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Abstract

In this paper an energy based attitude tracking control for a quadrotor helicopter is presented.
The controller can be considered as an extension of both the setpoint attitude control pre-
sented in [8] and the reduced attitude tracking controller from [7]. The controller prioritizes
the alignment of the quadrotor’s thrust axis due to its critical role for the translational dy-
namics. In contrast to [8], the whole control problem is reformulated using the rotation
matrix to represent the attitude instead of quaternions. This way the ambiguity inherent to
the quaternion representation is omitted. Global and local analysis of all equilibrium points
of the tracking error dynamics is provided and shows that tracking of the desired attitude is
achieved for almost all initial conditions. In detail, almost global asymptotic stability and
local exponential stability is established for the equilibrium corresponding to a zero tracking
error.

Keywords: Quadrotor attitude tracking; Energy shaping; Almost global asymptotic stability

1 Introduction

A quadrotor helicopter is a highly maneuverable vertical take-off and landing aircraft, which
offers the ability of hovering. As shown in Fig. 1, it is basically a rigid body with four rotors
arranged in a common plane which generate thrust forces and drag moments. The effects of the
four single rotors can be summarized in the center of gravity as a total thrust F' perpendicular to

the plane and a torque vector 7 = [Tm Ty TZ]T. Since the direction of the thrust is body-fixed,
the execution of almost all translational motions requires tilting the whole quadrotor helicopter
systematically. Consequently, a desired thrust direction is usually the output of a higher level
position controller or the remote control command of a human operator. Additionally, a desired
orientation of the quadrotor around its desired thrust axis can be specified. This can be done
for example by defining a desired heading for one of the quadrotors arms in the horizontal plane.
The resulting desired attitude has to be tracked by an appropriate attitude controller. Due to
the significance of the thrust direction for the translational dynamics it plays a critical role in
the attitude control task of a quadrotor and its alignment should be prioritized compared to the
heading.

The control task belongs to the broad field of rigid body attitude control, which has been exten-
sively studied for decades, especially in the context of spacecraft applications. A survey on the
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Figure 1: Quadrotor with body-fixed frame B = {x,y,z} and control inputs F, 7,7, 7.

topic was recently published in [5]. Also in the field of unmanned aerial vehicles like quadrotor
helicopters the attitude control task has been intensively addressed, see e.g. |3, 6, 13, 16]. Signifi-
cantly fewer works are concerned with reduced attitude control, which deals with the alignment of
only one body axis. Some examples are |2, 4, 5, 10, 17]. The controller presented here, combines
both control problems in the way that the alignment of one body axis is considerably prioritized.
Although for quadrotor applications the significance of the thrust axis is obvious, to the best
knowledge of the author, no attitude tracking control for a quadrotor helicopter prioritizing the
thrust axis has been published so far. A saturating attitude setpoint control with these features
was introduced by the author and others in [8].

The controller presented in this paper is based on an energy shaping approach (see e.g. [14]). It
can be roughly assigned to the very general concept published in [4] but focuses on indicating
explicit energy and damping functions. A suitable shaping of the closed loop energy and a
sophisticated damping strategy lead to a fast transient behavior prioritizing the alignment of the
thrust direction. The energy based controller design gives rise to a continuous state feedback
law, which renders the equilibrium corresponding to a zero tracking error almost asymptotically
and locally exponentially stable. The presented controller extends the attitude setpoint control
proposed in [8] to an attitude tracking control by adding suitable feedforward terms to the
control law. In addition, the potential energy functions proposed in [8] are slightly modified to
facilitate the local analysis of the closed loop equilibrium points. At the same time, the influence
of the modifications on the controller perfomance is negligible. Moreover, the control problem
is restated using the rotation matrix for the attitude parametrization instead of quaternions.
The ambiguity inherent to the quaternion representation can thus be omitted. Finally, the new
attitude representation contributes to reveal that this paper can also be considered as a straight
forward extension of the reduced attitude tracking controller presented in [7].

In Section 2 we briefly introduce the notation and the definitions used in the following. A detailed
problem statement is given in Section 3. Some considerations concerning the computation of the
heading command are discussed in Section 4 and in Section 5 the attitude tracking dynamics are
derived. Based on an energy shaping approach, the control law is developed in Section 6, before
the stability properties of the closed loop equilibrium points are thoroughly analyzed in Section
7. Finally, conclusions are drawn in Section 8.

2 Nomenclature and Definitions

Scalars are indicated as italic letters, whereas vectors, matrices and composite quantities are
indicated by upright bold letters. Any physical vector a € R? has meaning even without concrete
numerical values and is thus referred to as an abstract vector. To assign numerical values to
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an abstract vector a suitable coordinate frame has to be chosen. All coordinate frames used
are right-handed Cartesian coordinate systems and identified by uppercase italic letters. The
representation of an abstract vector a € R3 with respect to a certain frame F = {e, ez, e3} with
orthonormal basis vectors ej, es,es is denoted by ap. The elements of a vector ap are identified
by ag = [aEx apy aEZ]T and by ag,, we mean ag;, = [aEx aEy]T. For some vectors,
which are exclusively represented in one coordinate frame, the basis designation will be dropped.
Additionally, we define the basis independent unit vectors e, = [1 0 O]T, e, = [0 1 O]T

and e, = [0 0 1]T. The transformation from a frame F to another frame E’ is given by a
rotation matrix Regm € SO(3), where SO(3) = {R e R¥3: RTR =I3,det(R) = 1} is the special
orthogonal group and I;, ¢ € N denotes the ¢ x ¢ identity matrix. The angular velocity of a frame
E’ with respect to a frame E given in a frame E” is denoted by wgﬁy € R3. The skew symmetric
operator ((-)) : R? - s0(3), where 50(3) = {K € R**3: KT = -K} is defined such that {(a))b =axb
reflects the cross product for a,b € R3. The inverse operator is ) - {(: 50(3) - R3. The unit sphere
of dimension i € N is denoted by S? = {a e R*! :a”a = 1}. We will also make use of the following

functions: By Ag‘ :[0,7] = [0,sin(¢;)] we denote the function

sin(() if 0<C<q,
AG(C) = {sin(G) it G <C<Cy, )
S sin(Q) if Gu<Cs,

where (;,(, € R, are constants. Furthermore, we use the function ng RxRxR =R,

Y1(¢,a) if (<1,
XE (G 1 (G a), (¢ a)) =4 Lamsdinlballe-a)enl@a) if ¢ ¢ < ¢, (2)
V2(¢,a) if (o< ¢,

which provides a linear interpolation between the scalar functions ;((,a) and ¥9({,a) with
respect to ¢ in the interpolation region defined by (; and (5. For some (4 < (o < (3 < {4 we
moreover define

XEEH (GG @), 0o () = xE (G (G @), xE (G v (Cha), 11 (G a))) (3)
which provides a linear interpolation from ;(¢,a) to ¥2({,a) and back to 11 ((,a).

We will frequently encounter the case that a (scalar, vector or matrix) quantity a can be given
as a function f(-) of coordinates b, i.e. a = f(b), and also as a function f(-) of coordinates c,
ie. a=f(c). With a slight abuse of notation we will write a(b) to refer to f(b) and a(c) to
refer to f (c). Sometimes, we will also drop the argument and in that case writing a may refer
to f(b) or f(c) depending on the context.

