This is the author’s version of the work. The definitive work was published in Proceedings of the 27th International Conference on Computer Safety, Reliability and Security (SAFECOMP
2008), pp. 139-152, 2008. The work is supported in part by the German Science Foundation (DFG), SFB 694 and SPP 1148.

Symbolic Reliability Analysis of Self-healing Networked
Embedded Systems

Michael GlaB, Martin Lukasiewycz, Felix Reimann,
Christian Haubelt, and Jiirgen Teich

Hardware/Software Co-Design, Department of Computer Science
University of Erlangen-Nuremberg, Germany
{glass , martin.lukasiewycz, felix.reimann, haubelt,
teich}@cs.fau.de

Abstract. In recent years, several network online algorithms have been studied
that exhibit self-x properties such as self-healing or self-adaption. These proper-
ties are used to improve systems characteristics like, e.g., fault-tolerance, relia-
bility, or load-balancing.

In this paper, a symbolic reliability analysis of self-healing networked embed-
ded systems that rely on self-reconfiguration and self-routing is presented. The
proposed analysis technique respects resource constraints such as the maximum
computational load or the maximum memory size, and calculates the achievable
reliability of a given system. This analytical approach considers the topology of
the system, the properties of the resources, and the executed applications. More-
over, it is independent of the used online algorithms that implement the self-
healing properties, but determines the achievable upper bound for the systems
reliability. Since this analysis is not tailored to a specific online algorithm, it al-
lows a reasonable decision making on the used algorithm by enabling a rating of
different self-healing strategies. Experimental results show the effectiveness of
the introduced technique even for large networked embedded systems.

1 Introduction

Systems like, e.g., automotive or avionics electronic control unit (ECU) networks, net-
works from the area of industrial control automation, body-area networks, or sensor net-
works combine the aspects of both embedded systems and networks. Due to constraints
in area consumption, monetary costs, and energy consumption, the used resources ex-
hibit limiting properties in the field of, e.g., computational power or memory size which
is typical for embedded systems. On the other hand, the resources are distributed within
the systems and, thus, they resemble networks. This distribution is crucial to allow con-
trolling, monitoring, and analysis of the system under the aspect of limited and remote
installation spaces. Moreover, these systems have to be optimized with respect to differ-
ent criteria, ranging from monetary costs, area and power consumption, or throughput
to flexibility, reliability and fault-tolerance. Commonly, this system category is referred
to as networked embedded systems.

For the reliability analysis proposed in this work, several aspects of networked em-
bedded systems are of great importance. Commonly, networked embedded systems are



a) no operation b) reconfiguration c) rerouting

Fig. 1. A self-healing networked embedded system with a data transfer from task ¢; to task ta.
In a), no defect resources are present. In case of resource failures, a reconfiguration activates
redundant task instances, cf. b), or reestablishes the communication using a dynamic rerouting,
cf. b).

deployed in unattended areas and, thus, administrative tasks and maintenance are ex-
pensive and should be avoided or are sometimes even impossible to accomplish. As a
matter of fact, resources of the networked embedded systems move from dedicated and
protected mounting spaces to installation spaces with destructive agents. These spaces
can be found near sensors or within, e.g., an engine or moving parts of vehicles. This
trend especially increases the amount of destructive influences on the used hardware,
such that permanent failures occur more frequently.

In recent years, systems have been proposed that exhibit so called self-x properties.
These systems monitor themselves and are able to react autonomously to unwanted sys-
tem states. Popular properties for self-x systems are self-adaption that allows the system
to react to different environment conditions or new applications and self-healing that al-
lows the system to react to failures and, thus, increases the reliability and fault tolerance
of the system, cf. [1]. In this work, we will focus on self-healing networked embedded
systems that are based on self-reconfiguration and self-routing. An example of such
a system is given in Fig. 1. On the systems architecture, a given set of communicat-
ing applications is executed while the communication is implemented via static routes.
Hence, there are hardly any dedicated routing resources but the resources perform both
the computation of the tasks and the routing using their point-to-point interconnections.
In case of a resource failure, the failure has to be detected, cf. [2, 3]. After the detection,
the redundant instances of the tasks executed on the defect resource that are available
in the system are activated using a reconfiguration of the other resources, cf. [4]. For
all newly activated task instances and for all communication routes that use the de-
fect resource, a rerouting is performed. Besides the fact that such a system can act
autonomously, self-reconfiguration and self-routing allow a resource sharing of active
tasks and redundant, inactive tasks. Thus, highly increased costs introduced by static
structural redundancy can be avoided.



