margin. This renders the use of vine copulas
in model (6.5) hardly feasible even if d is only as large as 5 or 6. Only if there
are few zero events, margins may stay sufficiently well tractable. In our application
in Section 6.7, we will show how to calibrate a seven-dimensional vine copula for
operational losses per ET.

Although the building blocks of vine copulas can be of arbitrary type, we focus here on
elliptical pair copulas. On the one hand, this narrows the wide range of possible construc-
tions (see Section 2.7.4). On the other hand, this allows us to define an extension of the
Student’s t copula, which stays interpretable for the following reason: As noted in Section
2.7.2, Stöber et al. (2013) show that a Student’s t copula can be represented as a vine
copula, where the parameters of the pair copulas are obtained as partial correlations and
degrees of freedom that are increased by one for each additional conditioning variable.
The Student’s t copula can therefore be generalized by a vine copula with Student’s t
pair copulas, where each bivariate Student’s t copula is allowed to have different numbers
of degrees of freedom. Since this results in a model with a large number of parameters
(two parameters per pair copula), a simpler model can be constructed by only choosing
Student’s t copulas for the d− 1 unconditional pairs and Gaussian copulas for all condi-
tioned pairs. According to Joe et al. (2010), this construction also has tail dependence for
all pairs. A further model simplification could be achieved by truncating the vine copula
as discussed by Brechmann et al. (2012). The focus on elliptical pair copulas also means
that the simplifying assumption of PCCs (see Section 2.7.2) can be regarded as not overly
restrictive here.

6.4.5 Hierarchical copulas

The BLs and ETs shown in Table 6.1 can each be divided into sub-categories (see Basel
Committee on Banking Supervision (2006)). This induces a natural hierarchy, which can
be accounted for using a hierarchical dependence model as discussed in Chapter 3. Espe-
cially hierarchical Kendall copulas (see Definition 3.3) can provide the required flexibility
in terms of the above discussed properties. However, as losses per (sub-)category are
summed up for risk capital calculations, it would probably be more reasonable to work
with a different aggregation function than the copula (see Section 3.2). One such ap-
proach for hierarchical risk capital aggregation was recently explored by Arbenz et al.
(2012). Here, we do not further follow the approach of a hierarchical modeling, since data

145



6 Operational risk measurement

availability today is typically a problem even at the coarser level of BLs and ETs, so that
a detailed hierarchical dependence analysis is not feasible yet. Also in our application the
information about the BL or ET sub-category of a loss is not available to us.

6.5 Dependence modeling of zero losses

The random vector Y of zero inflation components is multivariate binary, for which dis-
tributions are however rather non-standard and often require an excessive number of
parameters (see, e.g., Johnson et al. (1997)). We propose to use a copula approach here,
which we first illustrate in a bivariate example. For this, let Y = (Y1, Y2)′ and recall that
P (Yj = yj) = P (Yj ≤ yj)− P (Yj ≤ yj − 1) = PYj(yj)− PYj(yj − 1), j = 1, 2. Similarly, it
holds for the bivariate probability mass function pY that

pY (y) = P (Y1 = y1, Y2 = y2)

= P (Y1 ≤ y1, Y2 ≤ y2)− P (Y1 ≤ y1 − 1, Y2 ≤ y2)

− P (Y1 ≤ y1, Y2 ≤ y2 − 1) + P (Y1 ≤ y1 − 1, Y2 ≤ y2 − 1)

= CY (PY1(y1), PY2(y2))− CY (PY1(y1 − 1), PY2(y2))

− CY (PY1(y1), PY2(y2 − 1)) + CY (PY1(y1 − 1), PY2(y2 − 1)),

where we used Sklar’s Theorem (2.1) with an appropriate bivariate copula CY . In general,
pY can be represented as

pY (y) =
2∑

k1=1

...
2∑

kd=1

(−1)k1+...+kdCY

(
u

(k1)
1 , ..., u

(kd)
d

)
, (6.7)

where u
(1)
j = PYj(yj) and u

(2)
j = PYj(yj − 1) for j = 1, ..., d (see Song (2007, Section

6.3.2)). For binary margins PYj , it is either yj = 0 or yj = 1. If yj = 0, then u
(1)
j = PYj(0)

is the probability of a non-zero loss and u
(2)
j = PYj(−1) = 0. Conversely, if yj = 1, then

u
(1)
j = PYj(1) = 1 and u

(2)
j = PYj(0).

The copula CY can be any d-dimensional copula. As before, we recommend to use
a copula that allows for heterogeneous pairwise dependence, which makes Archimedean
copulas of no interest here. A vine copula, on the other hand, generally does not have
a closed-form copula expression. This also rules out vine copulas (see Panagiotelis et al.
(2012) for an alternative, PCC-based approach to modeling multivariate discrete data).
Finally, to evaluate Equation (6.7), 2d evaluations of the copula are needed. This may
be very time-consuming so that also the individual Student’s t copula, whose copula
expression is of more complicated form than that of standard elliptical copulas, is typically
not a good choice. The Gaussian copula may be used in moderate dimensions, since
efficient algorithms for the numerical evaluation of CY are available (see Genz and Bretz
(2009)). To evaluate a Student’s t copula, the dimension should however be rather small.
Parameters can be estimated using maximum likelihood techniques.
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6.6 Operational risk capital

6.6 Operational risk capital

A major purpose of a multivariate model for operational losses is, of course, an accurate
assessment of the regulatory risk capital to be held to cover future losses. The standard
risk measure for computing the operational risk capital under Basel II is the Value-at-
Risk (VaR) at the 99.9% level (see Equation (6.1)). In general, for a level α ∈ [0, 1] the
(1− α)-VaR is defined as

VaR1−α(L) = F−1
L (1− α), (6.8)

where L =
∑d

j=1 Lj is the total operational loss over d cells and FL its continuous distri-
bution function (see, e.g., McNeil et al. (2005)). Since FL is not known in closed form, it
has to be approximated by simulation. To simulate N ′ losses `kj, k = 1, ..., N ′, for each
cell j ∈ {1, ..., d} using our multivariate model (6.5), we proceed as follows.

(i) Sample ukj, k = 1, ..., N ′, j = 1, ..., d, from the copula C for positive losses. For
elliptical, Archimedean and vine copulas see Mai and Scherer (2012), for the indi-
vidual Student’s t copula see Luo and Shevchenko (2010).

(ii) Set `+
kj := F−1

L+
j

(ukj) > 0 for k = 1, ..., N ′ and j = 1, ..., d.

(iii) Sample ykj ∈ {0, 1}, k = 1, ..., N ′, j = 1, ..., d, from the copula CY for zero losses
and using the marginal distribution functions PYj , j = 1, ..., d.

(iv) Set `kj := (1 − ykj)`+
kj ≥ 0 for k = 1, ..., N ′ and j = 1, ..., d, according to Equation

(6.3).

In this way, we generate a sample of size N ′ of the total operational loss, which is given by
`k :=

∑d
j=1 `kj, k = 1, ..., N ′. The (1− α)-quantile F−1

L (1− α), that is, the (1− α)-VaR,
can then be approximated by the corresponding empirical quantile of `1, ..., `N ′ .

6.7 Application: Operational losses of Italian banks

Having discussed our multivariate model for operational losses in detail, we now evaluate
it based on a data base of losses of Italian banks.

6.7.1 Data

Our data set comprises operational losses reported from 33 Italian banking groups with
about 180 entities to the Italian Database of Operational Losses (DIPO)1. The time period
that we consider is from January 2003 to June 2011 for a total of 102 months or 451 weeks.
The reporting threshold is 5000 Euro, below which no loss is reported. Further, it is known
for each loss which ET and BL are affected.

Figure 6.1 displays pie charts for the proportion of aggregate losses and of numbers
of losses per BL and per ET (see Table 6.3). It shows that the losses per cell are rather

1We are thankful to Claudia Pasquini, Claudia Capobianco and Vincenzo Buggè from DIPO and its
Statistical Committee for their support. The views expressed in this chapter are those of the authors
and do not necessarily reflect the viewpoints of DIPO or the DIPO Statistical Committee.
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BL1

BL2

BL3

BL4

BL5
BL6BL7

BL8

Aggregate losses per BL

BL1
BL2

BL3

BL4

BL5
BL6BL7

BL8

Numbers of losses per BL

ET1

ET2ET3

ET4

ET5 ET6

ET7

Aggregate losses per ET

ET1

ET2
ET3

ET4

ET5 ET6

ET7

Numbers of losses per ET

Figure 6.1: Proportion of aggregate losses Lj (left column) and numbers of losses Nj (right
column) per BL (top row) and per ET (bottom row).

