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Abstract. Integer Linear Programs are widely used in areas such as routing
problems, scheduling analysis and optimization, logic synthesis, and partitioning
problems. As many of these problems have a Boolean nature, i.e., the variables
are restricted to 0 and 1, so called Pseudo-Boolean solvers have been proposed.
They are mostly based on SAT solvers which took continuous improvements over
the past years. However, Pseudo-Boolean solvers are only able to optimize a sin-
gle linear function while fulfilling several constraints. Unfortunately many real-
world optimization problems have multiple objective functions which are often
conflicting and have to be optimized simultaneously, resulting in general in a set
of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver
will not be able to find this set of optimal solutions. As a remedy, we propose
three different algorithms for solving multi-objective Pseudo-Boolean problems.
Our experimental results will show the applicability of these algorithms on the
basis of several test cases.

1 Introduction

Solving 0-1 Integer Linear Programs (0-1 ILP) came to the field of vision over the past
years. This problem class is a special case of Integer Linear Programs (ILP) and is
also termed as Pseudo-Boolean (PB) [1]. In particular a Pseudo-Boolean problem is an
optimization problem with a linear objective function and a set of linear constraints in
which the coefficients are integers and the variables are restricted to 0 and 1. Despite the
restriction of the variables to Boolean values the expressiveness is equal to ILPs which
can be formulated as Pseudo-Boolean problems by using a binary encoding.

The Boolean nature of Pseudo-Boolean problems is connecting these strongly to the
Satisfiability problem (SAT) in conjunctive normal form [2]. The Satisfiability problem
can easily be converted to a Pseudo-Boolean problem with an empty objective function
in which for each clause a greater-zero constraint is added. The 0-1 Integer Linear
Programming is, in fact, one of KARP’S 21 NP-complete problems [3]. On the other
hand, converting efficiently PB constraints into clauses is a non-trivial problem that can
result in an exponential number of clauses.

There are several PB solvers that are borrowing techniques from state-of-the-art
SAT solvers which became essential in the field of Electronic Design Automation [4].

* Supported in part by the German Science Foundation (DFG), SFB 694
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Fig. 1. Objective space showing (a) a Pareto-optimal front of solutions and (b) a solution p and
the areas with dominating, non-dominating and incomparable solutions.

These specialized PB solvers are based on the DPLL backtracking algorithm [5] and
benefit from the improvements on the field of SAT-solving of the recent years like the
non-chronological backtracking [6], watched literals [7], or an efficient conflict learning
scheme [8]. As a matter of fact it is validated that specialized PB solvers are superior to
generic ILPs, mostly if the underlying problem has a Boolean nature [9].

PB solvers have their applications among many real-world applications like routing
problems, scheduling analysis and optimization, logic and system level synthesis, and
partitioning problems. Some of these applications like the problem of system level syn-
thesis [10] can contain more than one objective function, e.g., if the system is optimized
by its power consumption, area usage, and the monetary costs. In the case of multi-
objective optimization the goal is not to find optimal solutions corresponding to each
objective function, but to find the set of optimal solutions the so called Pareto-optimal
solutions. A solution is called Pareto-optimal if there exists no other solution that is
better or equal in all objectives and at least better in one objective, i.e., no other solution
dominates the Pareto-optimal one. As the search space in Pseudo-Boolean problems is
finite the number of Pareto-optimal solutions is also finite. Figure 1(a) illustrates the
Pareto-optimal solutions of a problem with two objective functions. A PB solver opti-
mizes at most one objective function and will not find these Pareto-optimal solutions as
preference-based approaches do not find the trade-off solutions. In the case of system
level synthesis a designer is interested in the full set of Pareto-optimal solutions con-
taining the trade-off solutions to make an appropriate choice for one implementation.

