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Energy Based Attitude Traking Control for a QuadrotorHeliopter Prioritizing the Thrust DiretionOliver Fritsh �Lehrstuhl für Regelungstehnik, Tehnishe Universität MünhenBoltzmannstr. 15, D-85748 Garhing, GermanyAbstratIn this paper an energy based attitude traking ontrol for a quadrotor heliopter is presented.The ontroller an be onsidered as an extension of both the setpoint attitude ontrol pre-sented in [8℄ and the redued attitude traking ontroller from [7℄. The ontroller prioritizesthe alignment of the quadrotor's thrust axis due to its ritial role for the translational dy-namis. In ontrast to [8℄, the whole ontrol problem is reformulated using the rotationmatrix to represent the attitude instead of quaternions. This way the ambiguity inherent tothe quaternion representation is omitted. Global and loal analysis of all equilibrium pointsof the traking error dynamis is provided and shows that traking of the desired attitude isahieved for almost all initial onditions. In detail, almost global asymptoti stability andloal exponential stability is established for the equilibrium orresponding to a zero trakingerror.Keywords: Quadrotor attitude traking; Energy shaping; Almost global asymptoti stability1 IntrodutionA quadrotor heliopter is a highly maneuverable vertial take-o� and landing airraft, whiho�ers the ability of hovering. As shown in Fig. 1, it is basially a rigid body with four rotorsarranged in a ommon plane whih generate thrust fores and drag moments. The e�ets of thefour single rotors an be summarized in the enter of gravity as a total thrust F perpendiular tothe plane and a torque vetor τ � �τx τy τz�T . Sine the diretion of the thrust is body-�xed,the exeution of almost all translational motions requires tilting the whole quadrotor helioptersystematially. Consequently, a desired thrust diretion is usually the output of a higher levelposition ontroller or the remote ontrol ommand of a human operator. Additionally, a desiredorientation of the quadrotor around its desired thrust axis an be spei�ed. This an be donefor example by de�ning a desired heading for one of the quadrotors arms in the horizontal plane.The resulting desired attitude has to be traked by an appropriate attitude ontroller. Due tothe signi�ane of the thrust diretion for the translational dynamis it plays a ritial role inthe attitude ontrol task of a quadrotor and its alignment should be prioritized ompared to theheading.The ontrol task belongs to the broad �eld of rigid body attitude ontrol, whih has been exten-sively studied for deades, espeially in the ontext of spaeraft appliations. A survey on the�Corresponding author: Tel: +49 89 289 15670, Fax: +49 89 25915653, email: oliver.fritsh�tum.de1
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τyτzFigure 1: Quadrotor with body-�xed frame B � �x,y,z� and ontrol inputs F, τx, τy, τz.topi was reently published in [5℄. Also in the �eld of unmanned aerial vehiles like quadrotorheliopters the attitude ontrol task has been intensively addressed, see e.g. [3, 6, 13, 16℄. Signi�-antly fewer works are onerned with redued attitude ontrol, whih deals with the alignment ofonly one body axis. Some examples are [2, 4, 5, 10, 17℄. The ontroller presented here, ombinesboth ontrol problems in the way that the alignment of one body axis is onsiderably prioritized.Although for quadrotor appliations the signi�ane of the thrust axis is obvious, to the bestknowledge of the author, no attitude traking ontrol for a quadrotor heliopter prioritizing thethrust axis has been published so far. A saturating attitude setpoint ontrol with these featureswas introdued by the author and others in [8℄.The ontroller presented in this paper is based on an energy shaping approah (see e.g. [14℄). Itan be roughly assigned to the very general onept published in [4℄ but fouses on indiatingexpliit energy and damping funtions. A suitable shaping of the losed loop energy and asophistiated damping strategy lead to a fast transient behavior prioritizing the alignment of thethrust diretion. The energy based ontroller design gives rise to a ontinuous state feedbaklaw, whih renders the equilibrium orresponding to a zero traking error almost asymptotiallyand loally exponentially stable. The presented ontroller extends the attitude setpoint ontrolproposed in [8℄ to an attitude traking ontrol by adding suitable feedforward terms to theontrol law. In addition, the potential energy funtions proposed in [8℄ are slightly modi�ed tofailitate the loal analysis of the losed loop equilibrium points. At the same time, the in�ueneof the modi�ations on the ontroller perfomane is negligible. Moreover, the ontrol problemis restated using the rotation matrix for the attitude parametrization instead of quaternions.The ambiguity inherent to the quaternion representation an thus be omitted. Finally, the newattitude representation ontributes to reveal that this paper an also be onsidered as a straightforward extension of the redued attitude traking ontroller presented in [7℄.In Setion 2 we brie�y introdue the notation and the de�nitions used in the following. A detailedproblem statement is given in Setion 3. Some onsiderations onerning the omputation of theheading ommand are disussed in Setion 4 and in Setion 5 the attitude traking dynamis arederived. Based on an energy shaping approah, the ontrol law is developed in Setion 6, beforethe stability properties of the losed loop equilibrium points are thoroughly analyzed in Setion7. Finally, onlusions are drawn in Setion 8.2 Nomenlature and De�nitionsSalars are indiated as itali letters, whereas vetors, matries and omposite quantities areindiated by upright bold letters. Any physial vetor a > R3 has meaning even without onretenumerial values and is thus referred to as an abstrat vetor. To assign numerial values to



TUM Teh. Rep. Auto. Cont. Vol. TRAC-7 3an abstrat vetor a suitable oordinate frame has to be hosen. All oordinate frames usedare right-handed Cartesian oordinate systems and identi�ed by upperase itali letters. Therepresentation of an abstrat vetor a > R3 with respet to a ertain frame E � �e1,e2,e3� withorthonormal basis vetors e1,e2,e3 is denoted by aE . The elements of a vetor aE are identi�edby aE � �aEx aEy aEz�T and by aExy we mean aExy � �aEx aEy�T . For some vetors,whih are exlusively represented in one oordinate frame, the basis designation will be dropped.Additionally, we de�ne the basis independent unit vetors ex � �1 0 0�T , ey � �0 1 0�Tand ez � �0 0 1�T . The transformation from a frame E to another frame E� is given by arotation matrix RE�E > SO�3�, where SO�3� � �R > R3�3 � RTR � I3,det�R� � 1� is the speialorthogonal group and Ii, i > N denotes the i � i identity matrix. The angular veloity of a frame
E� with respet to a frame E given in a frame E�� is denoted by ω

EE�
E�� > R3. The skew symmetrioperator t �y � R3 � so�3�, where so�3� � �K > R3�3 �KT � �K� is de�ned suh that tayb � a�bre�ets the ross produt for a,b > R3. The inverse operator is y �t� so�3� � R

3. The unit sphereof dimension i > N is denoted by Si � �a > Ri�1 � aTa � 1�. We will also make use of the followingfuntions: By Λ
ζu
ζl
� �0, π� � �0, sin�ζl�� we denote the funtion

Λ
ζu
ζl
�ζ� � ¢̈̈̈̈̈�̈̈̈̈̈¤sin�ζ� if 0 B ζ B ζl ,

sin�ζl� if ζl � ζ B ζu ,
sin�ζl�
sin�ζu� sin�ζ� if ζu � ζ B π , (1)where ζl, ζu > R� are onstants. Furthermore, we use the funtion χζ2

ζ1
� R �R �R� R,

χ
ζ2
ζ1
�ζ,ψ1�ζ,a�, ψ2�ζ,a���¢̈̈̈̈̈�̈̈̈̈̈¤ψ1�ζ,a� if ζ B ζ1 ,�ζ2�ζ�ψ1�ζ1,a���ζ�ζ1�ψ2�ζ2,a�

ζ2�ζ1 if ζ1� ζ B ζ2 ,
ψ2�ζ,a� if ζ2� ζ , (2)whih provides a linear interpolation between the salar funtions ψ1�ζ,a� and ψ2�ζ,a� withrespet to ζ in the interpolation region de�ned by ζ1 and ζ2. For some ζ1 � ζ2 � ζ3 � ζ4 wemoreover de�ne

χ
ζ3,ζ4
ζ1,ζ2

�ζ,ψ1�ζ,a�, ψ2�ζ,a�� �� χζ2ζ1 �ζ,ψ1�ζ,a�, χζ4ζ3�ζ,ψ2�ζ,a�, ψ1�ζ,a��Ǒ , (3)whih provides a linear interpolation from ψ1�ζ,a� to ψ2�ζ,a� and bak to ψ1�ζ,a�.We will frequently enounter the ase that a (salar, vetor or matrix) quantity a an be givenas a funtion f��� of oordinates b, i.e. a � f�b�, and also as a funtion f̃��� of oordinates c,i.e. a � f̃�c�. With a slight abuse of notation we will write a�b� to refer to f�b� and a�c� torefer to f̃�c�. Sometimes, we will also drop the argument and in that ase writing a may referto f�b� or f̃�c� depending on the ontext.Finally, some properties of the skew symmetri operator t �y that will be needed in the followingare stated. They an be found for example in [15℄. By the skew symmetry it holds that tay ��tayT . Sine tayb re�ets the ross produt a�b we also have that tayb � �tbya. Moreover,for any rotation matrix RE�E and any vetor a > R3 it holds that
RE�EtayRT

E�E � tRE�Eay . (4)3 Problem StatementRegarding the attitude, we model the quadrotor heliopter as a rigid body atuated in torque.This ommonly used model exploits the generally aepted assumption that there exists a known
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T �T � f�ω2

