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Abstract will be able to meet all deadlines ([11]). The REAR rapid
prototyping target architecture ([4]) is a tightly coupled het-
The specification of an embedded system at system levedrogeneous multiprocessor system consisting of micropro-
together with co—joint hardware/software synthesis is a goal cessor based processing units for different classes of real—
of many rapid prototyping projects. SDL has been proposedtime tasks, and a FPGA based configurable 1/0O processor
as a formal and abstract specification language well suited (CIOP) acting as a flexible link to the embedding process
for this purpose. In the automated generation of hardware and as execution unit for tasks with deadlines too short to
however, SDL’s asynchronous communication model (di- be met in software.
rectly implemented in the so called server model) can lead
to a large overhead in area and response time. The activ-
ity thread implementation model on the other hand is more
similar to hardware description language concepts, respec-
tively an execution in hardware, due to its synchronous com-
munication and execution scheme. This paper compare
VHDL code generation from SDL using these two mod-
els regarding implementation architectures, resource usage
throughput and response time. The integration in an exist-
ing rapid prototyping design process is presented as well as
results gained form several application examples.

Starting point of the rapid prototyping process is a spec-
ification in the “Specification and Description Language”
SDL. SDL, originally from the telecommunications do-
main, is standardized by the ITU [10], and is increasingly
being used in embedded systems design as a formal, ab-
Sstract description technigue at system level. Structure in
SDL is expressed with hierarchical blocks and processes,
‘and signal bundling with channels. The lowest level of
refinement is a network of parallel SDL processes, each
with its private infinite message queue, communicating via
asynchronous messages (SDL signals). An extended finite
. state machine (EFSM), which can contain local variables,
1 Introduction specifies the behaviour of each SDL process. Signals are
processed in order and trigger a state transition, which in
tional complexity as well as an increasing demand for turn can contain arbitrary code inside a tasl§ block,. Qut—
short response times and high computing performance pu_t—statements and flow control state_ments Ilkg decisions.
Rapid prototyping is a means to reduce development timesWlth the save—_stater_nent, the processing OT a_5|gngl can be

o . postponed, while a signal marked with priority input is pro-
and .COSIS of S.UCh systems by CO_”f'”.“'”g foectional cessed at once, even if it is not the first signal in the queue.
andtimely requirements of the a_lpphcann _at a very early Timers send signals to the requesting process, using the pro-
stage of development. The rapid prototyping environment cess’ message queue
REAR! is focussed on event—driven reactive systems with '
hard real-time requirements. It combines an automated de- The idea of rapid prototyping implies an as far as pos-
sign flow starting from a formal specification with the real— Sible automated design process transforming the specifica-
time analysis necessary to prove that the timing require-tion, in our case the SDL model, into software and con-
ments have been modeled correctly, and that the prototypdigurable hardware on the prototyping target architecture.

- _ Two implementation models which preserve the seman-

“The work presented in this paper is supported by Baitsche oo of SDL are the server model and the activity thread
Forschungsgemeinschaft part of a research programme on “Rapid Proto- L7
typing for Embedded Hard Real-Time Systems” under GranDBAL1-2. model. In theserver modeleach SDL process is imple-

1Rapid Prototyping Environment for Advanced Real-Time Syst mented as a single RTOS thread in SW, respectively as

Embedded hard real-time systems show growing func-




a separate VHDL entity in the HW implementation, each Louieics | WossagoOueod; | [EFSM]
with its own message queue. In contrast to this atiévity 1 i
thread modemaps each activity thread, i.e. each chain of fput trsee | 4»‘” b
activations in the SDL model caused by a stimulating event S i
to one RTOS thread respectively HW entity.

Code size and area usage, while being of critical im-
portance in production code for embedded systems, can- Figure 1. Server Model Architecture

not be completely neglected in rapid prototyping as well.
Throughput and response time are indispensable attributes
for the functionality of a real-time system’s prototype. In tions from a library of channel and protocol descriptions. In
hard real-time systems, however, analyzability and guaran{2], the VHDL generation is embedded in the codesign en-
teeable worst case performance takes precedence over aveyironment COSMOS. An SDL description is translated to
age or best case throughput and response time. an intermediate format. During an interactive refinement
This paper evaluates code generation using the two im-process, the abstract channels of this model are replaced
plementation models mentioned above, concentrating onby protocols, communication units and interfaces from a
the generation of configurable hardware (VDHL) from SDL library. A commercial spin—off of the TIMA laboratofy
specifications. The next section surveys related work, afteroffers a tool for architectural exploration, supporting SDL
which code generation according to the server model andas input and VHDL as target language.
the activity thread model is examined in detail in Section 3  [9] is based on a concept aiming to support SDL's dy-
and 4. Section 5 explains the integration of these code genhamic process creation feature also in hardware. Here, one
eration strategies in our automated rapid prototyping designentity is created for each SDL process class, storing and
process, after which the experiences gained in applicationloading the context of each process instance after a simple
examples are presented in Section 6. In the last Section weschedule. Due to the dynamic instantiation, a signal’s re-
summarize our results and indicate future work. ceiver cannot be determined statically. This necessitates a
central supervisor unit in the communication subsystem.
2 Related Work

