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Abstract— For complex optimization problems, several
population-based heuristics like Multi-Objective Evolutionary
Algorithms have been developed. These algorithms are aiming
to deliver sufficiently good solutions in an acceptable time.
However, for discrete problems that are restricted by several
constraints it is mostly a hard problem to even find a single
feasible solution. In these cases, the optimization heuristics
typically perform poorly as they mainly focus on searching
feasible solutions rather than optimizing the objectives.

In this paper, we propose a novel methodology to obtain feasi-
ble solutions from constrained discrete problems in population-
based optimization heuristics. At this juncture, the constraints
have to be converted into the Propositional Satisfiability Prob-
lem (SAT). Obtaining a feasible solution is done by the DPLL
algorithm which is the core of most modern SAT solvers. It is
shown in detail how this methodology is implemented in Multi-
objective Evolutionary Algorithms. The SAT solver is used to
obtain feasible solutions from the genetic encoded information
on arbitrarily hard solvable problems where common methods
like penalty functions or repair strategies are failing. Handmade
test cases are used to compare various configurations of the SAT
solver. On an industrial example, the proposed methodology
is compared to common strategies which are used to obtain
feasible solutions.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are heuristics that are
based on the principles of biological evolution and are
used for both decision and optimization problems. This
paper focuses on discrete constrained optimization problems
regardless of the number and kind of objective functions.
EAs which can handle multiple objective functions are called
Multi-Objective Evolutionary Algorithms (MOEAs). Instead
of decision problems, where one feasible solution has to
be found, an optimization with EAs is twofold: (1) The
algorithm has to make an effort to stay in the valid search
space to obtain feasible solutions whereas (2) the objectives
have to be optimized. The first task is only of interest if the
given problem is constrained and, as a matter of fact, most
real-world applications are hard-constrained [1]. There are
various strategies for obtaining feasible solutions [2], [3] such
as by using penalty functions, the preservation of feasible
solutions, prioritizing of feasible over infeasible solutions,
and repairing strategies. These methods are widely and
successfully used in many optimization problems, but tend to
fail, if the search space is discrete and hard-constrained. If the
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constraints are linear or linearizable, searching for a feasible
solution in discrete constrained optimization problems can
be formulated as an Integer Linear Program (ILP) with an
empty objective function. Hence, the ILP will return one
feasible solution of the optimization problem. A special class
of ILPs are 0-1 Integer Linear Programs (0-1 ILP) where the
decision variables are reduced to the binary values 0 and 1.
These problems are also termed Pseudo-Boolean (PB) [4],
whereas general ILPs can be described as 0-1 ILPs by a
binary encoding. In fact, 0-1 ILPs are mentioned in KARP’S
21 NP-complete problems [5]. That means obtaining feasible
solutions in a discrete constrained optimization can even be
NP-complete. However, specialized PB solvers are widely
used to solve these problems efficiently [6].

One well known discrete constrained problem is the Set
Cover Problem, cf. Figure 1. Given is a universe of elements
U and a set S of subsets of U . The task in the optimization
version of the Set Cover Problem is to find a minimal set C ⊆
S such that the union of C equals U . This problem is known
to be NP-hard [5]. Nevertheless, obtaining a single feasible
solution is a trivial problem, as iteratively adding subsets
of S to C until these sets are covering all elements can be
used as a simple repair algorithm. If the problem is extended
by the condition that the sets in C have to be pairwise
disjoint, this repair algorithm can no longer be applied. In
fact, obtaining a single feasible solution is an NP-complete
problem known as the Exact Cover Problem [5]. Hence,
many optimization procedures, in particular population-based
heuristics, that are incorporating the common strategies like
local repair or penalty functions, will rather be busy to find
feasible solutions than optimizing the objective function.
Note that this drawback will be apparent in any optimization
problem where obtaining a feasible solution is a hard solvable
problem.

