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Abstract

The specification of an embedded system at system level
together with co–joint hardware/software synthesis is a goal
of many rapid prototyping projects. SDL has been proposed
as a formal and abstract specification language well suited
for this purpose. In the automated generation of hardware
however, SDL’s asynchronous communication model (di-
rectly implemented in the so called server model) can lead
to a large overhead in area and response time. The activ-
ity thread implementation model on the other hand is more
similar to hardware description language concepts, respec-
tively an execution in hardware, due to its synchronous com-
munication and execution scheme. This paper compares
VHDL code generation from SDL using these two mod-
els regarding implementation architectures, resource usage,
throughput and response time. The integration in an exist-
ing rapid prototyping design process is presented as well as
results gained form several application examples.

1 Introduction

Embedded hard real–time systems show growing func-
tional complexity as well as an increasing demand for
short response times and high computing performance.
Rapid prototyping is a means to reduce development times
and costs of such systems by confirming thefunctional
and timely requirements of the application at a very early
stage of development. The rapid prototyping environment
REAR1 is focussed on event–driven reactive systems with
hard real–time requirements. It combines an automated de-
sign flow starting from a formal specification with the real–
time analysis necessary to prove that the timing require-
ments have been modeled correctly, and that the prototype�The work presented in this paper is supported by theDeutsche
Forschungsgemeinschaftas part of a research programme on “Rapid Proto-
typing for Embedded Hard Real–Time Systems” under Grant Fa 109/11-2.

1Rapid Prototyping Environment for Advanced Real–Time Systems

will be able to meet all deadlines ([11]). The REAR rapid
prototyping target architecture ([4]) is a tightly coupled het-
erogeneous multiprocessor system consisting of micropro-
cessor based processing units for different classes of real–
time tasks, and a FPGA based configurable I/O processor
(CIOP) acting as a flexible link to the embedding process
and as execution unit for tasks with deadlines too short to
be met in software.

Starting point of the rapid prototyping process is a spec-
ification in the “Specification and Description Language”
SDL. SDL, originally from the telecommunications do-
main, is standardized by the ITU [10], and is increasingly
being used in embedded systems design as a formal, ab-
stract description technique at system level. Structure in
SDL is expressed with hierarchical blocks and processes,
and signal bundling with channels. The lowest level of
refinement is a network of parallel SDL processes, each
with its private infinite message queue, communicating via
asynchronous messages (SDL signals). An extended finite
state machine (EFSM), which can contain local variables,
specifies the behaviour of each SDL process. Signals are
processed in order and trigger a state transition, which in
turn can contain arbitrary code inside a task block, out-
put–statements and flow control statements like decisions.
With the save–statement, the processing of a signal can be
postponed, while a signal marked with priority input is pro-
cessed at once, even if it is not the first signal in the queue.
Timers send signals to the requesting process, using the pro-
cess’ message queue.

The idea of rapid prototyping implies an as far as pos-
sible automated design process transforming the specifica-
tion, in our case the SDL model, into software and con-
figurable hardware on the prototyping target architecture.
Two implementation models, which preserve the seman-
tics of SDL are the server model and the activity thread
model. In theserver model, each SDL process is imple-
mented as a single RTOS thread in SW, respectively as



a separate VHDL entity in the HW implementation, each
with its own message queue. In contrast to this, theactivity
thread modelmaps each activity thread, i.e. each chain of
activations in the SDL model caused by a stimulating event
to one RTOS thread respectively HW entity.

Code size and area usage, while being of critical im-
portance in production code for embedded systems, can-
not be completely neglected in rapid prototyping as well.
Throughput and response time are indispensable attributes
for the functionality of a real–time system’s prototype. In
hard real–time systems, however, analyzability and guaran-
teeable worst case performance takes precedence over aver-
age or best case throughput and response time.

This paper evaluates code generation using the two im-
plementation models mentioned above, concentrating on
the generation of configurable hardware (VDHL) from SDL
specifications. The next section surveys related work, after
which code generation according to the server model and
the activity thread model is examined in detail in Section 3
and 4. Section 5 explains the integration of these code gen-
eration strategies in our automated rapid prototyping design
process, after which the experiences gained in application
examples are presented in Section 6. In the last Section we
summarize our results and indicate future work.

2 Related Work

The terms server model and activity thread model stem
from the telecommunications area, where they are used to
describe different strategies to implement multi layer com-
munication systems ([12]). In the server model, each pro-
tocol entity from one layer is implemented as a single soft-
ware process, communicating with other layer entities via
messages. In the activity thread model, one software task
processes an incoming or outgoing request trough several
layers. [8] proposes the employment of efficient methods
known from the manual implementation of communication
systems in an automated software design process based on
SDL. In their realization of the activity thread model, each
SDL process is implemented as a reentrant procedure. Two
execution models, the basic and extended activity thread
model, are presented, which ensure a semantically correct
order of calls to these procedures in the execution of the
activity threads.

