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A Hierarchic World Model Supporting Video-BasedLocalization, Exploration and Object Identi�cation?Alexa Hauck, Norbert O. St�o�erDepartment of Process Control ComputersProf. Dr. -Ing. G. F�arberTechnical University of Munich, Germanye-mail: fhauckjsto�erg@lpr.e-technik.tu-muenchen.deAbstract The design of mobile robots which can copewith unexpected disturbances like obstacles or misplacedobjects is an active �eld of research. Such an autono-mous robot assesses the situation by comparing data fromone or more sensors with an internal representation of itsenvironment. In this paper we present a hierarchicallystructured world model that combines a general geome-tric object representation with sensor- and task-speci�cfeatures and therefore can be used for various sensors andperception tasks. A symbolic layer enables communica-tion with planning instances or other robots.1 IntroductionThis work is part of a research project towards develop-ment of autonomous mobile robots (AMR) which canful�l service and transport tasks in structured environ-ments like o�ce buildings and industrial plants. Forplanning its actions such an autonomous robot needsan internal representation of its environment (environ-mental or world model). To keep this representation upto date it constantly has to compare the model withdata acquired by one or more sensors. A model can alsobe considered as a set of hypotheses regarding the posi-tions and states of the elements of the world, includingthe AMR itself. These hypotheses can be tested andmodi�ed by comparison with sensor data.Raw sensor data is preprocessed to extract sensor-speci�c features. In case of a grey-scale video sensorthese features are typically edges. To con�rm or rejecthypotheses corresponding features are predicted fromthe model and compared with extracted ones.Most modelling techniques described in literature arespecialized on a certain application; thus such modelsare well adapted to speci�c perception tasks and sensors[2] or environments [4] but cannot be used in a generalway. Information is often stored merely on feature level;sometimes several models are held in parallel and usedindependently for di�erent tasks. In contrast to this ourapproach aims at designing a generally applicable world?The work presented in this paper is supported by the Deut-sche Forschungsgemeinschaft as part of an interdisciplinary rese-arch project on \Information Processing in Autonomous MobileRobots" (SFB 331).

model by combining information needed for various sen-sors and robot tasks into one consistent description ondi�erent levels of abstraction.In this paper we emphasize the interactions with vi-deo sensors. In chapter 2 we describe the internals ofthe model itself and in chapter 3 the possible accessesby several perception tasks, concentrating on one expe-rimental example in chapter 4.2 Structure of the modelTo permit sensor independent abstractions the modelstructure is based on three dimensional solid modellingtechniques.Elements of the world in
uence sensor images in twoways. They can be the source of sensor-speci�c featuresand they can hide other elements. The latter aspectis modelled by a polyhedral boundary representation,called the obstacle description.If possible, sensor-speci�c features are calculated fromthe obstacles like points of normal incidence for a radarbeam. Because of their dependency of various factorslike colours and illumination, video-speci�c edges aremodelled separately by line-segments which are testedfor their visibility and projected on the image-plane du-ring the prediction. These line-segments are based onthe same set of vertices as the obstacles but do not ne-cessarily coincide with boundary edges. This dualismallows the representation of the obstacles by exclusivelyconvex polygons which facilitates the visibility calcula-tion.To initiate a prediction the obstacles and features in-side the vision pyramid are determined. The obstaclesare rendered into a z-bu�er [5]. Against the resultingdepth-map the corresponding features are then testedfor their visibility. To access the vertices inside the vi-sion pyramid appropriate index structures are nesces-sary. In �rst experiments demonstrating localization ina static environment, a two-dimensional spatial-tree hasproven to be an e�cient index structure for otherwiseunrelated world elements [7, 8].To allow for more complex perception tasks and non-static environments, we are now examining a hierarchic



structure with additional symbolic information (see �-gure 1).Elements of the world are aggregated to form namedobjects. Because it is neither possible nor necessary todescribe the complete environment of the robot in termsof distinguishable, named objects, a pseudo object cal-led background is introduced. It encompasses all worldelements without special object assignment.
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Figure 1: Model structureThe description of a named object is built up recur-sively. An object can contain other objects which aretermed member-objects. The distinction between objectand member-objects is made by kinematic degrees offreedom. That means object and member-object arealways connected by a rotatory or translatoric joint, re-presented by a modi�ed Denavit-Hartenberg formalism.The possible positions of a joint are normalized to theunit interval allowing a uni�ed treatment of joint-states;additionally there exists a state called unknown and alist of preferred states.Each branch in the object-tree carries its own obstacleand feature description. The representation of featuresis also extended by the possibility of de�ning aggrega-tions of simple features and attributes to form complexones. Those complex features may be task-speci�c toalleviate special matching problems. An example for theuse of such aggregated features is given in chapter 4.To deal with unknown states during a prediction asexplained in chapter 3.1, the space potentially being oc-cupied by a moving member-object is stored as an ad-ditional obstacle, called mask.Geometrically identical objects form an object class.The invariant parts of an object description are storedonly once for each class; the objects (i.e. the instances