As a remedy, we propose a new decoding strategy for EAs
based on modern SAT solvers [7], which are programs and al-
gorithms that are actually used to solve the Propositional Sat-
isfiability Problem (SAT) [8] in conjunctive normal form. For
this purpose, the used SAT solver is adapted to obtain feasible
solutions whereas the search process of the solver and, thus,
the resulting solutions are varied by the EA. Contrary to
solving the SAT problem with EAs is a well researched
topic [9], using SAT solvers in EAs is a novel approach. The
proposed methodology is generally applicable to any discrete
constrained optimization problem where the feasibility of a
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Fig. 1. Minimal Set Cover Problem or Minimal Exact Cover Problem,
respectively. Universe containing the elements U = {1, 2, 3, 4, 5, 6} with
S = {a = {1, 2, 3}, b = {4, 5, 6}, c = {1, 4}, d = {2, 5}, e = {3, 6}}.

solution can be described by a set of linear PB constraints
or any other form which is translatable into SAT. These are,
for instance, Pseudo-Boolean optimization problems, many
graph-based optimization problems for example the problem
of System-level Synthesis [10], covering problems as they are
used for logic minimization and technology mapping [11],
and many more. As this methodology only deals with the
search space, the objective space is not affected. Hence, the
number of objectives is not limited, with nonlinear objective
functions being allowed explicitly.

The remainder of the paper is outlined as follows: Sec-
tion II gives a short introduction of related work and Sec-
tion III of the preliminary work as well as the problem
description. In Section IV the general SAT-decoding is de-
scribed and additional enhancements are proposed in Sec-
tion V. Experimental results will be discussed in Section VI
before we conclude the paper in Section VII.

II. RELATED WORK

While the optimization of the objective function f is
one target of an EA, it has to be ensured that the found
solutions are fulfilling the given constraints at the same time.
Common strategies for obtaining feasible solutions in EAs
on constrained problems are outlined in [2], [3] and are
summarized in the following.

A common method is the usage of penalty functions.
Depending on the number of unsatisfied constraints, a penalty
value is added to the objective functions and, thus, the fitness
of the individual is deteriorated. Thereby, feasible solutions
and solutions with low penalty values are prioritized auto-
matically in the optimization process. Prioritizing feasible
solutions over infeasible by a clear distinction is a current
strategy, too. In some cases, the feasibility of solutions can
be preserved by eliminating decision variables or a neat
structure of the chromosomes. Furthermore, there exist repair
strategies which are using information from a chromosome
to fix an infeasible solution. These repair strategies are also
termed decoders and can be complete, thus, always obtain
feasible solutions. On the other hand, due to the problem
trait, they can be local strategies that are not able to guarantee
a repair to feasible solutions. Moreover, these methods can
be combined in various ways to hybrid strategies.

Another approach for a decoder-based EA is a mapping
strategy. The information from the chromosome is mapped to

the feasible search space. In [12], a mapping for continuous
constrained optimization problems is done between an n-
dimensional cube and the feasible search space Xf . However,
this decoder is using a problem-specific mapping and, more-
over, can not be applied to discrete constrained problems.
In [13], we have proposed a specific SAT-based decoding
approach for the problem of System-level Synthesis which
was strongly connected to the given problem domain and
of limited generality. This paper overcomes these limitations
and proposes a general SAT-based decoding where a generic
chromosome structure and mapping scheme will obtain feasi-
ble solutions. Therefore, this decoding is easily applicable to
any optimization problem where obtaining a single feasible
solution is of arbitrary hardness, and can be formulated as a
0-1 ILP or Satisfiability Problem, respectively.

III. PRELIMINARY

A. Problem Formulation

This paper focuses on optimization problems with a
various number of objectives and a set of linear discrete
constraints. The constraints of the problems are restricting
the search space such that only a fraction of the search
space X results in feasible solutions. This feasible search
space Xf ⊆ X is containing all solutions that are fulfilling
the given constraints. We will restrict the search space to
vectors of binary variables, which, on the other hand, can
represent binary encoded integers. Therefore, the objective
function is a mapping from the search space X = {0, 1}n

to the objective space Y = Rm given by f : {0, 1}n →
Rm, in which for an n-dimensional binary decision vector
an m-dimensional objective vector is determined. Without
loss of generality, we assume that all objectives have to be
minimized.

