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Abstract—We investigate in this work the optimal control
strategies of a receiver that is powered by the ambient energy
it harvests over time. Two scenarios are mainly considered, the
single-antenna system with non-fading channel, and the multi-
antenna system with fading channel. The throughput achieved
on the limited time slot [ 0, T ] is maximized with respect to
the resolution of the A/D converter and the transmission band-
width/number of antennas. To this end, the receiver is assumed
to have full, non-causal knowledge about the energy arriving
process, and the transmitter is assumed to be in full cooperation
with the receiver. Convexity of the formulated optimizations
is discussed, and the optimal control theory is applied for
finding the optimal state trajectories of the system. Numerical
simulations are performed for the analysis of the optimal control
variables, as well as for the comparison of throughput achieved
with different channel gains and optimizations.

I. INTRODUCTION

Energy-efficiency of communication and communication

networks have drawn a lot of research attention over the past

years, driven by the desire to reduce operation cost as well as

to address environmental issues. The energy consumption of

different components of a communication device is studied in

[1][2], based on which optimizations on various system param-

eters can be formulated. Different from this hardware initiated

investigation, the potential for energy-efficiency improvement

is also studied from the viewpoint of communication scheme

and protocol, network deployment and operation, etc. As

an example, [3] addresses the fundamental tradeoff between

power consumption and communication delay, which can be

utilized to reduce the energy consumption while preserving

certain QoS requirement for data transmission.

With the energy harvesting technology, transceivers can be

powered by the energy they harvest from the environment [4].

The design and control of such devices are naturally connected

with the investigations on energy-efficient communications. In

fact, we face more complexity as the energy input is now time-

variant and random. The exploitation of energy by an energy

harvesting transmitter has been studied in several works. In [5]

and [6], the authors formulate the throughput maximization

problem with fading and non-fading channels, and find the

optimal adaptations of transmit power over time. In our work

[7], the circuit power of the transmitter is taken into the power

consumption model, which gives rise to an energy-efficient

transmit power below which one should not operate. To this

end, the shape of the optimal state trajectory, which has one-

to-one correspondence with the transmit power function in

time, can be significantly changed. We present in this work,

our recent investigations on how an energy harvesting receiver

should be controlled in order to achieve the same optimization

goal, i.e., to maximize throughput. The parameters to be

adapted, which connect the instantaneous data rate with power

consumption, include the resolution of the A/D converter, the

transmission bandwidth, and the number of antennas. While

working on a different scenario as before, we try to exploit

the similarity in problem structure as much as possible.

The rest of the paper is organized as follows: in Section II

we introduce the system model from the aspects of power

consumption, achievable rates, and energy harvesting, and

formulate the throughput maximization as a standard control

problem by the end. Section III and Section IV are devoted

to the analysis on the optimal solutions of the most basic

form of the throughput maximization problem, for the single-

antenna system and for the multi-antenna system, respectively.

Construction of the optimal state trajectory for the general

throughput maximization problem is discussed in Section V.

Simulation results are shown in Section VI before we summa-

rize and conclude the paper with Section VII.

II. SYSTEM MODEL

We consider the point-to-point communication between a

transmitter and a receiver on a limited time slot [ 0, T ]. The
receiver is an energy harvesting device which has non-causal

information about the energy arrivals, i.e., it knows perfectly

before the communication starts, when and how much energy

will be harvested during [ 0, T ]. Although such an assumption
is quite unrealistic, it enables the theoretical investigation

on the performance limit of the system. In the following

we study the achievable rate/ergodic capacity and the power

consumption of a singe-antenna and a multi-antenna receiver,

respectively, as dependent on different system parameters.

A. Single-antenna system with non-fading channel

The receiver consumes energy in order to perform analog-

to-digital conversion, decoding, and other signal processing

tasks. Among all, the energy consumption of the A/D converter

(ADC) contributes a significant part. Assuming uncoded data

transmission between the transmitter and the receiver which

suggests zero decoding power, we take energy consumption

of the ADC as the total energy consumption of the receiver
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for simplicity. The power dissipation of the ADC, depending

on its operation modes, can be calculated as [8]

P (s) =

{

c · BN0 · 2
b, b > 0,

0, b = 0,
(1)

where B is the transmission bandwidth, b is the resolution

of the ADC which we assume a real number, c is a constant

determined by the specific design of the ADC, and N0 is the

noise power spectral density. The superscript of P is used

to distinguish from the multi-antenna case which we will

discuss later. In the active mode, which is indicated by the

positive resolution, the power dissipation grows linearly with

the bandwidth and exponentially with the resolution. In the

sleep mode for which b = 0, i.e., the receiver does not receive
any signal, the power consumption is much lower than in the

active mode and we assume it to be zero.

