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e-mail: troll@hfs.e-technik.tu-muenchen.deABSTRACTThe design of mobile robots which can cope with unexpected disturbanceslike obstacles or misplaced objects is an active �eld of research. Such anautonomous robot assesses the situation by comparing data from its sensorswith an internal model of its environment. In this paper we present anobject-oriented geometric model and an exemplaric model update: A newobject is detected by a radar sensor and identi�ed using a video sensor.KEYWORDS: autonomous mobile robot, environmental modelling,microwave radar sensorINTRODUCTIONThis work is part of a research project1 towards the development of autonomous mo-bile robots which can ful�l service and transport tasks in structured environments likeo�ce buildings and industrial plants. To be able to react to changes in its environ-ment a robot has to survey its surroundings with one or more sensors. Based on thesensor data it updates an internal description (environmental or world model). Thisdescription includes the position of the robot itself, the positions of obstacles and thepositions and states of other relevant objects. The model can also be considered as aset of hypotheses. These hypotheses can be tested and improved by comparison withthe sensor data.Raw sensor data is preprocessed to extract sensor-speci�c features. In case of videocameras these features are typically edges. In case of laser and microwave radar, whichacquire 3-D range and velocity information, these features include intersection linesbetween object surfaces and the scanning sensor beam.In our approach a common geometric model of the environment is used for allkinds of sensors. This avoids consistency problems between parallel sensor-speci�c1This work was supported by Deutsche Forschungsgemeinschaft within the Sonderforschungs-bereich 331, \Informationsverarbeitung in autonomen, mobilen Handhabungssystemen", projects L4and Q5.



descriptions. Sensor-speci�c features are calculated online corresponding to the sensortype and the hypothesis to be tested.By comparing the two sets of features - extracted and predicted ones - the hypothesiscan be modi�ed until it is approved and �nally fed back into the model.RADAR SENSORUsing microwave radar in the �eld of robotics seems to be very uncommon. Suchsensors are generally associated with the detection of objects like airplanes or shipsover far distances. Since the propagation of microwaves is nearly independent ofatmospheric conditions and coherent signal processing allows high sensitivity, it ispossible to cover distances up to 100m at reasonable transmitted power. This featurecombined with the direct access to the object's velocity lets a microwave radar usefullyenhance the sensing capabilities of an autonomous system, as other self-illuminatingsensors like laser scanners and ultrasonic sensors hardly exceed a detection range of15m.The project L4 is engaged in the development and evaluation of an experimental94GHz sensor. It is designed to measure distances as well as velocities of objects. Thedistances are determined via the time of 
ight of single pulses. A very short pulsewidth of 1.7 ns results in a radial resolution of 25 cm. The distance of resolved objectscan be measured with an accuracy of 5mm. The velocity is directly accessible viathe Doppler e�ect. This e�ect requires a coherent signal source to guarantee a �xedrelation between transmitted and re
ected signal. In our case an IMPATT oscillator,phase-locked by a Gunn oscillator, guarantees high phase stability at su�cient peakpower. The carrier frequency of 94 GHz yields corresponding Doppler frequencies of625Hz per 1m/s, which permit accurate velocity measurement within a short obser-vation time. For the angular resolution of 1.5� the radar beam is focused by a Fresneltype lens of 170mm diameter. As shown in �gure 1, this sharp beam is de
ected by amirror for three-dimensional imaging of the surroundings. The implementation of thesensor is described in detail in [3], the most important system parameters are shownin table 1.
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Based on this system various applications like navigation and observation, which