This paper is dedicated to the multi-objective Pseudo-Boolean problem in which we
propose three different algorithms for solving multi-objective Pseudo-Boolean prob-
lems and compare them on the basis of several test cases. The first algorithm is an iter-
ative search with a common PB solver by restricting the search space by upper bounds.
The second algorithm extends a DPLL backtracking algorithm such that it sifts through
the valid search space and at the same time prunes evidently not optimal solutions. The
third algorithm is using a translation into the Satisfiability problem such that a common
SAT solver finds one solution that fulfills the constraints. To ensure a convergence to
the Pareto-optimal solutions, the found and dominated solutions are excluded from the
ongoing search by appending additional clauses.



The rest of the paper is organized as follows: Section 2 gives a short introduction to
the functionality of modern PB solvers, and Section 3 will formally state the problem
this paper is dedicated to. In Section 4 the three algorithms for solving multi-objective
Pseudo-Boolean problem are presented. The comparison of the algorithms on the basis
of several experimental results is made in Section 5, before we conclude the paper in
Section 6.

2 Specialized PB Solvers

Mathematically a Pseudo-Boolean problem is defined as'
min{cTz | Az < b}

withe € Z", A € Z™", b € Z™, and x € {0, 1}". The objective function is given as
the linear function ¢’ x, whereas the constraints that are linear equalities and inequali-
ties are summarized in Az < b. The goal is to find one optimal solution x for which the
objective function is minimal.

Specialized PB solvers are based on a backtracking search algorithm similar to
modern SAT solvers. The algorithm starts by searching for a solution that fulfills all
constraints. If there exists a solution = the objective function is calculated and a ° <’
constraints is added with left hand side the objective function and right hand side the
calculated objective value. This procedure is carried out iteratively and ensures the con-
vergence to the optimal value. If the constraints are not satisfiable the last found solution
is the optimal solution.

These specialized PB solvers are divided into two categories: First are enhanced
SAT solvers that beside clauses in the conjunction normal form also support natively
PB constraints, e.g., PBS [9], PUEBLO [11], or GALENA [12]. The second category are
PB solvers which translate the PB constraints into clauses such that a common SAT
solver is used to find a solution. By introducing additional variables an exponential
number of resulting clauses is prevented. The proceeding as described in [13] is two-
staged and is implemented in the PB solver MINISAT+ [13, 14]. Each PB constraint is
first converted into a hardware circuit by using BDDs, Adders, or Sorters. The resulting
hardware circuits are then converted linearly into a set of clauses by using the TSEITIN-
transformation [15] that introduces additional variables.

3 Problem Formulation

Extending a 0-1 ILP for multiple objective functions results in a new problem class.
Mathematically we define a multi-objective Pseudo-Boolean problem as

min{CTx | Az < b}

with C € Z™*, A € Z™"™, b € Z™, and = € {0,1}". We are considering an optimiza-
tion problem with z objective functions which, without loss of generality, all have to be

! Maximization problems can be converted to a minimization by negating the objective function.



minimized. The objective vectors are calculated by f(z) = CTx with C' = (cy, ..., c.)
where a single objective function is f;(z) = ¢!z withi € {1,..., z}.

The optimization for a multi-objective problem is not a search for a single optimal
objective value but instead for the set of Pareto-optimal solutions X;, € X or the
Pareto-optimal front Y, = {f(z)|z € X}, respectively. The valid search space X is
containing all solutions that are fulfilling the constraints Ax < b, we are also speaking
of feasible solutions. A solution z,, € X, is said to be Pareto-optimal if its objective
vector f(x,) is not dominated by any other objective vector f(x) with z € Xy, cf.
Definition 1.

