
Improving Processor Utilization with a Task Classification Model based
Application Specific Hard Real–Time Architecture�

Georg Färber Franz Fischer Thomas Kolloch Annette Muth

Laboratory for Process Control and Real–Time Systems
Prof. Dr.–Ing. Georg Färber

Technische Universität München
D–80290 München, Germany

Phone: +49–89–2 89–2 35 50, Fax: +49–89–2 89–2 35 55fGeorg.Faerber,Franz.Fischer,Thomas.Kolloch,Annette.Muthg@lpr.e-technik.tu-muenchen.de
Abstract

Modern microprocessors with caches and pipelines show
increasing performance, but at the price of a decreasing
predictability of execution times. The design of hard real–
time systems however has to be based on worst case con-
siderations. Consequently, real–time systems are generally
oversized and fail to profit of developments in the standard
processor field. This paper presents an approach where
real–time systems are analyzed and built according to a task
classification model. Each class of tasks corresponds to a
type of processor best suited in terms of performance and
deterministic execution times. The resulting target architec-
ture framework is a tightly coupled heterogeneous multipro-
cessor system based on templates using off-the-shelf com-
ponents. The described real–time system design process in-
cludes a schedulability analysis method that supports the
partitioning and allocation process and provides the nec-
essary real–time guarantees. The result is a event–driven
hard real–time system with improved processor utilization
that will provably meet all its deadlines. A rapid prototyp-
ing platform implementing this concept is presented as well
as application examples.

Keywords: task classification model, hard real–time,
schedulability analysis, processor utilization, caches�This work was supported with funds of theDeutsche Forschungsge-
meinschaftunder reference number Fa 109/11-1 within the priority pro-
gram “Rapid Prototyping for Embedded Hard Real–Time Systems.”

1. Introduction

The significant technological advances provide an enor-
mous growth of computing power within the new genera-
tions of microprocessors. Up to 500 MIPS are available in
one chip, and there are projections to 2 GIPS until the end
of the decade. However, memory access times could not
follow the increasing processor performance: Even with to-
day’s wide data busses — the DECchip 21264 uses 128 bit
for cache and a 64 bit system bus as opposed to the 16 bit
bus of the MC 68000 — and the fastest static RAMs, mem-
ory bandwidth is by a factor of at least 5 too low for modern
microprocessors. The only way to approach the peak per-
formance is using a memory subsystem with a hierarchy of
caches:� small 1st level caches on chip (typically2 � 8 �32 KBytes), that can be accessed in one pipeline cy-

cle, i. e.2� 3 ns,� a larger 2nd level cache of0:5�4 MBytes SRAM with
access times of8� 10 ns and� main memory with access times of typ.50 to 80 ns.

With hit rates of98� 99% the microprocessors can per-
form quite near to the optimum if the cache architecture
matches the problem structure. Unfortunately for event
driven real–time systems with required response times in
the micro– or millisecond range one can not rely on a good
cache behavior. Exceptions and interrupts cause context
switches in a non deterministic way and thereby one task’s
working set may be disturbed by another [9]. To guarantee
response times even in the worst case, a zero hit rate has to
be assumed and hence only about2�10% of the processor’s
peak performance are available for timing considerations.

Improving the utilization of new generation microproces-
sors for real–time applications is essential.

Several approaches have been investigated to overcome
that problem: Cache partitioning techniques [8, 7] and la-
tency hiding by multi threading architectures [11]. While
the first may impose limits on the number of tasks, the com-
plexity of the second seems not adequate for real–time sys-
tems.

The approach presented here matches the real–time ap-
plication’s task mix to well suited architectural templates.
The following section shows different classes of real–time
tasks, elucidated by examples. Section 3 describes an ar-
chitectural framework that provides several types of pro-
cessing units. The real–time system design process includ-
ing schedulability analysis is outlined in Section 4. The
paper closes with an overview of a target architecture we
built mainly from off–the–shelf components according to
the framework and applications we implemented to validate
the system’s properties.