Let γ = α
BN0

denote the receive signal-to-noise ratio (SNR)

where α is the combined power gain of the transmit power

and the transmission channel, which is assumed constant and

perfectly known by both the transmitter and the receiver. A

capacity lower bound achieved at the receiver, as dependent

on the transmission bandwidth B, the ADC resolution b, and
the receive SNR γ, is given by [2]

R(s) = B log2

(

1 + γ

1 + γ · 2−2b

)

. (2)

B. Multi-antenna system with fading channel

Now suppose the receiver is equipped with M ≥ 1 antennas,
and the transmitted signal goes through a random fading

channel. For simplicity we assume i.i.d. channel coefficients

which are Gaussian distributed with zero mean and variance
1
M
. As one ADC is required for each antenna, the total power

consumption of the receiver reads

P (m) =

{

cBN0 · 2
b · M, b > 0,

0, b = 0.
(3)

Here the same resolution b is applied for all ADC, since the

channel exhibits the same property across the antennas.

We further assume that the transmitter in this scenario is

equipped with the same number of antennas as the receiver.

This not only allows for a closed-form capacity expression,

but is also reasonable in that the nodes of a wireless sensor

network are usually equal. Given uniform power allocation at

the transmitter for all antennas, the ergodic capacity of the

channel can be approximated by [9][10]

R(m) = BM ·

[

2 log2

(

1 + χ −
1

4

(

√

4χ + 1 − 1
)2

)

−
log2 e

4χ
·
(

√

4χ + 1 − 1
)2

]

, (4)

where χ is the effective SNR after the ADC expressed as

χ =

(

1 − 2−2b
)

· γ
M

1 + 2−2b · γ
M

=

(

1 − 2−2b
)

γ

M + γ · 2−2b
. (5)

Note that although the same symbol is used, R(s) and R(m)

have distinct physical meanings. We want to emphasize here,

that R(s) is a capacity lower bound for the single-antenna

system with given receive SNR, while R(m) stands for the

ergodic capacity of a MIMO fading channel with the same

number of transmit and receive antennas. We simply use the

terms single-antenna system and multi-antenna system later to

refer to the two system models, yet it should be noted that the

number of antennas is not the only underlying difference.

C. Energy harvesting and expenditure

We utilize the cumulative model to describe the energy

arrival as well as the energy expenditure of the receiving node.

Let P (t) denote the instantaneous power consumption of the

receiver, which is calculated according to (1) for the single-

antenna system and to (3) for the multi-antenna system. The

cumulative energy consumption by time t, denoted by the

function W (t), follows as

W (t) =

∫ t

0

P (τ) dτ, t ∈ [ 0, T ]. (6)

The receiver harvests energy from the environment and

stores them in its storage medium. We let Emax be the max-

imum amount of energy that the node can store and assume

Emax to be constant. Let the function A(t) represent the

cumulative available energy at the receiver, which increases its

value when energy is harvested from the ambience. Obviously,

W (t) ≤ A(t) must be satisfied for all t ∈ [ 0, T ] due to

causality. Furthermore, we define the function D(t) to indicate
the minimal amount of energy that has to be consumed by time

t in order to avoid energy miss caused by storage overflow,

i.e., mathematically, we have

D(t) = max(0, A(t) − Emax), t ∈ [ 0, T ]. (7)

In other words, if at time instance to, the relation W (to) <
D(to) stands, then not all the energy available from the

environment at that time instance can be captured by the node.

As a result, the value of A(t) for t ∈ [ to, T ] is reduced by

A(to) − (W (to) + Emax), which corresponds to the amount

of missed energy. The function D(t) should then be adjusted

accordingly for t ∈ [ to, T ].
We impose no continuity requirement on A(t) or D(t), yet

at a point of discontinuity on A(t), let us denote it with td, we
assume that A(t+d ) − A(t−d ) < Emax, i.e., there is no energy

overflow caused by a very large instantaneous energy input.