Commercial code generators for SDL, like SDT’s CAd-
vanced ([13]), only support the generation of software after
the server implementation model. The automated imple-
mentation of hardware from SDL is still mainly the object
of ongoing research.

Several approaches generate VHDL using the server
model. The main focus here is the mapping of the abstract
communication between the processes to existing interfaces
and protocols. The SDL–to–VHDL translator presented in
[6] uses a textual implementation description to select func-
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Figure 1. Server Model Architecture

tions from a library of channel and protocol descriptions. In
[2], the VHDL generation is embedded in the codesign en-
vironment COSMOS. An SDL description is translated to
an intermediate format. During an interactive refinement
process, the abstract channels of this model are replaced
by protocols, communication units and interfaces from a
library. A commercial spin–off of the TIMA laboratory2

offers a tool for architectural exploration, supporting SDL
as input and VHDL as target language.

[9] is based on a concept aiming to support SDL’s dy-
namic process creation feature also in hardware. Here, one
entity is created for each SDL process class, storing and
loading the context of each process instance after a simple
schedule. Due to the dynamic instantiation, a signal’s re-
ceiver cannot be determined statically. This necessitates a
central supervisor unit in the communication subsystem.

3 Server Model Implementation

The server model maps each SDL process to one hard-
ware entity with its own message queue. Figure 1 shows a
typical hardware architecture implementing one SDL pro-
cess according to the server model. One input interface
for each communication channel receives SDL messages,
implementing the channel’s protocol. The message is put
at the end of the queue, which can be realized as a simple
FIFO only if save and priority input are excluded from the
supported SDL language subset. The extended finite state
machine is implemented in an infinite loop, where in turn a
message is taken from the queue, the appropriate transition
executed, and, if applicable, a new SDL message is sent
via an output channel. To realize the asynchronous com-
munication of SDL (non-blocking send, receive via mes-
sage queue), the input interface, the message queue and the
EFSM must run parallel.

The server model is a direct, semantically correct imple-
mentation of SDL. In contrast to software, the implemen-
tation in hardware allows a parallel execution of the SDL
processes. Code generation is fairly straightforward, due to
the semantic similarities between SDL and the server model
(asynchronous computation and communication). While
the EFSM part has to be generated for each new SDL model,
the message queue, timers, and the entire inter-process com-

2www.arexsys.com
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Figure 2. a) SDL specification, b) server
model implementation

munication can be implemented as a library of reusable
components, the “HW run–time system” ([1], [3]).

Figure 2 shows an exemplary SDL specification and the
corresponding server model implementation. The specifica-
tion consists of a network of five SDL processes, commu-
nicating via messagesmij . A transition triggered by mes-
sagemij consists of a taskcij and the sending of a new
messagemi(j+1). The response to the external eventsm11
andm21, i.e. the output of messagesm14 andm24 has to
occur within the given deadlinesd1 andd2.
Area Efficiency For a single SDL process, a large contri-
bution to the occupied area comes from the message queue.
While the hardware effort for a simple FIFO is high enough
(see Figure 5 in Section 6), it becomes prohibitive for a
queue correctly implementing save and priority input, i.e.
permitting message insertion and removal at random posi-
tions. The queue size has to be dimensioned very carefully.

Next to the message queues a considerable hardware ef-
fort is incurred by the sending and receiving of SDL mes-
sages. Each input channel implicates a protocol implemen-
tation and data conversion functions, plus handshake logic
and a multiplexed input to the queue. Each SDL output–
statement also implies an output interface, implementing
data conversion and the channel protocol, plus multiplexer
logic if several output–statements write on one channel.

Typically, a SDL specification consists not of one, but
of several processes, interconnected by signals. For such a
network of processes, the hardware effort increases not only
linearly with the EFSMs and message queues, but dispro-
portionate to the number of processes with each signal in-
terconnection between two processes. Each additional con-
nection generates a larger input interface, and, depending
on the number of output–statements, a very high overhead
for the output interfaces.

Response Time and Throughput The response timetr
to a certain event consists of the computation timetc needed
to process the event and a possible waiting timetw that
elapses while a message stands in the queue. Whiletc is
directly determined by the hardware architecture, an upper
bound oftw has to be computed by a real–time analysis.tc of a single SDL process consists of the time needed to
receive and queue the message, the time to remove the mes-
sage from the queue and process it, plus the time to output
a new message. The parallel and pipelined execution of a
network of SDL processes allows, depending on the appli-
cation, a very good average and worst case throughput. The
computation time necessary to respond to an external event,
however, can be very high, since thetcs of all involved SDL
processes have to be summed. Typical values fortc realized
in application examples can be found in Section 6.

