
Incorporating Graceful Degradation into Embedded System Design
Michael Glaß, Martin Lukasiewycz, Christian Haubelt, and Jürgen Teich

University of Erlangen-Nuremberg, Germany
{glass,martin.lukasiewycz,haubelt,teich}@cs.fau.de

This is the author’s version of the work. The definitive work was published in Proceedings of Design, Automation and Test in Europe (DATE
2009), pp. 320-323, 2009. The work is supported in part by the German Science Foundation (DFG), SFB 694.

Abstract

In this work, the focus is put on the behavior of a system
in case a fault occurs that disables the system from executing
its applications. Instead of executing a random subset of the
applications depending on the fault, an approach is presented
that optimizes the systems structure and behavior with respect
to a possible graceful degradation. It includes a degradation-
aware reliability analysis that guides the optimization of the re-
source allocation and function distribution, and provides data-
structures for an efficient online degradation algorithm. Thus,
the proposed methodology covers both, the design phase with a
structural optimization and the online phase with a behavioral
optimization of the system. A case study shows the effectiveness
of the proposed approach.

1. Introduction and Related Work

In a real-world system, failures that disable the system from
executing its applications are inevitable in the presence of cost
and performance constraints. In case a set of failures disables
the system from carrying out all applications, a subset of less
important applications can be dropped while the more impor-
tant applications can be kept alive. This concept is known as
graceful degradation, i.e., functional degradation [9].

Consider the example in Figure 1 of a simple system con-
sisting of two applications x and y with two tasks per appli-
cation. At design time, both shown implementations have the
same overall system reliability, since a failure of one resource r1
or r2 will lead to a failure of at least one application and, thus,
the overall system functionality is not executable anymore. As-
suming application x being of higher priority than application
y, a failure of, e.g., resource r2 still allows to execute applica-
tion x. Thus, implementation 2 should be preferred by the used
optimization algorithm at design time.

In this work, a degradation-aware reliability analysis is pro-
posed that permits to quantify the reliability of the system in the
presence of functional graceful degradation. This allows the de-
sign space exploration to optimize the resource allocation and
function distribution of the embedded system under design and,
thus, saves costs while increasing system performance.

At run time, less important applications can be specifically
deactivated to gain free resources for more important applica-
tions. For this purpose, a data-structure that can already be de-
rived at design time is presented that guides a graceful degrada-
tion algorithm at run time. Based on binary decision diagrams
(BDDs) [1], the structure enables a very efficient check of the
current system state and provides rules when and which appli-
cations to shut down.

A lot of work has been done in the area of graceful degrada-
tion techniques. The approaches in [4, 11] are more focused on
the problem of performance degradation where the performance

tx1

tx2

ty1

ty2

(a) application

r1

r2

tx1

tx2

ty1

ty2

(b) implementation 1

r1

r2

tx1 tx2

ty1 ty2

(c) implementation 2

Figure 1. Two implementations with identical overall system
reliability but differing degradation possibilities.

of an application is degraded instead of a complete shutdown of
less important applications.

In [7], tasks are reconfigured in the system with respect to
the available hardware. In the work presented in this paper, no
complete reconfiguration of the system is allowed but prede-
fined resource allocations and task bindings have to be selected
as a reaction to failures in the system. An similar approach to
the work at hand is proposed in [12], but is restricted to series-
parallel systems where structural resource sharing is neglected.
In the analysis proposed in this work, this problem is solved by
using an extended BDD-based reliability analysis.

The remainder of the paper is outlined as follows: Section 2
introduces the system model. The degradation-aware reliabil-
ity analysis is proposed in Section 3. The online algorithm is
presented in Section 4. Section 5 shows the introduced tech-
niques applied to a case study before the paper is concluded in
Section 6.

2. System Model

The system specification is given in a graph-based manner.
The specification consists of a so called application that models
the applications and their tasks, the architecture that includes all
resources that can be used, and a set of mapping constraints. An
example of a system specification is shown in Figure 2.

The application is modeled by a task graph gt(Vt, Et) that
describes the behavior of the system. The vertices t ∈ Vt de-
note tasks, the directed edges Et represent data dependencies
between the tasks.