Finally, some properties of the skew symmetric operator ((-)) that will be needed in the following
are stated. They can be found for example in [15]. By the skew symmetry it holds that ((a)) =
—((a)?. Since {{(a))b reflects the cross product a x b we also have that ((a))b = —((b))a. Moreover,
for any rotation matrix Rp/p and any vector a € R3 it holds that

Rpp(a)REp = (Repa)) . (4)

3 Problem Statement

Regarding the attitude, we model the quadrotor helicopter as a rigid body actuated in torque.
This commonly used model exploits the generally accepted assumption that there exists a known
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one to one relation [F TT]T = f(w?, w3, w?,w?) (see e.g. [16]) between the magnitude F' of the
thrust force, the torque vector 7 and the squares of the rotor angular rates w;, i € {1,2,3,4},
which are the real control variables. Furthermore, the model neglects some minor effects like the
gyroscopic torques of the rotors or the flapping dynamics. We distinguish an inertial north east
down coordinate frame I = {€0rth,€casts €down } and a body-fixed frame B = {x,y,z} attached
to the center of gravity of the quadrotor and oriented as shown in Fig. 1. Then, the rigid body
attitude dynamics read

Rpr = —(w IB»RBI , (5)
Jo = ~(wi Wwi + 7, (6)

where J =J7 > 0 is the moment of inertia matrix given in B and 7 = 7 is the control torque. In
the following we assume that the states Rpr and w]IgB are accessible either by direct measurements
or as the output of an appropriate data fusion.

The control objective is to make the body-fixed frame B = {x,y,z} track a desired time-varying
frame D = {x4,y4,Z4}, or in terms of rotation matrices Ry - Rps as ¢t - co. Regarding the
error rotation matrix Rgp = RgrRp = RBIR:,SI the objective reads Rpp — I3 as t - oo.

The translational dynamics of a quadrotor can be manipulated only along the body-fixed z-
axis, since the thrust vector always points in the direction —z. Hence, a higher level position
controller usually provides the desired z-axis direction z4 in its inertial representation z,; as well
as its time derivatives zgr,Zq;. Additionally, x47,%4; and X4; can be computed from a known
heading command as shown in Section 4. As y4; = ((z4r))xqr holds, the desired frame D and its
evolution with respect to time is completely defined by the known command signals. Regarding
the rotation matrix R;p it holds that

Rip=[xar (zar)xar zar], Rip=[%ar (Zar)xar + (zar)kar Zar]

Rip = [Rar  (Zar)xar +2(Zar)kar + (zar)Xar Zar] -

(7)

It proves advantageous to decompose the transpose of the error rotation matrix R:g p = Rpp
into two particular rotations, Rpp = RpaR ap. This is illustrated in Figure 2. The first rotation
R 4p is about an axis e, in the body-fixed zy-plane through an angle ¢ and transforms into an
auxiliary frame A = {X,,yq,2Zq}. The rotation is such that the z-axis of A coincides with the
desired direction zq4. It immediately follows that e, is defined by the normalized cross product
of z and z4,

1 1 _ZdBy

alean] 15 = e gy os7as = m[dB

The corresponding rotation angle is ¢ = arccos(elzyp) = arccos(zqp.) € [0,7]. Since we will
use e, only in the body-fixed representation, the index B will be dropped in the following
such that e, = e,p holds. Finally, the second matrix Rp4 describes the remaining rotation
from A to D about an axis parallel or antiparallel to their common z-axis z4. The rotation is
through an angle ¢ and can obviously be computed by 9 = arccos(ngdi) = arccos(elxg4) =
arccos(zga,) € [0,7]. Since A and D have a common z-axis it moreover holds that z44, =0 and
thus it suffices to consider the reduced vector x44,y to specify x44. Apart from some exceptions
discussed in Remark 1, Rap and Rpa are completely defined by the vectors zgp and Xgazy
and hence they represent an appropriate parametrization of the error rotation matrix Rpp,
which is the natural attitude error state. More technically speaking there exists a local (but

(8)

T
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Figure 2: Decomposition of the attitude error into two successive rotations: First, from the
body-fixed frame B = {x,y,z} to the auxiliary frame A = {xX,,y4,2q}. Second, from A to the
desired frame D = {xX4,¥d, 24}

almost global) diffeomorphism between z4p, X442y and Rpp. Careful treatment of the fact that
the diffeomorphism is only local enables us to largely use zyp € S? = {a € R? : a’a = 1} as a
representation of the thrust direction error and Xga,, € S = {a€ R2:a”a= 1} as a representation
of the heading error anyway. In terms of z4p and x44,, the control objective is zgp — e, and

XdAzy — [1 O]T as t — oo. As the translational dynamics can be manipulated only in the
thrust direction, the alignment of the thrust is of higher importance than the alignment of the
remaining axes. We consider this in the design process by constructing a control law that focuses
on z4p — €,.

4 Computation Of the Heading Command

The desired heading is specified by a time-varying unit vector h € S? lying in the horizontal
plane spanned by e+, and e.qs;. The time derivatives h and h are assumed to be known and
bounded. The desired z-axis direction x4 is now obtained by the normalized projection of h
along egown onto the plane perpendicular to z;. This projection always exists as long as z4 does
not lie within the horizontal plane itself. Noting that ey, 1 = €., we obtain

1 -1

xar = e e - NETR TR ((zar) (e: )y 9)

and computation of the time derivatives yields
N e 1 i (arble:ns + farheabin) + (7 e Mear) (o r)
7 W€z )1\\Zar ey

- (B (=) (zar)* (e:)s + b () (zar) (Zar) (e:hhr) - (zar ) {(ez)hr . (10)

Njo
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-1
Vb (=) (zar)2(e-)h;
-3 (hT<<ez>><<zdz>>2<<ez»hf) (hl (fe-)(zar)? (e )by + T (e ){(zar) (Zar ) (e-)hr)
{(zar)(e=)hs + (hT (e ) (zar)*(e-)hr) > [(T (e-) (zar)*(e:)hs

+ 207 (e ) (Zar ) (zar »«ez»hz + 207 (e ) (Zar ) zar ) (e=)ar + b (e (zar ) (le- )by
+h7 (e )(zar)*((e=)hs + b (e ) (zar ) (Zar (e Dhr) - (zar) (e )y

+2 (b7 (e:) (zar)*(e- ) s + b7 (e2) (zar){(Zar ) (e:Dhr)-((Zar) (e s + (zar){(e-)hr)].
(11)

Rar = ((Zar)(e-Dhr + 2{(zar) (e + (zar ) {(e-)hr)

2

5 Attitude Tracking Dynamics

In terms of the error rotation matrix Rgp = [XdB YdB de] the attitude kinematic equation
is simply

Rep = -(wi”)Rep (12)
where wgB is the relative angular velocity between the body-fixed frame B and the desired
frame D given in B. Sometimes it is more convenient to write Rpp as a vector. We define
Rpp = [XgB ydTB ng]T and accordingly

. _«wgB»XdB «XdB»wgB {(xa5)) .
Rpp = |—(wp?)yas | = | (yas)wp? | = | (yas) |wB” = (Rep)wi” (13)
~(wBPVzan] [(za)wB”| [(2aB)

where, with a slight abuse of notation, we define (Rpp)) := [((de))T (yas)® ((de))T]T. By
comparison of (12) with

Rpp = RerRip + RpiRip = —(wiP)RpiRip + RerRipRIpRE ReRip

= —(wi’)Rap + ReRipDRIpRERep = — ((wi’) - RerRipRIpRE;) Rep )
we recognize that
wi” = Ww5’) -RerRipRIpRE ([ = J(wE ) - (w5 (15)

holds. Note that all quantities appearing in (15) are known command signals or assumed to be
accessible.