4 Activity Thread Model Implementation

In the activity thread implementation model the chain
of activations triggered by a stimulating event, i.e. an event
from the environment or a timer output is analyzed. All ac-
tions and state changes contained in the transitions along
this “activity thread” are executed sequentially, thereby
avoiding the message send and receive overhead between
the processes. If the minimal time distance between two
events triggering an activity thread is smaller than the worst
case execution time of the thread, a message queue at the
input of the activity thread has to ensure that no events are
lost.

To ensure a correct implementation of the SDL seman-
tics, the following issues have to be treated with special at-
tention:

Atomicity of the state transitions: The state transitions
of one process must exclude each other mutually. If
transitions of one process are part of different activity
threads, it must be ensured that they are not executed
at the same time. In an parallel execution model they
must be protected by a lock mechanism.

Branches in an activity thread: An activity thread
branches when several output–statements occur in one
transition, or when an output–statement stands before
a task–statement. A semantically correct ordering of
the execution can be fixed at compile time.

Continuous signals: Transitions guarded by continuous
signals have no stimulating event. For them, an own
activity thread has to be created.

Architecture Alternatives In hardware, each activity
thread could be executed in parallel. Depending on the
type of application and on the temporal specification of em-
bedding and embedded system, however, other implemen-
tation alternatives can be more efficient in area and response
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time. Figure 3 shows three architecture alternatives, using
the SDL example from Figure 2.

The least degree of parallelism is achieved in theserial-
ized activity thread – single queuearchitecture. Here, all ac-
tivity threads are implemented in one VHDL process. Only
one event at a time is taken from the input message queue,
and the corresponding activity thread is processed. To en-
sure a response in real–time, the processing timetc of an
event plus thetc’s of all events that can block the queue
before it, must be lower than the event’s deadline.

In order to be able to guarantee short deadlines, theseri-
alized activity thread – priority queuearchitecture has more
than one input message queue. At compile time, external
events and timer outputs are assigned to different classes ac-
cording to their deadlines respectively priorities. For each
“priority class”, a separate input message queue is imple-
mented. Again, one event at a time is taken from the queues,
serving queues with high priorities first, and processed in its
activity thread.

The parallel activity thread architecture implements
each activity thread in its own parallel VHDL process with
its own input message queue. Like pointed out above, this
requires a shared access to the local variables and state data
protected by a lock mechanism, if a SDL process has been
split into more than one activity thread.

The three implementation architectures can be easily
combined. For each activity thread a decision can be made
to either join it with other threads, or to implement it sep-
arately. A combination of server and activity thread model
is also easily possible, since the interface of each activity
thread is the asynchronous sending and receiving of mes-
sages, identical to each process in the server model.

Area Efficiency For input interface, message queue,
timers and output interface, the same “HW runtime–
system”–components as in the server model can be used,
and the same area usage can be assumed. The number of
these components needed in an activity thread implemen-
tation is equal only in a model consisting of a single SDL
process. In all other cases it is lower, since no messages are
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sent inside an activity thread. An increased hardware effort
can occur when one SDL signal is output in different tran-
sitions, i.e. the transition triggered by this signal appears
in several activity threads. Theserialized activity thread –
single queuearchitecture requires one message queue, and
input and output interfaces only for messages at the border
of the SDL model. Theserialized activity thread – priority
queuearchitecture requires more input queues, and a more
sophisticated queue access. Due to the sequential specifi-
cation in one VHDL process, the first two design alterna-
tives allow resource sharing between SDL processes. In the
parallel activity threadarchitecture, each additional activ-
ity thread requires a message queue. Further overhead is
caused with each divided SDL process by the shared pro-
cess data access protected by the lock mechanism.

Response Time and Throughput The calculation time
of an event in theserialized activity thread – single queue
architecture can be very low due to the small overhead.
This is especially true, when the computational complex-
ity of the SDL process is is relatively low. In that case,
the time required to execute an entire activity thread is low
compared to communication or shared data access times.
A real–time analysis has to determine the feasibility of this
architecture by calculating the maximum number of events
blocking the queue, leading to additionaltw. Theserialized
activity thread – single queuemodel is advantageous if the
hardware computation time is small compared to the timely
distance of external events. The priority–queue leads to a
slightly higher queue access time, but the worst case wait-
ing time is shorter. In the case of disjunct activity threads,
theparallel activity threadarchitecture has the same com-
putation time as the other two models. When the mutual
exclusion mechanism is necessary, however, the calculation
time increases because of the access time to the shared data.
Additionally, blocking times of the lock mechanism by an-
other thread have to be taken into account. The parallel
activity thread architecture allows parallel execution, but no
pipelining. Its throughput is therefore lower than the server
model’s.