correspond to typical perception tasks of an autonomous robot, have been imple-mented in the last years [6].VIDEO SENSORFor the video sensor a standard industrial CCD camera is used. The projectionof a 3D point in the scene into the corresponding 2D pixel of the video image ischaracterized by the model of a pinhole camera with radial distortions. The underlyingcamera parameters are determined by a speci�c calibration process (see [1] for a briefdescription). The image preprocessing extracting edges as image features is based onthe image analysis system Horus.MODEL STRUCTURETo permit sensor independent abstractions the model structure which is examinedby the project Q5 is based on three-dimensional solid modelling techniques. Solidbodies are stored by a polyhedral boundary representation. If possible, sensor-speci�cfeatures are calculated from this boundary representation using a corresponding sensormodel. Intersections between e. g. a scanning radar beam and the boundaries caneasily be calculated online. In the case of a video sensor an exact sensor model isdi�cult to obtain because the sensor data depends on various factors like surfaceproperties and illumination. Furthermore an exact calculation would be very time-consuming. Therefore a simpli�ed approach is used. The sensor model is reduced toperspective projection and edges of good visibility are represented separately by threedimensional line-segments, so-called video-edges. These video-edges are based on thesame set of vertices as the boundary description but form only a subset of the boundaryedges. This dualism reduces the prediction of video-features to a mere visibility test.It also allows a simpli�cation of the boundary representation to exclusively convexpolygons which additionally facilitates the visibility calculation.To permit realtime access to the model appropriate index structures are neces-sary. In �rst experiments demonstrating localization in a static environment, a two-dimensional spatial-tree has proven to be an e�cient index structure for otherwiseunrelated model elements [5].To allow more complex perception tasks and non-static environments, a hierarchicstructure with additional symbolic information is currently examined [2] (�gure 2a).Model elements are aggregated to named objects. Because it is neither possible nornecessary to describe the complete environment of the robot in terms of distinguish-able, named objects, a pseudo-object called background is introduced. It encompassesall elements without special object assignment.The description of a named object is built up recursively. An object can containother objects which are termed member-objects. Object and member-object are con-nected by a joint which exhibits exactly one rotatory or translatoric degree of freedom,following the conventions used in manipulator kinematics. To deal with unknownstates during a prediction the space potentially being occupied by a moving member-object is stored as an additional polyhedron, called mask. During the visibility testthis polyhedron is used to literally mask out potentially hidden features.Each branch in the object-tree carries its own boundary polygons and video-edges.Geometrically identical objects form an object class. The invariant parts of an objectdescription are stored only once for each class; the objects (i. e. the instances of aclass) di�er in their individual positions and joint states.



MODEL UPDATEIn our approach the model update is divided into several widely independent percep-tion tasks. They interact with the model on di�erent levels of abstraction accordingto the parts of the model they regard as hypothetic (�gure 2b).
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Figure 2. (a) Model structure, (b) Model update by parallel perception tasksEach perception task is implemented by a separate client module which commandsat least one sensor, extracts its own relevant features from the sensor data and simul-tanously requests predictions from the model server. Then it compares the two sets,interpretes the di�erence and updates the model accordingly. Interferences betweenthe quasi-parallel model accesses of di�erent tasks are avoided by private communi-cation channels containing local copies of hypothetic model subsets.A common parameter which is assumed to be known by several perception tasksis the position of the robot itself. Localizing with a microwave radar or a videosensor is accomplished by establishing correspondences between the sensor data andmodel information followed by estimating the position of the sensor using least squareoptimization [5]. In case of the radar sensor the two-dimensional echo map is matchedwith the intersection lines of the solid body boundaries and the scanning plane. Incase of the video-sensor extracted edges are matched with the projected video-edgessupplied by the model.In consequence of the radar's far detection range a localization can be carried outwith a coarse or without any a-priori hypothesis about the robot's position. In contrastto that, localization with the video-sensor already needs a good position hypothesis.Once a valid position is found and has to be successively updated, a tracking ap-proach which uses the spatio-temporal restrictions of the robot-position can be ap-plied. The last estimated or dynamically extrapolated position is used as a positionhypothesis for the next prediction. If the cycle-time is short enough in comparisionwith the speed of the robot, model information can be used to reduce measurementtime by de�ning regions of interest. Both types of localization, the initial localizationwith the radar sensor and the successive localization with radar or video-sensor havebeen demonstrated in several environments [5, 7].