2. Classification of Real–Time Tasks

In order to define suitable system architectures in the
context of real–time systems, the following criteria describ-
ing individual tasks need to be considered:

Maximum response time (deadline): The time that may
pass before the real–time system reacts to an event.
Determined by the time constants in the technical pro-
cess, it typically ranges between microseconds and
hundreds of milliseconds.

Maximum amount of computation (complexity): The —
for worst case considerations maximum — number
of dynamically executed instructions of the task. The
number depends on data associated with the event that
activates the task, and it translates into the maximum
processing time.

Memory requirements: Size of code of the individual
tasks, as well as the amount and the locality of their
data.

Using the two parameters “complexity” (X-axis) and
“maximum response time” (Y–axis), Figure 1 shows a plot
of different classes of tasks (class 0 – 4). The45�–lines
show the response times that can be achieved for a given
amount of computation, depending on the processor perfor-
mance.

Class 0: These tasks react to events with deadlines shorter
than 1�s, performing functions of low complexity.
Typically implemented as hardware state machines,
they can act as event filters for the real–time system.

100

Class 2: Standard Real-Time Tasks2

4 Class 4: Special Purpose Functions

time [s]
response
maximum

Class 1: Primary Response Tasks

4

[Instructions]
Complexity

10
0

1

3

Class 0: Hardware Tasks

2

0

1 1000 MIPS10

0

1

10
10

8
10

6

3 Class 3: Computation Intensive Tasks

10

10

10

10

10

10

-9

-8

-4

-2

-6

1

10 10 10 10
0 2 4

Figure 1. Classification of application tasks

Class 1: Interrupt handlers or primary response tasks. The
very short response times (a few�s or more) and the
small code (less than 10,000 dynamic instructions) in-
dicate that cache less systems with 10 – 100 MIPS pro-
cessors would be best suited to execute these tasks.

Class 2: The standard real–time tasks are described by re-
sponse times of� 1 ms and code lengths in the 5 to 50
KByte range. Again, processors of 10 – 100 MIPS
performance are appropriate to perform these tasks.
Caches make no sense for response times in the 1 ms
range.

Class 3: Very computation intensive tasks, i. e. optimiza-
tion tasks, of at least several million instructions, that
show less critical response times of20 ms and above.
In this case, the 100 to 1000 MIPS performance of
modern processors is necessary. Caches can be used,
since hit rates may be assumed to be high with unin-
terrupted execution times of� 20 ms.

Class 4: Special purpose functions, i. e. image process-
ing, that can be executed best by special purpose hard-
ware components: only a limited number of well de-
fined algorithms is executed with response times be-
tween 20 ms (i. e. frame rate frequency) and 400 ms,
in this example taking at least 25 million instructions.
However, in the future the increasing power of stan-
dard processors may take over more and more work
from special hardware modules.

For a given application normally a mix of these task
classes has to be executed. In a typical autonomous mobile
robot system there are for example:

� high speed sensor data acquisition, e. g. with a
panoramic laser range finder (class 0),� tasks to control the movement of the system and the
manipulators (class 1 or 2),� tasks to do short term planning (e. g. course planning)
with time constants in the 20 – 200 ms range (class 2
or 3),� tasks for long term planning including knowledge
based system processing (time constants of many sec-
onds), that are very computation intensive (class 3),� tasks for sensor data processing (including image pro-
cessing), time constant of 20 – 40 ms (class 3 or 4),

and many other tasks including communication to the
outside world or building and maintaining the internal rep-
resentation of the robot’s environment.

The basic hypothesis here is that there is not one homo-
geneous architecture that is able to support all classes of
tasks: More than one architectural template is necessary to
provide an optimal runtime environment for such a real–
time system. For each task the two parameters of Figure 1
have to be determined, as well as information on memory
requirements. Finally they are allocated to the appropriate
processing units.