In this paper, we present a symbolic reliability analysis of such self-healing net-
worked embedded systems. This analysis aims to determine the achievable reliability
of the system, independent of the used algorithms to implement the self-healing prop-
erty. The knowledge of the achievable reliability is important since it allows to quantify
the quality of the available online algorithms. Moreover, in the design phase of the sys-
tem, the achievable reliability allows a coarse grained selection from different system
layouts and can be embedded into a design space exploration, since the calculation is
much faster than an evaluation of different online algorithms. The presented reliability
analysis is based on Binary Decision Diagrams (BDDs) [5] and considers both reconfig-
uration and routing using a symbolic fixed-point iteration. Moreover, even constraints
that depend on the dynamic activation of tasks are encoded in the BDD, allowing to
respect constraints like, e.g., maximum computational load of a resource.

The remainder of the paper is as follows: Section 2 discusses prior work. In Sec. 3,
a formulation of the problem we target in this work is given. Section 4 introduces
our symbolic analysis approach for self-healing networked embedded systems. Sec. 5
shows the results of the introduced technique applied to examples where several imple-
mentations of self-healing algorithms are available as well as an networked embedded
system that corresponds to systems currently used as automotive ECU networks. The
paper is concluded in Sec. 6.

2 Related Work

The reliability of self-healing networks has been widely studied, cf. [6-9]. Hence, all
these approaches focus on the network as a communication platform itself while the as-
pects of nodes of the networked embedded system as both communication and compu-
tational resource are neglected. Thus, the approaches are more related to the reliability
analysis of classical networks [10] and restricted to given self-healing strategies.

Other approaches can be found in the area of self-repairing embryonic cells [11] and
wireless sensor networks [12, 13]. Embryonic cells have a very special architecture that
comes with a high degree of spatial redundancy to implement the self-repairing property
and, thus, are not appropriate as a networked embedded system model. Wireless sensor
networks on the other hand are highly meshed networks and have changing commu-
nication possibilities due to their wireless communication medium. Hence, since these
sensor networks often include aspects of maintenance as well, simulative approaches
are used to quantify their reliability.

The typical networked embedded system is hard wired with maintenance being
hardly possible. Thus, the reliability analysis proposed in this work is inspired by the
reliability analysis of embedded systems [14] and networked embedded systems with-
out self-healing properties [15]. We will extend these approaches by considering the
reconfiguration and dynamic routing that is used by the online algorithm. Moreover,
constraints that depend on the online activation of tasks are included in the analysis as
well.



\\ application / \ architecture /

Fig. 2. A system specification with an application and the available resource architecture.

3 Problem Description

In this paper, we target the problem of determining the reliability of a self-reconfigurable
and self-routing networked embedded system. Hereby, the tasks that are executed on the
resources as well as their data dependencies are given. Moreover, the system topology
and the reliability attributes of each resource are known. The assumed failure model is
permanent failure due to resource failures.

Our formal specification of a system consists of the application, the system layout
or architecture and the relation between these two views:

— The application is modeled by a task graph ¢ (V;, E;) that describes the behavior of
the system. The vertices {1, ..., 1y, € V; denote tasks whereas the directed edges
E} are data dependencies. Attributes like, e.g., memory usage, computational load
are assigned to tasks.

— The architecture is modeled by a graph g, (V5, E,) and represents possible intercon-
nected hardware resources. The vertices 71, ..., 7|y,| € V, represent resources that
can be both processing units or communication units like buses or gateways. The
edges F, model available communication links between the resources. Attributes
like, e.g., the memory size, maximum computational capacity or reliability are as-
signed to the resources.