The architecture is modeled by a resource graph ga(Va, Ea)
and represents possible interconnected hardware resources. The
vertices r ∈ Va represent the individual resources, e.g., proces-
sors, buses, sensors, or actuators. The edges Ea correspond to
available communication links.

The set of mapping constraints is given by a set of mapping
edges Em. Each mapping edge m ∈ Em is a directed edge from
a task to a resource that indicates whether a specific task can be
executed on a hardware resource.

Given a specification, the goal of design space exploration
is to find a set of high-quality feasible implementations. An
implementation consists of two parts: The allocation α ⊆ Va

represents the resources that will actually be used in the imple-
mentation and the binding β ⊆ Em determines on which al-

tx1 tx2 ty1 ty2

r2 r1 r3

(a) application

(b) architecture

Figure 2. A system specification. The dashed edges corre-
spond to a possible mapping of tasks to resources.

located resource each task instance can be activated and, thus,
executed. With this knowledge, we define an implementation as
a pair (α, β).

Definition 1. An implementation is called feasible if it guaran-
tees
• that each task is bound at least once and is bound to allo-

cated resources only, and

• that data-dependent tasks can communicate correctly.
Definition 2. In the online phase, the implementation works
properly if
• at least one instance of each task is activated,

• tasks instances are only activated on properly working, i.e.,
not failed resources,

• activated task instances of data-dependent tasks communi-
cate correctly, and

• for each resource, the computational demand of activated
task instances does not exceed the computational capacity
of the resource.

Although each application can be regarded as an individual
functionality that can be influenced by failures, a more effective
and applicable way is to cluster applications. Each degradation
mode d ∈ D is defined by a subset of tasks that have to work
properly. The degradation modes are typically specified by the
designer. In case failures occur that hinders the implementation
to work properly in the current degradation mode, applications
can be turned off by choosing a lower degradation mode using
an online degradation algorithm. In this paper, for two degra-
dation modes di and dj with i < j, it holds that the tasks of
the mode di are a subset of the tasks of the mode dj such that
a degradation from dj to di only improves the reliability of the
system.

3. Degradation-Aware Reliability Analysis

A so called system function ψ(α,β) encodes one implemen-
tation as a Boolean function. This function returns 1 if the im-
plementation is properly working for the state of resources en-
coded in α as well as a task activation β, and 0 otherwise. The
binary vector α contains a variable r for each resource r ∈ Va

that indicates whether the corresponding resource is defect (0)
or not (1). Correspondingly, β contains a variable m for each
task instance or mapping m ∈ Em of the implementation, re-
spectively, indicating whether the task instance is activated (1)
or not (0). The determination of ψ for implementations without
the aspect of degradation is presented in [3].

In this paper, the system function ψ is extended by incor-
porating the degradation modes as well as computational con-
straints that arise from the activation of task instances. For this

purpose, the degradation modes are encoded by a binary vector
D = (d1, . . . ,d|D|) with di = {0, 1}. Each variable di is 1 if
the degradation mode di is active or 0 otherwise. The resulting
system function ψ is the following Boolean function:

ψ(α,β,D) =
∧
d∈D

[¬d ∨ ψd(α,β)]
∧
r∈α

Cr(β) (1)

The system function ψd(α,β) is determined as in previous ap-
proaches (cf. [3]), but allows to ignore the tasks that are not part
of the degradation mode d ∈ D. This ψd(α,β) is enabled if
and only if the corresponding variable d is 1.

The computational constraints for each resource r ∈ α are
given in the following linear form:

Cr(β) =
∑

m=(t,r)∈β

lm ·m ≤ cr (2)

Here, lm denotes the computational load arising from activating
task instance m which is bound to resource r while the max-
imum computational capacity of resource r is denoted as cr.
Incorporating the degradation modes directly into the system
function ψ(α,β,D) by using the binary vector D, allows the
analysis of the system in each mode without the need to store
and calculate individual functions for each mode.