Relating to Definition 1 the terms for Pareto dominance are applied to the objective
vector or the solution vectors, respectively. The solution vectors are termed by Defini-
tion 1 with respect to their calculated objective vectors, e.g., x dominates Z if and only

if f(z) = f(Z).
Definition 1 (Pareto dominance (cf. [16])). For any two objective vectors a and b,

a >>b (a strictly dominates b
a>b (a dominates b
a > b (aweakly dominates b
a || b (a is incomparable to b

ifVi:a; < b,
U’Vi:aigbi/\ﬂj:aj<bj
lfVilaiSbi
ifEli,j:a,;>b,;/\aj<bj.
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In general, a common iteratively working PB solver as described in Section 2 will
not be able to find the set of Pareto-optimal solutions of the multi-objective Pseudo-
Boolean problem. By adding a PB constraint each time a solution is found these PB
solvers are restricting the search space such that weakly dominated solutions are not
found in the ongoing search. Using this approach for a multi-objective problem it would
be necessary to add a PB constraint for each objective. These constraints would have
to be joined by a logical OR as an improvement in only one dimension is mandatory to
find the next not dominated solution. It is obvious that a common PB solver can not be
simply adapted to solve multi-objective Pseudo-Boolean problems as all constraints are
joined by a logical AND unless additional variables are added for each iteration.

4 Algorithms

4.1 Algorithm 1

The first algorithm, given in Algorithm 1, enables the usage of a common PB solver to
find all Pareto-optimal solutions iteratively. In order to find these solutions the upper
bounds for the objective functions are set adequately as constraints for the PB solver.
The algorithm fills the archive A with the non-dominated solutions. These are so-
lutions that are not dominated by any other solution that was found during the on-
going search. The property of non-dominance proves that there is no solution inside
the archive that is better or equal in all objectives compared to another solution in the
archive, cf. Definition 1 on weak domination. The set D contains the domains where a
domain is a vector of the upper bounds for the objective functions. The algorithm starts
with an empty archive (line 1) and the set of domains containing an initial vector of the



Algorithm 1: Algorithm for multi-objective optimization of Pseudo-Boolean
problems based on the iterative usage of a common PB solver.
1 A={}

2 D ={(maz1,...,maz;)}

3 while [D| > 0do

4 choose h € D

5 min{0 | Az < bACTx < h}

6 if UNSATISFIABLE then

7 | D=D\h

8 else

9 y=CTx
10 A=zU{ala€e ANy > CTa}
11 foreachec D A y > edo
12 D = D\e
13 foric {1,...,z} do
14 ‘ D=DU(e1,...,yi — 1,...,ez)
15 end
16 end
17 foreache,.é € D N eZé N exédo
18 | D=D\e
19 end
20 end
21 end

length z, where the initial values are set to oo (line2) corresponding the whole search
space.

While the set of domains is not empty (line 3) one domain is chosen randomly (line
4) and a solution that both fulfills the constraints and is located inside the selected do-
main is searched with a common PB solver (line 5). At the same time the objective
function is empty. If the PB solver does not find a solution, the current domain is re-
moved from the set of domains since there is no feasible solution inside (line 6,7). In
case that a solution is found in the domain, the objective vector is calculated (line 9)
and the archive is updated such that it just contains non-dominated solutions (line 10).

Each domain that contains the found solution needs to be split (line 11). This is
done by removing that domain and adding new domains whereas an improvement in at
least one dimension has to be achieved (line 12-15). Concluding, the set D is cleaned
up in which sub-domains of other domains are removed (line 17-19).

The advantage of this methodology is the independence of the used PB solver. Any
common PB solver can be extended to a multi-objective PB solver by this algorithm.
Moreover, this straightforward method is not restricted to Pseudo-Boolean problems, by
using an ILP solver it is possible to solve also multi-objective Integer Linear Programs.



4.2 Algorithm 2

The second method is an extension of the DPLL backtracking algorithm. More pre-
cisely, it is a modification of the DPLL algorithm as it is used in specialized PB solvers.
Thereby, it is not important which category of specialized PB solver is used, the ones
that natively support PB constraint or the other category that translates the PB con-
straints completely into clauses. The DPLL algorithm is used to stay in the valid search
space Xy and obtain only feasible solutions. For the first category of PB solvers, the
PB constraints are given directly, while for the second category the PB constraints are
converted into clauses. The complete algorithm is given in Algorithm 2.