To derive the attitude error kinematics with respect to zgp and x44,, we first notice that the
time derivative of zyp = Rppe, is obviously given by the last three entries of (13) which read

2ap = ~((wp" )2ap = (zas)wi” . (16)

The dynamics of Xg4.y are given by the first two rows of the dynamics of xga4 = Rape, =
RapRppe,. Deriving the preceding expression with respect to time yields

%44 = RapRppe, + RapRppe, = RapRpaRape, + Rap(-(wh?))RpaRape,

(17)
=RapR)pxas —Rap(wp”)RhApxaa = (RasRhp - Rap(wi”)Rp) xaa -

Using (4) and Ryp = ~(wE)Rap the expression in brackets can be rewritten as

RapRip - Rap(wp”)Rhp = ~(wi) - (wi”) = ~(wi”) (18)
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and hence

Xaa = —((wh™M)xqa = (xaa)wh " . (19)
Since the relative rotation of the frames A and D occurs only about their common z-axis it holds
that wQA = [0 0 wgf]T and thus

. 0 wht o
RapRip - Rap(wp”)Rhp = (i) =[5 0 0. (20)
0 0 0

The expression on the left hand side of (20) is a function of zzz and wgB. To see this, we first
express the rotation matrix Rap by z45. According to Euler’s formula (see e.g. [15]), which
indicates the rotation matrix in terms of axis and angle, it holds that

Roap = cos()Is + (1 - cos(¢))e el —sin(e) (e, (21)

Using (8), the unit length of zgp and noting that cos(y) = z¢p. and sin(p)e, = ((e;))zq¢p one
obtains

(1 - Zde) ~#dBy
Rap = 2413 + 12 | 7B [-2aBy  zaBx 0] - (({(e:)zan)
(1-23p.) 0
22ps —2dBx%dB 22
- 1+C,lZ§BZ 1+248- - ~ZdBz ( )
= | —zdBzZdB %ip
1+ZZBZ - L= 1+ngz _dey
ZdBx ZdBy 2dBz

With the preceding equation and (16) one can evaluate the left hand side of (20) and identify

DA 2 DB
wal = [T 2 1wg” . (23)

Inserting (23) into (19) and evaluating the first and second row finally yields

. | Taay DA _ | TdAy 2dBa ZdBy DB
XdAin - [_di{E:I w z = I:_di:B [1+Zde 1+248- 1] wB ° (24)

Defining the unit vector
1 ZdBx
e, = ﬁ ZdBy (25)
“dBx + dey 0

one can reformulate (24) to obtain

2 2
z + z
T \/ %dBz t “dBy
dAy ] ol +el | DB (26)

XdAzy = e, |w
Ty I:_dim 1+ ZdBs 1 z B

Finally, the dynamics of wgB complete the attitude tracking dynamics. Using (6), the derivative
of wgB with respect to time is identified as

.DB _ «IB _ .ID _ y-1 IB IB . ID

wp =wp -—wp =J (—«WB Mwp +7’)—WB ) (27)
where &1 is obtained by deriving the expression wiP =)Rp Ry pRT,RE(( introduced in (15)
with respect to time, which yields

wy’ =) - (Wi )ReRpRIpRE; + RpRipRpRE; + ReRipRIpRE;

+ RBIRIDR?DREI«WIBB»« . 2
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Together with (12), equation (27) forms the open loop dynamics with the corresponding state
W = (Rpp,w5B) e W = SO(3) x R®. Alternatively, the open loop dynamics can be ex-

pressed locally (but almost globally) by (16), (24) and (27) with the corresponding state w =
DB

[ng ngxy (wpg )T]T € 8% x § x R3. This fact is analyzed in the following remark.

Remark 1. The heading state xg4., is not defined if z;p = —e., < ¢ = 7, meaning that the
current thrust direction is pointing in the opposite direction of the desired one. Considering that
x44 = RapRppe,, this can be recognized by the fact that R4p in (22) has a singularity in that
case. Clearly, the error rotation matrix Rpp as the natural attitude error state is well defined
everywhere and accordingly also z;p, which is the last column of Rpp, is not subject to any
singularities.

As a consequence of Xj4,, being not defined if zgp = —e, we formulate the following standing
assumption that enables us to globally consider the control law developed in the following as
both a function of W and a function of w.

Assumption 1 (Standing Assumption). Any expression appearing in the control law, defining
the control torque 7, is constructed such that it depends only on z4p and wgB if zgp = —e,
¢ =m. As a consequence we can globally write 7(W) as well as 7(w).

Remark 2. As can be easily verified, the unit vectors e,, e, and e, define an orthonormal
basis {e;,e,,e.}. This fact will be extensively used in Subsection 6.2, where the damping of the
closed loop is designed.

6 Controller Design

In this section, we will first execute an input transformation, such that the controller presented
in [8] could be applied without any changes. We will also motivate the basic idea of the controller
design before we restate it using the new attitude parametrization. Moreover, we apply some
minor changes to the potential energy, which significantly facilitate the local analysis of the
equilibrium points.

Inserting the input transformation
T = k(W) {wi Wwi’ - (kW) - 1) ((wi” ) (@i -wi’) + (@i ) wp’) + Joi” + 7, (29)
which consists of both the new control input 7 and suitable feedforward terms, into (27) yields
wpP =7 ((R(W) - 1) {(wBP)IwE? +7) . (30)

Therein, k(W) can be any locally Lipschitz continuous function on W satisfying Assumption
1. However, in order to facilitate the local stability analysis in Section 7.1, we will restrict us
to functions, which can be globally written as k(de,wgB ). For the sake of convenience, k is
often chosen constant. For example k = 1 will cancel the coriolis term, whereas k = 0 yields
T =T in the case of a setpoint control (when R;p is constant). It will turn out that the stability
properties of the closed loop do not depend on the particular choice of k. Together with (12)
or alternatively (16) and (24) the preceding equation forms the new open loop dynamics. For
the convenience of the reader the respective equations are assembled in the following. Using the
global state representation W one obtains the open loop system

Rpp = —(wh?)Rap , (31)

wp” =37 ((k(zap, wB”) - D{wp” ) Jwp” +7) , (32)
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whereas using w as the state representation of choice leads to

zap = (zap)wh® (33)
. TdA Z4Be z DB
KAy = I:_xdjm] [1:23& 1+2§gz 1] wp (34)
wpP =3 ((k(zap, wi") - D{wp" ) Iwp” + F) . (35)

The control law presented in [8] could now be directly applied to ¥ and would achieve asymp-
totic attitude tracking. In the following some slight modifications to that control law will be
introduced, but we adopt the input constraint

1Tayll € Tay |7l <72 (36)

where 7, and 7, are positive constants and 7., > 7, holds. Although T is not the actual control
torque, we nevertheless consider the constraint, since, as mentioned above, T equals 7 if k is
chosen to be zero and a setpoint control is considered. Moreover, the constraint can be easily
dropped if desired. Due to the similarity of (30) and (6), we will sloppily refer to 7 as the control
torque from time to time, although it is clear that the actual torque is 7.

The controller design is based on an energy shaping approach as presented e.g. in [14|. The
control law is constructed such that the closed loop system is described by means of an assigned
continuously differentiable energy function V', which has a strict minimum at the desired equi-

librium point Wy = (I5,0) < w, = [ez [1 O] OT]T. In the following we will assign an energy
function 1
V(W) = Erot(wB?) + Epot(Rpp) = §(w1,33 )" IwBP + Epot(Rip) (37)

which is composed of a kinetic and a potential energy part and fulfills V(Wy) =0 and V(W) >0
if W # W,. Moreover, since F,, is a radially unbounded function and the attitude space is
compact, it holds that all sublevel sets of V' are compact and include W. Taking the derivative
of V' with respect to time yields

. . OFpor > . O0E,u =
V(W) = (wp®)"I0p? + = Rpp = (wp”) 7 + " (Rpp) wi” ,
Rpsp ORpp (38)
——
-TT(Rpp)

where T can be identified as the torque field resulting from the potential energy E,.;. Now, by
choosing the control law
7 =T(Rpp) -D(W)wp?, (39)

where D(W) > 0 is a state dependent damping matrix, and inserting it into (38), one obtains
V(W) = —(wEB)D(W)wEP <0. (40)

It follows from (40) that the sublevel sets of V are not only compact but also positively invariant,
which proves global stability of the desired equilibrium. After explicitly defining the control law
(39) in the next subsections, further stability properties are analyzed in Section 7.