1, ω
2
2 , ω

2
3 , ω

2
4� (see e.g. [16℄) between the magnitude F of thethrust fore, the torque vetor τ and the squares of the rotor angular rates ωi, i > �1,2,3,4�,whih are the real ontrol variables. Furthermore, the model neglets some minor e�ets like thegyrosopi torques of the rotors or the �apping dynamis. We distinguish an inertial north eastdown oordinate frame I � �enorth,eeast,edown� and a body-�xed frame B � �x,y,z� attahedto the enter of gravity of the quadrotor and oriented as shown in Fig. 1. Then, the rigid bodyattitude dynamis read

ṘBI � �tωIBB yRBI , (5)
Jω̇IB

B � �tωIBB yJωIB
B � τ , (6)where J � JT A 0 is the moment of inertia matrix given in B and τ � τB is the ontrol torque. Inthe following we assume that the statesRBI and ω

IB
B are aessible either by diret measurementsor as the output of an appropriate data fusion.The ontrol objetive is to make the body-�xed frame B � �x,y,z� trak a desired time-varyingframe D � �xd,yd,zd�, or in terms of rotation matries RBI � RDI as t � ª. Regarding theerror rotation matrix RBD �RBIRID �RBIR

T
DI the objetive reads RBD � I3 as t�ª.The translational dynamis of a quadrotor an be manipulated only along the body-�xed z-axis, sine the thrust vetor always points in the diretion �z. Hene, a higher level positionontroller usually provides the desired z-axis diretion zd in its inertial representation zdI as wellas its time derivatives żdI , z̈dI . Additionally, xdI , ẋdI and ẍdI an be omputed from a knownheading ommand as shown in Setion 4. As ydI � tzdIyxdI holds, the desired frame D and itsevolution with respet to time is ompletely de�ned by the known ommand signals. Regardingthe rotation matrix RID it holds that

RID � �xdI tzdIyxdI zdI� , ṘID � �ẋdI tżdIyxdI � tzdIyẋdI żdI� ,
R̈ID � �ẍdI tz̈dIyxdI � 2tżdIyẋdI � tzdIyẍdI z̈dI� . (7)It proves advantageous to deompose the transpose of the error rotation matrix RT

BD � RDBinto two partiular rotations, RDB �RDARAB . This is illustrated in Figure 2. The �rst rotation
RAB is about an axis eϕ in the body-�xed xy-plane through an angle ϕ and transforms into anauxiliary frame A � �xa,ya,zd�. The rotation is suh that the z-axis of A oinides with thedesired diretion zd. It immediately follows that eϕ is de�ned by the normalized ross produtof z and zd,

eϕB � 1YtzByzdBYtzByzdB � 1YtezyzdBYtezyzdB � 1¼
z2
dBx

� z2
dBy

<�����>�zdByzdBx
0

=AAAAA? . (8)The orresponding rotation angle is ϕ � arccos�eTz zdB� � arccos�zdBz� > �0, π�. Sine we willuse eϕ only in the body-�xed representation, the index B will be dropped in the followingsuh that eϕ � eϕB holds. Finally, the seond matrix RDA desribes the remaining rotationfrom A to D about an axis parallel or antiparallel to their ommon z-axis zd. The rotation isthrough an angle ϑ and an obviously be omputed by ϑ � arccos�xTaAxdA� � arccos�eTxxdA� �
arccos�xdAx� > �0, π�. Sine A and D have a ommon z-axis it moreover holds that xdAz � 0 andthus it su�es to onsider the redued vetor xdAxy to speify xdA. Apart from some exeptionsdisussed in Remark 1, RAB and RDA are ompletely de�ned by the vetors zdB and xdAxyand hene they represent an appropriate parametrization of the error rotation matrix RBD,whih is the natural attitude error state. More tehnially speaking there exists a loal (but
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Figure 2: Deomposition of the attitude error into two suessive rotations: First, from thebody-�xed frame B � �x,y,z� to the auxiliary frame A � �xa,ya,za�. Seond, from A to thedesired frame D � �xd,yd,zd�.almost global) di�eomorphism between zdB , xdAxy and RBD. Careful treatment of the fat thatthe di�eomorphism is only loal enables us to largely use zdB > S2 � �a > R
3 � aTa � 1� as arepresentation of the thrust diretion error and xdAxy > S � �a > R2 � aTa � 1� as a representationof the heading error anyway. In terms of zdB and xdAxy the ontrol objetive is zdB � ez and

xdAxy � �1 0�T as t � ª. As the translational dynamis an be manipulated only in thethrust diretion, the alignment of the thrust is of higher importane than the alignment of theremaining axes. We onsider this in the design proess by onstruting a ontrol law that fouseson zdB � ez.4 Computation Of the Heading CommandThe desired heading is spei�ed by a time-varying unit vetor h > S2 lying in the horizontalplane spanned by enorth and eeast. The time derivatives ḣ and ḧ are assumed to be known andbounded. The desired x-axis diretion xd is now obtained by the normalized projetion of halong edown onto the plane perpendiular to zd. This projetion always exists as long as zd doesnot lie within the horizontal plane itself. Noting that edownI � ez, we obtain
xdI � 1YttezyhIyzdIYttezyhIyzdI � �1¼

hT
I
tezytzdIy2tezyhI tzdIytezyhI (9)and omputation of the time derivatives yields

ẋdI � �1¼
hT
I
tezytzdIy2tezyhI �tżdIytezyhI � tzdIytezyḣI� � �hTI tezytzdIy2tezyhI�� 3

2� �hTI tezytzdIy2tezyḣI � hTI tezytzdIytżdIytezyhI� � tzdIytezyhI , (10)
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ẍdI � �1¼

hT
I
tezytzdIy2tezyhI �tz̈dIytezyhI � 2tżdIytezyhI � tzdIytezyḧI�� 3�hTI tezytzdIy2tezyhI�� 5

2 �hTI tezytzdIy2tezyḣI �hTI tezytzdIytżdIytezyhI�2� tzdIytezyhI � �hTI tezytzdIy2tezyhI�� 3

2 ��ḣTI tezytzdIy2tezyḣI� 2hTI tezytżdIytzdIytezyḣI � 2hTI tezytzdIytżdIytezyḣI �hTI tezytzdIy2tezyḧI�hTI tezytżdIy2tezyhI �hTI tezytzdIytz̈dIytezyhI� � tzdIytezyhI�2�hTI tezytzdIy2tezyḣI �hTI tezytzdIytżdIytezyhI���tżdIytezyhI � tzdIytezyḣI�� .(11)5 Attitude Traking DynamisIn terms of the error rotation matrix RBD � �xdB ydB zdB� the attitude kinemati equationis simply
ṘBD � �tωDBB yRBD , (12)where ω

DB
B is the relative angular veloity between the body-�xed frame B and the desiredframe D given in B. Sometimes it is more onvenient to write RBD as a vetor. We de�neÑRBD � �xTdB yTdB zTdB�T and aordinglyÑ̇RBD � <�����>�tωDBB yxdB�tωDBB yydB�tωDBB yzdB=AAAAA? � <�����>txdByωDBBtydByωDBBtzdByωDBB =AAAAA? � <�����>txdBytydBytzdBy=AAAAA?ωDB

B � t ÑRBDyωDB
B , (13)where, with a slight abuse of notation, we de�ne t ÑRBDy �� �txdByT tydByT tzdByT �T . Byomparison of (12) with

ṘBD � ṘBIRID �RBIṘID � �tωIBB yRBIRID �RBIṘIDR
T
IDR

T
BIRBIRID� �tωIBB yRBD �RBIṘIDR

T
IDR

T
BIRBD � � �tωIB

B y �RBIṘIDR
T
IDR

T
BI�RBD

(14)we reognize that
ω
DB
B � ztωIBB y �RBIṘIDR

T
IDR

T
BIu � ztωIBB y � tωID

B yu (15)holds. Note that all quantities appearing in (15) are known ommand signals or assumed to beaessible.To derive the attitude error kinematis with respet to zdB and xdAxy we �rst notie that thetime derivative of zdB �RBDez is obviously given by the last three entries of (13) whih read
żdB � �tωDBB yzdB � tzdByωDBB . (16)The dynamis of xdAxy are given by the �rst two rows of the dynamis of xdA � RADex �

RABRBDex. Deriving the preeding expression with respet to time yields
ẋdA � ṘABRBDex �RABṘBDex � ṘABRBARADex �RAB��tωDB

B y�RBARADex� ṘABR
T
ABxdA �RABtωDB

B yRT
ABxdA � �ṘABR

T
AB �RABtωDB

B yRT
AB�xdA . (17)Using (4) and ṘAB � �tωBA

A yRAB the expression in brakets an be rewritten as
ṘABR

T
AB �RABtωDBB yRT

AB � �tωBAA y � tωDBA y � �tωDAA y (18)
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ẋdA � �tωDAA yxdA � txdAyωDAA . (19)Sine the relative rotation of the frames A and D ours only about their ommon z-axis it holdsthat ωDA

A � �0 0 ωDAAz �T and thus
ṘABR

T
AB �RABtωDBB yRT

AB � �tωDAA y � <�����> 0 ωDAAz 0�ωDAAz 0 0

0 0 0

=AAAAA? . (20)The expression on the left hand side of (20) is a funtion of zdB and ω
DB
B . To see this, we �rstexpress the rotation matrix RAB by zdB . Aording to Euler's formula (see e.g. [15℄), whihindiates the rotation matrix in terms of axis and angle, it holds that