Each resource has the ability to route information to all resources along the directed
communication connections, thus, from a routing point of view, all resources can be
seen as network nodes with point-to-point connections. An example of an application
and a given architecture is shown in Fig. 2.

In this model, the execution of a given task is limited to selected resources. This
is due to the fact that not each device is generally present on every resource in a het-
erogeneous system. Therefore, a relation between application and architecture called
mapping is introduced in the system model:



@B)
9333

architecture

/

Fig. 3. A part of the application shown in Fig. 2. Depicted are the tasks that are mapped to the
resources.

— The mapping M : V; — 2% assigns to each task ¢ a set of possible resources for
its execution and M : V, — 2" assigns each resource r a set of tasks that can be
executed on r, respectively.

— An instance i = (t,r) of a task ¢ corresponds to this task being executed on the
resource 7 € M (t). The set of all available instances of all tasks is defined as
I={(t,r)|teVi,re M)}

In the online phase of the system, at least one instance of each task has to be activated,
i.e., has to be executed. An example of a part of the application and its relation to the
given architecture is shown in Fig. 3.

The task of the used online algorithms is to keep the networked embedded system
feasible.

Definition 1. A system is called feasible if the execution of each task of the system’s ap-
plications and their data dependencies can be correctly carried out by proper operating
system resources.

A task execution can be successfully carried out on a resource if the resource has
enough capacity to execute the task and is operating properly, i.e., it is not defect. Data-
dependencies can be implemented if there exists a set of properly operating resources
that allows to pass the data correctly from the sending to the receiving resource. In this
definition, failures that happen at task level like, e.g., soft errors or errors in the task
itself, are assumed to be handled at task level using, e.g., task re-execution, cf. [16].

4 Reliability Analysis

In this section, the symbolic reliability analysis is presented. The calculation and rep-
resentation of the so called structure function ¢ is explained in three steps: First, the
requirements for a feasible system are introduced. Afterwards, the representation of the
dynamic routing within the structure function is presented. In a final step, the given
constraints are integrated directly into ¢. Moreover, the evaluation of ¢ to quantify the
systems reliability is explained.



4.1 The Structure Function ¢

To model the systems behavior under the influence of failures, the structure function
¢+ {0,1}V:l — {0,1} with the Boolean vector V, = (r1,...,7|y;)) is calculated,
cf. [14]. At this, for each allocated resource r € V,, a binary variable r is introduced
with » = 1 indicating a proper operation and » = 0 a resource failure, respectively.
This Boolean function indicates a proper operating system, i.e., a feasible system by
evaluating to ¢ = 1 and a system failure by evaluating to ¢ = 0, respectively. For a
given system specification, this function can be calculated as follows:

¢(Va) =3I : (Va, I) (D

Whether a system is feasible is highly dependent on which instance of each task is
activated. Thus, the extended structure function 1) that includes both the resources and
the available task instances, is calculated first. At this, I = (4q,..., i| I|) is a vector
of Boolean variables encoding a task instance being activated. Applying the exists-
operator 3 to ¥ allows to eliminate the I variables by asking if there exists at least one
set of task instances that ensures a feasible system.

The requirements for a feasible system are encoded in :

vVa. )= N |V i A (2a)

teVy |i=(t,r)el

/\ T—7rA (Zb)
i=(t,r)el

/\ /\ 1 /\; — RT,F(Ve.\) N (ZC)
weni,
reV,

At least one active instance of each task ¢ € V; is needed to allow each application
to work properly. This is ensured by Term (2a). Term (2b) states that an activated task
instance implies a proper operating resource. Furthermore, if two instances of data de-
pendent tasks are activated, they must be able to communicate and a correct routing has
to be possible, cf. Term (2c). At this, the function R, (V,) encodes possible routings
and, thus, enables to decide whether two data dependent task instances are able to com-
municate. The calculation of this function is presented in Sec. 4.2. The given constraints
that are imposed on the resources are realized by Term (2d) using the function C,.(I).
The calculation of this function is presented in Sec. 4.3.