6.1 Shaping of the Potential Energy

We will now state the potential energy which is assigned to the closed loop system. Apart
from some minor modifications discussed at the end of this subsection, it is largely identical
to the one given in [8]. The potential energy FE,, necessarily needs to depend on appropriate
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error functions characterizing the thrust direction error and the heading error. A natural error
function indicating the alignment error of the thrust is the angle ¢ = arccos(zqp,) whereas
the angle ¥ = arccos(xga,) can be considered a measure for the heading error. We propose a
potential energy of the form Epy(¢,7). To be an appropriate energy function, E,q(p,?) has to
be continuously differentiable on the domain [0, 7]x [0, 7] with its only minimum at (¢, %) = (0,0)
and we moreover claim

OFpot B

8319 (,9) =0 Vo, (41)
Epot :
= (0,9) >0 if ¥ €]0,7[, (42)

%w) >0 if (i2,9) €]0,7[x[0,7] (43)
o

%(%ﬁ) -0 if (p,9) € {0,7} x[0,7], (44)
@

aggot(wg) _0 if (¢, 0) € [0,7] x {0,7} . (45)

The first constraint guarantees that T is compliant with Assumption 1 by ensuring that E, (¢, v)
does not depend on ¥ if ¢ = 7. As analyzed in Remark 1 this is necessary since ¢ as a function
of Xj4zy, which is not unique in this case. The second constraint assures that the potential
energy is increasing with a growing heading error at least at ¢ = 0 (and due to the differentia-
bility also in a neighborhood of ¢ = 0). The third constraint claims that the same is true with
respect to the thrust direction error but independently of the heading error. Finally, the fourth
and fifth constraint serves to guarantee a continuous torque field T over the whole state space
W. Alltogether, the constraints imply that first, all critical points of E,, are given by the set
(¢,7) € {(0,0) u(0,m) u{m} x [0,7]} and second, Ejy is maximal for (¢,d) € {{m} x [0,7]}. It
is clear from physical insight that the set of critical points of the potential energy defines the
state space region where the torque field disappears and thus it also defines the set of equilibrium
points of the closed loop system. It was shown in 1| that due to the topological structure of
the attitude space further equilibrium points besides the desired one must exist if a continuous
control law is applied. In detail we choose a potential energy function

Epot(¢,7) = Ey () + Eg(p,9) (46)

where

¢ Lol ) 2 AL () d i o<
E¢(¢)=C¢A AL Q) dC,  By(p,9) ={ (eos(30) o Ay,
0 if >,

(47)

and c,, cy are positive constants. The structure of the energy components chosen in (47) imme-
diately guarantees compliance with the constraints (41), (42), (44) and (45). To guarantee (43)
a suitable parameter set (cy,, ¢, @1, @u, V1, ¥y) has to be chosen, which is always possible. To
see this, note that choosing ¢y sufficiently small will always lead to compliance with (43).

As in (38) one has to take the derivative of Ep, with respect to time to compute the torque field
T that E,, generates. It holds that

. OFEpot . OFEpot -
E ot = pot . po 9 = _TT DB ’ 48
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where
T

~Z24B= 1 ~FdBy DB T DB
=— Zdps | WB~ =-€,wp (49)

()b - 2 2 2
\/1 ~%dBz \/ 2Bz T %dBy | 0

is obtained using (16) and the unit length of zy5 and

; —TqA —ZdA V 2o, t+ Z(%By + |\ ps
X
V= = Y e (50)

= +e w
B
\/1 - xiAm \/1 N x?le L+ 2aps

z
is computed analogously using (26). Decomposing T into parts according to the energy com-
ponents E, and Ey from which they originate and according to their effective directions e, e,
and e, results in

T=T5+TZ+Tf+Tf, (51)

where the superscript indicates the energy component and the subscript indicates the effective
direction. Using (48), (49), (50) and (47) the components in (51) are identified as

0E,
T¢ = s e, =Al'(pe,
OF
9 _ 9 _
Tcp = % 0=

—(cos(£)-cos(£%))sin(£ '
i ( ((21)—@5((5 ))))2 2P o Agf(g) dCe, if o<,
B 2

0 if >,

0 OFy TdAy\/ Zipe * ZsBy
1 = . eJ_ =
o0 \/1—$§AI (1+ZdBZ) (52)

(Cos(%)—cos(%‘))2 Iu TqAy Zc2iBac+Zc2iBy
= (1—005(%‘))2 0 191( )

9

= e, ifp<yp,
\/1_dix (1+Zde) s

0 if o>y,

2 TdA
Tg = 8'[919 . y2 e, =
(cos(5)=cos(5))° 1009y Taaw o
= (l—cos(%‘))2 cﬂAﬁl (19) 1_953,4,0 €, if © < Py ‘
0 if o >y

The chosen potential energy function (46) extends the potential energy FE,, introduced in |7],
by a further component Ey. The energy K, can be thought of as the potential caused by a
nounlinear saturating torsion spring arranged between the actual and the desired thrust direction.
Accordingly, it generates a torque T¢ depending only on ¢, which ensures the alignment of the
body-fixed z-axis. The energy component Fy serves to generate control torques that reduce
the heading error angle 9. Note that the ¢-dependent prefactor in Ey results in a decreasing
influence of this energy component with an increasing thrust direction error ¢. For ¢ > ¢, it
even disappears. Since large thrust direction errors can cause large deviations from the intended
translational motion of the quadrotor, they indicate a critical situation. Thus, the behavior of
Ey is favorable since it forces the controller to prioritize the thrust alignment instead of reducing
the heading error. In detail, the torques Tf, T’f and Tg are induced by FEy. While Tﬁ can be
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regarded as the "intended" torque, which, for a constant ¢, acts around the z-axis analogous
to TZ, the components Tf and TZ can be considered "parasitic". This is because TZ always
counteracts T¢ and TY induces a motion around e, which does not contribute to a decrease of
¢ according to (49). At the same time, Tf reduces the available control authority for T, since
in view of (36)

[Tyl = JUTEN-ITLN2 + [ T2 < 7y (53)

must hold. Just like compliance with the constraint (43) (which in turn is equivalent to | T3] -
||TZ | >0) is a matter of parameterizing E,, the same holds for guaranteeing (53) and is always
possible. Again, it can be verified that choosing ¢y sufficiently small will lead to compliance with
(53). The second control input constraint given in (36) amounts to

72| = | T2) < 7. (54)

and is ensured by choosing ¢y < si:(—zﬁl)' Note that in contrast to (36) we have formulated (53)
and (54) as strict inequalities in order to reserve some control torque for damping purposes.

In contrast to [8|, the energy components E, and Ey presented here were constructed using a
slightly modified function Ag;‘ (¢)- Instead of a linear increasing and decreasing integrand, in (1)
an integrand increasing and decreasing with the sine function is chosen. While the deviation
from the linear function is negligible for reasonable values of ¢y, ¢, and ¥, ¥, respectively, this
choice significantly facilitates linearizing the closed loop system around its equilibrium points
for the analysis of the local properties. Moreover, the ¢-dependent prefactor in Ey is different
compared to [8]. Again, the main reason for the modification lies in the simplified local analysis,
while not overly influencing the closed loop behavior.

