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ABSTRACT

The design of mobile robots which can cope with unexpected disturbances
like obstacles or misplaced objects is an active field of research. Such an
autonomous robot assesses the situation by comparing data from its sensors
with an internal model of its environment. In this paper we present an
object-oriented geometric model and an exemplaric model update: A new
object is detected by a radar sensor and identified using a video sensor.
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INTRODUCTION

This work is part of a research project! towards the development of autonomous mo-
bile robots which can fulfil service and transport tasks in structured environments like
office buildings and industrial plants. To be able to react to changes in its environ-
ment a robot has to survey its surroundings with one or more sensors. Based on the
sensor data it updates an internal description (environmental or world model). This
description includes the position of the robot itself, the positions of obstacles and the
positions and states of other relevant objects. The model can also be considered as a
set, of hypotheses. These hypotheses can be tested and improved by comparison with
the sensor data.

Raw sensor data is preprocessed to extract sensor-specific features. In case of video
cameras these features are typically edges. In case of laser and microwave radar, which
acquire 3-D range and velocity information, these features include intersection lines
between object surfaces and the scanning sensor beam.

In our approach a common geometric model of the environment is used for all
kinds of sensors. This avoids consistency problems between parallel sensor-specific
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bereich 331, “Informationsverarbeitung in autonomen, mobilen Handhabungssystemen”, projects L4
and Q5.



descriptions. Sensor-specific features are calculated online corresponding to the sensor
type and the hypothesis to be tested.

By comparing the two sets of features - extracted and predicted ones - the hypothesis
can be modified until it is approved and finally fed back into the model.

RADAR SENSOR

Using microwave radar in the field of robotics seems to be very uncommon. Such
sensors are generally associated with the detection of objects like airplanes or ships
over far distances. Since the propagation of microwaves is nearly independent of
atmospheric conditions and coherent signal processing allows high sensitivity, it is
possible to cover distances up to 100 m at reasonable transmitted power. This feature
combined with the direct access to the object’s velocity lets a microwave radar usefully
enhance the sensing capabilities of an autonomous system, as other self-illuminating
sensors like laser scanners and ultrasonic sensors hardly exceed a detection range of
15m.

The project L4 is engaged in the development and evaluation of an experimental
94 GHz sensor. It is designed to measure distances as well as velocities of objects. The
distances are determined via the time of flight of single pulses. A very short pulse
width of 1.7 ns results in a radial resolution of 25 cm. The distance of resolved objects
can be measured with an accuracy of 5mm. The velocity is directly accessible via
the Doppler effect. This effect requires a coherent signal source to guarantee a fixed
relation between transmitted and reflected signal. In our case an IMPATT oscillator,
phase-locked by a Gunn oscillator, guarantees high phase stability at sufficient peak
power. The carrier frequency of 94 GHz yields corresponding Doppler frequencies of
625 Hz per 1 m/s, which permit accurate velocity measurement within a short obser-
vation time. For the angular resolution of 1.5° the radar beam is focused by a Fresnel
type lens of 170 mm diameter. As shown in figure 1, this sharp beam is deflected by a
mirror for three-dimensional imaging of the surroundings. The implementation of the
sensor is described in detail in [3], the most important system parameters are shown
in table 1.
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Based on this system various applications like navigation and observation, which



correspond to typical perception tasks of an autonomous robot, have been imple-
mented in the last years [6].

VIDEO SENSOR

For the video sensor a standard industrial CCD camera is used. The projection
of a 3D point in the scene into the corresponding 2D pixel of the video image is
characterized by the model of a pinhole camera with radial distortions. The underlying
camera parameters are determined by a specific calibration process (see [1] for a brief
description). The image preprocessing extracting edges as image features is based on
the image analysis system HORUS.

MODEL STRUCTURE

To permit sensor independent abstractions the model structure which is examined
by the project Q5 is based on three-dimensional solid modelling techniques. Solid
bodies are stored by a polyhedral boundary representation. If possible, sensor-specific
features are calculated from this boundary representation using a corresponding sensor
model. Intersections between e.g. a scanning radar beam and the boundaries can
easily be calculated online. In the case of a video sensor an exact sensor model is
difficult to obtain because the sensor data depends on various factors like surface
properties and illumination. Furthermore an exact calculation would be very time-
consuming. Therefore a simplified approach is used. The sensor model is reduced to
perspective projection and edges of good visibility are represented separately by three
dimensional line-segments, so-called video-edges. These video-edges are based on the
same set of vertices as the boundary description but form only a subset of the boundary
edges. This dualism reduces the prediction of video-features to a mere visibility test.
It also allows a simplification of the boundary representation to exclusively convex
polygons which additionally facilitates the visibility calculation.

To permit realtime access to the model appropriate index structures are neces-
sary. In first experiments demonstrating localization in a static environment, a two-
dimensional spatial-tree has proven to be an efficient index structure for otherwise
unrelated model elements [5].