D. Throughput maximization

The general form of the throughput maximization problem

is given in the standard form of a control problem as

max

∫ T

0

Rdt

s.t. Ẇ = P, (8)

W ≤ A, W (0) = 0,

where W serves as the state variable of the system and is

initialized with 0. The optimization is on different system pa-

rameters for single-antenna and multi-antenna systems, which
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Figure 1. Boundary curves and admissible trajectories

will be discussed in detail in the next section. Note that

we have omitted the time indices in (8) for simplicity and

conformation with the convention, yet we should keep in mind

that the optimization variables as well as the state variable

are all functions of time defined on [ 0, T ], and the causality

constraint W ≤ A must be satisfied for each t ∈ [ 0, T ].
The optimal solution to (8) is also referred to as the optimal

control of the receiver, and the corresponding state trajectory

is denoted with W ∗.

In order to maximize the throughput over [ 0, T ], all avail-
able energy should be used by time T and energy overflow

should be avoided as much as possible, given that the data

rate is an increasing function of the power consumption. This

condition can be easily verified for both the single-antenna

and the multi-antenna system models. Moreover, as we assume

that the system parameters, such as the ADC resolution, can be

adapted continuously and are not bounded from above, energy

overflows can be avoided altogether. This means, W ≥ D
has to be satisfied for all t ∈ [ 0, T ], for W to be optimal.

Taken these optimality considerations into account, (8) can be

equivalently formulated as

max

∫ T

0

Rdt

s.t. Ẇ = P, (9)

D ≤ W ≤ A,

W (0) = 0, W (T ) = A(T ).

Since the optimal state trajectory W ∗ is bounded by A
from above and by D from beneath, we refer to the functions

A and D as the boundary curves. Geometrically, W ∗ is a

trajectory that lies between A and D, and adjoins the points

(0, 0) and (T,A(T )) on the time-energy graph. We term all

non-decreasing curves that satisfy the above conditions as

admissible trajectories, and illustrate the concept in Figure 1.

An example of boundary curves A and D is shown on the

left-hand side, and on the right-hand side, W1 and W2 are

two admissible trajectories under this setup.

In the next two sections, we discuss optimal solutions to

the basic problem, which has the simple form that the energy

storage at t = 0 is A0 ≤ Emax, and there is no energy

arrival during [ 0, T ], i.e., A ≡ A0, D ≡ 0, t ∈ [ 0, T ]. In
correspondence to this, (8) without such additional restrictions

on the boundary curves is referred to as the general problem.

III. OPTIMIZATIONS OF THE SINGLE-ANTENNA SYSTEM

For single-antenna systems, the transmission bandwidth

B and ADC resolution b are the two key parameters that

determine the power consumption and the achievable rate at

the receiver, according to (1) and (2). Besides the assumption

that B and b can be adapted continuously in time at the

transmitter and the receiver, respectively, we also assume that

the transmitter and receiver are perfectly synchronized and

are in full cooperation. This means, both parties share the

information on channel states and energy arrivals, and know

how the other is going to adapt its parameter before the

transmission takes place. In this section we first discuss the

separate optimizations of bandwidth and resolution, and then

come to the joint optimization of the two parameters.

A. Optimizing bandwidth with fixed resolution

With fixed positive resolution, the power consumption P (s)

becomes a linear function of B. The achievable rate R(s) in

this case is a monotonically increasing and strictly concave

function in B. Therefore, the throughput maximization (8) on

bandwidth B is a convex optimization problem. Consequently,

the Pontryagin Maximum Principle (PMP) [11][12], which

is a first-order necessary condition for optimality of control

problems, is sufficient in this case to determine the global

optimum. The Hamiltonian of the basic problem is given by

H(B,W, λ) = −R(s)(B) + λ · P (s)(B), (10)

where λ is an auxiliary variable associated with the state

equation. Since H does not explicitly depend on the state

trajectory W , the co-state equation suggests that

λ̇∗ = −HW (B∗,W ∗, λ∗) = −HW (B∗, λ∗) = 0, (11)

i.e., λ∗ is constant. Note that the overhead dot denotes the

derivative of the function with respect to time, and the function

with a variable as its subscript stands for the partial derivative

of the function with respect to that variable. The PMP requires

HB(B∗, λ∗) = −R
(s)
B (B∗) + λ∗ · P

(s)
B (B∗)

= 0, ∀t ∈ [ 0, T ]. (12)

As P
(s)
B is constant and R

(s)
B is monotonically decreasing, the

pointwise condition (12) can only be satisfied if B∗ is constant.