The functions are represented by binary decision diagrams
(BDDs) [1]. Although, this data structure may grow exponen-
tially in general, it is known to be a very compact representation
for Boolean functions in many applications. A transformation
scheme for the linear computational constraints into BDDs is
presented in [2].

To model the system behavior under the influence of defects,
the structure function ϕ : {0, 1}|α| × {0, 1}|D| → {0, 1} is in-
corporated. This function ϕ returns 1 if and only if for the state
of resources encoded in α and the current degradation mode
encoded inD, there exists at least one task activation β that en-
sures a properly working implementation. For a given system
function ψ, this function can be derived as follows:

ϕ(α,D) = ∃β : ψ(α,β,D) (3)

The structure function ϕd for a specific degradation mode d ∈
D is deduced by restricting this function. The function ϕd re-
turns 1 if and only if for the state of resources encoded in α and
the specific degradation mode d, there exists at least one task ac-
tivation β that ensures a properly working implementation. For
each d ∈ D this function is derived as follows:

ϕd(α) = ϕ(α,D) ∧ d
∧

d̃∈D\d

¬d̃ (4)

In the following, we assume that the reliability function
R(r, x) that delivers the reliability for each resource r ∈ Va
at a time x ∈ R≥0 is known or can be approximated. The re-
liability function Rd(x) defines the reliability for the tasks of
the corresponding degradation mode d ∈ D and is derived by
Shannon-decomposition [10] that can be applied efficiently on
the used BDD data structure:

Rd(x) = R(r, x) · ϕd|r=1 + (1−R(r, x)) · ϕd|r=0 (5)

In our experimental results, the Mean Time To Failure (MTTF)∫∞
0
Rd(x)dx is used as the measure of reliability and is deter-

mined by a numerical integration of Equation (5). The MTTF

Algorithm 1 Online graceful degradation algorithm.
1: D := (0, . . . , 0, 1) // initial state of degradation
2: α := (1, . . . , 1) // initial resource state
3: β ∈ {β|ψ(α,β,D) = 1} // initial activation
4: while true do
5: α := observe() // observe
6: if !∃β : ψ(α,β,D) then
7: D := maxD{D|ψ(α,β,D) = 1} // degrade
8: end if
9: β := mindist{β|ψ(α,β,D) = 1} // new activation

10: end while

denotes the expected value for the failure-free time of the func-
tionality of the corresponding degradation mode d ∈ D.

In former approaches [3, 13, 14], only the reliability with
respect to the overall system functionality was used as an op-
timization criterion. In this work, the reliability of each degra-
dation mode is respected and needs to be considered within the
optimization. Here, a true multi-objective approach would treat
the reliability of each degradation mode as an independent and
competing objective. This results in |D| competing objectives
that tend to decrease the effectiveness of the used optimization
approach. Thus, a new objective with the characteristics of a
weighted reliability is proposed:

RMTTF =
∑
d∈D

(wd ·
∫ ∞

0

Rd(x)dx), with
∑
d∈D

wd = 1 (6)

Weighting the MTTF of each degradation mode allows to shrink
the number of reliability-specific objectives to one and, thus,
represents an intuitive value to the designer. Moreover, the de-
signer can weight the degradation modes with respect to the
specification or usage of the system. For example, full func-
tionality (d3) as well as safety-critical functionality (d1) can be
weighted such that they strongly influence the objective while
other degradation modes are optimized to a lesser extent. Other
systems may need to focus in the safety-critical functionality
only while full or comfort functionality (d2) is of minor interest.

4. Online Graceful Degradation

In the online phase of a given system, graceful degradation
takes place whenever the system resources are, due to defects,
not able to carry out all the applications that are specified in the
selected degradation mode. Here, an algorithm has to decide at
run time if another degradation mode needs to be chosen. More-
over, due to the given constraints in computational load and
communication, the instances of the executed tasks may need
to be activated and deactivated at a certain state of degradation
whenever a resource fails. In this section, an algorithm that is
based on a data structure that can be derived from the system
structure ψ is presented.