6.2 Damping Injection

The damping matrix D needed to complete the control law (39) is adopted from [8] without
changes and hence only adapted to the parametrization and the notation used. The basic idea
is to decompose the angular velocity wgB into components according to the orthonormal basis
{ei,ey,e.} and to damp them individually. This is reasonable because they have a different
meaning in view of the control task. The decomposition of wgB reads

whbB = eTwhPe, + egwgBew +elwhPe, =w e, +wee, +w.e, . (55)

Note that according to (49) it holds that w, = —¢. By choosing a damping matrix of the form

D(W) =rzy (W) (dw(W)e¢e£+dleleip) +r,(W)d, (W)ezeT

) [mwm)%(vv) 0 Z

(56)
0 ﬁz(W)dz(W)] =0

the damping coefficients dy,, d, and d, allow an individual damping of w,, w, and w,. The
submatrix Dy, in (56) reads

2 2
D,, (W) = zdso(“g) “dBy ~*dBz*dBy + = d, . %dBzx ZdBiSZdBy (57)
Y ZaBz**aBy | —2dBxZdBy Zngc faBzt?aBy | ZdBx2dBy ZdBy

and the gains k., and k. serve to saturate the damping torques if necessary. They are defined
as
Kay = min (1,k), Ky = min (1,k) (58)
H>07||Txy—H-nywngy||:—T-xy n>07|Tz—n~dszz |:7-Z
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and guarantee compliance with (36). While the angular rate w, is about the thrust axis and
hence does not at all influence the alignment of the thrust, this does not hold for w,. In contrast,
the angular rate w, indicates a motion around e, causing the thrust vector to move perpendicular
away from the shortest path to the desired thrust direction, which is given by a rotation around
e,. Consequently w, should always be damped and d, is chosen to be a positive constant.
The choice of the damping coefficients d, and d. given below, is guided by some simplifying
considerations on the motion of the controlled system. These simplifications merely serve as tool
for the design of d, and d. and do not affect the stability analysis in Section 7.

Regarding the symmetry of a quadrotor, one can assume that J » J = diag(jl, jl, j2) >0
approximately holds. Since moreover 7., > 7. and the primary objective is to align the thrust
axis, one will usually construct the energies E, and Ey such that the torque T, which is designed
to align the thrust, significantly dominates the other components TZ,T? and Tf. It is therefore
plausible to assume that the control task is completed more or less sequentially. This means that
first ¢ is driven to zero while 1} remains more or less constant and only afterwards ¥ is reduced to
zero. This implies that in the first phase the simplifying assumption wgD I cbgD | e, is justified
and provided that xz, =1, the scalar differential equation

Jip=-T,-d,(W)-¢ ifpz0, (59)

approximately holds, where T}, = | T3] —||Tg,|| > 0. It can be seen from (52) that near ¢ = 0, where
the small-angle approximation holds, the torque T, can be considered linear in ¢. Reasonable
values of ¢, are rather small and accordingly (59) approximately becomes

Jip=—c-p—d,(W)-¢ if 0<p<yy, (60)

where ¢ < ¢, is a positive constant (depending on the particular ¥ considered constant during
the first phase). We choose

. uw—Ap,py * .
dy (0,0, Tp) = XD oiai (9,00, d% (0,9, 1)) (61)

where d, and Agp < @ are positive constants and the function d, is discussed further below.
It follows from (61) that the damping is rendered constant (d, = d,) for ¢ <y and for ¢ > @,.
This has two effects. First, the dynamics (60) are rendered linear, which certainly is a desirable
behavior for small alignment errors of the thrust vector. Second, by choosing

dy =0, (62)

we can ensure that, according to (57), the matrix D,, becomes constant for small and large
values of ¢, i.e.
Dyy=6,I2>0 if p<gpor g2, (63)

This way, difficulties with determining e, and e, near ¢ =0 and ¢ = 7, where ngm + ngy =0,
are effectively omitted.

A sophisticated damping strategy d;, is applied in the region ¢; + Ap < p <@, — Ap. There, a
strategy similar to the bang-bang solution of a time optimal control is applied. This requires to
indicate a switching curve s,(¢) < 0, where the transition from acceleration (¢ < 0) to deceler-
ation (¢ > 0) occurs. If ¢ > s(p), the damping d7, is chosen to enable maximum acceleration
based on (59). In case of ¢ > 0, this means supporting the torque -7, by a positive damping

!Note that ¢ = 0 has to be excluded, since we have defined ¢ to be positive or equal to zero. Accordingly ¢ >0
must hold for ¢ = 0. The solutions of the given differential equation do not necessarily satisfy this requirement.
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—Vomaz™ —

o o+ Ap eu—Ag' oy ™
Figure 3: Visualization of the damping d, (¢, ¢,T,) in the phase plane. Orange areas: Constant
damping. Green areas: Acceleration supporting damping. Blue areas: Deceleration supporting

damping. White areas indicate regions, where the damping is interpolated.

dy, >0, such that the maximum torque 7y is exploited. In case of ¢ <0, the damping is set to
zero to avoid counteracting —T,,. If ¢ < s(¢) <0 maximum deceleration is desired, which can be
achieved by choosing d7, > 0 so high that T}, is overcompensated and 7, is used to slow down.
Summing up, we choose

a5 (2,0, Tp) = X200 (8 e (8, T )y e (9. T5)) (64)
where RO
o T 1PV, ]
Baee($.Tp) =432+ 22 i 0, 2950, dige(T,) = —£ - 72, (65)
0 if0>¢,

and 7, as well as v, are positive constants. It is clear from (64) that 0 <7, <1 defines a region

of interpolation between dg,.. and dz,.. in order to render the resulting torque continuous. An

examination of d7,.. reveals that the small constant vy, >0 prevents the damping from growing

unbounded when ¢ approaches zero. The switching curve which is used in (64) reads

A -1
50 (8) =\ 25 7y (01~ ) <0. (66)

This curve is simply the phase-plane trajectory ¢ () solving the differential equation jlgb =Ty
and passing through the point ¢(¢;) = —Vomaes < 0. Figure 3 visualizes the applied damping
strategy for d, in the phase plane.

The damping d. is designed analogously to d, based on the dynamics
Jo¥ = = |T.|-d.(W) -9 if 90, (67)
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9 W+ AY Oy =AY 19, '

Figure 4: Visualization of the damping d.(¢,9,9,9,,T,). Orange areas: Constant damping.
Green areas: Acceleration supporting damping. Blue areas: Deceleration supporting damping.
White areas indicate regions, where the damping is interpolated.

which result from the assumptions that x, = 1 and that the first phase, the alignment of the
thrust direction, is completed. Thus ¢ = 0 and consequently w || w || e, holds. Explicitely, the
damping d, is

dz((p’ 7’97 797 7§z7T2) Xg; -Ap (()07 Xg? ﬂ?fA’%u (797 5;57 d; (197 797 7§za Tz)) 75;:) ’ (68)

where AY < % and 0, are positive constants and the quantity U, will be introduced later
on. Note that the additional outer interpolation function is necessary to account for the non-
uniqueness of ¢ if ¢ = 7 and thus serves to satisfy Assumption 1. Figure 4 gives an overview
over the damping d,. The function d} is given by

* 5 3 7959 (0 *
dz (19’ 197 1937 TZ) = 319(1;9)( )(19’ zdec(ﬁz’ T )7 dzacc(ﬁz’ TZ)) : (69)
The corresponding switching curve is
sg(9) = \/vﬂmax 20y 72(191 ¥) <0, (70)
the damping used for acceleration and deceleration reads
(—|§—i|+% iflg’z>qu9,
d:acc(ﬁ»Z?TZ) = _|Z_S|+:;—; ifvg 219, >0, (71)
0 if 029,
r—'g—i'—g—; if?_g’z<—1}:9,
zdec(ﬁmT ) _% - _T_Uzﬂ if —vy <v, <0, (72)
0 if 0<9,,




TUM Tech. Rep. Auto. Cont. Vol. TRAC-7 16

and vVgmaz > 0, vy >0 and 0 < ry < 1 are constants. Note that we use

S p— Ry (73)

4 z
V 1= x?le

instead of ¥ to distinguish between the cases in (71) and (72). This is done because d. is only
effective in connection with w, and according to (50) the quantity 79 represents the part of )
depending on w,. Since ] only coincides with 19Z if ¢ =0 or w, =0, additional cases have to be
distinguished in (71) and (72) compared to (65). This is due to the fact that ¥ and 9, can have
different signs. To clarify this we give one example. Assume that J < s(¥), which means that
the error angle is decreasing so fast that maximum deceleration is desired. If 0 < . holds at the
same time, the angular rate w, already contributes positively to ¥ and accordingly any damping
of w, would be counterproductive. It follows that d, = 0 is the best choice in that case.