Algorithm 2: Algorithm for multi-objective optimization of Pseudo-Boolean
problems based on a DPLL backtracking algorithm.

1 A={}

2 while true do

3 branch()

4 status = deduce()

5 if status ==CONFLICT then

6 blevel = analyze_conflict()

7 if blevel < O then

8 ‘ break

9 else
10 | backtrack(blevel)
11 end
12 else if status ==SATISFIABLE A Ya € A : (a = CTz) then
13 y=CTx
14 A=zU{alac ANy > CTa}
15 end
16 iflacA:CTa> (fx1,...,cTx.)7T then
17 blevel = level of the most recent decision tried not both ways’
18 if blevel < O then
19 | break
20 else
21 ‘ backtrack(blevel)
22 end
23 end
24 end

The archive A is holding the set of non-dominated solutions (line 1). The archive is
filled and updated throughout the backtracking process until the algorithm aborts and
the archive contains the optimal non-dominated solutions, which are the Pareto-optimal
solutions.

In a nutshell, line 3 to 11 is identical to a DPLL backtracking algorithm, it ensures
that the search process stays in the valid search space X;: The operation branch()
chooses an unassigned variable and assigns it a value. The rules which decide which



variable is chosen and value is assigned is called decision strategy. The operation
deduce() recognizes if any variable assignment is required to keep the constraints satis-
fiable or a conflict occurred. One has to keep in mind that every single constraint has to
be satisfied in order to find a feasible solution. Therefore, one decision can cause several
necessary assignments, the so called implications. If an implication of the same variable
occurs to 0 and 1, a conflict is recognized and analyzed in analyze_con flict() such that
a backtracking is triggered. If the backtrack level is less than 0, the first decision was
already tested in both ways 0 and 1 and the algorithm is aborted.

In case that all variables have an assignment (decide() returns SATISFIABLE) and
the current solution is not weakly dominated by any solution inside the archive (line
12), it is added to this archive. At the same time all solutions inside the archive which
are weakly dominated by the new solution are removed (line 14).

A backtracking is also triggered if a partial solution is recognized to be weakly
dominated by some solutions in the archive independently of its completion. This op-
eration prunes the search space and prevents that the algorithm equals an enumeration
of the feasible solutions in X . Hence, a lower bound for each objective function has to
be calculated and compared for weak domination with the archive (line 16). The lower
bounds for the objective functions for a partial solution are calculated separately in each
dimension, i.e., a lower bound vector is calculated by (clTxl, ey csz Z)T. Therefore, the
vector x; contains the values of the assigned variables and for unassigned variables a
0 (1) is used if the corresponding coefficient of the vector c; is positive (negative). The
backtracking will take place to the level of the most recent decision that was not tried in
both ways 0 and 1 unless this level is lower than 0 what causes an abort of the algorithm
(line 17-22).

The used decision strategy is crucial for the success of this algorithm. It is obvi-
ous that with good solutions early in the search process and an accurate lower bound
calculation large parts of the search space can be pruned. A good approach is a deci-
sion strategy that is guided by the coefficients of the objective functions: Focusing on
a single-objective problem, variables with a big corresponding coefficient should be fa-
vored by the decision strategy to increase the accuracy of the calculated lower bound.
This takes place as only variables with small coefficients will be unassigned later in the
search process. Moreover, it is desirable to obtain good solutions early in the search pro-
cess and, as a minimization problem is given, the favored decision phase for a variable
with a positive (negative) coefficient should be 0 (1). For multi-objective problems, a
more sophisticated decision strategy is needed because variables have different effects
in different objective functions. We will propose a static decision strategy based on
distribution functions. For each dimension a distribution function F; : N — [0,1] is
approximated by the absolute values of the vector containing the coefficients c;, thus
also a normalization of the coefficients is achieved. We will use a uniform distribu-
tion between 0 and the highest value of each dimensions coefficient. For instance, it is
also possible to sample the values to a normal or any other distribution. With the given
distributions a specific value for each variable can be calculated as follows:

Vi = 1, IR 2 ZF1(|C”DSZQTL(CU)

Jj=1



According to the rules of the single objective problem the decision strategy uses these
values as follows: Variables with a high absolute value calculated by this formula are
prioritized in the decision strategy. For a positive (negative) value, the decision takes
place to 0 (1). This decision strategy will only work properly if the coefficients are
distributed with an adequate variance.