5 Design Process

Figure 4 depicts the tool chain of the automated rapid
prototyping design process realized in REAR. The specifi-



cation in SDL is annotated with a specification of the tim-
ing requirements using deadlines and a temporal description
of the embedding system with event streams ([7]). Cur-
rently, the SDL model is partitioned manually by allocat-
ing SDL processes on the target architecture’s HW and SW
processing units according to the task classification model
([5]). For the software part, C code is generated using
SDT’s code generator CAdvanced, automatically including
functions from the underlying real–time operating system
RTEMS and from a scalable IPC library for the inter–unit
communication. VHDL after the server model is generated
using the SDLCompiler presented in [1]. The SDLCom-
piler also generates a task precedence graph (TPG) which
(next to the worst–case execution times) is the basis of a
real–time analysis delivering the proof, that the realized em-
bedded system will be able to meet all deadlines. A detailed
description of the framework can be found in [11].

The TPG, representing the activity threads contained in
the SDL process network, is also used for the generation of
C and VHDL code using the activity thread model, which is
currently being integrated in the design environment. With
the inclusion of a second implementation model, the design
space increases significantly, and the partitioning step be-
comes less straightforward. Section 3 and 4 pointed out
the trade-offs between response time, throughput and area
that can result from the different implementation alterna-
tives. An extended real–time analysis has to eliminate the
design alternatives that do not conform with the timing re-
quirements. An interactive partitioning process is planned,
where the designer is being assisted with resource usage es-
timations and real–time analysis.

6 Experimental Results

Figure 5 shows the influence of the message queue on
the area usage. It depicts the CLB3 usage on the CIOP’s
Xilinx XC4025E FPGA of a simple “ping–pong” applica-
tion example, depending on message size and queue length
(FIFO message queue). The example consists of a single
SDL process with one input and one output channel, each
implementing a handshake protocol. VHDL code was gen-
erated using the SDL-to–VHDL tool presented in [6].tc
of this example amounted to 3 cycles for input interface and
message queue, 2 cycles for the execution of the EFSM, and
2 cycles for the output interface.

A simpleevent counterspecification, consisting of three
SDL processes, was used for a first comparison between
the implementation models. The area usage of a 8 bit wide
server model implementation was 444 CLBs, while a activ-
ity thread implementation required only 117 CLBs.

As a non–trivial real–world example with stringent real–
time requirements, aCAN controller and monitor appli-
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cation was implemented on the REAR target architecture.
CAN is a serial field bus with bit rates of up to1 Mbits�1.
Figure 6 depicts the SDL process structure of the CAN
physical layer, which implements the access to the physi-
cal medium (sending and receiving single message bits) and
the according low–level timing, bit stuffing and synchro-
nization functionality of the protocol. To achieve a precise
timing, the duration of one message bit has to be divided by
a configurable number of internal controller ticks. The SDL
processTiming is triggered by the emission of these ticks
(signalctrl clock) and, depending on its state, notifies
other processes when a new bit frame starts or the sampling
point inside the bit has been reached (signalscan clock
andsample now). Figure 7 shows the corresponding ac-
tivity thread. The branches of this activity thread, e.g. the
sampling of the bus level followed by output of signalrx to
the data link layer, have to be finished before the emission
of the next tick. The deadlinedc;rx of the activity thread
ctrl clock ! rx is dc;rx = 18�f , for bus frequencyf
and a number of 8 internal ticks per message bit.

A partly automated implementation of the CAN physi-
cal layer on the CIOP’s FPGA after the server model, us-
ing the SDLCompiler, required 1022 CLBs. The process
chainctrl clock ! rx takes 16 cycles. This is due
firstly to message sending overhead of the three processes
Clock, Timing and Receiver, and secondly to a delay in the
timing–process, where the relevant signal is the last of three
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sequential output–statements. With a cycle period of80 ns
this results in a maximal possible CAN bus frequency of98 kbits�1. In contrast to this, a manual implementation
using the serialized activity thread model took 426 CLBs.
The longest path in the design was 4 cycles, leading to a
achievable bus frequency of390 kbits�1.
7 Conclusions and Future Work

This paper has compared two implementation models
which enable automated generation of hardware from SDL.
First experimental results indicate a large advantage of the
activity thread model over the server model in applications
where the amount of computation is small compared to the
communication overhead. In the investigated examples a
smaller area usage by a factor of 2.4 to 3.8 and shorter re-
sponse time by a factor of 4 were achieved. General consid-
erations on area, throughput and response times of differ-
ent hardware architectures supported by the implementation
models indicate, that there are trade–offs to be investigated
depending on the type of application and its real–time con-
straints. Future work will include the integration of code
generation after the activity thread model in our rapid pro-
totyping design process, and the extension of the real–time
analysis in order to support the evaluation of the different
design alternatives.
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