This means, with fixed ADC resolution, using constant trans-

mission bandwidth leads to the maximal throughput, and the

corresponding optimal trajectory W ∗ is a straight line segment

with slope B∗. The end-point condition W (T ) = A0 gives the

optimal bandwidth as

B∗ =
A0

T · cN0 · 2b
, t ∈ [ 0, T ]. (13)

B. Optimizing resolution with fixed bandwidth

When transmission bandwidth is fixed, the receiver still has

the degree of freedom to adapt the ADC resolution to achieve

the maximum throughput. From a mathematical point of view,

the main difference between this scenario and the one we

discussed in the last subsection lies in the discontinuity of
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Figure 2. Function g as dependent on b

P (s) at zero resolution. With fixed B and variable resolution

b > 0, the power consumption P (s) is strictly convex in b,
while the achievable rate R(s) is strictly concave in b. Since
for positive resolution the throughput maximization problem

is convex, we obtain similar result as in the last subsection,

that the optimal resolution b∗ in the active mode is constant.

As the sleep mode does not incur any power consumption, all

available energy is consumed during the active period in order

to achieve the maximum throughput. Therefore, to determine

the value of b∗, the following one-dimensional optimization

needs to be solved:

max
b>0

R(s)(b) ·
A0

P (s)(b)
= A0 ·

R(s)(b)

P (s)(b)

s.t.
A0

P (s)(b)
≤ T. (14)

Let us define the function

g(b)
△
=

R(s)(b)

P (s)(b)
, b > 0, (15)

which represents the number of received information bits per

Joule of energy consumption. Obviously, g is an energy-

efficiency measure, and the objective of (14) is equivalent to

the maximization of g. We illustrate the shape of g in Figure 2,
where all constant system parameters have been normalized.

In order to obtain the maximizer of g, we set its first-order
derivative to 0 and obtain the relation

(

R
(s)
b P (s) − R(s)P

(s)
b

)

(b) = 0. (16)

Due to the concavity of R(s) and the convexity of P (s) in

b, the function R
(s)
b P (s) − R(s)P

(s)
b is found monotonically

decreasing. Also taken into account the fact that
(

R
(s)
b P (s) − R(s)P

(s)
b

)

(0+) > 0, (17)

we see that (16) has a unique solution, which we denote

with b0. The constraint in (15) provides a lower bound on

b. When b0 falls below this lower bound, then b∗ must satisfy
the inequality constraint with equality, because the function g

III I

II

T0

A0

Time

E
n
er
g
y

Figure 3. Optimal trajectories for resolution optimization

decreases monotonically after it reaches its stationary point.

To sum up, the optimal solution to (14) is given by

b∗ =

{

b0, P (s)−1 (A0

T

)

< b0,

P (s)−1 (A0

T

)

, otherwise.
(18)

The optimal receive strategy is thus the following: when

P (s)−1 (A0

T

)

< b0, the resolution b0 should be employed until

the available energy is exhausted. The receiver is turned into

sleep mode for the rest of the time slot. The optimal trajectory

W ∗ in this case is illustrated by Curve II and III in Figure 3.

Note that the placement of the sleeping period has no influence

on the achieved throughput, and therefore we say that Curve

II and Curve III are equivalent. When P (s)−1 (A0

T

)

≥ b0,

the receiver should use the resolution P (s)−1 (A0

T

)

for the

whole time slot. Curve I in Figure 3 indicates the optimal state

trajectory in this case. Put simply, ADC resolution lower than

b0 should be avoided altogether, and a duty cycle is required

when the energy-to-time ratio A0

T
is relatively low. To this end,

we refer to b0 as the energy-efficient resolution.