3. Heterogeneous Multiprocessor Architecture
Framework

Modern real–time systems often are distributed systems,
where severalnodesare connected (loose coupling) by a
communication network, e. g. a field bus. In our approach
one node in turn is built as a heterogeneous, tightly coupled
multiprocessor system consisting of different types ofpro-
cessing unitsto match the needs of the different classes of
real–time tasks. In this paper only the architecture ofone
single node is considered.

The architectural framework provides a hardware inte-
gration platform for different processor systems as well as
operating system support for the application tasks and the
necessary library functions.

The processing units’ basic difference is the loss of
predictable performance caused by interrupts and context
switches:

Real–Time Units (RTUs) are optimized for small tasks
with short response times. They use a limited amount
of high speed memory to enhance predictability (Sec-
tion 3.1).

High Performance Units (HPUs) are based on standard
computer architectures to benefit from the techno-
logical advances regarding processing performance.

The impact of interrupts and context switches on pre-
dictability is limited by software means (Section 3.2).

Special Purpose Units (SPUs)are based on processing el-
ements optimized for special classes of tasks. Exam-
ples include DSP–based SPUs for digital signal and
image processing algorithms or FPGA–based units for
processing fast input and output tasks (Section 3.3).

Though a uniform operating system would be desirable
from the application developers point of view, this is in
general impossible for the heterogeneous system outlined
above. Hence, local real–time operating systems1 control
the execution of the application’s tasks. As a key integration
factor however, a uniform and low overhead mechanism for
communication between tasks on different processing units
will be provided, which is based on a multi master bus (Sec-
tion 3.4).

3.1. Real Time Unit (RTU)

This unit executes tasks with small amounts of computa-
tion, short deadlines and limited code (class 1 and 2). The
basic architecture corresponds fully to the architecture of
classical process control computers like the PDP 11. Be-
cause of the technological advances, they have about 100
times the PDP 11 performance. They consist of:� A RISC processor without on-chip cache like (MIPS

R3000 or SPARC) and about 50 MIPS performance.� Fast memory instead of caches with cache–like speed
and a size of about 1 – 2 MBytes (it is assumed that the
code and the data of all tasks fit into the memory).� A multi master bus adapter and I/O interface.

Typically, all these components fit on one single board
which is directly inserted into the node’s bus connector.

The RTU runs a small multi–threading real–time kernel
supporting lightweight processes, resulting in very small
kernel code (� 50 KBytes) and in very short context switch
times (1 – 5 microseconds for 100 – 200 instructions). Dis-
abling hardware interrupts for certain times (e. g.50 �s)
avoids too many context switches.

Since there is no cache memory, the interrupt frequency
is controllable and DMA transfers including accesses from
other processors are predictable, the determination of worst
case execution times on the RTU is straightforward. As it
will be shown in section 4, it can be determined whether the
system will meet all deadlines for a given task load. Typi-
cally, the interrupt service routines and about 10 to 50 tasks
are allocated to one RTU. If the application requires it, more
than one RTU has to be configured into the system.

1or simple run–time systems in the case of DSP–based SPUs

3.2. High Performance Unit (HPU)

This type of processor subsystem is intended to execute
tasks (class 3) with medium to high amounts of computa-
tion (more than 1 million dynamic instructions) and with
medium to high response times (more than 20 ms). Typi-
cally, code and data require megabytes of main memory.

For these tasks a real–time system should always make
use of latest technology, i. e. standard architectures and
components being developed for the competitive market
of workstations and personal computers. But “standard”
means also cache architectures: 1st– or 2nd–level caches
are part of the boards and even the chips. To avoid the worst
case scenarios mentioned above, these processors should be
used in an operating mode that allows continuous operation
of tasks without interruptions:� All code and data are in main memory, no disk access

during real–time operation.� Preemptive multitasking is done in a priority or dead-
line based way with interrupts blocked for given inter-
vals (time slices)TS (e. g.TS = 20 ms). That means,
interrupts and context switches take place not more fre-
quent than1=TS, except a task blocks explicitly e. g.
waiting for a message to receive. Hence the cache
behaviour becomes predictable and allows the appli-
cation tasks to execute near the processors maximum
performance.� With the methods shown in Section 4 it can be proven
that the real–time conditions can be met also in worst
case situations.