RAB � cos�ϕ�I3 � �1 � cos�ϕ��eϕeTϕ � sin�ϕ�teϕy . (21)Using (8), the unit length of zdB and noting that cos�ϕ� � zdBz and sin�ϕ�eϕ � tezyzdB oneobtains
RAB � zdBzI3 � �1 � zdBz��1 � z2

dBz
� <�����>�zdByzdBx

0

=AAAAA? ��zdBy zdBx 0� � ttezyzdBy� <�������>1 � z2dBx

1�zdBz

�zdBxzdBy

1�zdBz
�zdBx�zdBxzdBy

1�zdBz
1 � z2dBy

1�zdBz
�zdBy

zdBx zdBy zdBz

=AAAAAAA? . (22)
With the preeding equation and (16) one an evaluate the left hand side of (20) and identify

ωDAAz � � zdBx

1�zdBz

zdBy

1�zdBz
1�ωDBB . (23)Inserting (23) into (19) and evaluating the �rst and seond row �nally yields

ẋdAxy � � xdAy�xdAx	ωDAAz � � xdAy�xdAx	 � zdBx

1�zdBz

zdBy

1�zdBz
1�ωDB

B . (24)De�ning the unit vetor
e� � 1¼

z2
dBx

� z2
dBy

<�����>zdBxzdBy
0

=AAAAA? (25)one an reformulate (24) to obtain
ẋdAxy � � xdAy�xdAx	���¼z2

dBx
� z2

dBy

1 � zdBz eT� � eTz

���ωDBB . (26)Finally, the dynamis of ωDB
B omplete the attitude traking dynamis. Using (6), the derivativeof ωDB

B with respet to time is identi�ed as
ω̇
DB
B � ω̇

IB
B � ω̇

ID
B � J�1 ��tωIBB yJωIBB � τ � � ω̇

ID
B , (27)where ω̇

ID
B is obtained by deriving the expression ω

ID
B �yRBIṘIDR

T
IDR

T
BIt introdued in (15)with respet to time, whih yields

ω̇
ID
B � z � tωIBB yRBIṘIDR

T
IDR

T
BI �RBIR̈IDR

T
IDR

T
BI �RBIṘIDṘ

T
IDR

T
BI�RBIṘIDR

T
IDR

T
BItωIBB yu . (28)



TUM Teh. Rep. Auto. Cont. Vol. TRAC-7 8Together with (12), equation (27) forms the open loop dynamis with the orresponding state
W � �RBD ,ω

DB
B � > W � SO�3� � R

3. Alternatively, the open loop dynamis an be ex-pressed loally (but almost globally) by (16), (24) and (27) with the orresponding state w ��zTdB xTdAxy �ωDB
B �T �T > S2 � S �R

3. This fat is analyzed in the following remark.Remark 1. The heading state xdAxy is not de�ned if zdB � �ez � ϕ � π, meaning that theurrent thrust diretion is pointing in the opposite diretion of the desired one. Considering that
xdA �RABRBDex, this an be reognized by the fat that RAB in (22) has a singularity in thatase. Clearly, the error rotation matrix RBD as the natural attitude error state is well de�nedeverywhere and aordingly also zdB , whih is the last olumn of RBD, is not subjet to anysingularities.As a onsequene of xdAxy being not de�ned if zdB � �ez we formulate the following standingassumption that enables us to globally onsider the ontrol law developed in the following asboth a funtion of W and a funtion of w.Assumption 1 (Standing Assumption). Any expression appearing in the ontrol law, de�ningthe ontrol torque τ , is onstruted suh that it depends only on zdB and ω

DB
B if zdB � �ez �

ϕ � π. As a onsequene we an globally write τ�W� as well as τ �w�.Remark 2. As an be easily veri�ed, the unit vetors e�, eϕ and ez de�ne an orthonormalbasis �e�,eϕ,ez�. This fat will be extensively used in Subsetion 6.2, where the damping of thelosed loop is designed.6 Controller DesignIn this setion, we will �rst exeute an input transformation, suh that the ontroller presentedin [8℄ ould be applied without any hanges. We will also motivate the basi idea of the ontrollerdesign before we restate it using the new attitude parametrization. Moreover, we apply someminor hanges to the potential energy, whih signi�antly failitate the loal analysis of theequilibrium points.Inserting the input transformation
τ � k�W�tωIB

B yJωIBB � �k�W� � 1� �tωIDB yJ�ωIB
B �ω

ID
B � � tωIB

B yJωID
B � � Jω̇ID

B � τ̃ , (29)whih onsists of both the new ontrol input τ̃ and suitable feedforward terms, into (27) yields
ω̇
DB
B � J�1 ��k�W� � 1�tωDB

B yJωDB
B � τ̃ � . (30)Therein, k�W� an be any loally Lipshitz ontinuous funtion on W satisfying Assumption1. However, in order to failitate the loal stability analysis in Setion 7.1, we will restrit usto funtions, whih an be globally written as k�zdB ,ωDB

B �. For the sake of onveniene, k isoften hosen onstant. For example k � 1 will anel the oriolis term, whereas k � 0 yields
τ � τ̃ in the ase of a setpoint ontrol (when RID is onstant). It will turn out that the stabilityproperties of the losed loop do not depend on the partiular hoie of k. Together with (12)or alternatively (16) and (24) the preeding equation forms the new open loop dynamis. Forthe onveniene of the reader the respetive equations are assembled in the following. Using theglobal state representation W one obtains the open loop system

ṘBD � �tωDBB yRBD , (31)
ω̇
DB
B � J�1 ��k�zdB ,ωDB

B � � 1�tωDB
B yJωDB

B � τ̃� , (32)



TUM Teh. Rep. Auto. Cont. Vol. TRAC-7 9whereas using w as the state representation of hoie leads to
żdB � tzdByωDBB , (33)

ẋdAxy � � xdAy�xdAx	 � zdBx

1�zdBz

zdBy

1�zdBz
1�ωDB

B , (34)
ω̇
DB
B � J�1 ��k�zdB ,ωDB

B � � 1�tωDB
B yJωDB

B � τ̃ � . (35)The ontrol law presented in [8℄ ould now be diretly applied to τ̃ and would ahieve asymp-toti attitude traking. In the following some slight modi�ations to that ontrol law will beintrodued, but we adopt the input onstraintYτ̃ xyY B τ̄xy , Sτ̃z S B τ̄z , (36)where τ̄xy and τ̄z are positive onstants and τ̄xy Q τ̄z holds. Although τ̃ is not the atual ontroltorque, we nevertheless onsider the onstraint, sine, as mentioned above, τ̃ equals τ if k ishosen to be zero and a setpoint ontrol is onsidered. Moreover, the onstraint an be easilydropped if desired. Due to the similarity of (30) and (6), we will sloppily refer to τ̃ as the ontroltorque from time to time, although it is lear that the atual torque is τ .The ontroller design is based on an energy shaping approah as presented e.g. in [14℄. Theontrol law is onstruted suh that the losed loop system is desribed by means of an assignedontinuously di�erentiable energy funtion V , whih has a strit minimum at the desired equi-librium point Wd � �I3,0�� wd � �eTz �1 0� 0T �T . In the following we will assign an energyfuntion
V �W� � Erot�ωDB

B � �Epot�RBD� � 1

2
�ωDB

B �TJωDB
B �Epot�RBD� , (37)whih is omposed of a kineti and a potential energy part and ful�lls V �Wd� � 0 and V �W� A 0if W x Wd. Moreover, sine Erot is a radially unbounded funtion and the attitude spae isompat, it holds that all sublevel sets of V are ompat and inlude Wd. Taking the derivativeof V with respet to time yields

V̇ �W� � �ωDB
B �TJω̇DB

B � ∂Epot

∂ ÑRBD

Ñ̇RBD � �ωDB
B �T τ̃ � ∂Epot

∂ ÑRBD

t ÑRBDy´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶�TT �RBD� ω
DB
B , (38)where T an be identi�ed as the torque �eld resulting from the potential energy Epot. Now, byhoosing the ontrol law

τ̃ � T�RBD� �D�W�ωDB
B , (39)where D�W� C 0 is a state dependent damping matrix, and inserting it into (38), one obtains

V̇ �W� � ��ωDB
B �TD�W�ωDB

B B 0 . (40)It follows from (40) that the sublevel sets of V are not only ompat but also positively invariant,whih proves global stability of the desired equilibrium. After expliitly de�ning the ontrol law(39) in the next subsetions, further stability properties are analyzed in Setion 7.6.1 Shaping of the Potential EnergyWe will now state the potential energy whih is assigned to the losed loop system. Apartfrom some minor modi�ations disussed at the end of this subsetion, it is largely identialto the one given in [8℄. The potential energy Epot neessarily needs to depend on appropriate



TUM Teh. Rep. Auto. Cont. Vol. TRAC-7 10error funtions haraterizing the thrust diretion error and the heading error. A natural errorfuntion indiating the alignment error of the thrust is the angle ϕ � arccos�zdBz� whereasthe angle ϑ � arccos�xdAx� an be onsidered a measure for the heading error. We propose apotential energy of the form Epot�ϕ,ϑ�. To be an appropriate energy funtion, Epot�ϕ,ϑ� has tobe ontinuously di�erentiable on the domain �0, π���0, π� with its only minimum at �ϕ,ϑ� � �0,0�and we moreover laim
∂Epot

∂ϑ
�π,ϑ� � 0 �ϑ , (41)

∂Epot

∂ϑ
�0, ϑ� A 0 if ϑ > �0, π� , (42)