Agg. ET1 ET2 ET3 ET4 ET5 ET6 ET7 Σ ET

BL1 0.00 0.01 0.01 0.49 0.00 0.01 0.20 0.72
BL2 0.70 1.19 0.05 5.22 0.00 0.19 2.96 10.30
BL3 5.53 10.73 5.41 11.22 0.41 0.32 10.95 44.57
BL4 1.63 1.65 0.20 9.27 0.08 0.07 3.78 16.67
BL5 0.00 0.02 0.01 0.02 0.00 0.03 0.16 0.24
BL6 0.06 0.01 0.03 0.02 0.00 0.01 0.39 0.52
BL7 0.01 0.01 0.07 2.32 0.00 0.03 0.24 2.69
BL8 3.68 0.10 0.14 15.91 0.01 0.09 4.37 24.31

Σ BL 11.60 13.71 5.92 44.46 0.51 0.75 23.05

Freq. ET1 ET2 ET3 ET4 ET5 ET6 ET7 Σ ET

BL1 0.00 0.00 0.01 0.02 0.00 0.00 0.06 0.10
BL2 0.03 0.01 0.02 2.13 0.01 0.12 1.40 3.71
BL3 1.45 23.74 4.16 6.74 0.82 0.41 11.07 48.39
BL4 0.06 2.75 0.15 2.35 0.27 0.10 3.59 9.27
BL5 0.01 0.02 0.02 0.03 0.00 0.05 0.30 0.44
BL6 0.01 0.04 0.02 0.04 0.00 0.01 0.26 0.38
BL7 0.01 0.02 0.02 0.07 0.01 0.03 0.27 0.44
BL8 0.79 0.19 0.15 30.38 0.00 0.19 5.57 37.26

Σ BL 2.36 26.77 4.54 41.77 1.11 0.91 22.52

Table 6.3: Proportion (in %) of aggregate losses Lj (upper table) and numbers of losses
Nj (lower table) for each BL-ET combination.
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6.7 Application: Operational losses of Italian banks
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Figure 6.2: Pairwise scatter plots of aggregate losses L+
j per ET on the log scale. The lower

triangle shows the percentage of pairwise complete observations of (L+
j , L

+
k ).

Labels are omitted from the axes for confidentiality reasons.

heterogeneous. That is, operational losses in certain BLs and ETs occur more often and are
of different magnitude. Especially Retail Banking (BL3) and Retail Brokerage (BL8) are
often subject to operational losses, while the most frequent event types are External Fraud
(ET2), Execution, Delivery & Process Management (ET7) and, in particular, Clients,
Products & Business Practices (ET4).

We choose here to model on a weekly basis to balance the trade-off between having
sufficiently many observations in each cell to avoid a large number of zero losses and also
to being able of an accurate marginal and dependence modeling. In our investigation,
we will both model the multivariate dependence between the eight BLs and between the
seven ETs, to evaluate also the impact of such choice on the total risk capital estimate.
Both approaches are followed in practice (see Basel Committee on Banking Supervision
(2009a)), but so far no investigation showed the implications behind them. Figure 6.2
shows pairwise scatter plots of the aggregate losses of the seven ETs on the log scale.
The general level of dependence appears to be rather weak, as the observations are rather
dispersed, but there are also cases with seemingly stronger dependence such as between
ETs 4 and 7. The dependence between positive losses is investigated in more detail in
Section 6.7.3. Figure 6.2 also indicates that there is a considerable number of zero events
that needs to be taken into account explicitly (see Section 6.7.4). First, we discuss an
appropriate modeling of the margins.
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6 Operational risk measurement

6.7.2 Marginal modeling

For the estimation of weekly operational losses per BL and ET we consider the following
frequency and severity distributions: zero-truncated Poisson, generalized Poisson (see Con-
sul and Jain (1973)) and negative binomial for the loss frequency, and gamma, Weibull,
log normal, Pareto and generalized Pareto for the loss severity. Each severity distribution
is translated to the reporting threshold of 5000 Euro (see Equation (6.6)).

Using QQ-plots and goodness-of-fit tests, it turns out that negative binomial fits for the
loss frequency are quite good and always superior to the respective Poisson fits postulating
equidispersion, which cannot be observed with the available data. Generalized Poisson fits,
which also allow for non-equidispersion, give similar results as the negative binomial, so
that we decide to use the latter model.

In an exploratory pre-analysis, we also determine that significantly fewer losses are
observed in three weeks in August. We account for this holiday season effect by fitting
appropriate mean regressions with indicator variable for these three weeks. More precisely,
let fN+

j
denote the probability mass function of the zero-truncated negative binomial

distribution for the number of losses of a given cell j. Then,

fN+
j

(nj) =
Γ(nj +mj)

Γ(mj)nj!

(
mj

mj + µkj

)mj( µkj
mj + µkj

)nj(
1−

(
mj

mj + µkj

)mj)−1

, nj ∈ N,

with season-dependent mean parameter µkj > 0 and size mj > 0. We model µkj as

µkj = exp (β0j + β1j1summer(k)) ,

where β0j, β1j ∈ R denote regression parameters, and the indicator variable 1summer is
defined as

1summer(k) :=

{
1 if observation k occurs in one of the three summer weeks,

0 otherwise.

Hence, we have two different frequency distributions for each BL and ET, depending on
whether a loss occurs in summer or not. Severities are not observed to be different in
summer compared to the rest of the year.

For the loss severities, we also use QQ-plots and goodness-of-fit tests to determine the
best fitting distributions per BL and ET. From the above list of distributions the log
normal (translated to the minimum reported loss of 5000 Euro) gives the best fit for the
individual positive losses. Figure 6.3 shows that the fitted log normal distribution func-
tions, in fact, very closely follow the empirical distribution functions of the different BLs.
A look at the very tail of the distributions (see Figure 6.4) underlines this. Although there
may be a potential underestimation of the tails, the tails are generally only moderately
heavy so that log normal fits are appropriate. For ETs similar results hold.

In the next step, we then compute the convolution of the chosen severity and frequency
distributions for each BL and ET by Monte Carlo simulation with sample size 100 000
(see, e.g., Klugman et al. (2008)). For each BL and ET we obtain two convolutions:
one for the three summer weeks with significantly fewer losses and one for the rest of
the year. This provides us with estimates F̂L+

j
and F̂ s

L+
j

of the marginal aggregate loss
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Figure 6.3: Comparison of empirical and fitted log normal distribution functions for all
eight BLs and the main range of the individual losses Xmj. Labels are omitted
from the horizontal axes to maintain confidentiality.
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Figure 6.4: Comparison of empirical and fitted log normal distribution functions on the
log scale for all eight BLs in the upper tail of the individual losses Xmj. Labels
are omitted from the horizontal axes to maintain confidentiality.
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6 Operational risk measurement

ET\BL 1 2 3 4 5 6 7 8

1 -0.14 0.02 -0.07 0.08 0.18 0.05 -0.10
2 0.12 0.12 0.16 0.00 0.06 0.10 0.20
3 0.08 0.15 0.23 0.01 0.12 0.10 0.23
4 0.10 0.30 0.16 0.01 0.04 0.06 0.22
5 0.04 -0.01 0.06 0.04 -0.06 0.12 0.07
6 0.05 0.13 0.10 0.12 0.05 0.18 0.06
7 0.07 0.20 0.18 0.29 0.07 0.08 0.10

Table 6.4: Empirical Kendall’s τ values of jointly observed pairs of positive aggregate
losses (L+

j , L
+
k ) per BL (upper triangle) and per ET (lower triangle).

distribution functions FL+
j

and F s
L+
j

, respectively, where the latter indicates the one for

the three summer weeks. (Note that we have j = 1, ..., 8 for BLs and j = 1, ..., 7 for ETs.)
These estimates are used to transform the observed aggregate losses `kj, k = 1, ..., 451,
to approximately uniform data following the estimation method of inference functions for
margins (IFM) described in Section 3.5. That is, we set

ûkj :=




F̂ s
L+
j

(`kj) if observation k occurs in one of the three summer weeks,

F̂L+
j

(`kj) otherwise.