7 Stability Properties

In this section we prove local exponential and almost global asymptotic stability of the desired
equilibrium. This is done by showing first that apart from the desired equilibrium further unde-
sired equilibria exist. Local analysis shows that the desired equilibrium is locally exponentially
stable and that all undesired equilibria are unstable except for one undesired equilibrium, which
can only be shown to be a hyperbolic fixed point. In a second step, using LaSalle’s invariance
principle we establish instability of the yet unclassified undesired equilibrium and moreover prove
that the desired equilibrium exhibits a region of attraction that covers the whole state space ex-
cept for a manifold of lower dimension than the state space. This type of stability is referred to
as almost global asymptotic stability, since according to [12, Appendix B| such a manifold has
Lebesgue measure zero. As it is analyzed in [1], almost global asymptotic stability is the best
we can achieve with a control law that is continuous over the whole state space.

By inserting the control law (39) derived in the previous section into the open loop dynamics (31),
(32) and setting the left hand side to zero, the closed loop equilibrium points can be identified.

From (31) one concludes that wB® = 0 must hold and from (32) it is clear that ¥ must vanish.

Since wgB =0 the damping plays no role and the equilibrium points are determined by the set,

where T vanishes. With regard to (52) and (41) — (45) two isolated equilibrium points and a
connected set of equilibrium points can be established. The two isolated equilibria are

W, = (13,0), W =([-e. -e, e.],0), (74)

where W, is the desired equilibrium and W, is an undesired equilibrium. The undesired
equilibrium W,,; corresponds to the case where the thrust is aligned (z4p = e.), whereas the
body-fixed z-axis is anti-parallel to its desired orientation (x4p = —€;). In terms of w these two
equilibrium points read

wy=[el [1 0] 07]", w, =[el [-1 0] 0T]" (75)
and regarding the error angles ¢ and ¢ it holds that
W=W, — (4,9) = (0,0), W=W, — (p.0)=(0,7).  (76)
Moreover, every element of the set
W = {W e W:Rppe. = —e.,wh? = 0} (77)
is also an undesired equilibrium point of the closed loop system. It holds that

WeW,s, = zgp=-€, = @=1. (78)
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Thus, the set W,o comprises the set of attitudes where the thrust vector is anti-parallel to its
desired direction.

7.1 Local Properties

To derive the local properties, the closed loop system is linearized around its equilibrium points.
Observe that since Rpp evolves on SO(3) it has only three degrees of freedom. Thus, we
can express Rpp locally by three minimal coordinates. In the following we will first express
all attitude dependent terms appearing in the closed loop dynamics by a suitable set of local
minimal coordinates and then linearize the system in a second step. From Remark 1 we know
that w is a suitable state representation in a neighborhood of the equilibrium points Wy, W1
and wg, w,; respectively. Accordingly, for the linearization around Wy / wy and Wy,; /w,,; we
will use (2Z4Bgy,*day) as minimal coordinates representing (z4p,X444y) and thus also Rpp.

To deal with the set W,» we exploit the fact that in a neighborhood of z4p = —e, < ¢ =7 the
dynamics of zgp (which is the last column of Rpp) decouple from those of x5 and y4p (which
are the first two columns of Rpp). This can be easily seen by noting that the control law (39)
derived in the previous section does depend solely on z;p and wgB if ¢ > . Regarding this
decoupled part of the closed loop system given by (33), (35) and (39), the analysis of the set W2
simplifies to the analysis of the single equilibrium point (de,wgB)ug = (-e.,0). Since z4p € S,
it has only two degrees of freedom and we will use z4p,, as a suitable minimal representation
for zgp.

Note that the subsequent linearizations are facilitated by the fact that the damping matrix D
defined in Section 6.2 simplifies to a constant matrix D = diag(dy,dy,0.) in a neighborhood of
any of the equilibrium points given by (74) and (77).

Local Stability properties of the desired equilibrium W, / wy

In a neighborhood of Wy it holds that zgp ~ e, and xXga.y ~ [1 O]T. Accordingly, zgp, =

\/1 - (225, + zﬁBy) and Tga; = /1 —:E?lAy. Inserting this into (33) and (34) yields for the dy-
namics of (24Bzy, Tday)

. DB _..DB [1_(.2 2
[Zde] _ [ Wp, #dBy ~Wpy \/ 1= (24p, * 24, (79)

3 ~|_, DB DB _ (.2 2

dBy Why ZdBz +Why /1 (dex+dey)

DB DB
. ZdBaW “dByW“pB
— 2 Bz Y DB
Taay = —\/1- 25, —+ +wp, | - (80)

1+\/1—(Z§Bx+dey) 1+\/1_(Z§BI+Z§By)

In the dynamics (35) we have to express the attitude dependent terms of 7 by the minimal
coordinates. Since in a neighborhood of W, a constant damping D = diag(d,,d,,d.) is applied
only the components of T given in (52) have to be considered. Recalling that ¢ € [0,7] and

hence /22, + zﬁBy =sin(¢p), the torque T¢ can be indicated as

1 —ZdBy —ZdBy
TE = cysin(p) -e, = cpsin(p) - —— | zaBz | =cp| 2aBz | - (81)
sin(¢p) 0 0

The torque Tg, can be reformulated using sin(%) = %(1 —cos(p)), cos(§) = \/%(1 +cos(p)),
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sin(p) = /1 = cos(p)? = /(1 +cos(¢))y/(1 - cos(p)) and z4p, = cos(p). One obtains

9 —(/2(1 +cos(p)) = cos(22) | 4+/1 = cos

TZ=&90/AZ;‘(<) dc v (ii)-cos((%j);zﬁ o

/A ( H(1+cos(9) - os(5)) VT~ os(3) ]
(1= cos(£2))* /T +cos(2)/1 - cos() 0

f() s (/R ) - con(5)) [oam (82)

AGH(C) d¢- ZdBe | =
2 ! (1 cos(%“))2\/1+dez 0 |

arceos(y/T-27,,,) ) % (\/% (1 + \/1 — (225, + zdsz)) - cos(%)) —2dBy
- [ Mo o

5 (1_cos(%))2\/1+\/1—(Z§Bx+z§By) 0

Using \/1 -2, = sin(¥) following from ¥ € [0, 7] as well as some properties from above, enables

us to write
/.2 2
LdAy\/ZqBy + ZdBy

= . cosin(0) - e, =
L cosin() - e e

¢y (cos(£) - cos(%))2 TdAy\/ gy + Z§By 1 “dBx
. . ZdBy =
(1—COS(%“))2 1+ 2z4B: \ /ngx+Z§By 0 (83)

3

2
(\/ (1+\/1— +dey)) cos(%)) Taay | 2aBa
= dey °
(1—cos(“02“)) (1+\/1—(z§Bm+z§By)) 0
The last component Tf finally reads
2
Tﬁ_(cos(‘g)—cos(%")) e sin () TiAy
z = 2 1981H( ) (v z =
(1-cos(5)) sin(19)

cy (\/% (1 + \/1 —(23pe * ZgBy)) —cos(%))2diy

= e, .