Plugging (1) and (2) into (16), we obtain the relation

2γ

22b0 + γ
= ln

(

1 + γ

1 + γ · 2−2b0

)

. (19)

Obviously, b0 depends explicitly only on γ, and we show this

dependency in Figure 4. In the asymptotic case, we have

b0 →
1

2
log2 3 ≈ 0.7925, γ → 0,

b0 →
1

ln 2
≈ 1.4427, γ → +∞. (20)

C. Joint optimization of bandwidth and resolution

The rate function R(s), as given by (1), is concave in both

B and b, yet it is not jointly concave in both variables, as the
associated Hessian matrix is not always negative definite. This

means, the convexity of the optimization problem (8) on both

B and b can not be guaranteed, and thus we can not presume
the optimality of a local maximum, or even the existence of an

optimal solution. To this end, we perform a variable transform
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by writing the resolution b as a function of bandwidth B and

power consumption P , which leads to

R(s)(B,P ) =











B · log2

(

1 + γ

1 + (cN0)2 ·
γB2

P 2

)

, P > 0,

0, P = 0,

P (s)(B,P ) = P. (21)

The throughput maximization is then formulated as an opti-

mization on B and P , both as functions of time. The change

of variable from b to P provides us with an optimization of

better structure and more tractability, as the constraint in (8)

now involves only P but not B. To this end, we can decompose

the maximization into inner, one-dimensional optimizations of

B with given P , and the outer optimization of P as a function

of time, which is mathematically given by

max
B,P

∫ T

0

R(s) (B,P ) dt = max
P

∫ T

0

max
B

R(s) (B,P ) dt

△
= max

P

∫ T

0

Ro (P ) dt. (22)

Since R(s) is concave in B, the inner maximization of (22) is

convex and can be solved by setting R
(s)
B to zero. Numerical

results show that the optimal bandwidth as dependent on

the fixed power consumption, denoted with B∗(P ), satisfies
cN0 · B

∗(P ) < P , i.e., a positive ADC resolution is allowed.

The resulting function Ro = R(s) (B∗(P ), P ) can be found

continuous on [ 0,+∞) and strictly concave in P , as plotted

in Figure 5 with the proper scaling. Consequently, the outer

optimization on function P is convex, and by applying the

PMP we have

P ∗ =
A0

T
, t ∈ [ 0, T ], (23)

which suggests that B∗ is also constant. To this end, the joint

optimization of bandwidth and resolution is reduced to solving

a one-dimensional problem of finding B∗
(

A0

T

)

.

In conclusion, the optimal control strategy for joint adap-

tation of B and b is simply to keep both parameters constant

throughout the time slot of interest, and the optimal value
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Figure 5. Concavity of Ro in P
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Figure 6. Optimized control parameters b∗ and B∗

B∗ yields the maximal instantaneous data rate under power

consumption A0

T
. The optimal solutions with different A0

T

values are shown in Figure 6, with some constant scaling for

generality. It can be seen that with increasing energy-to-time

ratio, the increment in the optimal bandwidth B∗ is much more

significant than that of the optimal resolution b∗. Yet the latter
also goes to infinity with infinitely large energy-to-time ratio.

IV. OPTIMIZATIONS OF THE MULTI-ANTENNA SYSTEM

For the multi-antenna system where equal number of anten-

nas at the transmitter and the receiver is required, we assume

fixed transmission bandwidth, and focus on the optimizations

of ADC resolution and the number of antennas. The same steps

are followed as for single-antenna systems: we discuss first the

separate optimizations of one parameter while the other is kept

constant, and then deal with the joint optimization of the two.

The methods used and the results obtained here resemble a lot

of similarity with those from Section III.

The power consumption P (m), according to (3), is appar-

ently linear in M and convex in b for b > 0. It can be verified
with numerical experiments, that R(m) as expressed in (4) is

strictly concave in b, given fixed M > 0, and is also strictly

concave in M , given fixed b > 0. However, the joint concavity
of the function in both b and M is hard to see. Therefore, for
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the joint optimization we again need a variable transform to

guarantee convexity of the problem.

A. Optimizing the number of antennas with fixed resolution

Given b > 0, the throughput maximization problem is

convex in M . The PMP implies that for the basic problem,

M∗ is constant, and in order to utilize all energy, we have

M∗ =
A0

T · cBN0 · 2b
, t ∈ [ 0, T ]. (24)

This is to say, the optimal control strategy is to use constantly

the lowest number of antennas possible, such that all available

energy can be exhausted at the end of the time slot.