4.2 Encoding the Routing

The function R, ., : {0,1}Val — {0,1} evaluates to 1 if there exists a route, i.e.,
a loop free path, that implements a communication between the data dependent task
instances being executed on resource rs and r4 by passing data over currently proper



\archltecture /

Fig. 4. All possible routes from resource 1 to 73 from the example shown in Fig. 2.

operating resources only. Thus, the function evaluates to 0 if there is no route that is able
to implement the data dependency. In the following, a fixed-point iteration approach for-
mally introduces the calculation of R, ,(Va). Additionally, a symbolic version of this
fixed-point iteration is presented that enables an efficient determination of the desired
Boolean function.

Fixed-Point Iteration A route from a sender resource r, to a destination resource
rq is carried out by passing the data from one resource to another using the point-to-
point connections between the resources.' Passing data from one resource to another is
called taking a hop, thus, one route consists of a ordered sequence of hops starting from
the sender and ending at the destination without visiting a resource more than once.
Formally, taking a hop between two resources r and 7 is possible if

de = (r,7) € E, 3)

That means, a hop can only be taken if the resources are able to communicate using a
point-to-point connection. The possible routes from the example depicted in Fig. 2 are
shown in Fig. 4.
The determination of R, ,,(Va) has to take all possible routes into account. In the
following, the determination of this Boolean function is done by a fixed-point iteration.
The single state of the fixed-point iteration are in the set S with

S:V;XZV;. (4)

One state (r, R) € S consists of a reached resource r € Vj and the set of resources
R C V; in form of predecessor resources that have been passed starting from the sender

! Buses are modeled as a single resource with many point-to-point connections to nodes that are
attached to the bus.



resource to reach the current resource 7. The function § : S — 2° determines for a
given state (1, R) the set of reachable states:

o((r, R)) ={(", RU{r'}) | with (r,r") € E,} ©)

By using 6, for a given set of states S C S the successor states are calculated by the
successor function SUCC : 25 — 25:

succ(S)={¢",R)|3(r,R)e S:(r',R')eds((r,R))} (6)

Thus, the following function defines a fixed-point iteration that searches all reachable
resources with the given set of resources that are required to ensure a route:

Siy1=5; USUCC(S;) (7
The iteration stops in the iteration k if
Skt1 = Sk ®)

and the fixed-point is reached.
For a given sender resource r, and destination resource 74 the initial state of the
iteration is

So = {(rs, {rs})} ©

and the desired states for the fixed-point Sy, are those where the current resource equals
the destination: .
Sk =A{(ra, R)|(ra, R) € Sk} (10)

With the calculated set §; the Boolean function that indicates whether a communi-
cation between 75 and r is possible is as follows:

R.,Va)= \/ AT (11)
(nR)eg‘;?eR

However, the complexity of this iteration equals the enumeration of all simple paths
that is known to be #P-complete [17].

Symbolic Approach The basis of the determination of R,._ ,-,(V5) is #P-complete and,
thus, of a high computational complexity. In the following, the set-based fixed-point
iteration is done by a symbolic approach using Binary Decision Diagrams (BDDs).
From the experiences of Model Checking a symbolic encoding [18] speeds up a fixed-
point iteration by some orders of magnitude.

Preliminary, for each r € V a distinct Boolean function b, is defined as

by : X — {0,1} with X = {0, 1} V[T, (12)
with x € X being of the form

Z‘Z{wo,...,wrld“/an}. (13)



Hereby, for two resources r, 7 € V; it holds
b.(x) #0 (14a)
br(2) ANbr(z) =0 (14b)
Thus, the function b, (x) maps a resource 7 to a specific binary representation by evalu-
ating to 1 if z is the binary representation of r and evaluating to 0 if = is not the binary
representation of r, respectively.

Correspondingly to Eq. (4) a single state or a set of states can be defined in the
binary representation and, thus, as a BDD:

S:X x{0,1}"* - {0,1} (15)
Correspondingly to Eq. (5) the function § : X x X x {0, 1}“/3‘ — {0, 1} encodes
whether taking a hop is possible represented as a BDD:
Sz, ', Vo) = \/  be(@) Abs(a') AT (16)
e=(r,1)€E,

This function evaluates to 1 if the requirements stated in Eq. (3) are fulfilled. Otherwise,
¢ evaluates to 0, respectively. The required paths in the form of predecessor resources
stated in Eq. (4) is incorporated through the V,, variables. This is important since these
variables encode the path that is needed for the fixed-point iteration and allow defect
resources” to falsify the possibility of taking hops at the same time.