of a class) di�er in their individual positions and jointstates.
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Figure 2: Model of a corridorFigure 2 shows an exemplaric model of a corridor,consisting of two doors of the same class and some wallswhich are part of the background. For this depiction nohidden lines were removed. black lines are video-speci�cfeatures, dark-grey lines stand for obstacle boundarieswhich do not coincide with features and the light-greylines represent the masks of the door-wings. The door-wings themselves are left out for simpli�cation reasons.3 Application framework andmodel accessA possible application framework for the world model isshown in �gure 3.
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Figure 3: Application framework



Several perception tasks1 are engaged in keeping theinternal representation of the robot's environment up todate by testing stored information against sensor data.They interact with the model on di�erent levels of ab-straction according to the parts of the model they re-gard as hypothetic. Each perception task is implemen-ted by a separate client module which extracts its ownrelevant features from the sensor data and simultano-usly requests predictions from the model server. Thenit compares the two sets, interpretes the di�erence andupdates the model accordingly.Interferences between the quasi-parallel model acces-ses of di�erent tasks are avoided by private communica-tion channels, called accessors. These accessors containthe current set of parameters, like assumed camera pose,states and two virtual pointers termed focus and zoom.The focus points on the task relevant part of the model;after \focussing" an object the states of a private copyof this object are accessible. This allows testing hypo-thetic states without changing the world-model. Thezoom in
uences the result of the feature prediction in away comparable to a camera zoom: After pointing it ona node of the object-tree only features of the downwardparts are predicted. Note that still all obstacles are usedfor the visibility calculation. Both, focus and zoom, canbe moved step by step up and down the object tree. Toallow successive tests of similiar hypotheses, the para-meters are handed to the model incrementally: E.g. aclient can �rst set the camera pose, focus on the ob-ject of interest and then alternatingly set the state of ajoint and get a prediction without having to specify poseand object again each time. The use of those virtualpointers also encapsulates the internal representation ofthe object-tree, allowing further optimizations withoutchanges in the model access interface.3.1 LocalizationA common parameter which is assumed to be knownby several perception tasks is the position of the robotitself, i.e. the camera pose.It is updated by a task called localization [9]. For theprediction all world elements belonging to objects orthe background are taken into account at their currentstates. Thus the accessor of this task is "focussed onthe world".Due to the spatio-temporal restriction of the robot-position a tracking approach can be applied. The lastcalculated or dynamically extrapolated position is usedfor the next prediction. If the cycle-time is short enoughin comparision with the speed of the robot, features canstill be matched and the position hypothesis improved.Feature extraction only needs to take place inside ofsearch windows around the predicted features.1An experimental version of this framework has been realizedas part of the interdisciplinary research project SFB 331 ("Infor-mation Processing in AutonomousMobile Robots") with di�erentgroups working on the individual tasks.

Since the quality of the pose estimation depends on anaccurate match only features with guaranteed visibilitymay be predicted. Member-objects with unknown jointstate are replaced by the appropriate mask. The projec-tion of this mask into the z-bu�er literally "masks out"features which may be hidden by the moveable member-object.Figure 4 illustrates the e�ect. While the position ofthe left door-wing is known (maybe from a concurrentstate identi�cation task) the right one is replaced byits mask. The obstacles are shaded according to thecontents of the z-bu�er; light shades represent smallz-values. Actually predicted features are displayed asblack lines, hidden ones as light grey lines.
Figure 4: Contents of the z-bu�er3.2 ExplorationSevere mismatch of the features predicted for the cur-rent robot-position (according to chapter 3.1) and theextracted ones indicate either a change of the features'position or the presence of new objects. Therefore asecond task called exploration is charged with evalua-ting these mismatches and eventually updating featurepositions respectively inserting new elements on vari-ous levels into the model [3]. For this purpose it tracksand consolidates new features, tries to reconstruct theobstacle description and initiates object identi�cations.If none of the known object classes can be matched, thenew features and obstacles are inserted into the model aspart of the background. This at least prevents collisionsand further mismatches.3.3 Object Identi�cationIn the experimental framework, several algorithms forobject identi�cation have been examined. All have theneed for feature predictions for the assumed object in