B. Optimizing resolution with fixed number of antennas

Due to the discontinuity of P (m) at b = 0, duty cycles

might be required for the optimal receive strategy. When the

receiver is in active mode, i.e., b > 0, using constant resolution
maximizes the throughput due to the convex structure of the

problem. Consequently, the basic throughput maximization

problem is equivalent to the one-dimensional optimization

max
b>0

R(m)(b) ·
A0

P (m)(b)
s.t.

A0

P (m)(b)
≤ T. (25)

Define the function that measures bits per Joule by

η(b)
△
=

R(m)(b)

P (m)(b)
. (26)

For each given fixed M and γ, the function η has a unique

maximum point, denoted with b0 and refer to as the energy-

efficient resolution, which satisfies
(

R
(m)
b P (m) − R(m)P

(m)
b

)

(b0) = 0. (27)

In Figure 7, the variation of b0 with different values of M
and γ is illustrated. The monotonicity of b0 as a function

of M can be observed, suggesting that with more antennas

employed, lower ADC resolution should be used for better

energy efficiency. The asymptotic value of b0, with M → +∞,

is approximately 0.79 and appears to be independent of γ.
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With the same idea we find when optimizing b for the single-
antenna system, any resolution lower than b0(M) should

not be employed for the sake of maximizing throughput. To

be more specific, the optimal receive strategy is to use the

resolution b0(M) for a time period of A0

P (m)(b0(M))
, when

P (m) (b0(M)) ≥ A0

T
, and turn the receiver into sleep mode

for the rest of the time slot. When P (m) (b0(M)) < A0

T
, the

resolution A0

T ·cBN0·M
should be used for the whole time slot.

C. Joint optimization of resolution and the number of antennas

Since the objective functional of (8) for the multi-antenna

case is not always jointly concave in M and b, the optimization
on the two variables is nonconvex. We try to circumvent this

problem by performing a variable transform, and work with

M and the power consumption P instead of with M and b.
The dependency of b on P and M is given by

b = log2

(

P

c · BN0 · M

)

. (28)

After the transformation, the constraint involves a single

variable P . The joint optimization can now be divided into

an inner optimization on M for given P , and an outer

optimization on P , as described by the following equation.

max
P,M

∫ T

0

R(m) (P,M) dt = max
P

∫ T

0

max
M

R(m) (P,M) dt

△
= max

P

∫ T

0

Co (P ) dt (29)

The fulfilment of the inequality M∗(P ) < P can be verified

via simulations, where M∗(P ) stands for the optimal solution
to the inner optimization. Hence, a positive b can always be

computed given P and M∗(P ). The dependency of Co on P
is shown in Figure 8, where the parameter γ = 0 dB has been

taken. We observe that Co is continuous on [ 0,+∞) and is

strictly concave in P , which means that the outer optimization

problem in (29) is convex. As a result, we find the optimal

power consumption function as

P ∗ =
A0

T
, t ∈ [ 0, T ], (30)
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Figure 9. Optimized control parameters b∗ and M∗

and correspondingly, the optimal number of antennas M∗

and the optimal ADC resolution b∗ are all constant. Their

variations due to different A0

T
values are shown in Figure 9.

V. GENERAL THROUGHPUT MAXIMIZATION PROBLEM

Recall that the basic problem with A ≡ A0, D ≡ 0 is

a special case of the throughput maximization problem (8).

Based on the results we obtain in Sections III and IV, the

critical slope based construction algorithm proposed in [7]

can be applied for finding the optimal state trajectory of (8).

Depending on the optimal solution to the basic problem,

the optimizations we have discussed can be classified into two

categories. The first category, including:

• optimizing B with fixed b for the single-antenna system,
• optimizing jointly B and b for the single-antenna system,
• optimizing M with fixed b for the multi-antenna system,
• optimizing jointly M and b for the multi-antenna system,

has in common that the optimal solution gives constant power

consumption over [ 0, T ]. The other two optimizations, namely

• optimizing b with fixed B for the single-antenna system,

• optimizing b with fixed M for the multi-antenna system,

belong to the second category for which there exists a lower

bound on the optimal power consumption, thus giving rise to

possible duty cycles in the optimal control strategy.