∂Epot

∂ϕ
�ϕ,ϑ� A 0 if �ϕ,ϑ� > �0, π���0, π� , (43)

∂Epot

∂ϕ
�ϕ,ϑ� � 0 if �ϕ,ϑ� > �0, π� � �0, π� , (44)

∂Epot

∂ϑ
�ϕ,ϑ� � 0 if �ϕ,ϑ� > �0, π� � �0, π� . (45)The �rst onstraint guarantees thatT is ompliant with Assumption 1 by ensuring thatEpot�ϕ,ϑ�does not depend on ϑ if ϕ � π. As analyzed in Remark 1 this is neessary sine ϑ as a funtionof xdAxy, whih is not unique in this ase. The seond onstraint assures that the potentialenergy is inreasing with a growing heading error at least at ϕ � 0 (and due to the di�erentia-bility also in a neighborhood of ϕ � 0). The third onstraint laims that the same is true withrespet to the thrust diretion error but independently of the heading error. Finally, the fourthand �fth onstraint serves to guarantee a ontinuous torque �eld T over the whole state spaeW. Alltogether, the onstraints imply that �rst, all ritial points of Epot are given by the set�ϕ,ϑ� > ��0,0� 8 �0, π� 8 �π� � �0, π�� and seond, Epot is maximal for �ϕ,ϑ� > ��π� � �0, π��. Itis lear from physial insight that the set of ritial points of the potential energy de�nes thestate spae region where the torque �eld disappears and thus it also de�nes the set of equilibriumpoints of the losed loop system. It was shown in [1℄ that due to the topologial struture ofthe attitude spae further equilibrium points besides the desired one must exist if a ontinuousontrol law is applied. In detail we hoose a potential energy funtion

Epot�ϕ,ϑ� � Eϕ�ϕ� �Eϑ�ϕ,ϑ� , (46)where
Eϕ�ϕ� � cϕ S ϕ

0

Λϕu
ϕl
�ζ� dζ , Eϑ�ϕ,ϑ� � ¢̈̈̈�̈̈̈¤ �cos�ϕ

2
��cos�ϕu

2
��2�1�cos�ϕu

2
��2 cϑ R ϑ0 Λϑu

ϑl
�ζ� dζ if ϕ B ϕu

0 if ϕ A ϕu (47)and cϕ, cϑ are positive onstants. The struture of the energy omponents hosen in (47) imme-diately guarantees ompliane with the onstraints (41), (42), (44) and (45). To guarantee (43)a suitable parameter set (cϕ, cϑ, ϕl, ϕu, ϑl, ϑu) has to be hosen, whih is always possible. Tosee this, note that hoosing cϑ su�iently small will always lead to ompliane with (43).As in (38) one has to take the derivative of Epot with respet to time to ompute the torque �eld
T that Epot generates. It holds that

Ėpot � ∂Epot
∂ϕ

ϕ̇ � ∂Epot
∂ϑ

ϑ̇ � �TT
ω
DB
B , (48)
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ϕ̇ � �żdBz¼

1 � z2
dBz

� � 1¼
z2
dBx

� z2
dBy

<�����>�zdByzdBx
0

=AAAAA?T ωDB
B � �eTϕωDB

B (49)is obtained using (16) and the unit length of zdB and
ϑ̇ � �ẋdAx¼

1 � x2
dAx

� �xdAy¼
1 � x2

dAx

���¼z2
dBx

� z2
dBy

1 � zdBz eT� � eTz

���ωDB
B (50)is omputed analogously using (26). Deomposing T into parts aording to the energy om-ponents Eϕ and Eϑ from whih they originate and aording to their e�etive diretions eϕ, e�and ez results in

T � Tϕ
ϕ �Tϑ

ϕ �Tϑ� �Tϑ
z , (51)where the supersript indiates the energy omponent and the subsript indiates the e�etivediretion. Using (48), (49), (50) and (47) the omponents in (51) are identi�ed as

Tϕ
ϕ � ∂Eϕ

∂ϕ
eϕ � Λϕu

ϕl
�ϕ�eϕ ,

Tϑ
ϕ � ∂Eϑ

∂ϕ
eϕ �� ¢̈̈̈�̈̈̈¤��cos�ϕ

2
��cos�ϕu

2
�� sin�ϕ

2
��1�cos�ϕu

2
��2 cϑ R ϑ0 Λϑu

ϑl
�ζ� dζ eϕ if ϕ B ϕu

0 if ϕ A ϕu ,
Tϑ� � ∂Eϑ∂ϑ

� xdAy
¼
z2
dBx

� z2
dBy¼

1 � x2
dAx

�1 � zdBz� e� �� ¢̈̈̈̈�̈̈̈̈¤�cos�ϕ

2
��cos�ϕu

2
��2�1�cos�ϕu

2
��2 cϑΛ

ϑu
ϑl
�ϑ� xdAy

¼
z2
dBx

�z2
dBy¼

1�x2
dAx

�1�zdBz� e� if ϕ B ϕu
0 if ϕ A ϕu ,

Tϑ
z � ∂Eϑ

∂ϑ
� xdAy¼

1 � x2
dAx

ez �� ¢̈̈̈̈�̈̈̈̈¤�cos�ϕ

2
��cos�ϕu

2
��2�1�cos�ϕu

2
��2 cϑΛ

ϑu
ϑl
�ϑ� xdAy¼

1�x2
dAx

ez if ϕ B ϕu
0 if ϕ A ϕu .

(52)

The hosen potential energy funtion (46) extends the potential energy Eϕ, introdued in [7℄,by a further omponent Eϑ. The energy Eϕ an be thought of as the potential aused by anonlinear saturating torsion spring arranged between the atual and the desired thrust diretion.Aordingly, it generates a torque T
ϕ
ϕ depending only on ϕ, whih ensures the alignment of thebody-�xed z-axis. The energy omponent Eϑ serves to generate ontrol torques that reduethe heading error angle ϑ. Note that the ϕ-dependent prefator in Eϑ results in a dereasingin�uene of this energy omponent with an inreasing thrust diretion error ϕ. For ϕ A ϕu iteven disappears. Sine large thrust diretion errors an ause large deviations from the intendedtranslational motion of the quadrotor, they indiate a ritial situation. Thus, the behavior of

Eϑ is favorable sine it fores the ontroller to prioritize the thrust alignment instead of reduingthe heading error. In detail, the torques Tϑ
z , TϑÙ and Tϑ

ϕ are indued by Eϑ. While Tϑ
z an be



TUM Teh. Rep. Auto. Cont. Vol. TRAC-7 12regarded as the "intended" torque, whih, for a onstant ϕ, ats around the z-axis analogousto T
ϕ
ϕ, the omponents TϑÙ and Tϑ

ϕ an be onsidered "parasiti". This is beause Tϑ
ϕ alwaysounterats Tϕ

ϕ and TϑÙ indues a motion around eÙ, whih does not ontribute to a derease of
ϕ aording to (49). At the same time, TϑÙ redues the available ontrol authority for Tϕ

ϕ, sinein view of (36) YTxyY �¼�YTϕ
ϕY�YTϑ

ϕY�2 � YTϑÙY2 � τ̄xy (53)must hold. Just like ompliane with the onstraint (43) (whih in turn is equivalent to YTϕ
ϕY �YTϑ

ϕY A 0) is a matter of parameterizing Epot, the same holds for guaranteeing (53) and is alwayspossible. Again, it an be veri�ed that hoosing cϑ su�iently small will lead to ompliane with(53). The seond ontrol input onstraint given in (36) amounts toSTz S � YTϑ
z Y � τ̄z, (54)and is ensured by hoosing cϑ � τ̄z

sin�ϑl� . Note that in ontrast to (36) we have formulated (53)and (54) as strit inequalities in order to reserve some ontrol torque for damping purposes.In ontrast to [8℄, the energy omponents Eϕ and Eϑ presented here were onstruted using aslightly modi�ed funtion Λ
ζu
ζl
�ζ�. Instead of a linear inreasing and dereasing integrand, in (1)an integrand inreasing and dereasing with the sine funtion is hosen. While the deviationfrom the linear funtion is negligible for reasonable values of ϕl, ϕu and ϑl, ϑu respetively, thishoie signi�antly failitates linearizing the losed loop system around its equilibrium pointsfor the analysis of the loal properties. Moreover, the ϕ-dependent prefator in Eϑ is di�erentompared to [8℄. Again, the main reason for the modi�ation lies in the simpli�ed loal analysis,while not overly in�uening the losed loop behavior.6.2 Damping InjetionThe damping matrix D needed to omplete the ontrol law (39) is adopted from [8℄ withouthanges and hene only adapted to the parametrization and the notation used. The basi ideais to deompose the angular veloity ω

DB
B into omponents aording to the orthonormal basis�e�,eϕ,ez� and to damp them individually. This is reasonable beause they have a di�erentmeaning in view of the ontrol task. The deomposition of ωDBB reads

ω
DB
B � eT�ωDB

B e� � eTϕω
DB
B eϕ � eTz ω

DB
B ez � ω�e� � ωϕeϕ � ωzez . (55)Note that aording to (49) it holds that ωϕ � �ϕ̇. By hoosing a damping matrix of the form

D�W� �κxy�W��dϕ�W�eϕeTϕ�d�e�eT� ��κz�W�dz�W�ezeTz� �κxy�W�Dxy�W� 0

0 κz�W�dz�W�	 C 0 , (56)the damping oe�ients dϕ, d� and dz allow an individual damping of ωϕ, ωÙ and ωz. Thesubmatrix Dxy in (56) reads
Dxy�W� � dϕ�W�

z2
dBx

�z2
dBy

� z2dBy �zdBxzdBy�zdBxzdBy z2dBx
	 � d�

z2
dBx

�z2
dBy

� z2dBx zdBxzdBy
zdBxzdBy z2dBy

	 (57)and the gains κxy and κz serve to saturate the damping torques if neessary. They are de�nedas
κxy � min