In future work we will extend the algorithm by a dynamic variable order, random
restarts, and more precise, but on the other hand slower, lower bound estimation strate-
gies [17].

4.3 Algorithm 3

The third algorithm is an extension of a common iteratively working PB solver. As
mentioned before the PB constraints in a PB solver are usually joined by a logical AND.
Instead, the constrained objective function in multi-objective problems have to be joined
by logical ORs. To overcome this restriction we will modify the category of specialized
PB solvers which translate the PB constraints into clauses and use a common SAT solver
to converge to the optimal value. This category of PB solvers is working two-staged as
described in [13] and implemented in the PB solver MINISAT+. In the first step each PB
constraint is translated into a hardware circuit. In the second step the hardware circuits
are translated into a set of clauses. It it obvious that the clauses that are added to a
common SAT solver can not be joined by a logical OR as a SAT solver is expecting a
conjunctive normal form. As the constrained objective functions need to be joined by a
logical OR each time a solution is found, we connect the hardware circuits by ORs and
then translate the full circuit to clauses. The complete algorithm is given in Algorithm
3.

Algorithm 3: Algorithm for multi-objective optimization of Pseudo-Boolean
problems based on the translation into the Satisfiability problem.
A={}
SATSolver.addClauses(toClauses(toCircuit( Az < b')))
while SATSolver.solve()==SATISFIABLE do
x =SATSolver.x()
y=CTz
A=zU{ala€c ANy > CTa}
h = false
foreach i € {1,...,z} do
‘ h = h V toCircuit('¢f « < y; ')
end
SATSolver.addClauses(toClauses(h));

DTN - 7 A N S

-
-

end

-
[

Like in the other algorithms the archive A is holding the set of non-dominated so-
lutions (line 1). It is updated throughout the search process and contains the Pareto-
optimal solutions when the algorithm terminates.



Primarily, the PB constraints are translated into clauses (line 2). The translation is
two-staged: Each PB constraint is translated into a hardware circuit and afterwards the
hardware circuits are translated into clauses. The translation of a PB constraint into a
hardware circuit is done by using BDDs, Adders, or Sorters, while the translation of
one hardware circuit into a set of clauses is done by using the TSEITIN-transformation,
which prevents an exponential number of clauses by introducing additional variables.
For a further explanation we strongly recommend [13].

The SAT solver is used iteratively just like in specialized PB solvers to search for
non-dominated solutions (line 3). If a non-dominated solution is found, it is added to the
archive (line 4-6). Additionally, before the next start of the SAT solver all by this current
solution weak dominated solutions have to be excluded from the further search process
to guarantee a convergence to the Pareto-optimal solutions. Following Definition 1 of
weak dominance this exclusion is done by the formula

(fil@) Zy A A fa() 2 y2)

for the current found solution y. By using DEMORGAN’S law this can also be inter-
preted as

(fl(x) <y V..V fz(x) < yz)’

which are PB constraints connected by logical ORs. Therefore, the two-staged transla-
tion is split as following: The PB constraints are translated into hardware circuits and
these circuits are connected by an OR-gate to one hardware circuit (line 7-10). This
hardware circuit is then translated into a set of clauses which are added to the SAT
solver (line 11).

This approach is showing the high versatility of the category of PB solvers which are
translating the PB constraints into SAT. The success of this algorithm depends strongly
on the translation of the PB constraints and objective functions into clauses, and the
performance of the used SAT solver.