common [3, 6]. The accessor is \focussed on object clas-ses" and poses are supplied in class-relative coordinatesystems. If an object �nally is identi�ed, a new instanceis created and inserted into the model.3.4 State Identi�cationThe task with the most model interactions is the iden-ti�cation of yet unknown object states. It includes fo-cussing on the regarded object, recursive testing of hy-pothetic states and movements in the object-tree. Anexperimental example is given in chapter 4.3.5 CommunicationIn addition to these sensor-speci�c access channels, in-formation can be retrieved and manipulated on a sym-bolic level. Independently operating robots can com-municate about the environment by exchanging objectnames and attributes, i.e. states and positions, via asymbolic communication medium [10].3.6 A-priori knowledgeIn the described framework the description of missionrelevant object classes has to be known in advance. Inthe experimental scenarios, e.g. the mentioned trans-port and service tasks, most parts of the backgroundand the positions of some relevant objects are also as-sumed to be known in advance to enable the executionof useful missions. The distinction between objects andbackground in the a-priori knowledge is made by missionrelevance.Dynamic changes in the environment, like opened orclosed doors, moved chairs, changed illuminations etc.are explored "on the 
y".4 Application exampleHow to access the model and make use of the informa-tion stored in it shall be demonstrated with the help ofan exemplary robot task: A mobile robot wants to passthrough a door and has to determine the opening an-gle of the door-wing and the position of the door-handlewith the aid of a single grey-scale CCD-camera. Thedoor is modelled as already shown in �gure 1. The iden-ti�cation of the state of an object is not feasible withtypical localization methods since the combined objectconsisting of door-frame and wing has too many di�e-rent aspects which would have to be treated separately.The hierarchic object structure on the other hand allowsbreaking down this complex perception task into simp-ler ones: First the the door-frame is localized (and withit the axis of rotation of the wing) and then the state ofthe wing is determined.At the beginning the state of the wing is unknown,the door-handle is in its preferred state. To identify

a rotary joint state three aggregated types of featureshave been found to be appropriate: Radial edges (ed-ges whose starting point coincides with the axis of ro-tation), parallel-rotary edges (edges that are parallel tothe axis) and rotary corners, which connect a radial anda parallel-rotary edge. The door-wing possesses two ra-dial and one parallel edge and two rotary corners (see�gure 5).
radial1

radial2corner2

parallel1

corner1Figure 5: Features of the door-wingIn a �rst step the robot focusses and zooms on thedoor. Figure 6 shows the corresponding object-tree andthe result of a feature access. Note that the wing's fea-tures are not predicted as its state is still unknown. Byevaluating the di�erence between predicted and extrac-ted features the door's position is corrected.
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"preferred"Figure 6: Localization of the door-frameTo determine the opening angle of the wing it is suf-�cient to locate one of the corners in the image. Thiscan be accomplished e.g. by requesting predictions ofthe chosen corner for several states of the wing, compa-ring them with the extracted features and �nding thebest correspondence. For that purpose the accessor iszoomed e.g. on corner1 of the wing and predictions forseveral states are requested. Figure 7 shows the corre-sponding object-tree and the result of the feature acces-ses.
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    1Figure 7: Determining the opening angleWhen the corner is found, the state of the door-wingcan be computed by intersecting the path of the cor-nerpoint, in this case a circle, with the correspondingprojection ray through the image corner. Figure 8 showsthe result of a feature access after setting the state of thedoor-wing to the computed one; now the door-handle isautomatically predicted, too. By unfocussing the acces-sor the identi�ed states are made public.

Figure 8: Result of the state identi�cation5 ConclusionWe have presented a hierarchic world model with geome-tric and symbolic layers which can be used to facilitatevideo image interpretation by predicting video-speci�cfeatures. By \focussing" on the object of interest and\zooming" on parts of it, task-relevant information canbe accessed easily.Future work will include the analysis of further aggre-gated feature types and of task-speci�c visibility. Theobject-oriented structure will be expanded to derivation
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