κA0,[Txy�κ�Dxyω
DB
Bxy

[�τ̄xy�1, κ� , κz � min
κA0,TTz�κ�dzωDB

Bz
T�τ̄z�1, κ� (58)



TUM Teh. Rep. Auto. Cont. Vol. TRAC-7 13and guarantee ompliane with (36). While the angular rate ωz is about the thrust axis andhene does not at all in�uene the alignment of the thrust, this does not hold for ω�. In ontrast,the angular rate ω� indiates a motion around e� ausing the thrust vetor to move perpendiularaway from the shortest path to the desired thrust diretion, whih is given by a rotation around
eϕ. Consequently ω� should always be damped and d� is hosen to be a positive onstant.The hoie of the damping oe�ients dϕ and dz given below, is guided by some simplifyingonsiderations on the motion of the ontrolled system. These simpli�ations merely serve as toolfor the design of dϕ and dz and do not a�et the stability analysis in Setion 7.Regarding the symmetry of a quadrotor, one an assume that J � Ĵ � diag�Ĵ1, Ĵ1, Ĵ2� A 0approximately holds. Sine moreover τ̄xy Q τ̄z and the primary objetive is to align the thrustaxis, one will usually onstrut the energies Eϕ and Eϑ suh that the torque Tϕ

ϕ, whih is designedto align the thrust, signi�antly dominates the other omponents Tϑ
ϕ,Tϑ� and Tϑ

z . It is thereforeplausible to assume that the ontrol task is ompleted more or less sequentially. This means that�rst ϕ is driven to zero while ϑ remains more or less onstant and only afterwards ϑ is redued tozero. This implies that in the �rst phase the simplifying assumption ω
BD
B Õ ω̇BDB Õ eϕ is justi�edand provided that κxy � 1, the salar di�erential equation

Ĵ1ϕ̈ � �Tϕ � dϕ�W� � ϕ̇ if ϕ x 0 , 1 (59)approximately holds, where Tϕ � YTϕ
ϕY�YTϑ

ϕY A 0. It an be seen from (52) that near ϕ � 0, wherethe small-angle approximation holds, the torque Tϕ an be onsidered linear in ϕ. Reasonablevalues of ϕl are rather small and aordingly (59) approximately beomes
Ĵ1ϕ̈ � �c � ϕ � dϕ�W� � ϕ̇ if 0 � ϕ B ϕl , (60)where c B cϕ is a positive onstant (depending on the partiular ϑ onsidered onstant duringthe �rst phase). We hoose

dϕ�ϕ, ϕ̇, Tϕ� � χϕu�∆ϕ,ϕu

ϕl,ϕl�∆ϕ �ϕ, δϕ, d�ϕ�ϕ, ϕ̇, Tϕ�� , (61)where δϕ and ∆ϕ � ϕu�ϕl

2
are positive onstants and the funtion d�ϕ is disussed further below.It follows from (61) that the damping is rendered onstant (dϕ � δϕ) for ϕ B ϕl and for ϕ C ϕu.This has two e�ets. First, the dynamis (60) are rendered linear, whih ertainly is a desirablebehavior for small alignment errors of the thrust vetor. Seond, by hoosing

d� � δϕ , (62)we an ensure that, aording to (57), the matrix Dxy beomes onstant for small and largevalues of ϕ, i.e.
Dxy � δϕI2 A 0 if ϕ B ϕl or ϕ C ϕu. (63)This way, di�ulties with determining eϕ and e� near ϕ � 0 and ϕ � π, where z2dBx � z2dBy � 0,are e�etively omitted.A sophistiated damping strategy d�ϕ is applied in the region ϕl �∆ϕ � ϕ � ϕu �∆ϕ. There, astrategy similar to the bang-bang solution of a time optimal ontrol is applied. This requires toindiate a swithing urve sϕ�ϕ� � 0, where the transition from aeleration (ϕ̈ � 0) to deeler-ation (ϕ̈ A 0) ours. If ϕ̇ A s�ϕ�, the damping d�ϕ is hosen to enable maximum aelerationbased on (59). In ase of ϕ̇ A 0, this means supporting the torque �Tϕ by a positive damping1Note that ϕ � 0 has to be exluded, sine we have de�ned ϕ to be positive or equal to zero. Aordingly ϕ̇ C 0must hold for ϕ � 0. The solutions of the given di�erential equation do not neessarily satisfy this requirement.
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dϕ � δϕ

ϕl ϕl �∆ϕ

dϕ � δϕ

ϕu �∆ϕ ϕu π

dϕ � d�ϕacc � �Tϕϕ̇ � τ̄xy
ϕ̇

dϕ � d�ϕacc � �Tϕvϕ � τ̄xy
vϕ

dϕ � d�ϕacc � 0

dϕ � d�ϕdec � �Tϕϕ̇ � τ̄xy
ϕ̇

rϕ � sϕ�ϕ�
sϕ�ϕ�

Figure 3: Visualization of the damping dϕ�ϕ, ϕ̇, Tϕ� in the phase plane. Orange areas: Constantdamping. Green areas: Aeleration supporting damping. Blue areas: Deeleration supportingdamping. White areas indiate regions, where the damping is interpolated.
d�ϕ A 0, suh that the maximum torque τ̄xy is exploited. In ase of ϕ̇ � 0, the damping is set tozero to avoid ounterating �Tϕ. If ϕ̇ � s�ϕ� � 0 maximum deeleration is desired, whih an beahieved by hoosing d�ϕ A 0 so high that �Tϕ is overompensated and τ̄xy is used to slow down.Summing up, we hoose

d�ϕ�ϕ, ϕ̇, Tϕ� � χrϕ�sϕ�ϕ�sϕ�ϕ� �ϕ̇, d�ϕdec�ϕ̇, Tϕ�, d�ϕacc�ϕ̇, Tϕ�� , (64)where
d�ϕacc�ϕ̇, Tϕ� � ¢̈̈̈̈̈�̈̈̈̈̈¤�Tϕϕ̇ � τ̄xy

ϕ̇
if ϕ̇ A vϕ ,�Tϕ

vϕ
� τ̄xy

vϕ
if vϕ C ϕ̇ A 0

0 if 0 C ϕ̇ , , d�ϕdec�ϕ̇, Tϕ� � �Tϕϕ̇ � τ̄xy
ϕ̇
, (65)and rϕ as well as vϕ are positive onstants. It is lear from (64) that 0 � rϕ � 1 de�nes a regionof interpolation between d�ϕacc and d�ϕdec in order to render the resulting torque ontinuous. Anexamination of d�ϕacc reveals that the small onstant vϕ A 0 prevents the damping from growingunbounded when ϕ̇ approahes zero. The swithing urve whih is used in (64) reads

sϕ�ϕ� � �½v2ϕmax � 2Ĵ1
�1
τ̄xy�ϕl � ϕ� � 0 . (66)This urve is simply the phase-plane trajetory ϕ̇�ϕ� solving the di�erential equation Ĵ1ϕ̈ � τ̄xyand passing through the point ϕ̇�ϕl� � �vϕmax � 0. Figure 3 visualizes the applied dampingstrategy for dϕ in the phase plane.The damping dz is designed analogously to dϕ based on the dynamis

Ĵ2ϑ̈ � � STz S � dz�W� � ϑ̇ if ϑ x 0 , (67)
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dz � δz
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dz � δz

ϑu �∆ϑ ϑu π

π

dz � d�zacc�ϑ̊z, Tz�

ϑl ϑl �∆ϑ

dz � d�zdec�ϑ̊z, Tz� rϑ � sϑ�ϑ�
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Figure 4: Visualization of the damping dz�ϕ,ϑ, ϑ̇, ϑ̊z, Tz�. Orange areas: Constant damping.Green areas: Aeleration supporting damping. Blue areas: Deeleration supporting damping.White areas indiate regions, where the damping is interpolated.whih result from the assumptions that κz � 1 and that the �rst phase, the alignment of thethrust diretion, is ompleted. Thus ϕ � 0 and onsequently ω̇ Õ ω Õ ez holds. Expliitely, thedamping dz is
dz�ϕ,ϑ, ϑ̇, ϑ̊z, Tz� � χϕu

ϕu�∆ϕ �ϕ,χϑu�∆ϑ, ϑuϑl , ϑl�∆ϑ �ϑ, δz, d�z �ϑ, ϑ̇, ϑ̊z , Tz�� , δzǑ , (68)where ∆ϑ � ϑu�ϑl
2

and δz are positive onstants and the quantity ϑ̊z will be introdued lateron. Note that the additional outer interpolation funtion is neessary to aount for the non-uniqueness of ϑ if ϕ � π and thus serves to satisfy Assumption 1. Figure 4 gives an overviewover the damping dz. The funtion d�z is given by
d�z�ϑ, ϑ̇, ϑ̊z, Tz� � χrϑ�sϑ�ϑ�sϑ�ϑ� �ϑ̇, d�zdec�ϑ̊z, Tz�, d�zacc�ϑ̊z, Tz�� . (69)The orresponding swithing urve is

sϑ�ϑ� � �½v2
ϑmax

� 2Ĵ2
�1
τ̄z�ϑl � ϑ� � 0 , (70)the damping used for aeleration and deeleration reads

d�zacc�ϑ̊z, Tz� � ¢̈̈̈̈̈�̈̈̈̈̈¤� STz S
ϑ̊z

� τ̄z
ϑ̊z

if ϑ̊z A vϑ ,� STz S
vϑ

� τ̄z
vϑ

if vϑ C ϑ̊z A 0 ,

0 if 0 C ϑ̊z , (71)
d�zdec�ϑ̊z, Tz� � ¢̈̈̈̈̈�̈̈̈̈̈¤� STz S

ϑ̊z
� τ̄z
ϑ̊z

if ϑ̊z � �vϑ ,� STz S�vϑ � τ̄z�vϑ if �vϑ B ϑ̊z � 0 ,

0 if 0 B ϑ̊z , (72)