For the first category, the optimal state trajectory W ∗ is

unique, and the following optimality criterion is established:

there do not exist any two points on W ∗ that can be connected

by a distinct admissible straight line segment. This statement

can be easily verified considering the optimal state trajectory

of the basic solution. As direct consequence of the optimality

criterion, it has been found that the points at which W ∗

changes slope are either on A or on D. Moreover, the slope

change at a point on D is negative, whereas the slope change

at a point on A is positive. These criteria suggest that in the

construction of W ∗, it is crucial to determine the slope of

each segment according to the intersection point with one of

the boundary curves. To this end, at any admissible point, the

critical slope is defined as the slope, above which renders the

line segment to intersect with A first, and below which renders

the line segment to intersect with D first. Starting from the

origin of the time-energy graph, line segments with critical

slopes can be found iteratively, which go until intersection

with the boundary curves. Such a construction method gives

a unique trajectory that satisfies the optimality criterion, and

is therefore the optimal one W ∗ [13]. As an easy example,

the trajectory W1 in Figure 1 is optimal for this category

of optimizations with the given boundary curves. It has two

straight line segments with respective critical slopes, and after

the intersection point with A, the slope increases.
Unlike those in the first category, optimizations in the

second category have infinitely many optimal solutions. Yet

they are all equivalent in the sense that they lead to the same

maximal throughput. In the construction of one of the optimal

trajectories, the critical slope based construction procedure

serves as the first step. As a second step, the slope of each

segment of the constructed trajectory is compared to the power

consumption corresponding to the energy-efficient value of the

control variable, in our case the energy-efficient ADC resolu-

tion b0. If the critical slope is smaller, the current segment

needs to be replaced by a horizontal line segment, which

corresponds to the sleeping period, and a straight line segment

with its slope equal to the power consumption corresponding

to the energy-efficient control, e.g., P (b0). A third step might

be necessary, where the obtained trajectory is made smoother

by adjusting the placement of the sleeping period, such that

the number of switches between active mode and sleep mode

could be reduced. The trajectory W2 in Figure 1 illustrates one

of the possible W ∗ for the second category of optimizations,

where the energy-efficient power consumption is higher than

the slope of the second line segment of W1. With other systems

or system parameters, the energy-efficient power consumption

might be smaller than the slope of the first line segment of

W1. In that case W1 is the unique optimal state trajectory.

VI. SIMULATION RESULTS

For simulations we set T = 1000 seconds, N0

2 = 174
dBm/Hz, c = 109, Emax = 1 Joule, and assume discrete,

statistically independent energy arrivals. The interarrival time

follows the exponential distribution with a mean of 60 seconds.
The amount of energy in each arrival is uniformly distributed

on [ 0, 0.4 × Emax ]. We first illustrate the optimal state tra-

jectories for the two categories of optimizations in Figure 10

and Figure 11. The trajectory consists of 4 segments, marked

with different colors, and the optimized values of the control

variables are shown above each segment.

We give the simulation 1000 runs and show the average

optimal throughput for both systems in Figure 12 and Fig-

ure 13, as dependent on the channel gain α. Depending on

the value of the fixed parameter, the performance gap between

the separate optimizations and the joint optimization could be

larger or smaller, in different channel gain regimes.

VII. CONCLUSIONS

The achievable rate and power consumption of a receiver

are dependent on and related by the transmission bandwidth
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Figure 10. W ∗ for the joint optimization of B and b of a
single-antenna system, α = −100 dBW
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Figure 11. W ∗ for optimized b of a single-antenna system,
α = −60 dBW, B = 200 MHz
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Figure 12. Average throughput of single-antenna system
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Figure 13. Average throughput of multi-antenna system, B = 100 MHz

B, the ADC resolution b, and the number of antennas M
it employs. We consider in this work the throughput maxi-

mization problem at an energy harvesting receiver, where the

optimal temporal adaptation of B and/or b for the single-

antenna system, and of M and/or b for the multi-antenna

system have been explored. For the optimization of b with

the other parameter fixed, there exists an energy-efficient

resolution b0 below which the ADC should not work. For the

other optimizations, the control variables are always constant

functions determined by the desired power consumption.
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