The multitasking mode outlined above can be integrated
into a standard operating system by modifying the interrupt
system and device drivers. Predictions of worst case exe-
cution times for these class 3 tasks are based on a minimum
effective performancePmin of the processor subsystem for
a time slice of durationTS . Pmin increases withTS , which
can be shown qualitatively using a simple cache and proces-
sor model:

Assuming that the average instruction timeTI after ex-
ecution ofR instructions decreases negative exponentially,
the number of instructions executed withinTS can be calcu-
lated by summing up (integration) ofTI(R) for RS instruc-
tions executed in sequence:TI(R)TC = 1 + (T0TC � 1) � e� RRETS(RS)TC = Z RS0 TITC dR= RS +RE � (T0TC � 1)(1� e� RSRE)

In these formulae the constantRE depends on the cache
architecture and locality of code and data.

Dividing RS by TS yields the minimum relative perfor-
mance of a processor subsystem based on the assumptions
above. Figure 2 shows a plot ofPmin=Pmax as a function
of TS andRE for T0 = 20 � TC).

Relative Performance
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
/P

m
ax

Ts/(Tc*Re)

Figure 2. Relative performance as a function
of uninterrupted execution time

Here 50% of the maximal processor performance are
reached ifTS = 40 � RE � TC . With RE = 10000 in-
structions,TS must allow the execution of200000 instruc-
tions (50% performance:TI = 2 � TC). For a 100 MIPS–
processorTS would be 4 ms. If 80% of the specified per-
formance are requested,TS must be 10 ms (corresponding
to 800000 instructions executed in one time sliceTS).

These figures show already that quite large amounts of
computations have to be performed to make use of the per-
formance of new processors. For a few100 or 1000 dy-
namic instructions (class 1 or 2) the effective performance
would be not adequate.

For complex tasks it is very difficult to define the worst
case number of instructions that have to be executed dynam-
ically. If the code for the tasks is available, the execution
times can also be measured using the target system with dif-
ferent sets of data. The time slice approach presented here
avoids additional uncertainties due to statistical events with
a negative impact on cache performance.

3.3. Special Purpose Unit (SPU)

These units fit into the same framework and provide
support for very demanding special algorithms. As the
other units they access the global bus system for inter unit
communication. Typical SPUs are digital signal process-
ing (DSP) and image processing systems (class 4). Special
hardware functions can be accommodated on SPUs: They
may be realized with FPGAs or other programmable logic
(class 0).

For SPUs on standardized busses (PCI) an increasing
number of subsystem types are available off the shelf and
can be integrated into future real–time systems.

3.4. Communication Issues

For the overall performance of distributed real–time sys-
tems low overhead and latency of task communication and
synchronization mechanisms are crucial. This is also shown
by the sensitivity of the schedulability analysis to these pa-
rameters. Additionally, a uniform communication layer is
important to hide the details of the underlying hardware ar-
chitecture, thereby simplifying the implementation of dis-
tributed real–time applications.

For the outlined multiprocessor architecture framework
two different communication situations have to be consid-
ered: inter node and intra node communication.

The first involves transferring data over the — compared
to the global intra node bus — slow communication net-
work. Usually transmission times will dominate and using
a dedicated (high priority) communication server task is ap-
propriate.

In the case of intra node communication, data trans-
mission times are by approximately 2 orders of magnitude
shorter. In that case processing time for copy operations,
protocol handling, synchronization and context switches
(including system calls) have to be minimized in order to
keep the overall communication overhead low.