5 Experimental Results

For the experimental results the three algorithms were implemented on the basis of
the PB solver MINISAT+ [13] or SAT solver MINISAT [14], respectively, which par-
ticipated very successful in the past SAT Competition [18] and PB Evaluation [19].
Through using the same PB solver as the basis for all three algorithms, we have the
chance for a fair comparison on the basis of runtime. To compare the algorithms, we
will use several modifications of the famous queens puzzle and synthetic industrial
multi-objective problems from the field of system level synthesis [10]. All test cases
were carried out on an Intel Pentium 4 3.20 GHz machine with 1 GB RAM. For each
handmade test case 10 instances were created and a representative average was calcu-
lated. The timeout bound was set to 1800 seconds.

5.1 Queens Puzzle

Problem Statement The common queens puzzle is about putting eight queens on a
chessboard such that no pair of queens attacks one another. Though a single solution



can be obtained by a construction scheme, finding one solution that fulfills the condi-
tions is a non-trivial problem. The problem can easily be converted into a Satisfiability
or Pseudo-Boolean problem, respectively, by introducing one variable for each field
defining if a queen is located on it or not, and adding the conditions such that in each
row and column of the chessboard has to be exactly one queen and in each diagonal at
most one queen. Moreover, the queens puzzle can be extended to an n X n chessboard
in which n queens have to be put on this chessboard. The advantage of these handmade
problems is that the scaling of the problem size is done by a single variable n instead
of many variables, as is the case, e.g., in graph problems where nodes and edges are
varied.

To achieve representative test cases we will use the n queens puzzle with appropriate
objective functions. The objective functions should have the property to be applicable
independently on any number of dimensions. For instance the minimal vertex cover
problem can not be scaled to a multi-objective problem. Therefore, we will focus on
two optimization classes: the weighted costs optimization and the minimal token opti-
mization. These optimization problems can be extended to any number of dimensions.

Weighted Costs Optimization Each field of the chessboard gets a cost that is an inte-
ger value. The overall costs are a sum of the costs of the fields where a queen is located
on, which equals a linear function that has to be minimized. In our examples we will
create the single costs randomly as an integer from a uniform distribution between a
lower and an upper bound given as integers. The weighted costs optimization problem
is denoted as w(l, h) with the lower bound ! and the upper bound /. We will analyze
two problem classes namely w(1, 100) which we will refer to as strongly weighted and
w(0, 1) as weakly weighted.

Minimal Token Optimization For each token one variable is introduced. One token
exists several times and is distributed randomly on the chessboard. If one field of the
chessboard is taken by a queen, the tokens of the field are used which is realized by
an implication?. The goal is the minimization of the used tokens which is the sum of
the variables of the tokens or a linear function with the coefficients 1, respectively. If
there are n tokens and one token exists m times and is randomly distributed on the
chessboard, we will denote this optimization problem as ¢(n, m). Instead of some min-
imization problems where the coefficients are uniquely 1 like the minimal vertex cover,
minimal dominating set, or set covering, this problem can be extended to several di-
mensions by using disjunctive sets of tokens for each dimension.

Analysis of Experimental Results Several combinations of test cases were carried out
and summarized in Table 1. We varied the size, the number of objective functions and
the sort of objective function. As one can expect, the problem size and number of objec-
tives affect the runtime of all algorithms. In the strongly weighted problems Algorithm
2 is superior to the other algorithms because an appropriate decision strategy could be

% The field 2 labeled by a token ¢ leads to an implication (xz — t), a clause (Z V t), or a PB
constraint x — ¢ < 0, respectively.
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Problem Size Objective functions Runtime [s]
Algorithm 1~ Algorithm 2 Algorithm 3

Queens 10 x 10 w(1,100) 1.95 049 0.28 001 2.10 o028
Queens 12 x 12 w(1,100) 37.9 asy  5.00 con  51.9 @55
Queens 14 x 14 w(1,100) 1800 @ 210 a3 1229 @
Queens 10 x 10 w(1,100),w(1,100) 11.3 @28y  0.38 003  8.36 (114
Queens 12 x 12 w(1,100),w(1,100) 699 a7y 16.7 266 227 259
Queens 14 x 14 w(1,100),w(1,100) 1800 0y 1443 eany 1800 o