Now, the goal in a multi-objective optimization problem
is to find the set of Pareto-optimal solutions Xp ⊆ Xf or the
Pareto-optimal front Yp = {f(x)|x ∈ Xp}, respectively. A
solution xp ∈ Xp is said to be Pareto-optimal if its objective
vector f(xp) is not dominated by any other objective vector
f(x) with x ∈ Xf , cf. Definition 1.

Definition 1 (Pareto dominance (cf. [14])) For any two
objective vectors a and b,

a �� b (a strictly dominates b) if ∀i : ai < bi

a � b (a dominates b) if ∀i : ai ≤ bi ∧ ∃j : aj < bj

a � b (a weakly dominates b) if ∀i : ai ≤ bi

a ‖ b (a is incomparable to b) if ∃i, j : ai > bi ∧ aj < bj .

B. The DPLL Algorithm

The Propositional Satisfiability Problem (SAT) is the first
known NP-complete problem [8]. Given is a Boolean formula
f : {0, 1}n → {0, 1} in conjunctive normal form (CNF)
whereas the question is if it is satisfiable respectively 1 or
true, respectively, under any input. The main property of a
CNF is that it is satisfied if every single clause is satisfied,
where a clause is satisfied if at least one of its literals is true,
cf. Figure 2.
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Fig. 2. A Boolean formula in conjunctive normal form

Though SAT is known to be NP-complete and, therefore,
hard solvable, there exist algorithms and programs which
are aiming to solve the SAT problem efficiently. These
SAT solvers are designed and developed with high effort
since they became essential in the field of Electronic De-
sign Automation [15]. Modern complete SAT solvers [16],
[17] are mostly based on the DPLL algorithm [7] and are
often performing successfully even on huge instances with
thousands of variables and clauses.

The DPLL algorithm is a backtracking algorithm that tries
to find a binary input vector that fulfills f . The algorithm
starts with completely unassigned variables whereas in an
iterative process assignments are done and conflicts are
resolved by a backtracking procedure. The algorithm is
searching a satisfiable variable assignment until the function
is proven to be satisfiable or unsatisfiable. The decision
which unassigned variable is chosen and what assigned value,
the phase 0 or 1, it gets, is called decision strategy. If the
algorithm recognizes that all variables have an assignment the
algorithm stops and f is recognized as satisfiable whereas
the current variable assignment is called witness. One of
the main principles of a SAT solver are the implications.
An implication is done if a still unsatisfied clause has only
one unassigned literal. The variable in this literal gets the
corresponding value to satisfy the clause and keeps the
CNF satisfiable. In modern SAT solvers, most of the time
is spent on the propagation of implications. Concepts like
watched literals were proposed to improve this process [16].
Moreover, modern SAT solvers are improved by an enhanced
conflict resolution [18], a clause learning scheme [19] and
random restarts [16].

IV. SAT-DECODING

In the proposed approach, a SAT solver is used to obtain
feasible solutions and, by that, utilize the advantageous
concepts of modern SAT solvers.

Figure 3 is illustrating the concept of an optimization
heuristic using SAT-decoding. Encoding the solutions directly
into the chromosome makes it hard to find feasible solutions
in many hard constrained problems. Therefore, a clear dis-
tinction between the genotype and the phenotype is made.
The genotype, a specific vector of variables v ∈ V , is varied
in the chromosome space which is simply bounded. By using
the mapping function g : V → Xf , any genotype v is
mapped to a feasible solution x ∈ Xf , the phenotype, in the
decision space. Actually, the mapping scheme g is guided by
the information of the the chromosome v. Therefore, it must
be ensured that the chromosome space and mapping scheme
is chosen in a way, such that at least each Pareto-optimal

solution can be reached. More formally,

∀x ∈ Xp ∃v ∈ V : x = g(v).