(1 —cos( %" ))2

: o T
For the linearization around W, / wy, we define the reduced state vector wf = [rg (wgB )T] =

T . . .
[dey ~2dBz  —TdAy (wgB)T] . Note in particular the order and the sign of the first three

components. In terms of w? the desired equilibrium lies in zero. Linearizing (79) and (80) around
w? = 0 yields

Aig = AwBP (85)
The linearization of (35), considering (39), (81), (82), (83), (84) and the constant damping is
straight forward but tedious and eventually results in

AwRP = -J7'CyAr, - I BAWLE? | (86)
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where Cy = diag(cy, ¢y, cy) >0 and B = diag(d,,d,,d,) > 0. Combining (85) and (86) yields

.d 0 I3 d
Amr_l: J ICd -J lB:IA (87)

~

Ay

Since J7! is positive definite, there exists a nonsingular real matrix M, such that J e\ 1Y O
By defining C; = M7”CM > 0 and B = M”BM > 0 one can rewrite Ay as

0 I M
Ad=| me,m MBM-| [ H Cq —BH 0o M! ] (88)

Since the eigenvalues of A, and Ad are the same, we can restrict the analysis to Ad. Let
T : ~ : .
v = [vlT Vg] , where v{,vy € C3, be any eigenvector of A4 corresponding to the eigenvalue M.

Then, Adv AV 1mphes Vo = )\vl and BV2 + Cdvl = —)\vy. Inserting the first equatlon into the
second yields \2vy + ABv; + Cyvy = 0. Multiplying by the complex conjugate ¥ from the left

results in
FIviN+ 9By A+ 9T Cavi =aX? +bA +¢=0. (89)

From the positive definiteness of C, and B it follows that a,b,c >0 and from the Routh-Hurwitz
criterion for polynomials of order two all solutions of (89) lie in the left complex half plane. This
proves asymptotic stability of Wy / wy with local exponential convergence, [11, Theorem 4.15].

Local properties of the undesired equilibrium W,; / w,;

In a neighborhood of Wy, it holds that z,p ~ e, and xga.y ~ [—1 O]T. Accordingly, z4p, =

\/1 - (zﬁBm + zﬁBy) still holds and xga, = —/1 — 'Z%Ay' As a consequence, the dynamics of zqpg,
are still given by (79), whereas the dynamics of 244, become

DB DB
. 2dBzWp “dBy“By DB
Taay = /123, - + +wg |- (90)
1+\/1—(23Bx+z§By) 1+\/1—(Z§Bx+z§By)

The components of the torque field T can be computed analogously as before. While Ti is still
given by (81), we obtain for the remaining components

arccos(_m) 7 (\/% (1 * \/1 B (2331‘ + ZﬁBy)) - COS(%)) by

- [ A : case |, (01)
0 (1-cos(2)) \/1+\/1—(z§Bx+z§By) 0
2
Cﬁss;;l((gl)) (\/% (1+\/1_(Z§Bx+Z§By))_COS(%)) Taay | ZaBa
)= —— : 2ay | (92)
(1-cos(5)) (1+\/1—(z§Bm+z§By)) 0
2
sin(¢ w
- Cﬁsin((ﬁi)) (\/% (1 + \/1 G ZSBy)) _COS(%)) TdAy . (03)

(1 —cos( 5" ))2
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For the linearization around the undesired equilibrium W,; / w,; another reduced state vector

ul DB

T . . .
w! = [dey —ZdBx TdAy (Wg )T] is defined, where the sign of the third component has

been changed. Linearizing around w®! = 0 yields

Afv“l 0 I3

— ul
ro- _J—lcul _J—lB Amr ) (94)

~

Al

where now the equations (80), (90), (81), (91), (92), (93) and the constancy of the damping

have been used. Accordingly the stiffness matrix is C,; = diag(cy1, cu1, — s:;l((g’))) where ¢,1 =

Cp = Wg(w_;)) . fo7r AZ;‘ (£)d€ > 0. As it was shown before, the eigenvalues of A, coincide with
the eigenvalues of

. 0 I
fa-le, Bl (95)

where éul =M”C, M. The eigenvalues of Aul in turn satisfy
V{Vl)\2 + V{BVl)\ + \_/{éuvl = CL)\2 +bA+¢c=0. (96)

Note that Ay obviously has full rank and hence no zero eigenvalues can exist, which implies
¢ #0. Moreover, from B > 0 it follows that b > 0 and hence no eigenvalues can lie on the imaginary
axis. One concludes that W, is a hyperbolic fixed point and hence no invariant center manifold
W¢(Wy1) exists, [12, Appendix BJ. It will be proven in the next section that W, is unstable
and hence an unstable invariant manifold W*(W,;) of at least dimension one must exist. This
in turn limits the stable invariant manifold W*®(W,;) to be of a smaller dimension than the
state space.

Local properties of the undesired equilibrium set W,

As stated before, in a neighborhood of the set W2, more precisely in the region U = {W e W :
© > @y}, it suffices to consider the decoupled part of the closed loop dynamics given by (33), (35)

and (39). In that region z4p » —e, holds and accordingly, using z4p, = —\/1 - (zﬁBm + deBy), the
dynamics of zgp., become

(97)

dem] [ WBZ ZdBy +WBy \/1 de:c + ZdBy)

Z, _
dBy WBY zaBx — Wha \/ 1= (23p, + dey)

Since all components of the torque field T resulting from Ey are zero in that region, i.e. Tg =
TY =TV =0, it remains to consider T3, which is given by

. —ZdBy
Tg:cﬂn(w) ane | - (98)
sin(eu) | “0

Defining the reduced state vector w [ Z4By ZdBx (W gB )T]T and considering (98) and the
constant damping, the linearization of (97) and (35) around w** = 0 yields

0 [ O]
-J'c,, -J'B

~

Ay

Aw"? = Aw? (99)

T
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o 0 e o 0
where Cyo = 0 %;13((53 . Let Cp = 0 _%;i;l((gfg ol be the matrix
0 0 0 0 0

which extends C,o by an additional zero column. By a Laplace expansion along the third
column of the matrix (AIs — Ag), where

T o I,
AO = [_J—ICO _J—IB] (100)

it can be seen that det(AIg—A() = Adet(AI5—A,2). Thus, all eigenvalues of A2 are eigenvalues of
Ay, but Ag has an additional zero eigenvalue. Analogously as before one derives the conditional
equation (89), where C, is now replaced by the rank two matrix Co = MTCoM < 0. As one can
easily verify that Ag has exactly one zero eigenvalue, the vector vy 1 yielding c = lecole =0
must be one of the three vectors vi;, i € {1,2,3}, solving \?vy; + )\Bvu + éovu = 0. This
can be understood by noting that ¢ = 0 in (89) results in )\()\a +b) =0, which gives rise to the
zero eigenvalue and additionally to a negative eigenvalue A = —. Since A has no further zero
eigenvalues, vq2 and vy 3 must be linearly independent of vy and thus yield ¢ < 0. It directly

follows from \ = =bvb-=dac “zb;_ﬁ‘ac that Ao must posses exactly three eigenvalues in the left and two

eigenvalues in the right complex half plane. According to [12, Appendix B|, in a sufficiently
small neighborhood V ¢ R% of w2 = 0 there exists a local stable invariant manifold W, lOC(O)
of dimension three and a local unstable invariant manifold W, c(0) of dimension two. Every

point w42 = [—dey Zapz (w gB)T] €V corresponds to an one-dimensional compact manifold

in the six-dimensional state space W. We denote this manifold by

T
M(Wg2)={W€W:W (RBDawB )RBDez—[ZdBm ZdBy _\/1_(Z§Bm+Z§By)J }

In particular it holds that M(0) = W,z is the set of the considered undesired equilibrium points.