The basic idea implementing the communication layer
functions e. g. inter unit message queues (with nonblock-
ing send and blocking receive operations) is to use a shared
memory area for a message buffer pool and the send and
receive queues. In order to send a message, the application
task allocates a message buffer, prepares the message and
enqueues the message buffer in the receivers receive queue.
The receiving task in turn then processes the message and
afterwards deallocates the buffer, which then is available for
allocation again.

This communication scheme assumes the following
properties of the processing units and the global bus sys-
tem:� Most units can be master on the global bus in addition

to their function as slaves (targets).� On the global bus all units share a common physical
address space.� At least a portion of a processing unit’s memory is ac-
cessible to other bus masters.� A processing unit can generate an interrupt on a remote
unit by accessing certain predefined addresses on the
global bus.

� If the global bus or some units on it do not support
an atomic “test–and–set” operation (which is usually
the case), at least one unit should provide an efficient
spinlock or semaphore mechanism to avoid excessive
synchronization effort when accessing shared commu-
nication data structures.

The basic functionality of inter unit message queues has
been implemented on the RTU and HPU for use by the CAN
bus application described in Section 5.2. In the near future
we will evaluate and optimize this implementation and in-
clude communication with Special Purpose Units.

4. Real–Time System Design Process

Especially for event driven real–time systems the design
is often done in a somewhat “experimental manner”, using
an oversized system to decrease the probability for the vi-
olation of timing constraints. To yield a better utilization
of the available processing units, even for hard real–time
systems — i. e. systems where a deadline miss may result
in loss of lives and money — a more engineering like ap-
proach has to be taken. This section outlines an idealized
design process for real–time systems using the processing
units introduced above.2� First, the stimuli (events) from the technical process

have to be identified and their functional and timing
requirements specified.� The real–time tasks that realize the required responses
have to be designed and a first estimation of their worst
case execution time (WCET) or amount of computa-
tion has to be determined.� Next, the tasks can be classified and allocated to the
different types of processing units (RTU, HPU).� The required number and performance of the process-
ing units can be quantified by the schedulability anal-
ysis developed by Gresser [4, 3]. In contrast to anal-
ysis methods for time driven (periodic) systems where
task deadlines are guaranteed by the construction of
the time driven schedule [6], this method takes into
account the timely behaviour of the technical process
which stimulates the event driven system’s tasks.

Event streams describe the maximum possible number
of events of a certain type within an intervalI and lead
to anEvent FunctionE(I). Single tasks are character-
ized by their worst case execution times (WCET) and

2Only RTUs and HPUs are considered here for simplicity: SPUs are
used if the real time application requires it (image processing, response
times in the sub microsecond range). The aspect of Hardware–/Software-
Codesign is out of the scope of this paper.

cycle = 7

5

1

0

1 5 10 I

C(I)

E(I), C(I)

E(I)

WCET = 1.6

deadline = 3

Figure 3. Example of Event Function E(I) and
resulting C(I)

the respective deadlines (maximum allowed response
times) for the triggering events. TheC(I) Function is
defined as maximum computation time requested and
due within intervalI . For a single taskCi(I) can be
calculated easily fromE(I) by shifting by the deadline
and multiplication with the WCET (Figure 3).

While the resultingC(I) for a number ofindependent
tasks on a computing node is simply the sum of all
theCi(I) functions, Gresser developed an algorithm
to determineC(I) for a network of communicating
tasks, taking into account dependences of the trigger-
ing events, precedence constraints, inter node commu-
nication and mutual exclusion. For earliest deadline
first scheduling he proved, that all tasks on one node
meet their deadlines if the resultingC(I) always runs
under the bisector which specifies the available com-
puting time in each interval. On the other hand, withC(I) � Cmin � I 8 I > 0
a minimum performanceCmin for the processing units
can be calculated. If there is no processor with the
required performance, more than one processor of this
type must be configured. As a result, there is a first
guess for the numbers of RTUs and HPUs.