That means an EA is no longer varying the solutions in the
decision space and running into many infeasible solutions
if the decision space contains only few feasible solutions.
Instead of that, the EA is varying the vectors in the chromo-
some space V whereas these bounds are clearly defined and
can simply be preserved. By the mapping scheme g, which
is realized by a SAT solver, a chromosome v is mapped to
a feasible solutions x ∈ Xf . The mapping process with a
SAT solver is referred to as SAT-decoding. Evaluating the
objectives of a feasible solution is done by the function f as
usual.

A. Converting Model into SAT

Preliminary, the given problem, excluding the objective
functions, has to be converted into SAT. In particular, each
feasible solution of the problem must have a solution in
the SAT problem and vice versa. To overcome the limited
expressiveness of a CNF, the problem can also be encoded as
a Pseudo-Boolean problem with an empty objective function.
Hence, each linear PB constraint has to be converted into a
set of clauses. In [20] a methodology for that purpose is
described in detail. The two-staged process which prevents
a resulting exponential number of clauses works as follows:
First, each PB constraint is converted into a hardware circuit
by using BDDs, Adders, or Sorters. Second, the resulting
circuits are converted linearly into a set of clauses by a
transformation that introduces additional variables. Alterna-
tively, there exist specialized SAT solvers that beside clauses
in the conjunctive normal form also support natively PB
constraints [6], [21], [22]. Moreover, there are approaches for
converting problem specifications in specialized description
languages automatically into SAT [23].

Exemplary for the problems defined in Figure 1, the
constraints can be defined as follows: For each set s ∈ S, a
binary variable is introduced by the function σ : S → {0, 1}
indicating whether s is (1) or is not (0) contained in C. The
constraints of the Minimal Set Cover Problem are then

∀u ∈ U :
∑

s∈S∧u∈s

σ(s) > 0,

which means that each element of the universe U has to be in
at least one set that is part of C. For the example in Figure 1,
these are six constraints:

σ(a) + σ(c) > 0 (1)

σ(a) + σ(d) > 0 (2)

σ(a) + σ(e) > 0 (3)

σ(b) + σ(c) > 0 (4)

σ(b) + σ(d) > 0 (5)

σ(b) + σ(e) > 0 (6)

Accordingly, the constraints of the Minimal Exact Cover
Problem are

∀u ∈ U :
∑

s∈S∧u∈s

σ(s) = 1,
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Fig. 3. The SAT-decoding x = g(v) is mapping a vector v ∈ V from the bounded chromosome space to a feasible solution x ∈ Xf in the decision
space. The evaluation of the objectives is done by the function y = f(x).

where each element of the universe U has to be in exactly
one set which is part of C. For the example in Figure 1, the
six constraints are:

σ(a) + σ(c) = 1 (1)

σ(a) + σ(d) = 1 (2)

σ(a) + σ(e) = 1 (3)

σ(b) + σ(c) = 1 (4)

σ(b) + σ(d) = 1 (5)

σ(b) + σ(e) = 1 (6)

B. Search Process

Now, once the given problem is translated into a SAT
problem, the mapping function g : V → Xf has to be
realized such that the search process of the SAT solver
is guided by the information in the chromosome v ∈ V .
Here, the main task is to cover all feasible solutions of the
SAT problem and the underlying problem, respectively. This
means, that for each feasible solution x ∈ Xf there must
exist at least one chromosome v ∈ V such that x = g(v). By
covering the whole feasible search space Xf , it is implicitly
ensured that the Pareto-optimal solutions Xp ⊆ Xf can be
reached.

Many modern SAT solvers are using an activity-based
decision strategy. Hereby, each variable is tagged by an
activity value whereas in the decision strategy, the next
assignment takes place for the unassigned variable with the
highest activity value. The decision phase is set statically to
0 or 1, respectively, cf. [17]. Each time a variable is involved
into a conflict, the activity value of the variable is increased
by a so-called bumping value which is constantly scaled by a
value that is greater or equal to 1. Usually, an initial activity
for each variable is calculated at the start of the algorithm
depending on the occurrence of the variable in the CNF. It is
obvious that an initial activity assignment has a huge impact
on the search process and the solution which is found by the
SAT solver.