Following the IFM approach, these pseudo observations are then used in the dependence
analysis.

6.7.3 Dependence modeling of positive losses

We then fit the copula models for positive losses of Section 6.4. As Archimedean copulas
we choose the Frank, which does not exhibit any tail dependence (see Example 2.17), and
the Gumbel, which has upper but no lower tail dependence (see Example 2.16). Upper
tail dependence is of particular interest here, because it describes the joint probability
of very large losses and therefore needs to be accounted for in risk capital calculations
(see Section 6.7.5). General dependence is however rather weak between BLs and ETs,
respectively: Pairwise empirical Kendall’s τ values between BLs range from −0.14 to 0.23
and between ETs from −0.01 to 0.30 (see Table 6.4). This is in line with previous studies
(see Dalla Valle et al. (2008), Cope and Antonini (2008), and Giacometti et al. (2008))
and clearly different from comonotonicity as postulated by the standard approach (see
Equation (6.2)).

As described in Section 6.4, the use of vine copulas in our multivariate model for op-
erational losses defined in Equation (6.5) is quite challenging, since multivariate margins
are not available in closed form but involve possibly high-dimensional integration. We
therefore check both for BLs and ETs which combinations of non-zero events are actually
observed, that is, which margins need to be evaluated. For ETs these are the combina-
tions {3,4}, {1,2,4,7}, {1,2,3,4,7}, {1,2,4,5,7}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {2,3,4,5,6,7},
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1,2,4,5,6,7

1,2,4,7 1,2,4,5,7 1,2,3,4,5,7

3,4 1,2,3,4,7 1,2,3,4,6,7 1,2,3,4,5,6,7

2,3,4,5,6,7

Figure 6.5: Combinations of observed non-zero events in ETs, where arrows indicate that
a set is the subset of another.

{1,2,4,5,6,7} and {1,2,3,4,5,6,7}. For a vine copula to be tractable for the statistical in-
ference, it is important to construct it such that only low-dimensional integrations are
required for the margins. Such a vine copula can be determined according to the following
tailor-made selection procedure, which is in contrast to the general selection approaches
mentioned in Section 2.7.4 (see, in particular, Algorithm 2.25) and used in Sections 3.7.3
and 5.3.3.

From the conditional density decomposition (see Equations (2.55) and (2.61)) it is clear
that a d-dimensional PCC can always be extended to a (d+1)-dimensional one by adding
the term fd+1|1,...,d(xd+1|x1, ..., xd) to the existing PCC (see the Example in Section 2.7.1).
This means that we can construct the vine copula by starting with a bivariate one and
then iteratively extending it to the seven-dimensional one, which is needed to describe
the dependence between all ETs. For this, we check which set of jointly observed ETs is
a subset of another as displayed in Figure 6.5. One option then is to start with a PCC
for {3,4}, which is simply a bivariate copula. It is reasonable to extend it to {1,2,3,4,7},
which is the smallest set of which {3,4} is a subset. Then, we choose {1,2,3,4,5,7} and
finally {1,2,3,4,5,6,7} as indicated by the solid lines in Figure 6.5. The reason why we
choose {1,2,3,4,5,7} instead of {1,2,3,4,6,7}, of which {1,2,3,4,7} is also a subset, is that
{1,2,4,5,7}, which is not explicitly included in the PCC, is a subset of {1,2,3,4,5,7}. In this
way, every multivariate margin that is not an explicit sub-model of the PCC is a subset of
a set that is included and has only one element more. For the vine copula, this means that
only one-dimensional integration is needed to integrate out this one additional element.
For instance, the margin of {1,2,4,7} is obtained by integrating out variable 3 from the sub-
model for {1,2,3,4,7}, since {1, 2, 4, 7} ⊂ {1, 2, 3, 4, 7} and {1, 2, 3, 4, 7}\{1, 2, 4, 7} = {3}.

To summarize, we found a PCC for ETs such that only one-dimensional integration is
needed to evaluate the multivariate operational loss model (6.5). This is similar to the
individual Student’s t copula. Unfortunately, the best possible vine PCC for BLs still
requires up to three-dimensional integration, which is numerically very demanding. We
therefore do not consider a vine copula for BLs. For ETs, we however fit two different
R-vine copulas: one with only Student’s t pair copulas (model ‘T’) and one with Student’s

153



6 Operational risk measurement

BL modeling ET modeling
Copula Log lik. # Par. AIC Log lik. # Par. AIC

Gumbel 29.14 1 -56.27 51.99 1 -101.99
Frank 36.62 1 -71.23 70.96 1 -139.92
Gaussian 92.92 28 -129.83 107.14 21 -172.28
Student’s t 96.01 29 -134.02 111.32 22 -178.65
Indiv. Student’s t 105.35 36 -138.70 119.50 28 -183.01
R-vine (T/N) - - - 112.80 27 -171.61
R-vine (T) - - - 121.39 42 -158.78

Table 6.5: Log likelihoods, numbers of parameters and AIC values of the copulas for de-
pendence among BLs and ETs estimated by maximum likelihood.

t copulas for all unconditional variable pairs (first tree) and Gaussian copulas for all pairs
that are specified conditionally in the remaining trees (model ‘T/N’).

Log likelihoods, numbers of parameters as well as AIC values of the considered models
for BLs and ETs are shown in Table 6.5. While both Archimedean copulas are obviously
not appropriate for the operational risk data per BL or ET, elliptical copulas provide a
pretty good fit. Nevertheless, the individual Student’s t copula provides an even better fit
than the standard Student’s t copula. This indicates that tail dependencies are not only
present but also quite heterogeneous, implying that the standard Student’s t copula with
only one parameter for the degrees of freedom is too restrictive: The estimated numbers
of degrees of freedom of the standard Student’s t copula are 42.04 for BLs and 54.78
for ETs, while the estimated individual degrees of freedom of the individual Student’s t
copula vary between 6.30 and more than 300 for BLs and between 7.62 and also more
than 300 for ETs. The standard Student’s t copulas therefore create the false impression
that dependence is almost Gaussian. The large estimated numbers of degrees of freedom
can be seen as averages of the respective estimated individual degrees of freedom, which
are rather heterogeneous. Entries of the correlation matrices range between −0.23 and
0.31 for BLs and between 0 and 0.33 for ETs, corresponding to a rather weak to medium
level of dependence. Computing tail dependence coefficients for these parameters however
results in values very close to 0. This is a very interesting result, since the use of the
two Student’s t copulas allows for a quantification of the strength of the tail dependence,
which the non-tail dependent Gaussian copula does not allow for.

The two vine copulas for dependence between ETs as alternative extension of the stan-
dard Student’s t copula also improve the log likelihood. This also stresses the need for a
flexible tail dependence modeling, but, as before, estimated tail dependence coefficients
are very small and close to 0. In contrast to the standard and the individual Student’s
t copulas, the vine copulas strongly suffer from the large number of model parameters,
so that AIC values are better for the elliptical copulas and the individual Student’s t
copula. The number of parameters could be reduced by setting Student’s t copulas with,
for example, more than 100 degrees of freedom to Gaussian copulas. This would hardly
impact the log likelihood value, but significantly reduce the number of parameters. If a
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6.7 Application: Operational losses of Italian banks

correlation parameter is very small and close to independence, even independence copulas
could be used to reduce the number of parameters even further (see Sections 3.7.3 and
5.3.3). Also the individual Student’s t copula could be simplified to some extent, either
by grouping variables with similar numbers of degrees of freedom (the resulting model
being the grouped Student’s t copula by Daul et al. (2003); see Section 2.3) or by re-
moving the mixing variables in the definition of the individual Student’s t copula (see
the representation in Equation (2.27)) for components with a large number of degrees of
freedom.

6.7.4 Dependence modeling of zero losses

As discussed in Section 6.5, essentially any copula could be used to construct a flexible
multivariate binary distribution for the zero losses, but due to computational and other
limitations we concentrate here on a Gaussian copula with correlation matrix RBL or RET,
respectively. Empirical marginal probabilities of zero losses per BL range between 0 and
0.81 in the first BL, while for ETs the largest number of zero losses is observed for the
sixth ET with about 20%. These empirical probabilities are used as parameters of the
marginal Bernoulli distributions.