The task model used by Gresser is similar to that pre-
sented in [5], but Jeffay does not consider event de-
pendences and limits the analysis to single processor
systems.� The allocation of the tasks to multiple RTUs and HPUs
can be optimized using e. g. simulated annealing or
genetic algorithms as described in [12].

After these steps the number of RTUs and HPUs is
known as well as the allocation of all tasks to the process-
ing units. Additionally, the schedulability analysis proved
that the system will meet all its deadlines even in the worst
case.

5. Target Architecture and Applications

5.1. REAR Hardware Architecture

Our target architecture REAR (Rapid Prototyping Envi-
ronment for Advanced Real-Time Systems) was built ac-
cording to the multiprocessor architecture framework pre-
sented in Section 3.

It is a configurable and scalable heterogeneous multipro-
cessor system consisting of processing nodes with state–of–
the–art high performance microprocessors (CISC and RISC
type) serving as HPU and RTU, and a SPU based on field
programmable gate arrays. The nodes are tightly coupled
by a global PCI–bus, which offers high throughput and low
latency. Figure 4 gives an overview of the target system
architecture, which is mostly built from off–the–shelf com-
ponents.

CTRL

DPRAM

PCI

Ethernet
SCSI

CPU

DRAM

Cache

PCI

FPGA

Console

RTUCIOP

I/O other PCI device

SRAM

CPUPCI PCICPU

SRAM

global bus (PCI)

RTU

HPU

Figure 4. REAR hardware architecture

Our HPU is a PCI slot CPU with Intel Pentium processor,
large L2–cache and main memory, satisfying very high de-
mands for computing performance and for memory space.
The RTU was built using a MIPS R4600 based single board
computer with PCI interface. To narrow the memory band-
width gap between the CPU and the DRAM, a fast SRAM
module was added to the processor board. The SPU of our
target architecture is called CIOP (Configurable I/O Pro-
cessor), consisting of one Xilinx FPGA and additional dual
ported RAM. It serves two dedicated functions: It acts as a
separate application specific processing unit for tasks with
deadlines too short to be met in software and it provides a
flexible way of linking the prototyping architecture to the

embedding process. A more detailed overview of REAR is
given in [2].

5.2. Applications

In this subsection we describe two sample applications,
developed to test the REAR target architecture. As a first
non–time critical example alow level control of a robot
arm was designed to verify the basic functions of our
CIOP (SPU), the I/O–interface and the HW/SW–interface
(RTU/SPU and global bus/SPU). The flaw of this design
was the expensive programming interface compared with
the complexity of the whole task, taking up 72 % of the 576
configurable logic blocks (CLBs) and most of the routing
resources available in the XC4013E . By extracting the non
time critical functions, like the stepper motor speed control
and even the phase generation to software, routing resources
and therefore space for other I/O tasks in the CIOP could be
regained.

CAN controller and monitor A CAN bus controller and
monitor system was implemented on REAR as an applica-
tion which imposes a wide range of timing constraints and
complexity on the implementation. CAN [1] is a serial field
bus which was originally developed for communication in
vehicles, but has reached by now widespread use in the field
of production automation. The CAN bus runs a masterless,
message oriented bus protocol with CSMA/CA (Carrier-
Sense Multiple Access/Collision Avoidance) access mode.
Bus access is granted to each participant by bitwise arbi-
tration using individual message IDs. Several cooperating
error detection mechanisms guarantee fast system wide er-
ror detection and error recovery. CSMA/CA bus access, in
combination with message priorities, the short data block
length (max. 8 Byte) and data rates up to 1 Mbit/s lead to
very short message latencies.

In our example, the REAR prototyping environment is
used to implement a CAN bus monitoring and diagnosis
system. Two distinct functions need to be performed by the
CAN monitor: First, it has to be a fully functionalCAN bus
participant [10]. In addition to that it needs to execute the
data sampling and test signal and error generation functions
necessary formonitoring and analyzing the CAN bus.