Queens 10 x 10 w(1,100),w(1,100),w(1,100) |92.3 2y  0.39 002 22.7 @18
Queens 12 x 12 w(1,100),w(1,100),w(1,100) | 1800 @  17.9 @7 468 was)
Queens 14 x 14 w(1,100),w(1,100),w(1,100) | 1800 1800 () 1800 ()

Queens 12 x 12 w(0,1) 0.39 0on  0.08 0oy  0.09 o1
Queens 14 x 14 w(0,1) 0.68 013  0.12 0oy  0.13 o)
Queens 16 x 16 w(0,1) 1.05 0200 0.17 0oy  0.19 001
Queens 12 x 12 w(0,1),w(0,1) 1.97 0sy  0.79 wsoy  0.72 037
Queens 14 x 14 w(0,1),w(0,1) 580G 848 a0  3.47 ¢s)
Queens 16 x 16 w(0,1),w(0,1) 24.6 @83 625 12y 35.1 ®306
Queens 12 x 12 w(0,1),w(0,1),w(0,1) 14.5 a1y 6.20 a0y 7.18 as)
Queens 14 x 14 w(0,1),w(0,1),w(0,1) 131 a3 258 (199) 169 59
Queens 16 x 16 w(0,1),w(0,1),w(0,1) 1197 @9 18000 1224 16
Queens 8 x 8 t(24,8) 0.23 01y 023 08y 0.05 o)
Queens 10 x 10 t(30,10) 0.58 013 11.5 a0 0.24 .09
Queens 12 x 12 t(36,12) 6.10 259 1800 0  4.20 a.s
Queens 8 x 8 t(24,8),t(24,8) 0.87 023 88.0 208  0.08 w.on
Queens 10 x 10 t(30,10),t(30,10) 338 0s0 18000  0.44 .03
Queens 12 x 12 t(36,12),t(36,12) 81.7asn 18000  16.1 (.66
Queens 8 x 8 t(24,8),t(24,8),t(24,8) 1.98 wey 1800 )  0.14 ©.on

Queens 10 x 10 t(30,10),t(30,10),t(30,10) 158 ¢3s 18000  0.77 0o
Queens 12 x 12 t(36,12),t(36,12),t(36,12) 570 49 1800 o)  22.3 246

Queens 10 x 10 w(1,100),w(0,1) 3.96 a5y 0.35 005  3.52 066
Queens 12 x 12 w(1,100),w(0,1) 126 ws7y 139 ese9  97.5 @03
Queens 10 x 10 w(1,100),t(30,10) 6.45 196y 1800 )  3.52 (010
Queens 12 x 12 w(1,100),t(30,10) 284 704y 1800 0 119 aop
Queens 10 x 10 w(0,1),t(30,10) 1.72 066 1800 0y  0.33 003
Queens 12 x 12 w(0,1),t(30,10) 26.2 s 18000  10.2 (.69

Table 1. Results on several queen puzzle problems. Given is the size of the chessboard and the
used objective functions. The runtime of the algorithms were calculated as an average each with
10 instances in which the variance is given in the brackets.
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Problem Processes Resources | X | Runtime [s]

Algorithm 1 Algorithm 2 Algorithm 3
System level Synthesis 56 25 small 226 a2 0.20 008y  4.11 G2
System level Synthesis 56 25 medium | 1121 @2 0.57 031 29.2 a7s)
System level Synthesis 56 25 big 1800 0  0.94 w1y 55.6 @2
System level Synthesis 101 50 small 1800 0 845 @3 1226 2
System level Synthesis 101 50 medium | 1800 o 1800 o 1800 o
System level Synthesis 101 50 big 1800 1800 1800
H.264 Video Decoder 68 15 - 5.55 0.05 1.65