TUM Teh. Rep. Auto. Cont. Vol. TRAC-7 16and vϑmax A 0, vϑ A 0 and 0 � rϑ � 1 are onstants. Note that we use
ϑ̊z � �xdAy¼

1 � x2
dAx

ωz (73)instead of ϑ̇ to distinguish between the ases in (71) and (72). This is done beause dz is onlye�etive in onnetion with ωz and aording to (50) the quantity ϑ̊z represents the part of ϑ̇depending on ωz. Sine ϑ̇ only oinides with ϑ̊z if ϕ � 0 or ω� � 0, additional ases have to bedistinguished in (71) and (72) ompared to (65). This is due to the fat that ϑ̇ and ϑ̊z an havedi�erent signs. To larify this we give one example. Assume that ϑ̇ � s�ϑ�, whih means thatthe error angle is dereasing so fast that maximum deeleration is desired. If 0 B ϑ̊z holds at thesame time, the angular rate ωz already ontributes positively to ϑ̇ and aordingly any dampingof ωz would be ounterprodutive. It follows that dz � 0 is the best hoie in that ase.7 Stability PropertiesIn this setion we prove loal exponential and almost global asymptoti stability of the desiredequilibrium. This is done by showing �rst that apart from the desired equilibrium further unde-sired equilibria exist. Loal analysis shows that the desired equilibrium is loally exponentiallystable and that all undesired equilibria are unstable exept for one undesired equilibrium, whihan only be shown to be a hyperboli �xed point. In a seond step, using LaSalle's invarianepriniple we establish instability of the yet unlassi�ed undesired equilibrium and moreover provethat the desired equilibrium exhibits a region of attration that overs the whole state spae ex-ept for a manifold of lower dimension than the state spae. This type of stability is referred toas almost global asymptoti stability, sine aording to [12, Appendix B℄ suh a manifold hasLebesgue measure zero. As it is analyzed in [1℄, almost global asymptoti stability is the bestwe an ahieve with a ontrol law that is ontinuous over the whole state spae.By inserting the ontrol law (39) derived in the previous setion into the open loop dynamis (31),(32) and setting the left hand side to zero, the losed loop equilibrium points an be identi�ed.From (31) one onludes that ωDB
B � 0 must hold and from (32) it is lear that τ̃ must vanish.Sine ω

DB
B � 0 the damping plays no role and the equilibrium points are determined by the set,where T vanishes. With regard to (52) and (41) � (45) two isolated equilibrium points and aonneted set of equilibrium points an be established. The two isolated equilibria are

Wd � �I3,0� , Wu1 � ���ex �ey ez� ,0� , (74)where Wd is the desired equilibrium and Wu1 is an undesired equilibrium. The undesiredequilibrium Wu1 orresponds to the ase where the thrust is aligned (zdB � ez), whereas thebody-�xed x-axis is anti-parallel to its desired orientation (xdB � �ex). In terms of w these twoequilibrium points readwd � �eTz �1 0� 0T �T , wu1 � �eTz ��1 0� 0T �T (75)and regarding the error angles ϕ and ϑ it holds that
W �Wd Ô� �ϕ,ϑ� � �0,0� , W �Wu1 Ô� �ϕ,ϑ� � �0, π� . (76)Moreover, every element of the setWu2 � �W >W �RBDez � �ez,ωDB

B � 0� (77)is also an undesired equilibrium point of the losed loop system. It holds that
W >Wu2 Ô� zdB � �ez Ô� ϕ � π . (78)



TUM Teh. Rep. Auto. Cont. Vol. TRAC-7 17Thus, the set Wu2 omprises the set of attitudes where the thrust vetor is anti-parallel to itsdesired diretion.7.1 Loal PropertiesTo derive the loal properties, the losed loop system is linearized around its equilibrium points.Observe that sine RBD evolves on SO�3� it has only three degrees of freedom. Thus, wean express RBD loally by three minimal oordinates. In the following we will �rst expressall attitude dependent terms appearing in the losed loop dynamis by a suitable set of loalminimal oordinates and then linearize the system in a seond step. From Remark 1 we knowthat w is a suitable state representation in a neighborhood of the equilibrium points Wd, Wu1and wd, wu1 respetively. Aordingly, for the linearization around Wd / wd and Wu1 /wu1 wewill use �zdBxy , xdAy� as minimal oordinates representing �zdB ,xdAxy� and thus also RBD.To deal with the set Wu2 we exploit the fat that in a neighborhood of zdB � �ez � ϕ � π thedynamis of zdB (whih is the last olumn of RBD) deouple from those of xdB and ydB (whihare the �rst two olumns of RBD). This an be easily seen by noting that the ontrol law (39)derived in the previous setion does depend solely on zdB and ω
DB
B if ϕ C ϕu. Regarding thisdeoupled part of the losed loop system given by (33), (35) and (39), the analysis of the setWu2simpli�es to the analysis of the single equilibrium point �zdB ,ωDB

B �u2 � ��ez,0�. Sine zdB > S2,it has only two degrees of freedom and we will use zdBxy as a suitable minimal representationfor zdB .Note that the subsequent linearizations are failitated by the fat that the damping matrix Dde�ned in Setion 6.2 simpli�es to a onstant matrix D � diag�δϕ, δϕ, δz� in a neighborhood ofany of the equilibrium points given by (74) and (77).Loal Stability properties of the desired equilibrium Wd / wdIn a neighborhood of Wd it holds that zdB � ez and xdAxy � �1 0�T . Aordingly, zdBz �¼
1 � �z2

dBx
� z2

dBy
� and xdAx � ¼

1 � x2
dAy

. Inserting this into (33) and (34) yields for the dy-namis of �zdBxy , xdAy��żdBx
żdBy

	 � <����> ωDBBz zdBy � ωDBBy ¼1 � �z2
dBx

� z2
dBy

��ωDBBz zdBx � ωDBBx ¼1 � �z2
dBx

� z2
dBy

�=AAAA? , (79)
ẋdAy � �¼1 � x2

dAy

��� zdBxω
DB
Bx

1 �¼1 � �z2
dBx

� z2
dBy

� � zdByω
DB
By

1 �¼1 � �z2
dBx

� z2
dBy

� � ωDBBz ��� . (80)In the dynamis (35) we have to express the attitude dependent terms of τ̃ by the minimaloordinates. Sine in a neighborhood of Wd a onstant damping D � diag�δϕ, δϕ, δz� is appliedonly the omponents of T given in (52) have to be onsidered. Realling that ϕ > �0, π� andhene ¼z2
dBx

� z2
dBy

� sin�ϕ�, the torque T
ϕ
ϕ an be indiated as

Tϕ
ϕ � cϕ sin�ϕ� � eϕ � cϕ sin�ϕ� � 1

sin�ϕ� <�����>�zdByzdBx
0

=AAAAA? � cϕ <�����>�zdByzdBx
0

=AAAAA? . (81)The torque Tϑ
ϕ an be reformulated using sin�ϕ

2
� � ¼

1

2
�1 � cos�ϕ��, cos�ϕ

2
� � ¼

1

2
�1 � cos�ϕ��,
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sin�ϕ� �»1 � cos�ϕ�2 �»�1 � cos�ϕ��»�1 � cos�ϕ�� and zdBz � cos�ϕ�. One obtains

Tϑ
ϕ � cϑ ϑS

0

Λϑu
ϑl
�ζ� dζ � ��¼1

2
�1 � cos�ϕ�� � cos�ϕu

2
�� 1º

2

»
1 � cos�ϕ��1 � cos�ϕu

2
��2 � eϕ �� ϑS

0

Λϑu
ϑl
�ζ� dζ � �cϑº

2
�¼1

2
�1 � cos�ϕ�� � cos�ϕu

2
��»1 � cos�ϕ��1 � cos�ϕu

2
��2»1 � cos�ϕ�»1 � cos�ϕ� <�����>�zdByzdBx

0

=AAAAA? �� arccos�xdAx�S
0

Λϑu
ϑl
�ζ� dζ � �cϑº

2
�¼1

2
�1 � zdBz� � cos�ϕu

2
���1 � cos�ϕu

2
��2º1 � zdBz <�����>�zdByzdBx

0

=AAAAA? �� arccos�¼1�x2
dAy

�S
0

Λϑu
ϑl
�ζ� dζ � �cϑº

2
�½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
���1 � cos�ϕu

2
��2½1 �¼1 � �z2

dBx
� z2

dBy
� <�����>�zdByzdBx

0

=AAAAA? .
(82)

Using ¼1 � x2
dAx

� sin�ϑ� following from ϑ > �0, π� as well as some properties from above, enablesus to write
Tϑ� � �cos�ϕ

2
� � cos�ϕu

2
��2�1 � cos�ϕu

2
��2 � cϑ sin�ϑ� � xdAy¼z2

dBx
� z2

dBy

sin�ϑ� �1 � zdBz� � e� �� cϑ �cos�ϕ2 � � cos�ϕu

2
��2�1 � cos�ϕu

2
��2 � xdAy¼z2

dBx
� z2

dBy

1 � zdBz � 1¼
z2
dBx

� z2
dBy

<�����>zdBxzdBy
0

=AAAAA? �� cϑ �½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
��2 xdAy�1 � cos�ϕu

2
��2 �1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ <�����>zdBxzdBy

0

=AAAAA? .
(83)

The last omponent Tϑ
z �nally reads

Tϑ
z � �cos�ϕ

2
� � cos�ϕu

2
��2�1 � cos�ϕu

2
��2 � cϑ sin�ϑ� � xdAy

sin�ϑ� ez �� cϑ �½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
��2 xdAy�1 � cos�ϕu

2
��2 ez .