. 3 Server Model Implementation
The terms server model and activity thread model stem P

from the telecommunications area, where they are used t0  The server model maps each SDL process to one hard-
desgribg different strategies to implement multi layer com- |4 entity with its own message queue. Figure 1 shows a
munication systems ([12]). In the server model, each pro-yynica| hardware architecture implementing one SDL pro-
tocol entity from one layer is implemented as a single soft- cess according to the server model. One input interface
ware process, communicating with other layer entities Via for each communication channel receives SDL messages,
messages. In.the ac_:t|V|ty thread_model, one software tas'ﬁmplementing the channel's protocol. The message is put
processes an incoming or outgoing request trough severaly the end of the queue, which can be realized as a simple
layers. [8] proposes the employment of efficient methods g only if save and priority input are excluded from the
known from the manual implementation of communication g,pnorted SDL language subset. The extended finite state
systems in an automated software design process based oRachine is implemented in an infinite loop, where in turn a
SDL. In their (eqhzatlon of the activity thread model, each message is taken from the queue, the appropriate transition
SDL process is implemented as a reentrant procedure. TWQyecuted, and, if applicable, a new SDL message is sent
execution models, the basic and extended activity thread, ;5 gn output channel. To realize the asynchronous com-
model, are presented, which ensure a semantica_llly correChynication of SDL (non-blocking send, receive via mes-
ord_e_r of calls to these procedures in the execution of theSage gueue), the input interface, the message queue and the
activity threads. _ , EFSM must run parallel.

Commercial code generators for SDL, like SDT's CAd- e server model is a direct, semantically correct imple-
vanced ([13]), only support the generation of software after ,antation of SDL. In contrast to software, the implemen-
the server implementation model. The automated imple-4iion in hardware allows a parallel execution of the SDL
mentation of hardware from SDL is still mainly the object ocesses. Code generation is fairly straightforward, due to
of ongoing research. _ the semantic similarities between SDL and the server model

Several approaches generate VHDL using the Serverqynchronous computation and communication). While
model. The main focus here is the mapping of the abstract,o Epgm part has to be generated for each new SDL model,

communication between the processes to existing interfaceg, o message queue, timers, and the entire inter-process com-
and protocols. The SDL-to—VHDL translator presented in

[6] uses a textual implementation description to select func-  2www.arexsys.com




Response Time and Throughput The response time.

to a certain event consists of the computation tipTeeeded

to process the event and a possible waiting tirpethat
elapses while a message stands in the queue. \White
directly determined by the hardware architecture, an upper
bound oft,, has to be computed by a real-time analysis.
t. of a single SDL process consists of the time needed to
receive and queue the message, the time to remove the mes-
sage from the queue and process it, plus the time to output
a new message. The parallel and pipelined execution of a
network of SDL processes allows, depending on the appli-
cation, a very good average and worst case throughput. The
computation time necessary to respond to an external event,
however, can be very high, since ths of all involved SDL
processes have to be summed. Typical values.faralized

in application examples can be found in Section 6.
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Figure 2. a) SDL specification, b) server
model implementation

a)

munication can be implemented as a library of reusable4 Activity Thread Model Implementation

components, the "HW run—time system” ([1], [3])- In the activity thread implementation model the chain
Figure 2 shows an exemplary SDL specification and the of activations triggered by a stimulating event, i.e. an event
corresponding server model implementation. The specifica-from the environment or a timer output is analyzed. All ac-
tion consists of a network of five SDL processes, commu- tions and state changes contained in the transitions along
nicating via messages,;. A transition triggered by mes-  this “activity thread” are executed sequentially, thereby
sagem;; consists of a task;; and the sending of a new avoiding the message send and receive overhead between

messagemn;(;;1). The response to the external events the processes. If the minimal time distance between two

andmo1, i.e. the output of messages;s andms4 has to  events triggering an activity thread is smaller than the worst

occur within the given deadline§ andd. case execution time of the thread, a message queue at the
input of the activity thread has to ensure that no events are
lost.