To allow more complex perception tasks and non-static environments, a hierarchic
structure with additional symbolic information is currently examined [2] (figure 2a).
Model elements are aggregated to named objects. Because it is neither possible nor
necessary to describe the complete environment of the robot in terms of distinguish-
able, named objects, a pseudo-object called background is introduced. It encompasses
all elements without special object assignment.

The description of a named object is built up recursively. An object can contain
other objects which are termed member-objects. Object and member-object are con-
nected by a joint which exhibits exactly one rotatory or translatoric degree of freedom,
following the conventions used in manipulator kinematics. To deal with unknown
states during a prediction the space potentially being occupied by a moving member-
object is stored as an additional polyhedron, called mask. During the visibility test
this polyhedron is used to literally mask out potentially hidden features.

Each branch in the object-tree carries its own boundary polygons and video-edges.
Geometrically identical objects form an object class. The invariant parts of an object
description are stored only once for each class; the objects (i.e. the instances of a
class) differ in their individual positions and joint states.



MODEL UPDATE

In our approach the model update is divided into several widely independent percep-
tion tasks. They interact with the model on different levels of abstraction according
to the parts of the model they regard as hypothetic (figure 2b).
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Figure 2. (a) Model structure, (b) Model update by parallel perception tasks

Each perception task is implemented by a separate client module which commands
at least one sensor, extracts its own relevant features from the sensor data and simul-
tanously requests predictions from the model server. Then it compares the two sets,
interpretes the difference and updates the model accordingly. Interferences between
the quasi-parallel model accesses of different tasks are avoided by private communi-
cation channels containing local copies of hypothetic model subsets.

A common parameter which is assumed to be known by several perception tasks
is the position of the robot itself. Localizing with a microwave radar or a video
sensor is accomplished by establishing correspondences between the sensor data and
model information followed by estimating the position of the sensor using least square
optimization [5]. In case of the radar sensor the two-dimensional echo map is matched
with the intersection lines of the solid body boundaries and the scanning plane. In
case of the video-sensor extracted edges are matched with the projected wvideo-edges
supplied by the model.

In consequence of the radar’s far detection range a localization can be carried out
with a coarse or without any a-priori hypothesis about the robot’s position. In contrast
to that, localization with the video-sensor already needs a good position hypothesis.

Once a valid position is found and has to be successively updated, a tracking ap-
proach which uses the spatio-temporal restrictions of the robot-position can be ap-
plied. The last estimated or dynamically extrapolated position is used as a position
hypothesis for the next prediction. If the cycle-time is short enough in comparision
with the speed of the robot, model information can be used to reduce measurement
time by defining regions of interest. Both types of localization, the initial localization
with the radar sensor and the successive localization with radar or video-sensor have
been demonstrated in several environments [5, 7].



Severe mismatch of the features predicted for the current robot-position and the
sensor data indicates a variation of the environment. Therefore a second task evaluates
these mismatches and initiates object identification. If none of the known object
classes can be matched, the object is inserted into the model as part of the background.
This at least prevents collisions and further mismatches.

The applied algorithms for video-based object identification and localization are
described e. g. in [1, 4]. Predictions corresponding to single object classes are requested
from the model and matched with the sensor data.

In addition to the model-update done by the various perception tasks information
can also be updated on a symbolic level. Independently operating robots communicate
about environmental variations by exchanging object names and attributes, i. e. states
and positions, via a symbolic communication medium.

EXPERIMENTAL EXAMPLE

The shown experiment was carried out at the experimental industrial plant of the
Institut fir Werkzeugmaschinen und Betriebswissenschaften (iwb) using the experi-
mental mobile platform MACI (figure 3a). The platform is equipped with a radar and
a video sensor and several computers connected by ethernet and TCP/IP. All mod-
ules, i.e. model and perception tasks, are implemented by RPC-servers respectively
clients. The platform is moving along a clearance between the machine-tools which
is expected not to be obstructed (figure 4a). The radar sensor is scanning an area of
5m x 40° in front of the vehicle. To cover the space down to the floor the radar beam
is inclined by 12.5°. In figure 3b radar echos which can be matched with predictions
of the model are shown in light grey. Echos depicted in dark grey can not be matched
and indicate the presence of a yet unknown object. Based on this coarse position
hypothesis the video-based object identification consisting of an object recognition
followed by a fine localization is initiated.
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Figure 3. (a) Experimental platform MACI, (b) correlation of radar echos and model

The video-image and a feature-prediction corresponding to the class “chair” and
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Figure 4. (a) Model before the update, (b) identified object

the final object position and are shown in figure 4b. Once the object is identified it
is instantiated in the model.

CONCLUSION

The results of the experiments show the suitability of the described model structure to
support concurrent perception tasks on a mobile robot. The division of model updates
into several widely independent perception task facilitates combining the advantages
of very different sensor types. The range data of the radar sensor is exploited in
two ways to improve the performance of object identification. By defining a region
of interest the computation time for the image preprocessing is typically reduced by
the factor 3 and the initial position hypothesis yields additional constraints for object
identification.
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