Adapting this process, the chromosome v is now holding
(a) the initial activity as a real number, and (b) a prioritized
phase as a binary value for each variable of the underlying
problem. Variables that are introduced during the transfor-
mation of linear constraints into clauses are not considered,
because they are used to discover conflicts within the linear

σ(a) σ(b) σ(c) σ(d) σ(e)
activity 0.5 1 0.2 0.7 0.9
phase 0 1 1 0 1

Fig. 4. Chromosome for the example from Figure 1

constraints and are automatically set by implications during
the search process. The initial activity of the variables that
are not part of the chromosome are set to 0. It is clear that all
feasible solutions can be reached without any conflict if each
variable has the same prioritized phase in the chromosome
as the corresponding binary value of the solution. Therefore,
the whole feasible decision space is covered. Hence, the
requirement that there must exist a mapping to all Pareto-
optimal solutions is fulfilled.

Exemplary, the search process for the chromosome in
Figure 4 and the Minimal Set Cover Problem from Figure 1
is as follows:

σ(b) = 1

σ(e) = 1

σ(d) = 0

↪→ σ(a) = 1 (implication constraint 2)
σ(c) = 1

This means for the used chromosome, the SAT-decoding
leads to the feasible solution C = {a, b, c, e}. Correspond-
ingly for the Minimal Exact Cover Problem from Figure 1,
the search process is:

σ(b) = 1

↪→ σ(c) = 0 (implication constraint 4)
σ(d) = 0 (implication constraint 5)
σ(e) = 0 (implication constraint 6)
↪→ σ(a) = 1 (implication constraints 1-3)

In this case, the SAT-decoding finds the feasible solution
C = {a, b}.

C. Static/Dynamic Decision Strategy

Depending on the bumping value, the decision strategy
can be either static or dynamic. A static decision strategy



is achieved by setting the bumping value to 0 that the
scaling value does not affect. That means that the priority
of the variable keeps the same throughout the whole search
process. At a first glance, a dynamic decision strategy with
a bumping value greater than 0 is less strict than a static
decision strategy regarding a mapping from the chromosome
to the search space. But this holds only for the decision
order, not for the prioritized decision phase. Therefore, with
a dynamic decision strategy, the decision order is not strictly
followed. On the other hand, the found solutions are closer to
the information in the chromosome regarding the prioritized
decision phase.

This means deciding between a static and a dynamic
decision strategy turns out to be a trade-off between the
strictness of the variable order and the closeness to the
prioritized decision phase. The requirement that all feasible
solutions can be reached still holds for a dynamic decision
strategy as any solution can be reached without a conflict.
Moreover, one can expect that a dynamic decision strategy is
improving the decoding speed on problems where obtaining
a single feasible solution is a hard problem. In these cases,
the decision order should improve throughout the search
process such that variables that are frequently involved in
conflicts are ordered to the front and a satisfiable assignment
is achieved faster.

V. ENHANCEMENTS

The requirement that the whole feasible search space has
to be covered by the mapping from the chromosome was
claimed such that all Pareto-optimal points are covered. But,
at this juncture, the mapping scheme can be modified such
that a smaller set of feasible solutions is covered whereas this
set still contains all Pareto-optimal solutions. The proposed
improvements are minimizing the chromosome space V
by removing variables and biasing variables with a fixed
decision phase in the search process.

These enhancements have to be done with respect to the
objective functions and are affecting the mapping scheme
in such way that obviously suboptimal solutions are not
reached by the decoding. Thereby, a faster convergence to
the Pareto-optimal points is reached. On the other hand, there
must be a substantial knowledge of the objective functions,
with reasoning being possible from a local point of view.
In the following, some rules for enhancements are proposed
whereas it is described exemplary how they are applied if all
objective functions are linear.