Area Efficiency For a single SDL process, a large contri- . .
bution to the occupied area comes from the message queue, 10 €nsure a correct implementation of the SDL seman-
While the hardware effort for a simple FIFO is high enough tlcs,_ the following issues have to be treated with special at-
(see Figure 5 in Section 6), it becomes prohibitive for a tention:

queue correctly implementing save and priority input, i.e. Atomicity of the state transitions: The state transitions

permitting message insertion and removal at random posi-  of one process must exclude each other mutually. If

tions. The queue size has to be dimensioned very carefully. transitions of one process are part of different activity
Next to the message queues a considerable hardware ef-  threads, it must be ensured that they are not executed

fort is incurred by the sending and receiving of SDL mes- at the same time. In an parallel execution model they

sages. Each input channel implicates a protocol implemen- must be protected by a lock mechanism.

tation and data conversion functions, plus handshake logicgranches in an activity thread: An  activity  thread

and a multiplexed input to the queue. Each SDL output—  pranches when several output—statements occur in one

logic if several output—statements write on one channel. the execution can be fixed at compile time.

Typically, a SDL specification consists not of one, but continuous signals: Transitions guarded by continuous
of several processes, interconnected by signals. Forsucha  sjgnals have no stimulating event. For them, an own
network of processes, the hardware effortincreases notonly vty thread has to be created.
linearly with the EFSMs and message queues, but dispro-
portionate to the number of processes with each signal in-Architecture Alternatives In hardware, each activity
terconnection between two processes. Each additional conthread could be executed in parallel. Depending on the
nection generates a larger input interface, and, dependindype of application and on the temporal specification of em-
on the number of output—statements, a very high overheadedding and embedded system, however, other implemen-
for the output interfaces. tation alternatives can be more efficientin area and response
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- single queue - priorty queue sent inside an activity thread. An increased hardware effort
can occur when one SDL signal is output in different tran-
Figure 3. Activity thread model alternatives sitions, i.e. the transition triggered by this signal appears

in several activity threads. Theerialized activity thread —
. . . . . _single queuarchitecture requires one message queue, and
time. Figure 3 shows three architecture alternatives, usmginlout and output interfaces only for messages at the border
theT?]DII_ exargple fI’OITfl Flgulrle |,2' . hieved insbgal of the SDL model. Theerialized activity thread — priority
ved € .e{."St hegrse ol pa:ra elism ;]s_ ac |eveH Ing Bﬁ" gueuearchitecture requires more input queues, and a more
Ized activity thread — single queaechitecture. Here, all ac- sophisticated queue access. Due to the sequential specifi-
tivity threads are implemented in one VHDL process. Only cation in one VHDL process, the first two design alterna-

one event at a time IS take_n .from the |r_1put message qUeUEy a5 allow resource sharing between SDL processes. In the
and the correspopdmg acpwty thread is prpces_sed_ To en'parallel activity threadarchitecture, each additional activ-

Sure a responsc? in real-time, the processing timef an ity thread requires a message queue. Further overhead is
event plus the.’s of all events that can block the queue 5o with each divided SDL process by the shared pro-

before it, must be lower than the events deadh_ne. ) cess data access protected by the lock mechanism.
In order to be able to guarantee short deadlinessdhie

alized activity thread — priority quetgrchitecture has more  Response Time and Throughput The calculation time
than one input message queue. At compile time, externalof an event in theserialized activity thread — single queue
events and timer Outputs are aSSigned to different classes a%rchitecture can be Very IOW due to the Sma” overhead_
Cording to their deadlines reSpeCtiVer pl’iorities. For each This is especia”y true, when the Computational Complex_
“priority class”, a separate input message queue is imple-jity of the SDL process is is relatively low. In that case,
mented. Again, one eventat atime is taken from the queuesthe time required to execute an entire activity thread is low
serving queues with high priorities first, and processed in its compared to communication or shared data access times.
activity thread. A real-time analysis has to determine the feasibility of this
The parallel activity thread architecture implements  architecture by calculating the maximum number of events
each activity thread in its own parallel VHDL process with p|ocking the queue, leading to additional Theserialized
its own input message queue. Like pointed out above, thisactivity thread — single queumodel is advantageous if the
requires a shared access to the local variables and state dafgrdware computation time is small compared to the timely
protected by a lock mechanism, if a SDL process has beenryjstance of external events. The priority—queue leads to a
splitinto more than one activity thread. slightly higher queue access time, but the worst case wait-
The three implementation architectures can be easilying time is shorter. In the case of disjunct activity threads,
combined. For each activity thread a decision can be madehe parallel activity threadarchitecture has the same com-
to either join it with other threads, or to implement it sep- pytation time as the other two models. When the mutual
arately. A combination of server and activity thread model exclusion mechanism is necessary, however, the calculation
is also easily possible, since the interface of each activity time increases because of the access time to the shared data.
thread is the asynchronous sending and receiving of mesadditionally, blocking times of the lock mechanism by an-
sages, identical to each process in the server model. other thread have to be taken into account. The parallel
activity thread architecture allows parallel execution, but no