The proposed algorithm is based on an observer structure,
i.e., there is one resource or a set of resources that is highly re-
liable and can detect defects of all resources in the system. In
particular, this observer is able to keep track of the binary vector
α that encodes working and defect resources and controls the
current state of degradation. Moreover, it decides which task in-
stances β have to be activated or deactivated, respectively. The
overall algorithm is outlined in Algorithm 1.

It is assumed that the system starts without any defects
among the resources (line 2) and, thus, no degradation has taken
part so far (line 1). For this initial state, an activation for the task
instances can be derived from the system function ψ (line 3).

The failure detection and, thus, the update of the α vector is
performed by the function observe() (line 5). In case a failure
occurs, it is tested whether there exists a feasible task activation
with respect to the currently properly working resources and the
current degradation mode (line 6). If the test fails, the function
maxD searches for the degradation mode of highest importance
that can be carried out on the given set of working and defect
resources α. Here, the actual degradation takes place (line 7).
Finally, for a given α and new D, a new properly working im-
plementation has to be achieved by a correct task activation β
(line 9). This function mindist aims to find a task activation that
is similar to the former task activation to avoid the unneces-
sary activation and deactivation of tasks and, thus, keeps perfor-
mance reduction at a minimum. This is achieved by a special
variable order of ψ that can already be done at design time:

d1 < . . . < d|D| < α0 < . . . < α|α| < β (7)
Given this variable order, the degradation mode and the resource
variables are setup first since they are fixed whenever the algo-
rithm searches for a new task activation. The internal structure
of a BDD is a tree with one root and a true and false terminal
node. Each node of the tree represents a variable and has two
outgoing edges that equal an assignment of true or false, respec-
tively, to the corresponding variable. Thus, each traversal of the
BDD from the root that reaches the true terminal node corre-
sponds to a variable assignment that equals a properly working
implementation. Here, the traversal for the β variables is guided
by the previous task activation to reach the most similar task ac-
tivation for the given BDD order. To prevent that an infeasible
activation (false terminal node) is reached, for each node a look-
ahead for both outgoing edges has to be done resulting in the
overall traversal complexity of O(2 · |α| · |β| · |D|). This linear
complexity also holds for the other operations of the algorithm
(line 3,6,7) if ψ is given as a BDD as suggested.

5. Case Study

In this section, the proposed degradation-aware reliability
analysis used in a design space exploration context as well as
the presented online algorithm are applied to a system specifi-
cation consisting of 11 ECUs connected to one bus that is in-
spired by typical automotive ECU networks. This specification
consists of 6 applications with an overall number of 51 tasks.
One application is safety-critical (d1), two applications can be
seen as standard functionality (d2) while the remaining three
applications are treated as comfort functionality (d3). Each task
of each application can be carried out by at least three ECUs,
leading to a design space of ≈ 280 implementations.

The proposed degradation-aware reliability analysis was in-
cluded in JRELIABILITY [5] and used in the multi-objective de-
sign space exploration [6] tool OPT4J [8]. For this purpose, the
results for the proposed weighted reliability were compared to a
common reliability analysis that does only evaluate overall sys-
tem functionality. The experiments were carried out on an Intel
Pentium 4 3.0 GHz computer with 1.5 GB RAM. The results
from the design space exploration are shown in Figure 3.

Shown is a two dimensional projection of a three dimen-
sional objective space consisting of the objectives reliability,
area consumption, and power consumption. The results show

200 250 300 350 400

800

1,000

1,200

1
2

3
4

area

po
w

er

degradation-aware common

Figure 3. A two dimensional projection showing the
best implementations found by a common and the novel
degradation-aware optimization.

area power MTTF [in years]
full standard safety

impl1 197 805 3.65 3.65 20.59
impl2 319 869 2.77 2.77 82.92
impl3 318 938 4.28 5.37 245.27
impl4 396 990 4.35 4.35 266.81

Table 1. Selected implementations and their properties.
impl2 and impl3 have only been found by incorporating
graceful degradation.

that the common approach is able to find relatively low-area
implementations with low overall reliability and more expen-
sive implementations with a higher overall reliability. Hence,
it cannot find the implementations in between, where standard
and safety-critical applications can achieve a higher reliability
at lower costs compared to the implementations that have a high
overall reliability. Thus, the incorporation of graceful degrada-
tion aspects in the analysis offers high-quality implementations
that would not have been found otherwise. Table 1 shows some
selected implementations and their objectives.