1) Removing Indifferent Variables: The first simplification
is done by removing variables from the chromosome that do
not affect the objective functions in any way. Instead, they
get an assignment for the initial activity of 0 and a random
prioritized decision phase, which in the used test cases was
set statically to 0. More formally, for a chromosome of length
n, the variable xi can be removed if

∀x1, ..., xi−1, xi+1, ..., xn ∈ {0, 1}
∧ x0 = (x1, ..., xi = 0, ..., xn) ∈ Xf

∧ x1 = (x1, ..., xi = 1, ..., xn) ∈ Xf :
f(x0) = f(x1).

We also say that the variable xi is indifferent to f . In a
problem with linear objective functions, any variable that has
the coefficient 0 in all objective functions can be removed
from the chromosome. Removing these indifferent variables
changes the mapping scheme such that it can no longer be
guaranteed that all feasible solutions in the search space are
reached. On the other hand, at least one of these solutions
can be reached, and as the others are equal regarding the
objective functions there is no need to reach them either.

2) Phase Biasing on Dominant Variables: The second
rule is biasing variables to a specific phase. That means
that the chromosome is still holding an initial activity value
for these variables, but the decision phase is statically set
to 0 or 1, respectively. This modification can be made if a
specific phase only has positive influence on the objective
functions compared to the decision to the contrary phase.
Stated formally, for a chromosome of the length n, a variable
xi is biased to the decision phase p if

∃p ∈ {0, 1} :
∀x1, ..., xi−1, xi+1, ..., xn ∈ {0, 1}
∧ x0 = (x1, ..., xi = 0, ..., xn) ∈ Xf

∧ x1 = (x1, ..., xi = 1, ..., xn) ∈ Xf :
f(xp) � f(xp).

We also say that the variable xi is dominant with the
phase p. Any solution xp ∈ Xf is still reachable if the
corresponding xp /∈ Xf is not feasible. In that case, xi

will be set to the value p during the search process by
implications or conflicts which are recognized by the SAT
solver. Focusing on linear objective functions, a variable can
be biased to 0 if the corresponding coefficients are positive
in all objective functions. On the other hand, a biasing to the
phase 1 can be done if the coefficients are negative.

3) Special Handling of One-Hot Constraints: Constraints
of the form xi + ... + xj = 1 are appearing frequently in
many linear constrained problems. These constraints have
the property that exactly one variable from xi, ..., xj has to
be 1, whereas the remaining variables have to be 0. In fact,
a one-hot encoding of the variables xi, ..., xj is preserved.
Biasing all variables from such a constraint to the same static
phase 0 or 1, respectively, will, on the one hand, simplify the
chromosome structure and, on the other hand, not restrict the
set of covered feasible solutions in the decision space. The
coverage is still reached through implications that are done to
fulfill the one-hot constraint and the fact that with an initial
activity assignment of the variables xi, ..., xj , any decision
order can be achieved.

Biasing the variables of a one-hot constraint to the phase
1 will speed up the decoding process, as many implications
are done at the same time. But the number of implications



has a huge influence on the quality of the resulting solution.
That means, less implications will lead to a decoding that is
paying more attention to the information in the chromosome.
Therefore, biasing the variables to a 0 will be slower, but,
on the other hand, they are more exact relating to the
information of the chromosome.

Additionally, variables can be removed from the search
process and their initial activity can be set to 0 under certain
circumstances. In the case that xi, ..., xj are biased to 0, a
variable xk ∈ {xi, ..., xj} can be removed corresponding to
the phase biasing rule if xk is dominant with the phase 0.
This means formally that

∃xk ∈ {xi, ..., xj} :
∀x ∈ {x1, ..., xn}\{xi, ..., xj} ∈ {0, 1}
∧ x0 = (x1, ..., xk = 0, ..., xn) ∈ Xf

∧ x1 = (x1, ..., xk = 1, ..., xn) ∈ Xf :
f(x1) � f(x0).

Accordingly, if xi, ..., xj are biased to 1, xk can be
removed if

∃xk ∈ {xi, ..., xj} :
∀x ∈ {x1, ..., xn}\{xi, ..., xj} ∈ {0, 1}
∧ x0 = (x1, ..., xk = 0, ..., xn) ∈ Xf

∧ x1 = (x1, ..., xk = 1, ..., xn) ∈ Xf :
f(x0) � f(x1).