Table 2. Results on several system level synthesis problems. Given is the number of processes and
resources and the number of feasible solutions or size of the valid search space Xy, respectively.
The runtime of the algorithms were calculated as an average each with 10 instances in which the
variance is given in the brackets.

calculated. In the weakly weighted problems the decision strategy for Algorithm 2 can
not be calculated clearly, which leads to a decline of the runtime. In fact, no algorithm
is clearly the best in that problem class. In the minimal token problems Algorithm 3
is superior to the other algorithms. Algorithm 2 is not able to calculate a proper deci-
sion strategy as all coefficients are 1 and the algorithm decays to a simple enumeration.
Therefore, in all combined problems where at least one objective function is a minimal
token optimization Algorithm 2 fails and the best results are provided by Algorithm 3.

5.2 System Level Synthesis

Problem Statement The task of system level synthesis is to bind a set of communi-
cating processes on a set of interconnected resources and generate feasible implementa-
tions w.r.t. to a correct communication on the given architecture. Corresponding to the
objectives, the goal of design space exploration is to find all optimal implementations
which satisfy the specification. For a further explanation we refer to [10]. Searching a
single feasible implementation can be formulated as a Satisfiability problem [20]. If the
objective functions are linear or linearizable, the resulting problem is a multi-objective
Pseudo-Boolean problem.

The first test case group consists of graphs with 56 processes and 25 resource nodes.
For each process the number of mapping edges varies from 3 to 6. This leads to approx-
imately 2''7 possible solutions. For the second test case group the number of processes
was increased to 101 and resources to 50. The mapping edges per process vary from 4
to 8. That leads to about 22°¢ possible solutions. Additionally, the number of feasible
solutions was varied from small over medium to big. This is done by specifying the
possibility of a connection between two resources. The optimized objectives were the
power consumption and the area usage.

Analysis of Experimental Results The results of the test cases are given in Table 2.
As these problems are handling with weighted costs, Algorithm 2 is superior to the
other algorithms. The interesting fact is that for a growing number of feasible imple-
mentations the complexity is also growing. As typical problems known from real-world
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Fig. 2. Pareto-optimal front for the Pareto-optimal solutions and the best non-dominated solutions
from a MOEA of the H.264 Video Decoder example. The values area and power are given in
abstract units.

applications show hard constrained search spaces containing only a small fraction of
feasible solutions [21], this turns out to be advantageous.

H.264 Video Decoder Concluding we will use an industrial system level synthesis ex-
ample namely a H.264 Video Decoder. The specification graph contains 68 processes,
15 resources and 276 mapping edges what leads to approximately 2'36 possible solu-
tions. The proposed algorithms are solving this problem easily, the runtimes are stated
in Table 2. Moreover, a multi-objective Evolutionary Algorithm (MOEA) that is usually
used to solve these problems will not find the Pareto-optimal solutions even after one
hour whereas Algorithm 2 needs just a fraction of one second. The Pareto-optimal so-
lutions and the best solutions of the MOEA after one hour of exploration are illustrated
in Figure 2.

6 Conclusions

In this paper we have proposed three algorithms for solving multi-objective Pseudo-
Boolean problems. Comparing the algorithms on several examples shows that none of
these algorithms is generally superior to the others. Instead of that, the success of the
methodologies depends on the given problem and the implementation of the algorithm.
The algorithms are, in fact, modifications and extensions of common SAT- and PB
solvers, respectively. Therefore, improvements on the field of PB-solving and SAT-
solving will consequently also lead to a speed up of the proposed algorithms.

Moreover, we have shown that a typical industrial system level synthesis problem,
can be solved in a reasonable amount of time. The example of an H.264 Video Decoder
was solved in less than a second what, in this particular case, makes the multi-objective
Pseudo-Boolean solvers outstanding in comparison to common multi-objective heuris-
tics like Evolutionary Algorithms.
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