Area Efficiency For input interface, message queue, . qlining . Jts throughputis therefore lower than the server
timers and output interface, the same “HW runtime— model’s

system”-components as in the server model can be used,

and the same area usage can be assumed. The number gf Design Process

these components needed in an activity thread implemen-

tation is equal only in a model consisting of a single SDL  Figure 4 depicts the tool chain of the automated rapid
process. In all other cases it is lower, since no messages arprototyping design process realized in REAR. The specifi-



Resource Usage "Ping-Pong"

cation in SDL is annotated with a specification of the tim-
ing requirements using deadlines and a temporal description | [ g
of the embedding system with event streams ([7]). Cur- —— e tengmo
rently, the SDL model is partitioned manually by allocat-

ing SDL processes on the target architecture’s HW and SW
processing units according to the task classification model
([5]). For the software part, C code is generated using
SDT'’s code generator CAdvanced, automatically including
functions from the underlying real-time operating system
RTEMS and from a scalable IPC library for the inter—unit

Used CLBs

communication. VHDL after the server model is generated v : R = 8
using the SDLCompiler presented in [1]. The SDLCom- e T T SR
piler also generates a task precedence graph (TPG) which R

(next to the worst—case execution times) is the basis of a oop 2o PoGenensors] 7

real-time analysis delivering the proof, that the realized em-

bedded system will be able to meet all deadlines. A detailed

description of the framework can be found in [11].
The TPG, representing the activity threads contained in

the SDL process network, is also used for the generation of

C and VHDL code using the activity thread model, which is

currently being integrated in the design environment. With

the inclusion of a second implementation model, the design > : T °

space increases significantly, and the partitioning step be-

comes less straightforward. Section 3 and 4 pointed out Figure 5. CLB—Usage Ping—Pong Example

the trade-offs between response time, throughput and area

that can result from the different implementation alterna-

tives. An extended real-time analysis has to eliminate thecation was implemented on the REAR target architecture.

design alternatives that do not conform with the timing re- caN s a serial field bus with bit rates of up taMbits—".

quirements. An interactive partitioning process is planned, igyre 6 depicts the SDL process structure of the CAN

where the designer is being assisted with resource usage egshysical layer, which implements the access to the physi-

timations and real-time analysis. cal medium (sending and receiving single message bits) and
. the according low—level timing, bit stuffing and synchro-
6 Experimental Results nization functionality of the protocol. To achieve a precise

timing, the duration of one message bit has to be divided by
™ configurable number of internal controller ticks. The SDL
I~ X ) . : processTi m ng is triggered by the emission of these ticks
Xilinx XC4025E FPGA of a simple ging—pongd’ applica- signalct r | _cl ock) and, depending on its state, notifies
tion example, depending on message size and queue Iengtfiner processes when a new bit frame starts or the sampling
(FIFO message queue). The example consists of a smglepomt inside the bit has been reached (signas_cl ock

SDL process with one input and one output channel, eaChandsanpl e_now). Figure 7 shows the corresponding ac-
implementing a handshake protocol. VHDL code was gen- iy thread. The branches of this activity thread, e.g. the
erated using the SDL-to—VHDL tool presented in [6:  ga3mpling of the bus level followed by output of signal to

of this example amounted to 3 cycles for inputinterface and yq jat4 fink layer, have to be finished before the emission
message queue, 2 cycles for the execution of the EFSM, anq)f the next tick. The deadliné

: ..re Of the activity thread
2 cycles for the output interface. ctrl clock = rxisd.,, = ﬁ for bus frequencyf

A simpleevent counterspecification, consisting ofthree 514 5 number of 8 internal ticks per message bit.
SDL processes, was used for a first comparison between

the implementation models. The area usage of a 8 bit wide
server model implementation was 444 CLBs, while a activ-
ity thread implementation required only 117 CLBs.

As a non-trivial real-world example with stringent real—
time requirements, AN controller and monitor appli-

Figure 5 shows the influence of the message queue o
the area usage. It depicts the G.Bsage on the CIOP’s

A partly automated implementation of the CAN physi-
cal layer on the CIOP’s FPGA after the server model, us-
ing the SDLCompiler, required 1022 CLBs. The process
chainctrl _cl ock — rx takes 16 cycles. This is due
firstly to message sending overhead of the three processes
Clock, Timing and Receiver, and secondly to a delay in the

3configurable logic block timing—process, where the relevant signal is the last of three
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sequential output—statements. With a cycle perio&0afis

this results in a maximal possible CAN bus frequency of
In contrast to this, a manual implementation
using the serialized activity thread model took 426 CLBs.
The longest path in the design was 4 cycles, leading to a

98 kbits—!.

achievable bus frequency 890 kbits—1.

7 Conclusions and Future Work

This paper has compared two implementation models
which enable automated generation of hardware from SDL.
First experimental results indicate a large advantage of the
activity thread model over the server model in applications
where the amount of computation is small compared to the
communication overhead. In the investigated examples a
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