In a pre-analysis, it turns out that many of the empirical pairwise probabilities of zero
losses are very small (below 0.01). We therefore restrict our copula analysis to those BLs
and ETs with significant non-zero pairwise probabilities. These are the BLs 1, 5, 6 and 7
and the ETs 3, 5 and 6 (see Figure 6.2). Hence, we fit a four-dimensional Gaussian copula
for zero losses of BLs and a three-dimensional one for the ETs. Estimated entries of the
correlation matrix RBL

1,5,6,7 for BLs range between 0.02 and 0.28,

R̂BL
1,5,6,7 =




1 0.07 0.07 0.07
0.07 1 0.02 0.16
0.07 0.02 1 0.28
0.07 0.16 0.28 1


 ,

and of the correlation matrix RET
3,5,6 for ETs between 0.05 and 0.51,

R̂ET
3,5,6 =




1 0.05 0.51
0.05 1 0.19
0.51 0.19 1


 .

Correlations to and between the other BLs and ETs are set to zero.

6.7.5 Operational risk capital

After carefully modeling the dependence between positive and zero losses for BLs and
ETs, we evaluate the different models in terms of their risk capital estimates and assess
the diversification benefit compared to comonotonicity. In particular, we concentrate on
the Gaussian, the Student’s t, the individual Student’s t and the vine copula with only
Student’s t copulas, since they provide the best fit. They differ mainly in if and how tail
dependencies are modeled. Those are however found to be very small for both BL and
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Figure 6.6: Annual (1 − α)-VaRs on the log scale for α = 10%, 5%, 9%, 0.5%, 0.1% (line
types: solid to dotted) and for the different copula models for positive losses.
The left panel shows the results for BL modeling, the right for ET modeling.
Vertical axes have been scaled to maintain confidentiality.

ET dependence. For comparison, a model with independence between positive and zero
losses is also used.

We generate 100 000 annual observations from the different models (see Section 6.6),
that is, we simulate each week of the year respecting the different marginal distributions
in summer and then sum over the weeks. Based on these observations we compute annual
VaRs (6.8) for different levels as shown in Figure 6.6. Obviously, risk measures are lowest
when no dependence among BLs and ETs is assumed. Using a Student’s t copula as
underlying dependence model however results in the highest VaR estimates, while its
extensions, the individual Student’s t and the vine copula with only Student’s t copulas,
lead to smaller estimates. This is very interesting, since a standard Student’s t copula is
often chosen instead of a Gaussian copula to respect tail dependence, but it apparently
overestimates the required risk capital. This is certainly due to the restrictive modeling
approach of allowing only one parameter to control the overall level of tail dependence.
Although tail dependence here is very small, its impact is obvious and a more accurate
modeling of it, using extensions of the Student’s t copula, yields refined estimates of risk
measures. Comparing the BL and the ET modeling shows that the picture is essentially
the same for both. This is reassuring given that the modeling is based on the same data,
which only has been grouped differently.

The second question of interest is the diversification effect of considering the VaR of
the total loss rather than the sum of the individual VaRs (see Equations (6.1) and (6.2)).
That is, we are interested in the fraction

Div1−α :=
VaR1−α(

∑d
j=1 Lj)−

∑d
j=1 VaR1−α(Lj)∑d

j=1 VaR1−α(Lj)
, (6.9)

which gives the relative reduction in the VaR. If Div1−α < 0, there is a diversification
benefit.

The diversification effect for the copula models considered here is displayed in Figure
6.7. There is a clear diversification benefit of up to 38% for BLs and 32% for ETs when
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Figure 6.7: VaR diversification effect Div1−α (6.9) for α ∈ [0.1%, 10%] and for the different
copula models for positive losses. The left panel shows the results for BL
modeling, the right for ET modeling.

explicitly modeling the dependence. This mirrors the fact that dependence between BLs
and ETs, both in general and in the tails, is observed to be rather weak and therefore
clearly differs from comonotonicity, where Div1−α = 0. Interestingly, there is no obvious
difference between the different models. This indicates that the diversification effect is
mainly driven by the general level of dependence modeled, which is about similar for the
different models.

6.8 Conclusion

In this work, we introduce a rather general and flexible multivariate modeling approach
for operational risk losses, which explicitly takes into account the multivariate dependence
among losses and the presence of scarce data. Our aim is to introduce a more accurate
model and then evaluate its implications on the estimation of the total risk capital com-
pared to the Basel II comonotonicity assumption for the entire set of BLs and ETs using
real-world data. Explicit dependence modeling is discussed critically by considering differ-
ent copula classes and introducing, from both statistical and business perspectives, four
key characteristics the ideal model should allow to take into account: heterogeneous pair-
wise dependence, tail dependence, interpretable parameters and computational tractabil-
ity. It turns out that from a theoretical perspective, the individual Student’s t copula is
probably the most appealing model for operational losses, as it only poses a moderate
computational challenge, while still being easily interpretable in its parameters and struc-
ture and allowing for the presence of different pairwise (tail) dependencies. Compared to
the Student’s t copula with only one degrees of freedom parameter, tail dependence is
determined by the degrees of freedom of the individual variables and therefore flexible
in considering potentially heterogeneous behaviors among losses. Vine copulas add even
more flexibility, but at the expense of a more complex parameter interpretability and
computational tractability, which make it less appealing in our zero-inflated model frame-
work. Gaussian copulas are an option when it is reasonable to assume tail independence,
while Archimedean copulas, despite used in practice, are of less interest for operational
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risk modeling as they cannot account for heterogeneous pairwise dependence.
Empirical results on real-world data suggest that Gaussian and even better Student’s

t copulas can provide a good fit to positive losses grouped by BLs or ETs, despite the
Gaussian implies tail independence and the Student’s t copula results in a potential over-
estimation of tail dependence due to its inflexible degrees of freedom parameter. However,
as expected, the individual Student’s t copula shows the best fit in terms of AIC and
log likelihood to the data at hand and allows to build an easily interpretable model for
operational losses, from which to run Monte Carlo estimation to determine the overall
effect on risk capital. In fact, while the Student’s t copula results in the highest VaR esti-
mates for both BL and ET modeling, with an increase with respect to the independence
assumption of up to 35% and 43% for BLs and ETs, respectively, individual Student’s
t copula estimates result only in an increase of 17% and 37%. This reflects the more
accurate assessment of tail dependence by the individual Student’s t copula, which can
account for heterogeneous tail dependence through the individual degrees of freedom per
variable, of which the standard Student’s t copula’s degrees of freedom can be regarded
as an average.

Finally, when considering the diversification ratio to evaluate the effect of a potential
reduction of risk capital estimates compared to the standard Basel assumption of comono-
tonic losses, results suggest that a more realistic modeling of the multivariate distribution
of BLs and ETs leads to a reduction in capital of up to 38% for BLs and 32% for ETs
for high quantiles (α = 99.9%, with little differences between models). This confirms, as
also previously reported in the literature for much simpler bivariate settings, that the
comonotonicity assumption of the standard Basel framework is unduly strong when eval-
uating the overall effect. Banks might therefore have an incentive to move towards more
sophisticated but then realistic and accurate risk management models. Nevertheless, fur-
ther investigations on different real-world data and larger sample sizes for out-of-sample
evaluation are still required to draw irrefutable conclusions.

With increasing availability of operational loss data, it will also be possible to investigate
approaches to set up a 56-dimensional model for all BL-ET combination. In addition,
hierarchical risk capital aggregation across BL and ET sub-categories will need to be
considered in order to build a comprehensive dependence model for operational losses.
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7 Conclusion and outlook

This thesis deals with approaches to hierarchical dependence modeling. The approach
using aggregation via copulas and associated Kendall distribution functions is developed
and analyzed in detail and we discuss why we think that it is a reasonable and useful ap-
proach. Nevertheless, our method to construct hierarchical copulas is only one possibility
among many others to handle high-dimensional dependencies. Therefore, we would like to
point out two potential avenues of future research. One is an alternative approach to define
hierarchical copulas using a factor model. The other relates the developed methodology
to the research on multivariate return periods. We begin with the latter.