It follows that W} (Wy2) = U M (w?) is the four-dimensional local stable invariant
wp2eWs ,,.(0)

manifold of the set Wy2. Let W (¢, Wy) denote the solution of the closed loop system at time ¢
and starting in Wy, i.e. W(0, Wy) = Wy. Then the global four-dimensional invariant manifold,

which contains all solutions converging to Wa, is W*(Wyz2) = U W (t,Wy) %
t<0,WoeW; (Waz2)

7.2 Global Stability Properties

In this section we prove almost global asymptotic stability of the desired equilibrium following
the lines of [8|. Using LaSalle’s invariance principle (see e.g. [11, Theorem 4.4]) this is done
by showing first that all solutions converge to Wy, W1 or W0 and second that the undesired
equilibria Wy; and W, are ounly attractive to a set given by an invariant manifold of Lebesgue
measure zero.

Recalling that all level sets of V' are positively invariant and compact, we apply LaSalle’s invari-
ance principle by showing that the set £ := {W e W : V(W) = 0} contains no invariant sets
apart from the set of equilibrium points {W g, W1, Wy2}. Inserting (56) in (40) and using (55)
yields

ZWhile the vector field of the closed loop system is forward complete, the existence of the solutions for all
t € R_ is not guaranteed. Although the somewhat sloppy expression ¢ < 0 is intuitive, one should more precisely
add t € Z(Wo), where Z(Wy) is the maximal interval of existence for the solution starting in Wo. Compare also
[12, Appendix B]
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V(W) = =gy (W) (dp (W)W + dyw?) = ko (W)do (W)w? . (101)

z

Taking into account that kzy,k. > 0 the derivative V only vanishes if dw(W)w?D = dw? =

d,(W)w? = 0 holds. Outside the equilibrium points, in the set W = W\{Wgq, W1, Wy}, this
condition is only fulfilled in the subset £, which is the set of all states with zero angular velocity,
and in the sets &2, &3, &4, in which wB? # 0 while w, = dw(W)wi =d,(W)w? = 0. Thus, the sets
Ea, &3, &4 are subsets of the state space regions where d,(W) =0 or d.(W) =0 holds. In view
of (61) and (68) a necessary condition for this to happen is p e ® = {p: p;+ Ap <P <, —Ap}
or ¥ €O ={v:9 +Ad <V <Y, - Av}. Explicitly stated, the sets &1, &, E3, €4 are

E1={WeW:wp” =0}, (102)
Ex={WeW:ped, 9e0,rys,(p) <p<0, rgsg(9) <V, <0, ¢ +9,#0, w, =0},  (103)
Es={WeW:ped 0¢0, rys5,(p) <p<0, w, =0, w, =0}, (104)
Ex={WeW:p<p+Ap, 90, rpsg(9) <V, <0, w, =0, w, =0} (105)

J1-z2, .
Note that w, = —¢ as well as w, = —#ﬁz holds and consequently wgB +#0in &UE3U&,.
Yy

—r2 .
=25 4,

TdAy

Moreover, since w, = 0 it follows from (73) and (50) that 9, = J and accordingly w, = —

Next, we show that {Wg, W1, Wy} is the largest invariant set contained in & =& u& U &3 U
Esu{Wy, Wy, Wia}.

Imagine that W € &, then ¥ # 0 and since wB? = 0, we have wH” # 0 from (32). Thus, the
state will exit the subset &£ instantaneously, which shows that no invariant sets are contained in
&

We proceed by showing that no invariant sets are contained in . As long as the state of the
closed loop system is inside the subset &, it follows from (55) that

1 _$?le :
wBB = ~pep - e £ 0. (106)
Yy

A lower bound w for the angular velocity can be derived solving

1 1<
Eroto = 5 (wBg) Jwig = SADw’ >0, (107)

where 5\(.] ) denotes the largest eigenvalue of J, E,,y is the rotational energy and wg(]f the
angular velocity at the time ¢ = 0. Since in the set & no damping occurs, using (52) the torque
can be identified as ¥ =T = T$+TZ+T’E+TIZ9 =ky-e,+k e+ f:l;y k.-e. with k, >0 and
dAx

k, >0. Now as long as W € &, it holds that E,o = (wgB)T? = -k, —Jk, >0 and consequently

w? < (WEP)TwhP = +97. (108)

Based on (66) and (70), a lower bound for ¢ and ¥ is given by
~L = min(s,(7),s9(7)) <min(¢p,d) < 0. (109)
Making use of (109), we can hence extend (108) to obtain

w? < @?+ 02 < —L(p+D). (110)
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Now, let g € ® and Yy € © be the error angles at t =0. The time ¢ solving the equation

(o1+ B0) + (01 + A0) = (o + 90) + [ (D) 1)

certainly is an upper bound of the time at which the state must leave £ at the latest. By
inserting (110) in (111) and evaluating the integral, we obtain the inequality

w2

(1 + Ap) + (U + AY) < (o + ) —_ff, (112)

which reveals that ¢ itself is upper bounded by

(o = (w1 + Ap)) + (Jo — (V1 + AY))

t<L
(L)2

. (113)

Accordingly, & is left in any case and cannot contain any invariant sets. The same holds true for
&3 and &4. This can be shown by proceeding completely analogously as before and is therefore
omitted here. Moreover, also the union of £, &£, £ and &, cannot contain any invariant sets.
Indeed, the state may cross over from &; into each of the other sets and also from & to &3
or &4 but no other transitions are possible. Hence, the union of the sets of equilibrium points
{W4, Wy1, Wy} is the largest invariant set contained in £ and according to LaSalle’s invariance
principle every trajectory converges to Wy, W1 or Wys.

In order to prove almost global asymptotic stability of Wy we first notice that V(Wy) = 0,
V(Wy1) = Ey(0,m) >0 and V(W) = E,(7) >0, YW € W5 It follows from (41) and (43) that
E () = max(Epot (¢, 7)) and consequently Ey(0,7) < E,(m). If we choose any initial state W,
such that V(Wy) < Ey(0,7), we exclude W,; and W, from the initial sublevel set of V' and
the solution can only approach W,. Hence, Wy is an asymptotically stable equilibrium point.
Since the set {W € W : V(W) < Ey(0,7)} is adjacent to W, the preceding argumentation
also proves that W, is an unstable equilibrium and according to the analysis in Section 7.1
its stable invariant manifold W?*(W,;) must be of smaller dimension than the state space, i.e.
dim(W?*(Wy1)) < 6. From the analysis of W2 in Section 7.1 we moreover know that all solutions
converging to W,2 are contained in the stable invariant manifold W*(W,z2), which is of dimension
four. Accordingly, the set of undesired equilibria {W 1, W2} only attracts solutions along the
invariant manifold W?*(Wy1) u W*(W,z2), which is of smaller dimension than the state space.
It is known that an m-dimensional invariant manifold of an n-dimensional system has Lebesgue
measure zero if m <n, see e.g. [12, Appendix B|. This proves almost global asymptotic stability
of Wd.

8 Conclusion

In this paper we have presented an energy based attitude tracking controller for a quadrotor
helicopter. The proposed controller prioritizes the alignment of the thrust axis compared to the
heading and thus considers the significance of the thrust axis for the translational motion of
a quadrotor helicopter. On the one hand the nonlinear controller is a direct extension of the
reduced attitude tracking controller presented in [7|. On the other hand it can also be perceived
as an extension of the attitude setpoint controller presented in [8] that involves the addition
of feedforward terms to the control law as well as some modifications of the potential energy.
Since the closed loop error dynamics of the tracking control problem and the setpoint control
problem are very similar, we refer the interested reader to |8] for a performance analysis based
on simulation results. Compared to [8] the control problem has been additionally reformulated
using the rotation matrix as the attitude representation of choice. Hereby, the ambiguity of
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the quaternion representation is omitted. It has been proven that the equilibrium of the closed
loop dynamics, indicating a zero tracking error, is locally exponentially and almost globally
asymptotically stable.
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