The introduced online algorithm was applied to the simplest
and most complex feasible implementation regarding the in-
duced structural redundancy of the given specification to enable
the analysis of its scalability. Here, a Monte-Carlo simulation-
based approach was used that generated 10, 000 failure scenar-
ios, each starting with a completely working system and sim-
ulating the time until complete system failure is reached. The
simulation was carried out on an embedded processor. The re-
sults are shown in Table 2.

The memory needed for the storage of the BDD data struc-
ture was ≈ 1.5kB to ≈ 175kB. These additional memory re-
quirements are acceptable for state-of-the-art ECUs. The com-
putational time of the Algorithm 1 for reacting to failure ranges
from 8.8µs to 21.1µs in average and is negligible small. Thus,
the algorithm is also applicable for time-critical applications.
Moreover, the execution time for Algorithm 1 in combination
with the BDD data structure shows a very good scalability.

BDD time [µs]#nodes size [kBytes]
simple 60 1.44 8.8

complex 7198 172.75 21.1

Table 2. Proposed online algorithm evaluating the smallest
and the most complex feasible implementation.

6. Conclusion

In this paper, a methodology to include graceful degrada-
tion into embedded system design, i.e., into the phase of de-
sign space exploration and an online algorithm for the online
degradation and reactivation of tasks was presented. For the op-
timization, a new degradation-aware reliability analysis allows
to take the systems ability to degrade into account and to quan-
tify this ability in the reliability objective. In the online phase,
an efficient degradation algorithm based on a BDD data struc-
ture that can be derived at design time allows an efficient task
activation and performs a graceful degradation if needed. Both,
static optimization and online runtimes show good scalability
and perform well on the presented case study. In future work,
different data structures than the memory intensive BDDs will
be investigated for the online algorithm to trade-off memory re-
quirements vs. runtime.

References

[1] R. E. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. Trans. on Computers, 35(8):677–691, 1986.

[2] N. Eén and N. Sörensson. Translating Pseudo-Boolean Con-
straints into SAT. Journal on Satisfiability, Boolean Modeling
and Computation, 2:1–25, 2006.

[3] M. Glaß et al. Symbolic Reliability Analysis and Optimization of
ECU Networks. In Proc. of DATE ’08, pages 158–163, 2008.

[4] O. Gonzalez et al. Adaptive fault tolerance and graceful degrada-
tion under dynamic hard real-time scheduling. In Proc. of RTSS
’97, pages 79–89, 1997.

[5] JReliability. The java-based reliability library.
http://www.jreliability.org/, Version 1.2.

[6] M. Lukasiewycz et al. Efficient symbolic multiobjective design
space exploration. In Proc. of ASP-DAC ’08, pages 691–696,
2008.

[7] W. Nace and P. Koopman. A graceful degradation framework
for distributed embedded systems. In Workshop on Reliability in
Embedded Systems, 2001.

[8] Opt4J. The optimization framework for java.
http://www.opt4j.org/, Version 1.3.

[9] B. Randell et al. Reliability Issues in Computing System Design.
ACM Comput. Surv., 10(2):123–165, 1978.

[10] A. Rauzy. New Algorithms for Fault Tree Analysis. Reliability
Eng. and System Safety, 40:202–211, 1993.

[11] K. Shin and C. Meissner. Adaptation and graceful degradation
of control system performance by task reallocation and period
adjustment. In Proc. of ECRTS ’99, pages 29–36, 1999.

[12] H. Taboada et al. MOMS-GA: A multi-objective multi-state ge-
netic algorithm for system reliability optimization design prob-
lems. Trans. on. Rel., 57(1):182–191, 2008.

[13] S. Tosun et al. Reliability-Centric High-Level Synthesis. In Proc.
of DATE ’05, pages 1258–1263, 2005.

[14] Y. Xie et al. Reliability-Aware Cosynthesis for Embedded Sys-
tems. In Proc. of ASAP ’04, pages 41–50, 2004.