(84)
For the linearization around Wd / wd, we de�ne the redued state vetor wdr � �rTd �ωDB

B �T �T ��zdBy �zdBx �xdAy �ωDB
B �T �T . Note in partiular the order and the sign of the �rst threeomponents. In terms of wdr the desired equilibrium lies in zero. Linearizing (79) and (80) aroundwdr � 0 yields

∆ṙd �∆ω
DB
B . (85)The linearization of (35), onsidering (39), (81), (82), (83), (84) and the onstant damping isstraight forward but tedious and eventually results in

∆ω̇
DB
B � �J�1Cd∆rd � J�1B∆ω

DB
B , (86)
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∆ẇdr � � 0 I3�J�1Cd �J�1B	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ad

∆wdr . (87)Sine J�1 is positive de�nite, there exists a nonsingular real matrix M, suh that J�1 �MMT .By de�ning C̃d �MTCM A 0 and B̃ �MTBM A 0 one an rewrite Ad as
Ad � � 0 I3�MC̃dM

�1 �MB̃M�1	 � �M 0

0 M
	 � 0 I3�C̃d �B̃	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ãd

�M�1 0

0 M�1	 . (88)Sine the eigenvalues of Ad and Ãd are the same, we an restrit the analysis to Ãd. Let
v � �vT1 vT2 �T , where v1,v2 > C3, be any eigenvetor of Ãd orresponding to the eigenvalue λ.Then, Ãdv � λv implies v2 � λv1 and B̃v2 � C̃dv1 � �λv2. Inserting the �rst equation into theseond yields λ2v1 � λB̃v1 � C̃dv1 � 0. Multiplying by the omplex onjugate v̄T1 from the leftresults in

v̄T1 v1λ
2 � v̄T1 B̃v1λ � v̄T1 C̃dv1 � aλ2 � bλ � c � 0 . (89)From the positive de�niteness of C̃d and B̃ it follows that a, b, c A 0 and from the Routh-Hurwitzriterion for polynomials of order two all solutions of (89) lie in the left omplex half plane. Thisproves asymptoti stability of Wd / wd with loal exponential onvergene, [11, Theorem 4.15℄.Loal properties of the undesired equilibrium Wu1 / wu1In a neighborhood of Wu1 it holds that zdB � ez and xdAxy � ��1 0�T . Aordingly, zdBz �¼

1 � �z2
dBx

� z2
dBy

� still holds and xdAx � �¼1 � x2
dAy

. As a onsequene, the dynamis of zdBxyare still given by (79), whereas the dynamis of xdAy beome
ẋdAy �¼1 � x2

dAy

��� zdBxω
DB
Bx

1 �¼1 � �z2
dBx

� z2
dBy

� � zdByω
DB
By

1 �¼1 � �z2
dBx

� z2
dBy

� � ωDBBz ��� . (90)The omponents of the torque �eld T an be omputed analogously as before. While Tϕ
ϕ is stillgiven by (81), we obtain for the remaining omponents

Tϑ
ϕ � arccos��¼1�x2

dAy
�S

0

Λϑu
ϑl
�ζ� dζ � �cϑº

2
�½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
���1 � cos�ϕu

2
��2½1 �¼1 � �z2

dBx
� z2

dBy
� <�����>�zdByzdBx

0

=AAAAA? , (91)
Tϑ� � cϑ sin�ϑl�

sin�ϑu� �½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
��2 xdAy�1 � cos�ϕu

2
��2 �1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ <�����>zdBxzdBy

0

=AAAAA? , (92)
Tϑ
z � cϑ sin�ϑl�

sin�ϑu� �½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
��2 xdAy�1 � cos�ϕu

2
��2 ez . (93)
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B �T �T is de�ned, where the sign of the third omponent hasbeen hanged. Linearizing around wu1r � 0 yields

∆ẇu1r � � 0 I3�J�1Cu1 �J�1B	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Au1

∆wu1r , (94)where now the equations (80), (90), (81), (91), (92), (93) and the onstany of the dampinghave been used. Aordingly the sti�ness matrix is Cu1 � diag�cu1, cu1,�cϑ sin�ϑl�
sin�ϑu��, where cu1 �

cϕ � cϑ
2�1�cos�ϕu

2
�� � R π0 Λϑu

ϑl
�ξ�dξ A 0. As it was shown before, the eigenvalues of Au1 oinide withthe eigenvalues of

Ãu1 � � 0 I3�C̃u1 �B̃	 , (95)where C̃u1 �MTCu1M. The eigenvalues of Ãu1 in turn satisfy
v̄T1 v1λ

2 � v̄T1 B̃v1λ � v̄T1 C̃uv1 � aλ2 � bλ � c � 0 . (96)Note that Ãu1 obviously has full rank and hene no zero eigenvalues an exist, whih implies
c x 0. Moreover, from B̃ A 0 it follows that b A 0 and hene no eigenvalues an lie on the imaginaryaxis. One onludes that Wu1 is a hyperboli �xed point and hene no invariant enter manifold
W c�Wu1� exists, [12, Appendix B℄. It will be proven in the next setion that Wu1 is unstableand hene an unstable invariant manifold W u�Wu1� of at least dimension one must exist. Thisin turn limits the stable invariant manifold W s�Wu1� to be of a smaller dimension than thestate spae.Loal properties of the undesired equilibrium set Wu2As stated before, in a neighborhood of the set Wu2, more preisely in the region U � �W >W �
ϕ C ϕu�, it su�es to onsider the deoupled part of the losed loop dynamis given by (33), (35)and (39). In that region zdB � �ez holds and aordingly, using zdBz � �¼1 � �z2

dBx
� z2

dBy
�, thedynamis of zdBxy beome�żdBx

żdBy
	 � <����> ωDBBz zdBy � ωDBBy ¼1 � �z2

dBx
� z2

dBy
��ωDBBz zdBx � ωDBBx ¼1 � �z2

dBx
� z2

dBy
�=AAAA? . (97)Sine all omponents of the torque �eld T resulting from Eϑ are zero in that region, i.e. Tϑ

ϕ �
Tϑ� � Tϑ

z � 0, it remains to onsider Tϕ
ϕ, whih is given by

Tϕ
ϕ � cϕ sin�ϕl�

sin�ϕu� <�����>�zdByzdBx
0

=AAAAA? . (98)De�ning the redued state vetor wu2
r � ��zdBy zdBx �ωDB

B �T �T and onsidering (98) and theonstant damping, the linearization of (97) and (35) around wu2
r � 0 yields

∆ẇu2
r � � 0 �I2 0��J�1Cu2 �J�1B	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Au2

∆wu2
r , (99)
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sin�ϕu� 0

0 �cϕ sin�ϕl�
sin�ϕu�

0 0

=AAAAAA?. Let C0 � <������>�cϕ sin�ϕl�
sin�ϕu� 0 0

0 �cϕ sin�ϕl�
sin�ϕu� 0

0 0 0

=AAAAAA? be the matrixwhih extends Cu2 by an additional zero olumn. By a Laplae expansion along the thirdolumn of the matrix �λI6 �A0�, where
A0 � � 0 I3�J�1C0 �J�1B	 (100)it an be seen that det�λI6�A0� � λdet�λI5�Au2�. Thus, all eigenvalues ofAu2 are eigenvalues of

A0, but A0 has an additional zero eigenvalue. Analogously as before one derives the onditionalequation (89), where C̃d is now replaed by the rank two matrix C̃0 �MTC0M B 0. As one aneasily verify that A0 has exatly one zero eigenvalue, the vetor v1,1 yielding c � v̄T1,1C̃0v1,1 � 0must be one of the three vetors v1,i, i > �1,2,3�, solving λ2v1,i � λB̃v1,i � C̃0v1,i � 0. Thisan be understood by noting that c � 0 in (89) results in λ�λa � b� � 0, whih gives rise to thezero eigenvalue and additionally to a negative eigenvalue λ � �a
b
. Sine A0 has no further zeroeigenvalues, v1,2 and v1,3 must be linearly independent of v1,1 and thus yield c � 0. It diretlyfollows from λ � �b�ºb2�4ac

2a
that Au2 must posses exatly three eigenvalues in the left and twoeigenvalues in the right omplex half plane. Aording to [12, Appendix B℄, in a su�ientlysmall neighborhood V ` R