By removing these variables, the search space can ef-
fectively be reduced such that suboptimal solutions are not
reached by the mapping scheme.

VI. EXPERIMENTAL RESULTS

The experimental results are based on an implementation
of the SAT-decoding using the state-of-the-art SAT solver
MINISAT V1.14 [17]. For the linear constraints, the transla-
tion scheme into SAT of the PB solver MINISAT+ [20] is
used. All test cases were carried out on an Intel Pentium 4
3.20 GHz machine with 1 GB RAM whereas for each hand-
made test case, 10 instances were created and a representative
average was calculated.

The used MOEA was the elitist SPEA2 [24] algorithm.
In all test cases, the population size was 100, and each
generation 25 offspring were created from 25 parents by
using crossover and mutation operators. The initial activity
for each variable that is part of the chromosome is a real
number value in the bounds R ∈ [0, 1). For the binary values,
a naive crossover strategy was used, that means, the value
of one parent was randomly selected for the offspring. The
mutation rate for the binary values was set accordingly to
the number of the real #r and binary #b values of the
chromosome to p = 1

#r+#b . This means that a binary value
was flipped with the possibility p. The crossover of the real
number values is based on the Simulated Binary Crossover
operator [25] followed by a mutation by adding a number
from the the natural distribution N (0, p). In the case that
a dynamic decision strategy was used, the initial bumping

|U| |S| |s ∈ S| Set Cover Exact Cover
50 250 [1, 8] TC1.1 TC2.1
100 500 [1, 8] TC1.2 TC2.2

TABLE I
TEST CASES FOR THE MINIMAL WEIGHTED PROBLEMS BASED ON THE

Set Cover AND Exact Cover Problem. GIVEN IS THE SIZE OF THE

UNIVERSE U , THE SIZE OF THE SET S , THE SIZE OF EACH ELEMENT IN

|S|, AND THE LABELS OF THE TEST CASES.

value of the SAT solver was set to p and the scaling factor
to 1

0.95 .
In order to evaluate the quality of the methods, we use

the ε-dominance [14] criterion. This measurement is used
to specify the convergence of multi-objective optimization
methods to the front of Pareto-optimal solutions. The ε-
dominance calculates the relation of a set of solutions A
to the set of the Pareto-optimal solutions B, which is
approximated by the best solutions found by all methods
in all runs.

Dε(A,B) = inf
ε
{b ∈ B | ∃a ∈ A : a �ε b}

Thus, the ε-dominance is the smallest value ε with that a set
of Pareto-optimal solutions has to be scaled in order to be
weakly dominated by the set A. The scaling is normalized
in such a way that the value of Dε(A,B) is between 1 and
2. Hence, a small value for ε is aspired.

A. Handmade Test Cases

The handmade test cases are based on the Minimal Set
Cover Problem and the Minimal Exact Cover Problem which
were presented in the Introduction, and are illustrated in
Figure 1. Both problems were extended to multi-objective
optimization problems by introducing a costs function wi :
S → N for each dimension i. The goal of the n-dimensional
problem is to minimize the linear objective functions

∀i ∈ {1, ..., n} : fi(C) =
∑
A∈C

wi(A).

All test cases were created randomly following Table I,
ensuring that there exists at least one feasible solution. In
all test cases, there exist three objective functions whereas
each random cost function is bounded by [1, 100].

The test case groups TC1.1 and TC1.2 are both mapped
by the SAT solver without any conflict. Through implica-
tions, conflicts are avoided. Therefore, there is no difference
between the dynamic and static decision strategy. Thus, only
a basic SAT-decoder and an enhanced SAT-decoder that is
implementing the introduced rules for variable reduction and
phase biasing are compared. The enhanced SAT-decoding is
superior in these test cases as Figure 5 shows. The decoding
time for one chromosome is nearly the same in all SAT-
decoding schemes with approximately 0.5 milliseconds for
TC1.1 and 1 millisecond for TC2.1. In fact, the usage of
a SAT solver does not produce an overhead compared to a
simple repair strategy.
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Fig. 5. Results for TC1.1, TC1.2, TC2.1, and TC2.2. The vertical bars
indicate the standard deviation.