Multivariate return periods: The notion of a return period is commonly used, for
example, in hydrology or geophysics to quantify the riskiness of an event such as a flood
or an earthquake. It is defined as the average time between two realizations of this specific
event.

In the univariate case, let X1 ∼ F1 and let E1 be the event of interest. Assuming that
large values of X1 are considered as critical, we define E1 = (xE ,∞) with xE ∈ R. That
is, we analyze the return period of the exceedance of xE , which may be, for example, the
height of a dike. The event E1 has probability pE1 = P (X1 > xE) = 1−F1(xE). Therefore,
the mean recurrence time of the event E1, which is called the return period, is given by

µE1 =
1

pE1
=

1

1− F1(xE)
.

Such return periods can also be considered in a multivariate context. For this, let
X := (X1, ..., Xd)

′ ∼ F , where X1, ..., Xd are dependent risk quantities such as sea levels
along a coastline or flows of a river measured at different stations. Salvadori et al. (2011)
then propose a notion of a multivariate return period that is consistent with the univariate
case. They consider events

Ed = {x ∈ Rd : F (x) > zE}, (7.1)

which depend on the multivariate quantile zE ∈ [0, 1]. To see how this generalizes the
univariate case, we represent the event E1 as E1 = {x1 ∈ R : F1(x1) > F1(xE)}, which is
the special case of Ed for d = 1 and zE = F1(xE).

Using the notion of the Kendall distribution function (see Definition 2.9), we then
calculate pEd = P (F (X) > zE) = 1 −K(zE ;C), where C is the copula of X. Hence, the
return period of Ed is

µEd =
1

pEd
=

1

1−K(zE ;C)
,
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and the corresponding critical level set is given by

L(zE ;F ) = {x ∈ Rd : F (x) = zE}, (7.2)

which has a one-to-one correspondence to the copula level set L(zE ;C) (see Equation
(2.10)) through the probability integral transform: If x ∈ L(zE ;F ) and uj = Fj(xj), j =
1, ..., d, then u ∈ L(zE ;C). Conversely, if u ∈ L(zE ;C) and xj = F−1

j (uj), j = 1, ..., d,
then x ∈ L(zE ;F ).

This notion of a multivariate return period is consistent in the following sense. The
larger zE is, the smaller pE and the larger µE are. This is not the case for other notions of a
multivariate return period, which typically depend on threshold values for each component
of X. One such notion is Ẽd = {x ∈ Rd : xj > xE,j ∀j = 1, ..., d}, which Salvadori et al.
(2011) call the ‘AND’ case (see also Gräler et al. (2013) for a discussion of different
notions). It is the event that all components of X exceed prescribed threshold levels
xE := (xE,1, ..., xE,d)

′ ∈ Rd at the same time. Since xE is an arbitrary vector, no consistent
ordering as for the return period µEd is possible.

There are scenarios where multivariate return periods of different sets of risk quantities
are dependent and therefore should not be considered in isolation. For example, cities at
the confluence of two (or more) rivers are particularly threatened by flooding if the flows
of the rivers are positively dependent. This may be the case, for instance, due to similar
catchment areas or because of the snowmelt in spring. Then, the return periods of extreme
flows of the rivers need to be looked at jointly. Since return periods are characterized
through their critical level sets (7.2), a reasonable approach to dependence modeling
of return periods is by specifying the joint distribution of the critical level sets. This
joint distribution corresponds to the nesting copula of a hierarchical Kendall copula (see
Definition 3.3) with the respective Kendall distribution functions as marginal distribution
functions. In other words, the sets of risk quantities can be identified with the clusters of
a hierarchical Kendall copula and the joint distribution of the critical level sets, which are
the level sets of the cluster copulas, is given in terms of the nesting copula. Since interest
is mostly in extremal quantities, extreme value copulas (see Section 2.5) will typically be
needed as cluster copulas. Especially the Tawn copula (see Example 2.19) provides a quite
flexible dependence model for this purpose, since it allows for asymmetry, in contrast to
most other popular copulas. In an analysis of annual maximum sea levels, Tawn (1988)
detect such an asymmetry between measurements at two stations in England.

Having set up an appropriate statistical model for the return periods, the practitioner
seeks to identify so-called design realizations, which characterize critical events in the best
way. A reasonable choice for such a design realization is the most likely realization on the
critical level set L(zE ;F ) (see Equation (7.2)). Although the distribution on the level set
is usually not known explicitly (see the discussion in Section 4.2), sampling on the level
set is feasible using the methods developed in Chapter 4. In particular, for extreme value
copulas a closed-form sampling procedure is available (see Section 4.2.2). Note that, if the
underlying copula is asymmetric, then the most likely copula realization does not lie on
the diagonal u1, u ∈ [0, 1], as illustrated in Figure 4.3. Furthermore, conditional scenario
analysis is then also possible using the methods introduced in Section 5.2.5 for systemic
risk assessment.
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Depending on the context, we could, of course, also define the event Ed (7.1) in terms of
a different aggregation function, such as the maximum or the mean (see the discussion in
Section 3.2). If the aggregation function is monotone (see Definition 3.2), then the resulting
notion of a multivariate return period also satisfies the above consistency property.

Structured factor modeling: The general idea of factor modeling is to describe the be-
havior of a multivariate random vector in terms of a set of unobserved variables, which are
called factors. If a small number of factors is sufficient for this purpose, this yields a parsi-
monious model formulation. Classically, factor models are based on multivariate normality
of the random vector, but Krupskii and Joe (2013a) recently formulated a factor copula
model, which can account for non-Gaussian dependence (see also Nikoloulopoulos et al.
(2013) who develop a factor copula model for discrete data). Let U := (U1, ..., Un)′ ∼ C.
In the p-factor copula model, U1, ..., Un are then assumed to be conditionally independent
given p latent variables V1, ..., Vp. Without loss of generality, we can assume that V1, ..., Vp
are independent and identically distributed and Vj ∼ U(0, 1) for all j = 1, ..., p. Hence,
we have that

C(u) =

∫

[0,1]p
P (U ≤ u|V1 = v1, ..., Vp = vp) dv1...dvp

=

∫

[0,1]p

n∏

j=1

P (Uj ≤ uj|V1 = v1, ..., Vp = vp) dv1...dvp

=

∫

[0,1]p

n∏

j=1

Cj|V1,...,Vp(uj|v1, ..., vp) dv1...dvp, u ∈ [0, 1]n.

(7.3)

Krupskii and Joe (2013a) discuss the cases of p = 1 and p = 2 factors in detail and
propose to decompose Cj|V1,...,Vp as in a C-vine PCC (see Equation (2.70)).

Their approach can be used to specify a structured factor model, which respects group-
ings of variables. This is similar to a hierarchical Kendall copula as defined in Definition
3.3, of which we borrow here the notation. That is, let d1, ..., dn1 denote the cluster sizes
with n =

∑n1

i=1 di and define the cumulative sum mi =
∑i

j=1 dj for i = 1, ..., n1, and
m0 = 0. Further, let the set of latent variables be given by V0, V1, ..., Vn1 . Similar to the
assumption A2 in Definition 3.3, we assume that

Ã: the conditional distribution of U i|(V0, V1, ..., Vn1)
′ is the same as the conditional

distribution of U i|(V0, Vi)
′ for all i = 1, ..., n1.

This means that we assume that the dependence within cluster i is explained solely in
terms of the cluster-specific latent variable Vi and in terms of V0. The latent variable V0

is an overall factor, which influences all variables in all clusters (see also the Gaussian
factor copula proposed by Gregory and Laurent (2004)). Between- and within-cluster
dependence is then implicitly given in terms of the dependence of the variables on the
factors.