Correspondingly to Eq. (6) the successor function is defined as

SUCC(S(x,Va)) =32 : S(2', Vo) ANd(2!, 2, V). 17
Thus, the fixed-point iteration from Eq. (7) is carried out by
Sji1(x,Va) = S, Va) V SUCC(S; (z, Va)). (18)

The iteration stops and the fixed-point is reached if the BDDs for two subsequent itera-
tions are equal, cf. Eq. (8).

For the sender resource r, and the destination resource r4 the initial state is defined
as a BDD correspondingly to Eq. (9):

So(z, Va) = b, () Arg 19)

For the fixed-point S (z, V;) the restricted states to the destination resource are deter-
mined correspondingly to Eq. (10) as follows:

Sk(x, Va) = S(w, Va) A by, () (20)

Thus, correspondingly to Eq. (11) the desired Boolean function or BDD, respec-
tively, is determined as follows:

Ry ry(Va) = 32 : Si(x, Va) @D
The resulting BDD for the example in Fig. 4 is shown in Fig. 5.

% Link failures can be seamlessly introduced by adding binary Variables E that encode a proper
operation of the communication links F,.



\archltecture /

Fig.5. A BDD encoding the routing possibilities from resource r; to 3 from the example shown
in Fig. 2. Edges represent the corresponding variable to be 1 while the dashed edges depict the
variable to be 0, respectively.

4.3 Incorporating Constraints

Typical constraints for resources in self-x networked embedded systems are the max-
imum computational load or the maximum memory capacity of a specific resource.
Since the calculation of these objectives can be approximated using linear functions,
they can be expressed as linear constraints of the form

alzob (22)
witha € Z", b € Z and o € {<,<,=,>,>}. A typical constraint for, e.g., the
maximum computational load of a resource r has the following form:

Li<I, (23)
>

i=(t,r)el

At this, [; denotes the computational load arising from activating task ¢ on resource r
while the maximum computational load of resource r is denoted as L,.. By incorporating
these constraints into v, system states that violate a constraint are excluded from the set
of feasible system states.

An encoding algorithm for linear constraints as Binary Decision Diagrams has been
presented in [19]. Using this algorithm, the function

Cr: {0,131 — {0,1} (24)

can be realized. The function C,. evaluates to 1 if the task instances that are executed on
r do not violate the given constraints and evaluates to 0 if at least one of the encoded
constraints is violated, respectively. As an example, resource rs from Fig. 2 with an

10



Fig. 6. A BDD encoding the computational load constraint of resource r3 shown in Fig. 2. Edges
represent the corresponding variable to be 1 while the dashed edges depict the variable to be 0,
respectively.

L., of 5 is to encode. The computational demand of the tasks that are bound to 13 are
ly, =i, =3 and l;, = l;, = 2. Thus, the constraint can be written as

iy + Bipg + ip, + 2ip, <5

The resulting BDD for C,., that is constructed using the Algorithm presented in [19] is
shown in Fig. 6.

4.4 Evaluating

In the following, we describe how to quantify the reliability of the self-x networked
embedded system based on the determined structure function . Since the reliability
R, of each resource r € V is given in the system model, e.g., by distribution functions
like an exponential distribution or a Weibull distribution, the reliability of the system at
time ¢ can can be calculated through using a modified Shannon-decomposition [20] on
the BDD representing (:

R(t) =y :Rr(t) : L:Dlw’:l + (1 - Rr(t)) : ‘p|r:0 (25)

If a Mission Time (MT) of the system is given, this decomposition directly quantifies
the reliability R(MT') of the system. In our experimental results, the Mean Time To
Failure (MTTF) = [° R(t)dt is used as the measure of reliability and is determined
by a numerical integration of Equation (25). MTTF denotes the expected value for the
failure-free time of the system.