SAT-decoding TC2.1 TC2.2
basic static 13.2 ms 290 ms

basic dynamic 3.9 ms 45 ms
enhanced(0) dynamic 22.4 ms 135 ms
enhanced(1) dynamic 2.9 ms 36 ms

TABLE II
TIME GIVEN IN MILLISECONDS PER SAT-DECODING ON THE TC2.1 AND

T2.2.

Obtaining feasible solutions for the test cases groups
TC2.1 and TC2.2 is an NP-complete problem. A common
strategy that is counting the violated constraints as an error
objective which has to be minimized, is failing since it
does not even find a single feasible solution for any test
case within the number of generations stated in Figure 5.
Moreover, a repair strategy can not be easily obtained like in
TC1.1 and TC1.2. As Figure 5 shows, the basic decoding
scheme is performing better with the dynamic decision
strategy. Moreover, the dynamic decision strategy is working
faster as Table II shows. This is more noticeable on TC2.2
where obtaining feasible solutions is harder than in TC2.1
due to the problem size.

Therefore, the enhanced SAT-decoding schemes were used
with a dynamic decision strategy. As all constraints in this
problem class are one-hot constraints, the enhanced SAT-
decoding was compared on the phase biasing on the one-
hot constraints. One can see that biasing the variables with
0 delivers much better solutions than biasing with 1. On
the other hand, biasing with 1 leads to a faster decoding
scheme as Table II shows. In cases where the evaluation of
the objective is a time-consuming procedure, one has to take
into account that the decoding time can be just a fraction of
the whole run time.

B. Industrial Test Case

The so-called adaptive light control (TC3) is an au-
tomotive design problem from the area of System-level
Synthesis [10]. Obtaining feasible solutions can be formu-
lated directly into SAT by following [26]. Moreover, it was
shown that obtaining a feasible solution is in general an
NP-complete problem. The problem consists of 234 pro-
cess, 1103 resources and 1851 mappings edges. This leads
to approximately 2375 possible solutions. The optimization
problem has two objectives, the power as well as the area-
consumption.

In TC3, the general SAT-decoding scheme using the
introduced enhancements and a negative phase biasing on
one-hot constraints has an even better convergence than the
specialized SAT-based decoding scheme based on priority
lists for System-level Synthesis problems [13]. At this junc-
ture, the decoding time for all methods was nearly the same
with 3 milliseconds. Existing methods applying local repair
strategies and penalty functions are inferior to the SAT-
decoding variants as only a fraction of the found solutions
are feasible.
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VII. CONCLUSIONS

In this paper we proposed a general methodology for
integrating modern SAT solvers into EAs for obtaining
feasible solutions on hard-constrained discrete optimization
problems. For this purpose, the problem of obtaining a
feasible solution has to be converted into the Satisfiability
Problem or a set of linear constraints with binary variables,
respectively. The task of the EA is no longer to vary
the solutions in the decision space and thereby risking to
obtain many infeasible solutions on specific hard-constrained
problems. In our approach, the EA varies the search process
of the SAT solver which is guided by the information stored
in the chromosome. The SAT solver, based on the DPLL
algorithm, is used as a decoder to map the chromosome to
a feasible solution in the decision space.

The experimental results show that the methodology is
even applicable on problems where obtaining a feasible solu-
tion is an NP-complete problem. On these hard combinatorial
problems, common strategies like local repair or penalty
functions are failing since they do not find any feasible
solution. On the other hand, the SAT-decoding was also
tested successfully on simple problems where it creates no
noticeable overhead. Therefore, the methodology is appli-
cable and of great benefit on many discrete optimization
problems were obtaining feasible solutions is a hard problem.
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