Under the assumption Ã the (n1 + 1)-factor copula of U (see Equation (7.3)) is given
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7 Conclusion and outlook

by

C(u) =

∫

[0,1]n1+1

n∏

j=1

Cj|V0,V1,...,Vn1 (uj|v0, v1, ..., vn1) dv0 dv1...dvn1

=

∫

[0,1]n1+1

n1∏

i=1




mi∏

j=mi−1+1

Cj|V0,Vi(uj|v0, vi)


 dv0 dv1...dvn1

=

∫ 1

0

n1∏

i=1



∫ 1

0

mi∏

j=mi−1+1

Cj|V0,Vi(uj|v0, vi) dvi


 dv0,

where we can express Cj|V0,Vi as in a C-vine PCC (under the simplifying assumption
(2.59)) as

Cj|V0,Vi(uj|v0, vi) = Cj|Vi;V0(Cj|V0(uj|v0)|CVi|V0(vi|v0)) = Cj|Vi;V0(Cj|V0(uj|v0)|vi),

since V0 and Vi are assumed to be independent. The corresponding density of the (n1 +1)-
factor copula can then be derived as

c(u) =

∫ 1

0

n1∏

i=1



∫ 1

0

mi∏

j=mi−1+1

cj,Vi;V0(Cj|V0(uj|v0)|vi) cj,V0(uj, v0) dvi


 dv0. (7.4)

Compared to the general (n1 + 1)-factor copula, which requires (n1 + 1)-dimensional in-
tegration to compute the density, this expression constitutes a significant simplification,
since only one-dimensional integration nested within another one-dimensional integra-
tion is needed for density evaluations. This structured factor copula model is currently
investigated in detail by Krupskii and Joe (2013b).

In contrast to hierarchical Kendall copulas, it is straightforward to show that the Gaus-
sian copula is a special case of this factor copula model (see Krupskii and Joe (2013a)).
Flexibility is however gained through different choices of the bivariate copulas as in a vine
copula. This extends the classical bi-factor model by Holzinger and Swineford (1937),
which is an important model in psychometrics and a special case of a more general model
class called structural equation models (see, e.g., Bollen (1989)).

The presented bi-factor copula model can be extended, for example, by assuming de-
pendence of the latent variables of the clusters. But then the density of the factor copula
model no longer has the attractive form given in Equation (7.4) (see the proof of Theorem
3.8). An appealing density expression in terms of nested one-dimensional integrals can be
kept if the cluster-specific latent variables V1, ..., Vn1 are assumed to be independent given
the overall factor V0. A density expression similar to Equation (7.4) can also be obtained
when residual dependence within the clusters is assumed, that is, when the assumption
that Umi−1+1, ..., Umi are independent given V0 and Vi is dropped for i = 1, ..., n1.
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A Bivariate copulas

For each bivariate copula discussed in Chapter 2 we show, from left to right, scatter
plots of a sample, contour lines of the copula, and contour lines of the copula density
combined with standard normal margins (expect for the countermonotonicity and the
comonotonicity copula, which do not possess a density). The contour lines of the copulas
are the level sets L(z;C) as defined in Equation (2.10) (here: z ∈ {0.1, 0.2, ..., 0.9}). The
level set of a copula density combined with standard normal margins is given by

LΦ(z; c) = {(x1, x2)′ ∈ R2 : c(Φ(x1),Φ(x2))φ(x1)φ(x2) = z},

where we choose z ∈ {0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2}. The parameters of the copulas
are chosen according to a Kendall’s τ of 0.5.
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Figure A.1: Countermonotonicity copula.
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Figure A.2: Comonotonicity copula.
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A Bivariate copulas
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Figure A.3: Gaussian copula.
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Figure A.4: Student’s t copula with ν = 6 degrees of freedom.
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Figure A.5: Individual Student’s t copula with ν1 = 4 and ν2 = 20 degrees of freedom.
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Figure A.6: Clayton copula.
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Figure A.7: Gumbel copula.
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Figure A.8: Frank copula.
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A Bivariate copulas
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Figure A.9: Joe copula.
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Figure A.10: Tawn copula with ψ1 = 0.6 and ψ2 = 0.9.
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Figure A.11: Plackett copula.
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B Technical derivations

We derive conditional distribution functions of Plackett and Archimedean copulas for a
specific level set as well as of the level sets of Archimedean copulas and of the Student’s t
mixing variable. In addition, it is shown how to calculate the Kendall distribution function
of the Plackett copula.

B.1 Conditional distribution function of

Archimedean copulas

We prove Lemma 4.4 by showing for a d-dimensional Archimedean copula with generator
ϕ that it holds for all j = 1, ..., d− 1

FUj |U1,...,Uj−1,C(U ;ϕ)(u|u1, ..., uj−1, z;ϕ) =

(
1− ϕ(u)

ϕ(z)−∑1≤i<j ϕ(ui)

)d−j

,

where u ∈ (C−1(z|u1, ..., uj−1;ϕ), 1). For ease of notation, dependence of expressions such
as the copula and its quantile function on the generator ϕ is dropped in the following.

We observe that the density (2.34) of an Archimedean copula C only depends on
u1, ..., ud through the first derivatives of ϕ and through C(u):

c(u) = (ϕ−1)(d)(ϕ(u1) + ...+ ϕ(ud))
d∏

i=1

ϕ′(ui) =: h(C(u))
d∏

i=1

ϕ′(ui). (B.1)

To see this, note that any derivative of an inverse is a function of derivatives of the
original function applied to the inverse, that is, (f−1)(d)(x) = f̃(f−1(x)), d ∈ N, for
an appropriately chosen f̃ . The rest follows from the definition of Archimedean copulas
(2.31).

Further, for Archimedean copulas the copula quantile function is given in closed form
(see Equation (2.35)):

C−1(z|u1, ..., ud−1) = ϕ−1
(
ϕ(z)−

∑
1≤i<d

ϕ(ui)
)
, (B.2)

Its derivative with respect to z is

∂

∂z
C−1(z|u1, ..., ud−1) =

ϕ′(z)

ϕ′(ϕ−1(ϕ(z)−∑1≤i<d ϕ(ui)))
. (B.3)
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Following Theorem 4.2, we then determine the function gj given in Equation (4.2) by
plugging in Equations (B.1)–(B.3):

gj(u1, ..., uj, z) =

∫ 1

C−1(z|u1,...,uj)
...

∫ 1

C−1(z|u1,...,ud−2)

c(u1, ..., ud−1, C
−1(z|u1, ..., ud−1))

× ∂

∂z
C−1(z|u1, ..., ud−1) dud−1...duj+1

=

∫ 1

C−1(z|u1,...,uj)
...

∫ 1

C−1(z|u1,...,ud−2)

h(z)ϕ′(z)
d−1∏

i=1

ϕ′(ui) dud−1...duj+1

= h(z)ϕ′(z)

j∏

i=1

ϕ′(ui)

×
∫ 1

C−1(z|u1,...,uj)
ϕ′(uj+1)...

∫ 1

C−1(z|u1,...,ud−2)

ϕ′(ud−1) dud−1...duj+1, (B.4)

since

ϕ′(C−1(z|u1, ..., ud−1))
∂

∂z
C−1(z|u1, ..., ud−1) = ϕ′(z),

and
h(C(u1, ..., ud−1, C

−1(z|u1, ..., ud−1))) = h(z).

Next, we iteratively solve the nested integrals in (B.4). First,

∫ 1

C−1(z|u1,...,ud−2)

ϕ′(ud−1) dud−1 = ϕ(1)− ϕ(C−1(z|u1, ..., ud−2))

ϕ(1)=0
=

(2.35)
−
(
ϕ(z)−

∑
1≤i<d−1

ϕ(ui)
)

= ϕ(ud−2) +
(∑

1≤i<d−2
ϕ(ui)− ϕ(z)

)
.

The second integral is then given by

∫ 1

C−1(z|u1,...,ud−3)

ϕ′(ud−2)
(
ϕ(ud−2) +

(∑
1≤i<d−2

ϕ(ui)− ϕ(z)
))

dud−2

=
1

2

(
ϕ(ud−2) +

(∑
1≤i<d−2

ϕ(ui)− ϕ(z)
))2

∣∣∣∣
ud−2=1

ud−2=C−1(z|u1,...,ud−3)

=
1

2

(
ϕ(ud−3) +

(∑
1≤i<d−3

ϕ(ui)− ϕ(z)
))2

.

Similarly, the third integral computes to

∫ 1

C−1(z|u1,...,ud−4)

ϕ′(ud−3)
1

2

(
ϕ(ud−3) +

(∑
1≤i<d−3

ϕ(ui)− ϕ(z)
))2

dud−3

= ... =
1

2

1

3

(
ϕ(ud−4) +

(∑
1≤i<d−4

ϕ(ui)− ϕ(z)
))3
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B.1 Conditional distribution function of Archimedean copulas

By continuing iteratively, we finally arrive at

gj(u1, ..., uj, z) = h(z)ϕ′(z)

j∏

i=1

ϕ′(ui)
1

(d− j − 1)!