The individual tasks to be performed for the CAN bus
participation (from now on called CAN bus controller) can
be classified by an orthogonal set of attributes: The deadline
of the task and complexity of the function to be performed.
This is shown in Table 1 (see also Figure 1).

An analysis of the timing and complexity requirements
resulting from the CAN bus protocol yields three distinct
groups of tasks. Atmessage level, the complexity of the
tasks — message identification and message frame genera-
tion, CRC checksum generation, error protocol functions,

Table 1. CAN controller functions

Function Deadline Complexity

Message Level:
Message Identification 44–108�s medium
Message Frame Generation 44–108�s medium
CRC Checksum Generation 44–108�s high
Error Logic 44–108�s high
Data Handling 44–108�s medium
Bit Level:
Message Transmission 1 �s medium
CRC Error Detection 1–3�s medium
Bit Stuffing and Destuffing 1 �s medium
Below Bit Level:
Bit Timing 270 ns low
Bitwise Arbitration 60 ns very low

data handling — is medium to high. The timing con-
straint here is identical with the length of one CAN mes-
sage,44 � 108 �s (44 control and up to 64 data bits, at an
assumed data rate of 1 Mbit/s).

The controller tasks atbit level — transmission of the
message bits, CRC checksum error detection, bit stuffing
and destuffing— need to be finished in the worst case before
the start of the next message bit. This results in a timing
constraint of1 �s. The complexity of these tasks is medium.

Bitwise arbitration — i. e. transmission is stopped before
the next message bit if a station sending a message with
higher priority ID is detected on the bus — and synchro-
nization of the sample points while receiving the message
bit stream (bit timing) are tasks with timing constraintsbe-
low bit level. The complexity of these tasks is low to very
low.

The monitoring and diagnostic functions of the CAN
component are not mentioned explicitly in Table 1. Data
sampling and test signal generation can be performed at
message level or at bit level. Therefore, the timing con-
straints of the CAN controller functions are also valid for
the monitoring and diagnostic functions.

In a first approach, the entire CAN controller was re-
alized in hardware on the CIOP, while the CAN moni-
toring and diagnosis functions were implemented on RTU
and HPU, using a basic implementation of message queues
as outlined in Section 3.4 (Fig. 5). The automated de-
sign process for the HW–part involved the following CASE
tool chain: The CAN controller was specified in Statemate
which also generated the VHDL–Code. Synopsis was used
for synthesis and Xilinx XAct for fitting the netlists into the
target technology FPGA.

The hardest time constraints on the CAN controller are
imposed by the bit timing and bitwise arbitration tasks,
with deadlines of60 ns and270 ns. The execution times of
the arbitration mechanism and the bit synchronization were
found to be 1 and 2 clock cycles, respectively. On a FPGA

global PCI busexpansion port
using theusing the RTU’s

CAN Monitor

CAN Panel

CAN bus

Control & Status

Message Router

HPU

Physical Layer

CAN Application

Data Link Layer

CIOP

data transmission

RTU

data transmission

Figure 5. Task allocation and communication
of the CAN application

board driven with 25 MHz the execution times then amount
to 40 ns and80 ns. It was therefore certain that the dead-
lines of these two functions would be met in this implemen-
tation.

Two versions of the CAN controller were realized and
tested on the CIOP: The first one was implemented on a Xil-
inx 4013E FPGA. The entire CAN controller was by far too
large for this component, so a simple controller with rudi-
mentary functionality (transmission and reception of com-
plete message frames, no message frame handling, no error
handling, no CRC check) was implemented. The almost
by factor two larger Xilinx 4025E, however, could accom-
modate the entire CAN controller. Both controllers were
tested successfully on a CAN bus at the maximum bit rate
of 1 Mbit/s.