11



Table 1. Comparison of theoretical upper bound for the MTTF with the ReCoNets self-healing
system.

testcases ||symbolic analysis ReCoNets LB ReCoNets BCC
MTTFmax MTTF deviation| e |[MTTF deviation| e
small 54.92 50.34  40.04 |0.917|51.21 39.44 ]0.932
medium 66.91 57.20 46.28 |0.854| 60.25 43.21 |0.900
large 176.12 137.18 127.71 |0.779|144.64 138.24 |0.821

S Experimental Results

In this section, the results of applying our proposed analysis approach to two differ-
ent examples are presented. First, examples of an available self-healing technique for
networked embedded systems known as ReCoNets [4] are analyzed. Afterwards, a net-
worked embedded system with a specification inspired by state-of-the-art ECU net-
works from the automotive area are used to show the applicability of the proposed
approach.

ReCoNets The self-healing technique called ReCoNets implements the self-healing
property using a one replication strategy. At this, for each active task, a replica task is
created by copying the byte code of the tasks to another resource. Of course, a replica
can only be placed at resources that are allowed by the given mappings. There are two
strategies available: The load balancing (LB) strategy places replicas under load bal-
ancing aspects. The strategy that is more focused on lifetime maximization called BCC
determines bi-connected components that can, in case of a failure, lead to a partition-
ing of the networked embedded system. With this knowledge, the BCC strategy tries
to place replicas such that a partitioning does not prevent data dependent tasks from a
correct communication. Hence, strategies based on using only one replica can, in gen-
eral, not achieve the maximum reliability, but reduce the amount of memory needed in
every resource since task replicas are created dynamically. With this example, the pos-
sibility of quantifying the effectiveness of a self-healing technique using our proposed
approach is shown. For this reason, a simple measure for the effectiveness e is used:

MTTF

€= MTTFmax (26)

Table 1 shows the results of the proposed reliability analysis for networked embed-
ded systems where a simulation of the ReCoNets techniques is available. In these test-
cases, an exponential distribution function was used to model the resource reliability.
The size of the networked embedded systems was varied between 10 and 30 resources,
each having the same number of tasks. Due to the high vertex degree, these examples
can be considered to be complex examples for the analysis. For the small examples, both
ReCoNets techniques nearly reach the upper bound of the achievable MTTF. However,
the high standard deviation shows that both techniques can also make suboptimal deci-
sions for the replica placement, leading to very early system failures. This is often the
result of placing task and corresponding replica in a small subnet that can be isolated

12



Table 2. Time consumption of a single analysis run for different ECU networks.

testcases specification time consumption
#ECUs #Tasks #Buses [s]
small 30 30 2 1.16
medium || 50 50 3 3.63
large 70 70 4 6.69

from the network by a single link or resource failure. For larger networks, the effec-
tiveness of both ReCoNets techniques decreases, but can still be considered as good. In
all testruns carried out, the time consumption of the proposed analysis algorithm and
the ReCoNets simulation were nearly equal. Morover, the time consumption of the pro-
posed algorithm is small enough to be applied in design space exploration approaches.

Especially interesting is the relatively small difference in the effectiveness of both
ReCoNets methodologies with regards to the known upper bound. In [4], the relative
difference between the LB and BCC approach seemed significant. With regards to the
upper bound, the designer may choose the load balancing approach as well, since this
approach is less than 5% worse than the BCC technique and offers a better load balanc-
ing of the resources.

ECU Network In this section, our proposed methodology is applied to artificial exam-
ples inspired by typical Electronic Control Unit (ECU) networks from the automotive
domain to show its time consumption. In these examples, the resources have a relatively
low vertex degree since they are connected via buses. These buses are typically arranged
in a star topology. The large example with 70 ECUs corresponds to recent real world
automotive networks in premium class automobiles. The experiments were carried out
on an Intel Pentium 4 3.20GHz machine with 1GB RAM.