(∑
1≤i<j+1

ϕ(ui)− ϕ(z)
)d−j−1

,

and thus
∫ u

C−1(z|u1,...,uj−1)

gj(u1, ..., uj, z) duj

=
h(z)ϕ′(z)

(d− j − 1)!

j−1∏

i=1

ϕ′(ui)

×
∫ u

C−1
u1,...,uj−1

(z)

ϕ′(uj)
(
ϕ(uj) +

(∑
1≤i<j

ϕ(ui)− ϕ(z)
))d−j−1

duj

=
h(z)ϕ′(z)

(d− j − 1)!

j−1∏

i=1

ϕ′(ui)
1

d− j
(
ϕ(u) +

∑
1≤i<j

ϕ(ui)− ϕ(z)
)d−j

=
h(z)ϕ′(z)

(d− j)!

j−1∏

i=1

ϕ′(ui)
(
ϕ(u) +

∑
1≤i<j

ϕ(ui)− ϕ(z)
)d−j

. (B.5)

By plugging u = 1 into (B.5), we further obtain

∫ 1

C−1(z|u1,...,uj−1)

gj(u1, ..., uj, z) duj

=
1

(d− j)! h(z)ϕ′(z)

j−1∏

i=1

ϕ′(ui)
(∑

1≤i<j
ϕ(ui)− ϕ(z)

)d−j
. (B.6)

Combining Equations (B.5) and (B.6) as in Equation (4.1) then gives

FUj |U1,...,Uj−1,C(U)(u|u1, ..., uj−1, z) =

∫ u
C−1(z|u1,...,uj−1)

gj(u1, ..., uj, z)duj
∫ 1

C−1(z|u1,...,uj−1)
gj(u1, ..., uj, z)duj

=

(
ϕ(u) +

∑
1≤i<j ϕ(ui)− ϕ(z)

)d−j

(∑
1≤i<j ϕ(ui)− ϕ(z)

)d−j

=

(
1− ϕ(u)

ϕ(z)−∑1≤i<j ϕ(ui)

)d−j

,

which is the desired result.
As noted by an anonymous referee, this result can also be derived in a very elegant

way by exploiting the representation (2.31) of Archimedean copulas, properties of the
Dirichlet distribution (see Remark 4.3) and Proposition 4.6. Our proof of Lemma 4.4
however exploits the general formula provided in Theorem 4.2 and illustrates how it can
be applied, as it is also the case for the Plackett copula (see Appendix B.4 below).
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Remark B.1 (Alternative proof of Lemma 4.4). According to Proposition 4.6, it holds
that

FUj |U1,...,Uj−1,C(U ;ϕ)(u|u1, ..., uj−1, z;ϕ)

= P (Uj ≤ u|U1 = u1, ..., Uj−1 = uj−1, C(U) = z)

= P

(
Sj ≥

ϕ(u)

ϕ(z)

∣∣∣∣S1 =
ϕ(u1)

ϕ(z)
, ..., Sj−1 =

ϕ(uj−1)

ϕ(z)

)
,

where S = (S1, ..., Sd)
′ ∼ D(1, ..., 1). For the Dirichlet distribution, it holds that (see Fang

et al. (1990, Theorem 1.6))

Sj
1− s1 − ...− sj−1

∣∣∣∣ (S1 = s1, ..., Sj−1 = sj−1) ∼ Beta(1, d− j), j = 1, ..., d− 1.

Further, the distribution function of the Beta(1, d− j) distribution is FBeta(s; 1, d− j) =
1− (1− s)d−j. Therefore, we obtain

P

(
Sj ≥

ϕ(u)

ϕ(z)

∣∣∣∣S1 =
ϕ(u1)

ϕ(z)
, ..., Sj−1 =

ϕ(uj−1)

ϕ(z)

)

= 1− FBeta

( ϕ(u)
ϕ(z)

1− ϕ(u1)
ϕ(z)
− ....− ϕ(uj−1)

ϕ(z)

; 1, d− j
)

=

(
1− ϕ(u)

ϕ(z)−∑1≤i<j ϕ(ui)

)d−j

,

as claimed in Lemma 4.4. �

B.2 Conditional distribution function of the level

sets of Archimedean copulas

Let U ∼ C(·;ϕ), where C(·;ϕ) is a d-dimensional Archimedean copula with generator ϕ,
and define the copula level set variable Z := C(U ;ϕ). We show that

FZ|U1(z|u1;ϕ) = ϕ′(u1)
d−1∑

k=1

(ϕ(u1)− ϕ(z))k−1

(k − 1)!
(ϕ−1)(k)(ϕ(z)), z ∈ (0, 1). (B.7)

According to Equation (5.9), it holds that

FZ|U1(z|u1;ϕ) = ϕ′(u1)

∫ ϕ(z)

ϕ(0)

(ϕ(u1)− x)d−2

(d− 2)!
(ϕ−1)(d)(x) dx.

To derive Equation (B.7), we hence proof by induction that

∫ ϕ(z)

ϕ(0)

(ϕ(u1)− x)d−2

(d− 2)!
(ϕ−1)(d)(x) dx =

d−1∑

k=1

(ϕ(u1)− ϕ(z))k−1

(k − 1)!
(ϕ−1)(k)(ϕ(z)), (B.8)
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B.3 Kendall distribution function of the Plackett copula

for d ≥ 2 and z ∈ (0, 1). In the bivariate case (d = 2), this is straightforward, since
∫ ϕ(z)

ϕ(0)

(ϕ−1)(2)(x) dx = (ϕ−1)(1)(ϕ(z)).

For d > 2, we use integration by parts to obtain
∫ ϕ(z)

ϕ(0)

(ϕ(u1)− x)d−2

(d− 2)!
(ϕ−1)(d)(x) dx

=
(ϕ(u1)− ϕ(z))d−2

(d− 2)!
(ϕ−1)(d−1)(ϕ(z)) +

∫ ϕ(z)

ϕ(0)

(ϕ(u1)− x)d−3

(d− 3)!
(ϕ−1)(d−1)(x) dx.

Applying the induction hypothesis (B.8) for d− 1 to the last term then proves the state-
ment and hence Equation (B.7).

B.3 Kendall distribution function of the Plackett

copula

According to Equation (2.15), it holds for the bivariate Plackett copula C(·, ·;α) with
parameter α ∈ (−1,∞) \ {0} (see Equation (2.50)) that

K(z;α) = z +

∫ 1

z

C2|1(C−1(z|u1;α)|u1;α) du1, z ∈ [0, 1]. (B.9)

The copula quantile function of the Plackett copula is given in closed form in Equation
(2.52) and the first derivative of the Plackett copula with respect to the second argument
is

C2|1(u2|u1;α) =
1

2


1− 1 + α(u1 + u2)− 2(α + 1)u2√

(1 + α(u1 + u2))2 − 4α(α + 1)u1u2


 .

This yields for the integrand of Equation (B.9) (see also Genest and Rivest (2001)):

C2|1(C−1(z|u1;α)|u1;α) =
(α + 1)z − αz2

α(α + 1)(u1 − z)2 + (α + 1)u1 − αz2
.

Hence,

K(z;α) = z +
(α + 1)z − αz2

α(α + 1)

∫ 1

z

1

(u1 + 1
2α
− z)2 +D(z, α)

du1, (B.10)

where

D(z, α) =
4αz(α(1− z) + 1)− α− 1

4α2(α + 1)
. (B.11)

After substitution with v = u1 + 1/(2α)− z, the integral in Equation (B.10) is then given
by ∫ 1

z

1

(u1 + 1
2α
− z)2 +D(z, α)

du1 =

∫ 1+1/(2α)−z

1/(2α)

1

v2 +D(z, α)
dv =: I (B.12)

The solution of the integral I depends on whetherD(z, α) > 0,D(z, α) = 0 orD(z, α) < 0.
These three different cases are illustrated in Figure B.1.
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Figure B.1: Sets of parameters with D(z, α) > 0, D(z, α) = 0 (solid line) and D(z, α) <
0. The parameter α (right axis) has been transformed to the corresponding
Kendall’s τ value τ(α) (left axis).