In the near future, the CAN controller will be used as an
example application for a further exploration of the HW–
SW–boundary. Based on the timing/complexity analysis in
Table 1, parts of the CAN controller will be implemented
on the RTU, while the tasks with very short deadlines will
remain in the CIOP.

6. Summary and future work

Taking into account the different characteristics of real–
time tasks, we introduced a task classification model, which
enables the design of less oversized target systems. This
model leads to an architectural framework, whose pro-
cessing unit templates allow the simple prediction of the
WCETs. An adapted design process, extended by the
schedulability analysis, results in an improved processor
utilization of the target architecture components. Using the
presented architectural framework, we built a rapid proto-
typing environment (REAR target architecture) and devel-
oped sample applications to validate the correctness of our
classification concept in different scenarios.

In the near future we will refine and evaluate the sim-
ple cache model and the corresponding time slice operation
mode on the HPU. Next, the design of a more sophisticated

application example is planned, which requires the integra-
tion of a “Class 4 SPU” in the REAR architecture.

References

[1] K. Etschberger et al. CAN Controller–Area–Network,
Grundlagen, Protokolle, Bausteine, Anwendungen. Hanser
Verlag, 1994.

[2] F. Fischer, T. Kolloch, A. Muth, and G. Färber. A con-
figurable target architecture for rapid prototyping high per-
formance control systems. In H. R. Arabnia et al., edi-
tors, Proceedings of the International Conference on Par-
allel and Distributed Processing Techniques and Applica-
tions (PDPTA’97), volume 3, pages 1382–1390, Las Vegas,
Nevada, USA, June 30 – July 3 1997.

[3] K. Gresser. Echtzeitnachweis ereignisgesteuerter Realzeit-
systeme. Number 268 in Fortschrittsberichte VDI, Reihe 10.
VDI–Verlag, Düsseldorf, 1993. Dissertation am Lehrstuhl
für Prozessrechner, Technische Universität München.

[4] K. Gresser. An event model for deadline verification of
hard real–time systems. InProc. Fifth Euromicro Workshop
on Real Time Systems, pages 118–123, Oulu, Finland, June
1993. IEEE.

[5] K. Jeffay. Scheduling sporadic tasks with shared resources
in real–time systems. InProceedings of the IEEE Real–Time
Systems Symposium, pages 89–99, Phoenix, AZ, Dec. 1992.

[6] H. Kopetz. Scheduling in distributed real time systems.
In Proceedings of the Advanced Seminar on Real-Time Lo-
cal Area Networks, pages 105–126, INRIA, Rocquencourt,
France, 1986.

[7] J. Liedtke, H. Härtig, and M. Hohmuth. OS–controlled
cache predictability for real–time systems. InProceedings
of the Third IEEE Real-time Technology and Applications
Symposium (RTAS’97), Montreal, Canada, June 9–11 1997.

[8] F. Müller. Compiler support for software-based cache par-
titioning. In ACM SIGPLAN Workshop on Language, Com-
piler, and Tool Support for Real-Time Systems, pages 137–
145, June 1995.

[9] J. C. Mogul and A. Borg. The effect of context switches on
cache performance. InProc. 4th Intern. Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, pages 75–84, Santa Clara, Apr. 1991. ACM.

[10] Philips Semiconductors, Eindhoven, The Netherlands.
PCA82C200, Stand–alone CAN Controller, Product Speci-
fication, 1992.

[11] B. Smith. The hep supercomputer and its applications. In
J. S. Kowalik, editor,Parallel MIMD Computation, pages
41–55. The MIT Press, 1985.

[12] H. Thielen. Automated design of distributed computer con-
trol systems with predictable timing behaviour. In J. A. de la
Puente and M. G. Rodd, editors,Proc. 12th IFAC Work-
shop on Distributed Computer Control Systems, pages 47–
52, Toledo, Spain, Sept. 1994. IFAC.