Severe mismatch of the features predicted for the current robot-position and thesensor data indicates a variation of the environment. Therefore a second task evaluatesthese mismatches and initiates object identi�cation. If none of the known objectclasses can be matched, the object is inserted into the model as part of the background.This at least prevents collisions and further mismatches.The applied algorithms for video-based object identi�cation and localization aredescribed e. g. in [1, 4]. Predictions corresponding to single object classes are requestedfrom the model and matched with the sensor data.In addition to the model-update done by the various perception tasks informationcan also be updated on a symbolic level. Independently operating robots communicateabout environmental variations by exchanging object names and attributes, i. e. statesand positions, via a symbolic communication medium.EXPERIMENTAL EXAMPLEThe shown experiment was carried out at the experimental industrial plant of theInstitut f�ur Werkzeugmaschinen und Betriebswissenschaften (iwb) using the experi-mental mobile platform MAC1 (�gure 3a). The platform is equipped with a radar anda video sensor and several computers connected by ethernet and TCP/IP. All mod-ules, i. e. model and perception tasks, are implemented by RPC-servers respectivelyclients. The platform is moving along a clearance between the machine-tools whichis expected not to be obstructed (�gure 4a). The radar sensor is scanning an area of5m x 40� in front of the vehicle. To cover the space down to the 
oor the radar beamis inclined by 12.5�. In �gure 3b radar echos which can be matched with predictionsof the model are shown in light grey. Echos depicted in dark grey can not be matchedand indicate the presence of a yet unknown object. Based on this coarse positionhypothesis the video-based object identi�cation consisting of an object recognitionfollowed by a �ne localization is initiated.
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Figure 3. (a) Experimental platform MAC1, (b) correlation of radar echos and modelThe video-image and a feature-prediction corresponding to the class \chair" and



Figure 4. (a) Model before the update, (b) identi�ed objectthe �nal object position and are shown in �gure 4b. Once the object is identi�ed itis instantiated in the model.CONCLUSIONThe results of the experiments show the suitability of the described model structure tosupport concurrent perception tasks on a mobile robot. The division of model updatesinto several widely independent perception task facilitates combining the advantagesof very di�erent sensor types. The range data of the radar sensor is exploited intwo ways to improve the performance of object identi�cation. By de�ning a regionof interest the computation time for the image preprocessing is typically reduced bythe factor 3 and the initial position hypothesis yields additional constraints for objectidenti�cation.REFERENCES1. S. Blessing, S. Lanser, and C. Zierl. Vision-based Handling with a Mobile Robot. In 6.ISRAM, Montpellier, May 1996.2. Alexa Hauck and Norbert O. St�o�er. A Hierarchic World Model supporting Video{Based Localization, Exploration and Object Identi�cation. In 2. Asian Conference onComputer Vision, pages 176{180, 1995.3. M. Lange and J. Detlefsen. 94 GHz Three-Dimensional Imaging Radar Sensor for Au-tonomous Vehicles. IEEE Trans. on Microwave Theory Tech., 39(8):819{827, May 1991.4. Stefan Lanser, Olaf Munkelt, and Christoph Zierl. Robust video-based object recogni-tion using cad models. In U. Rembold, R. Dillmann, L.O. Hertzberger, and T. Kanade,editors, Proc Conf. Intelligent Autonomous Systems, pages 529{536. IOS Press, 1995.5. Achim Ru�, Stefan Lanser, Olaf Munkelt, and Michael Rozmann. Kontinuier-liche Lokalisation mit Video- und Radarsensorik unter Nutzung eines geometrisch-topologischen Umgebungsmodells. In 9. Fachgespr�ach \Autonome Mobile Systeme",M�unchen, pages 313{327, 1993.6. M. Ro�zmann and J. Detlefsen. Environmental exploration based on a three-dimensionalimaging radar sensor. In Proc. IROS, pages 422{429, Rayleigh, NC, 1992.
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