(i) If D(z, α) > 0, then we obtain

I =
1√
D(z, α)

(
arctan

(
1 + 1

2α
− z√

D(z, α)

)
− arctan

(
1

2α
√
D(z, α)

))
.

(ii) If D(z, α) = 0, then the integral is straightforward to solve as

I = −
(

1

1 + 1
2α
− z − 2α

)
.

(iii) If D(z, α) < 0, we have to distinguish two cases: α > 0 and α < 0. If α > 0, we have

I = − 1√
−D(z, α)

(
arcoth

(
1 + 1

2α
− z√

−D(z, α)

)
− arcoth

(
1

2α
√
−D(z, α)

))
.

Conversely, if α < 0, we need to use the inverse hyperbolic tangent instead of the
cotangent:

I = − 1√
−D(z, α)

(
artanh

(
1 + 1

2α
− z√

−D(z, α)

)
− artanh

(
1

2α
√
−D(z, α)

))
.

These expressions can be plugged into Equations (B.10) and (B.12) to obtain the Kendall
distribution function of the Plackett copula at an arbitrary point z ∈ [0, 1].

B.4 Conditional distribution function of the Plackett

copula

Let C(·, ·;α) be a Plackett copula with parameter α ∈ (−1,∞) \ {0} (see Equation
(2.50)) and let z ∈ (0, 1). As shown in Theorem 4.2, the conditional distribution function
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B.4 Conditional distribution function of the Plackett copula

FU1|C(U1,U2;α)(·|z;α) of U1|C(U1, U2;α) = z can then be determined for u ∈ (z, 1) as

FU1|C(U1,U2;α)(u|z;α) =

∫ u
z
g1(u1, z;α) du1∫ 1

z
g1(u1, z;α) du1

, (B.13)

where

g1(u1, z;α) = c
(
u1, C

−1(z|u1;α);α
) ∂
∂z
C−1(z|u1;α).

The density of the Plackett copula is given in Equation (2.51), the copula quantile function
in Equation (2.52). We can therefore calculate g1 and obtain after some simplifications

g1(u1, z;α) =
1

α2(α + 1)

(α + 1)(1 + αu1)u1 − 2(1 + αu1)αu1z + (2u1 − 1)α2z2

(
(u1 + 1

2α
− z)2 +D(z, α)

)2 ,

where D is defined in Equation (B.11). To compute FU1|C(U1,U2;α)(·|z;α) (see Equation
(B.13)), we hence have to solve the integral

∫ u+1/(2α)−z

1/(2α)

ãv2 + b̃v + c̃

(v2 +D(z, α))2 dv,

where ã, b̃ and c̃ are constants independent of v, which has been substituted for u1 +
1/(2α) − z as in Equation (B.12). As for the Kendall distribution function, the solution
depends on the value of D(z, α) (see Figure B.1).

(i) If D(z, α) > 0, we obtain, up to a multiplicative constant independent of u, that
∫ u

z

g1(u1, z;α) du1

=
α2z(1 + α)(u− z) ((1 + α)(2α(uz + z − u)− u− 1)− 2α2z2)

u(1 + α)(1 + α(u− 2z)) + α2z2

+ h1(u; z, α, σ, β),

where
h1(w; z, α, σ, β) := σβ(arctan(σ) + arctan(σ(2α(z − w)− 1)))

with

σ = σ(z, α) :=

√
1 + α

4αz(1 + α(1− z))− α− 1
=

√
1

4α2D(z, α)

β = β(z, α) := −
(
1 + α(1− 2z) + 2α2z(z − 1)

)
(1 + α(1− 2z)) .

Setting u = 1 further gives, up to the same multiplicative constant as above, that

∫ 1

z

g1(u1, z;α) du1 = 2α2z(1 + α)(z − 1) + h1(1; z, α, σ, β),

so that the conditional distribution function FU1|C(U1,U2;α)(·|z;α) can be obtained by
plugging the above into Equation (B.13).
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(ii) If D(z, α) = 0, the following closed-form expression can be derived:

∫ u

z

g1(u1, z;α) du1 =
4α2

3

(
1− 3α2(z − 1)z + α(1 + z) + h2(u; z, α)

)
,

where

h2(w; z, α)

=
1

(1 + 2α(w − z))3
(α((5 + 3α(1 + 2w(3 + α(1 + 2w))))z

− 9α(1 + 2αw)z2 + 6α2z3 − 1− 6(1 + α)(1 + αw)w)− 1).

The normalizing constant in Equation (B.13) is obtained by plugging in u = 1.

(iii) If D(z, α) < 0, we have to distinguish the cases α > 0 and α < 0, as in the derivation
of the Kendall distribution function. If α > 0, we have, similar to above and up to
a multiplicative constant independent of u, that

∫ u

z

g1(u1, z;α) du1

=
α2z(1 + α)(u− z) ((1 + α)(2α(uz + z − u)− u− 1)− 2α2z2)

u(1 + α)(1 + α(u− 2z)) + α2z2

+ h3(u; z, α, σ, β),

where
h3(w; z, α, σ, β) := σβ(arcoth(σ) + arcoth(σ(2α(z − w)− 1))).

For α < 0, we simply need to replace h3 by h̃3, which is given by

h̃3(w; z, α, σ, β) := σβ(artanh(σ) + artanh(σ(2α(z − w)− 1))).

In both cases, the conditional distribution function FU1|C(U1,U2;α)(·|z;α) is again ob-
tained by plugging the respective expressions into Equation (B.13).

B.5 Conditional distribution function of the

Student’s t mixing variable

If we define Y := WZ, where Z ∼ N1(0, 1) and ν/W 2 ∼ χ2
ν , then Y ∼ T1(0, 1, ν) (see

Section 2.3). We prove that the conditional distribution of the mixing variable W given
Y = y is

FW |Y (w|y; ν) = 1− Fχ2

(
ν + y2

w2
; ν + 1

)
, w > 0. (B.14)

As shown in Section 5.2.2, it holds that

FW |Y (w|y; ν) =
1

tν(y)

∫ w

0

fW (x; ν)φ
(y
x

) 1

x
dx, (B.15)
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B.5 Conditional distribution function of the Student’s t mixing variable

where

tν(y) =
Γ(ν+1

2
)√

νπΓ(ν
2
)

(
1 +

y2

ν

)−(ν+1)/2

,

fW (x; ν) = fχ2

( ν
x2

; ν
) 2ν

x3
=

2−ν/2

Γ(ν
2
)

( ν
x2

)ν/2−1

exp

(
−1

2

ν

x2

)
2ν

x3
,

φ
(y
x

)
=

1√
2π

exp

(
−1

2

y2

x2

)
.

Plugging everything into Equation (B.15) yields

FW |Y (w|y; ν) =
2−(ν−1)/2

Γ(ν+1
2

)
(ν + y2)(ν+1)/2

∫ w

0

x−ν−2 exp

(
−1

2

ν + y2

x2

)
dx.

After substitution with t = (ν + y2)/x2 this reduces to

FW |Y (w|y; ν) =
2−(ν+1)/2

Γ(ν+1
2

)

∫ ∞
ν+y2

w2

t(ν+1)/2−1 e−t/2 dt,

which is the survival function of the χ2 distribution with ν+1 degrees of freedom evaluated
at (ν + y2)/w2, as claimed in Equation (B.14).
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C Simulation results

For the simulation study of estimation methods of hierarchical Kendall copulas (see Sec-
tion 3.5), the results of the remaining five cases are shown. The following five figures show
the mean squared errors (MSEs) of the estimated nesting copula parameter θ0 (trans-
formed to Kendall’s τ) for the three estimation procedures. The notation for the x-axis is
(τ0,τ1,τ2), where L := 0.4 and H := 0.7. The range of the y-axes is chosen such that the
MSEs are comparable.
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Figure C.1: Cluster copula 1: Clayton. Cluster copula 2: Clayton.
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Figure C.2: Cluster copula 1: Clayton. Cluster copula 2: Frank.
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Figure C.3: Cluster copula 1: Gumbel. Cluster copula 2: Gumbel.
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Figure C.4: Cluster copula 1: Gumbel. Cluster copula 2: Frank.
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Figure C.5: Cluster copula 1: Frank. Cluster copula 2: Frank.
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