5 of wu2
r � 0 there exists a loal stable invariant manifold W s

w,loc�0�of dimension three and a loal unstable invariant manifold W u
w,loc�0� of dimension two. Everypoint wu2

r � ��zdBy zdBx �ωDB
B �T �T > V orresponds to an one-dimensional ompat manifoldin the six-dimensional state spae W. We denote this manifold byM�wu2

r � � �W >W �W � �RBD,ω
DB
B �,RBDez � �zdBx zdBy �¼1 � �z2

dBx
� z2

dBy
��T  .In partiular it holds thatM�0� �Wu2 is the set of the onsidered undesired equilibrium points.It follows that W s

loc�Wu2� � �
wu2

r >W s
w,loc

�0�M�wu2
r � is the four-dimensional loal stable invariantmanifold of the set Wu2. Let W�t,W0� denote the solution of the losed loop system at time tand starting in W0, i.e. W�0,W0� �W0. Then the global four-dimensional invariant manifold,whih ontains all solutions onverging to Wu2, is W s�Wu2� � �

tB0,W0>W s
loc

�Wu2�W�t,W0� 2.7.2 Global Stability PropertiesIn this setion we prove almost global asymptoti stability of the desired equilibrium followingthe lines of [8℄. Using LaSalle's invariane priniple (see e.g. [11, Theorem 4.4℄) this is doneby showing �rst that all solutions onverge to Wd, Wu1 or Wu2 and seond that the undesiredequilibria Wu1 and Wu2 are only attrative to a set given by an invariant manifold of Lebesguemeasure zero.Realling that all level sets of V are positively invariant and ompat, we apply LaSalle's invari-ane priniple by showing that the set E �� �W > W � V̇ �W� � 0� ontains no invariant setsapart from the set of equilibrium points �Wd,Wu1,Wu2�. Inserting (56) in (40) and using (55)yields2While the vetor �eld of the losed loop system is forward omplete, the existene of the solutions for all
t > R� is not guaranteed. Although the somewhat sloppy expression t B 0 is intuitive, one should more preiselyadd t > I�W0�, where I�W0� is the maximal interval of existene for the solution starting in W0. Compare also[12, Appendix B℄
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V̇ �W� � �κxy�W� �dϕ�W�ω2

ϕ � d�ω2�� � κz�W�dz�W�ω2

z . (101)Taking into aount that κxy, κz A 0 the derivative V̇ only vanishes if dϕ�W�ω2
ϕ � d�ω2� �

dz�W�ω2
z � 0 holds. Outside the equilibrium points, in the set W̃ � W��Wd,Wu1,Wu2�, thisondition is only ful�lled in the subset E1, whih is the set of all states with zero angular veloity,and in the sets E2, E3, E4, in whih ω

DB
B x 0 while ω� � dϕ�W�ω2

ϕ � dz�W�ω2
z � 0. Thus, the setsE2, E3, E4 are subsets of the state spae regions where dϕ�W� � 0 or dz�W� � 0 holds. In viewof (61) and (68) a neessary ondition for this to happen is ϕ > Φ � �ϕ � ϕl �∆ϕ B ϕ B ϕu �∆ϕ�or ϑ > Θ � �ϑ � ϑl �∆ϑ B ϑ B ϑu �∆ϑ�. Expliitly stated, the sets E1, E2, E3, E4 areE1 � �W > W̃ � ωDBB � 0� , (102)E2 � �W > W̃ � ϕ > Φ, ϑ > Θ, rϕsϕ�ϕ� B ϕ̇ B 0, rϑsϑ�ϑ� B ϑ̊z B 0, ϕ̇ � ϑ̊z x 0, ω� � 0� , (103)E3 � �W > W̃ � ϕ > Φ, ϑ ¶ Θ, rϕsϕ�ϕ� B ϕ̇ � 0, ω� � 0, ωz � 0� , (104)E4 � �W > W̃ � ϕ � ϕl �∆ϕ, ϑ > Θ, rϑsϑ�ϑ� B ϑ̊z � 0, ω� � 0, ωϕ � 0� . (105)Note that ωϕ � �ϕ̇ as well as ωz � �¼

1�x2
dAx

xdAy
ϑ̊z holds and onsequently ω

DB
B x 0 in E2 8 E3 8 E4.Moreover, sine ω� � 0 it follows from (73) and (50) that ϑ̊z � ϑ̇ and aordingly ωz � �¼

1�x2
dAx

xdAy
ϑ̇.Next, we show that �Wd,Wu1,Wu2� is the largest invariant set ontained in E � E1 8 E2 8 E3 8E4 8 �Wd,Wu1,Wu2�.Imagine that W > E1, then τ̃ x 0 and sine ω

DB
B � 0, we have ω̇

DB
B x 0 from (32). Thus, thestate will exit the subset E1 instantaneously, whih shows that no invariant sets are ontained inE1.We proeed by showing that no invariant sets are ontained in E2. As long as the state of thelosed loop system is inside the subset E2, it follows from (55) that

ω
DB
B � �ϕ̇eϕ � ¼

1 � x2
dAx

xdAy
ϑ̇ ez x 0 . (106)A lower bound ω for the angular veloity an be derived solving

Erot0 � 1

2
�ωDB

B0 �TJωDBB0 � 1

2
λ̄�J�ω2 A 0 , (107)where λ̄�J� denotes the largest eigenvalue of J, Erot0 is the rotational energy and ω

DB
B0

theangular veloity at the time t � 0. Sine in the set E2 no damping ours, using (52) the torquean be identi�ed as τ̃ � T � T
ϕ
ϕ �Tϑ

ϕ �Tϑ� �Tϑ
z � kϕ � eϕ � k� � e� � xdAy¼

1�x2
dAx

kz � ez with kϕ A 0 and
kz A 0. Now as long as W > E2, it holds that Ėrot � �ωDB

B �T τ̃ � �ϕ̇kϕ � ϑ̇kz A 0 and onsequently
ω2 B �ωDB

B �TωDBB � ϕ̇2 � ϑ̇2 . (108)Based on (66) and (70), a lower bound for ϕ̇ and ϑ̇ is given by�L �min�sϕ�π�, sϑ�π�� �min�ϕ̇, ϑ̇� � 0. (109)Making use of (109), we an hene extend (108) to obtain
ω2 B ϕ̇2 � ϑ̇2 � �L�ϕ̇ � ϑ̇�. (110)
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0

�ϕ̇ � ϑ̇�dt (111)ertainly is an upper bound of the time at whih the state must leave E2 at the latest. Byinserting (110) in (111) and evaluating the integral, we obtain the inequality�ϕl �∆ϕ� � �ϑl �∆ϑ� B �ϕ0 � ϑ0� � ω2

L
t̃, (112)whih reveals that t̃ itself is upper bounded by

t̃ B L�ϕ0 � �ϕl �∆ϕ�� � �ϑ0 � �ϑl �∆ϑ��
ω2

. (113)Aordingly, E2 is left in any ase and annot ontain any invariant sets. The same holds true forE3 and E4. This an be shown by proeeding ompletely analogously as before and is thereforeomitted here. Moreover, also the union of E1, E2, E3 and E4 annot ontain any invariant sets.Indeed, the state may ross over from E1 into eah of the other sets and also from E2 to E3or E4 but no other transitions are possible. Hene, the union of the sets of equilibrium points�Wd,Wu1,Wu2� is the largest invariant set ontained in E and aording to LaSalle's invarianepriniple every trajetory onverges to Wd, Wu1 or Wu2.In order to prove almost global asymptoti stability of Wd we �rst notie that V �Wd� � 0,
V �Wu1� � Eϑ�0, π� A 0 and V �W� � Eϕ�π� A 0, �W >Wu2. It follows from (41) and (43) that
Eϕ�π� �max�Epot�ϕ,ϑ�� and onsequently Eϑ�0, π� � Eϕ�π�. If we hoose any initial state W0,suh that V �W0� � Eϑ�0, π�, we exlude Wu1 and Wu2 from the initial sublevel set of V andthe solution an only approah Wd. Hene, Wd is an asymptotially stable equilibrium point.Sine the set �W > W � V �W� � Eϑ�0, π�� is adjaent to Wu1, the preeding argumentationalso proves that Wu1 is an unstable equilibrium and aording to the analysis in Setion 7.1its stable invariant manifold W s�Wu1� must be of smaller dimension than the state spae, i.e.
dim�W s�Wu1�� � 6. From the analysis ofWu2 in Setion 7.1 we moreover know that all solutionsonverging toWu2 are ontained in the stable invariant manifoldW s�Wu2�, whih is of dimensionfour. Aordingly, the set of undesired equilibria �Wu1,Wu2� only attrats solutions along theinvariant manifold W s�Wu1� 8W s�Wu2�, whih is of smaller dimension than the state spae.It is known that an m-dimensional invariant manifold of an n-dimensional system has Lebesguemeasure zero if m � n, see e.g. [12, Appendix B℄. This proves almost global asymptoti stabilityof Wd.8 ConlusionIn this paper we have presented an energy based attitude traking ontroller for a quadrotorheliopter. The proposed ontroller prioritizes the alignment of the thrust axis ompared to theheading and thus onsiders the signi�ane of the thrust axis for the translational motion ofa quadrotor heliopter. On the one hand the nonlinear ontroller is a diret extension of theredued attitude traking ontroller presented in [7℄. On the other hand it an also be pereivedas an extension of the attitude setpoint ontroller presented in [8℄ that involves the additionof feedforward terms to the ontrol law as well as some modi�ations of the potential energy.Sine the losed loop error dynamis of the traking ontrol problem and the setpoint ontrolproblem are very similar, we refer the interested reader to [8℄ for a performane analysis basedon simulation results. Compared to [8℄ the ontrol problem has been additionally reformulatedusing the rotation matrix as the attitude representation of hoie. Hereby, the ambiguity of
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