Table 2 shows the results for three different ECU networks. The time consumption
per analysis of 1.16 to 6.69 seconds per analysis run shows that the proposed approach is
applicable for these kind of networks. Moreover, the time consumption is small enough
to be applied in design space exploration approaches where many different network
layouts have to be analyzed in order to find the optimum. However, at a certain com-
plexity, the memory consumption of the calculated BDD exceeds the computers main
memory and, thus, makes an analysis impossible. In our testcases, this problem arises
at networks with about 90 ECUs and 90 tasks.

6 Conclusion

In this paper, a reliability analysis for self-healing networked embedded systems has
been proposed. This technique allows to determine an upper bound for the MTTF
that can be achieved by self-healing techniques that rely on self-reconfiguration and
self-routing. The technique uses a fast and memory-aware symbolic representation and
respects given constraints of the system like, e.g., the maximum computational load.
Given the proposed technique, the effectiveness of different self-healing techniques for
networked embedded systems can be quantified. Moreover, an effective dimensioning

13



of the system in the design phase is enabled. In the future, the proposed technique will
be extended to respect a possible maintenance of resources or, more accurately, of sub-
nets of the networked embedded system.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Dai, Y.S.: Autonomic computing and reliability improvement. In: Proceedings of ISORC

’05. (2005) 204-206

. Koch, D., Streichert, T., Dittrich, S., Strengert, C., Haubelt, C., Teich, J.: An operating

system infrastructure for fault-tolerant reconfigurable networks. In: Proceedings of ARCS
’06. (2006) 202-216

. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: Proceedings

of WOSS ’02. (2002) 27-32

. Streichert, T., Gla3, M., Wanka, R., Haubelt, C., Teich, J.: Topology-aware replica placement

in fault-tolerant embedded networks. In: Proceedings of ARCS ’08. (2008) 23-37

. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. on

Comp. 35(8) (1986) 677-691

. Cankay, H.C., Nair, V.S.S.: Reliability and availability evaluation of self-healing sonet mesh

networks. In: Proceedings of GLOBECOMM ’97. (1997) 252-256

. Cankay, H.C., Nair, V.S.S.: Accelerated reliability analysis for self-healing sonet networks.

SIGCOMM Comput. Commun. Rev. 28(4) (1998) 268-277

. Kawamura, R., Sato, K., Tokizawa, I.: Self-healing atm networks based on virtual path

concept. IEEE Journal on Selected Areas in Communications 12(1) (1994) 120-127

. Lee, J.: Reliability models of a class of self-healing rings. Microelectronics and Reliability

37(8) (1997) 1179-1183

Politof, T., Satyanarayana, A.: Efficient algorithms for reliability analysis of planar networks
- a survey. IEEE Trans. on Reliability 35(3) (1986) 252-259

Ortega, C., Tyrrell, A.: Reliability analysis in self-repairing embryonic systems. In: Pro-
ceedings of EH "99. (1999) 120-128

Dressler, F., Dietrich, I.: Lifetime analysis in heterogenous sensor networks. In: Proceedings
of DSD ’06. (2006) 606-616

Elliot, C., Heile, B.: Self-organizing, self-healing wireless networks. In: Proceedings of
Aerospace Conference *00. (2000) 149-156

GlaB, M., Lukasiewycz, M., Streichert, T., Haubelt, C., Teich, J.: Reliability-Aware System
Synthesis. In: Proceedings of DATE *07. (2007) 409-414

Streichert, T., Gla, M., Haubelt, C., Teich, J.: Design space exploration of reliable net-
worked embedded systems. Journ. on Systems Architecture 53(10) (2007) 751-763
Izosimov, V., Pop, P., Eles, P., Peng, Z.: Synthesis of fault-tolerant schedules with trans-
parency/performance trade-offs for distributed embedded systems. In: Proceedings of DAC
’04. (2004) 550-555

Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on
Computing 8 (1979) 410-421

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Inf. Comput. 98(2) (1992) 142-170

Eén, N., Sorensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Sat-
isfiability, Boolean Moelding and Computation 2 (2006) 1-25

Rauzy, A.: New Algorithms for Fault Tree Analysis. Reliability Eng. and System Safety 40
(1993) 202-211

14



