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Energy Based Attitude Tra
king Control for a QuadrotorHeli
opter Prioritizing the Thrust Dire
tionOliver Frits
h �Lehrstuhl für Regelungste
hnik, Te
hnis
he Universität Mün
henBoltzmannstr. 15, D-85748 Gar
hing, GermanyAbstra
tIn this paper an energy based attitude tra
king 
ontrol for a quadrotor heli
opter is presented.The 
ontroller 
an be 
onsidered as an extension of both the setpoint attitude 
ontrol pre-sented in [8℄ and the redu
ed attitude tra
king 
ontroller from [7℄. The 
ontroller prioritizesthe alignment of the quadrotor's thrust axis due to its 
riti
al role for the translational dy-nami
s. In 
ontrast to [8℄, the whole 
ontrol problem is reformulated using the rotationmatrix to represent the attitude instead of quaternions. This way the ambiguity inherent tothe quaternion representation is omitted. Global and lo
al analysis of all equilibrium pointsof the tra
king error dynami
s is provided and shows that tra
king of the desired attitude isa
hieved for almost all initial 
onditions. In detail, almost global asymptoti
 stability andlo
al exponential stability is established for the equilibrium 
orresponding to a zero tra
kingerror.Keywords: Quadrotor attitude tra
king; Energy shaping; Almost global asymptoti
 stability1 Introdu
tionA quadrotor heli
opter is a highly maneuverable verti
al take-o� and landing air
raft, whi
ho�ers the ability of hovering. As shown in Fig. 1, it is basi
ally a rigid body with four rotorsarranged in a 
ommon plane whi
h generate thrust for
es and drag moments. The e�e
ts of thefour single rotors 
an be summarized in the 
enter of gravity as a total thrust F perpendi
ular tothe plane and a torque ve
tor τ � �τx τy τz�T . Sin
e the dire
tion of the thrust is body-�xed,the exe
ution of almost all translational motions requires tilting the whole quadrotor heli
optersystemati
ally. Consequently, a desired thrust dire
tion is usually the output of a higher levelposition 
ontroller or the remote 
ontrol 
ommand of a human operator. Additionally, a desiredorientation of the quadrotor around its desired thrust axis 
an be spe
i�ed. This 
an be donefor example by de�ning a desired heading for one of the quadrotors arms in the horizontal plane.The resulting desired attitude has to be tra
ked by an appropriate attitude 
ontroller. Due tothe signi�
an
e of the thrust dire
tion for the translational dynami
s it plays a 
riti
al role inthe attitude 
ontrol task of a quadrotor and its alignment should be prioritized 
ompared to theheading.The 
ontrol task belongs to the broad �eld of rigid body attitude 
ontrol, whi
h has been exten-sively studied for de
ades, espe
ially in the 
ontext of spa
e
raft appli
ations. A survey on the�Corresponding author: Tel: +49 89 289 15670, Fax: +49 89 25915653, email: oliver.frits
h�tum.de1
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ontrol inputs F, τx, τy, τz.topi
 was re
ently published in [5℄. Also in the �eld of unmanned aerial vehi
les like quadrotorheli
opters the attitude 
ontrol task has been intensively addressed, see e.g. [3, 6, 13, 16℄. Signi�-
antly fewer works are 
on
erned with redu
ed attitude 
ontrol, whi
h deals with the alignment ofonly one body axis. Some examples are [2, 4, 5, 10, 17℄. The 
ontroller presented here, 
ombinesboth 
ontrol problems in the way that the alignment of one body axis is 
onsiderably prioritized.Although for quadrotor appli
ations the signi�
an
e of the thrust axis is obvious, to the bestknowledge of the author, no attitude tra
king 
ontrol for a quadrotor heli
opter prioritizing thethrust axis has been published so far. A saturating attitude setpoint 
ontrol with these featureswas introdu
ed by the author and others in [8℄.The 
ontroller presented in this paper is based on an energy shaping approa
h (see e.g. [14℄). It
an be roughly assigned to the very general 
on
ept published in [4℄ but fo
uses on indi
atingexpli
it energy and damping fun
tions. A suitable shaping of the 
losed loop energy and asophisti
ated damping strategy lead to a fast transient behavior prioritizing the alignment of thethrust dire
tion. The energy based 
ontroller design gives rise to a 
ontinuous state feedba
klaw, whi
h renders the equilibrium 
orresponding to a zero tra
king error almost asymptoti
allyand lo
ally exponentially stable. The presented 
ontroller extends the attitude setpoint 
ontrolproposed in [8℄ to an attitude tra
king 
ontrol by adding suitable feedforward terms to the
ontrol law. In addition, the potential energy fun
tions proposed in [8℄ are slightly modi�ed tofa
ilitate the lo
al analysis of the 
losed loop equilibrium points. At the same time, the in�uen
eof the modi�
ations on the 
ontroller perfoman
e is negligible. Moreover, the 
ontrol problemis restated using the rotation matrix for the attitude parametrization instead of quaternions.The ambiguity inherent to the quaternion representation 
an thus be omitted. Finally, the newattitude representation 
ontributes to reveal that this paper 
an also be 
onsidered as a straightforward extension of the redu
ed attitude tra
king 
ontroller presented in [7℄.In Se
tion 2 we brie�y introdu
e the notation and the de�nitions used in the following. A detailedproblem statement is given in Se
tion 3. Some 
onsiderations 
on
erning the 
omputation of theheading 
ommand are dis
ussed in Se
tion 4 and in Se
tion 5 the attitude tra
king dynami
s arederived. Based on an energy shaping approa
h, the 
ontrol law is developed in Se
tion 6, beforethe stability properties of the 
losed loop equilibrium points are thoroughly analyzed in Se
tion7. Finally, 
on
lusions are drawn in Se
tion 8.2 Nomen
lature and De�nitionsS
alars are indi
ated as itali
 letters, whereas ve
tors, matri
es and 
omposite quantities areindi
ated by upright bold letters. Any physi
al ve
tor a > R3 has meaning even without 
on
retenumeri
al values and is thus referred to as an abstra
t ve
tor. To assign numeri
al values to
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t ve
tor a suitable 
oordinate frame has to be 
hosen. All 
oordinate frames usedare right-handed Cartesian 
oordinate systems and identi�ed by upper
ase itali
 letters. Therepresentation of an abstra
t ve
tor a > R3 with respe
t to a 
ertain frame E � �e1,e2,e3� withorthonormal basis ve
tors e1,e2,e3 is denoted by aE . The elements of a ve
tor aE are identi�edby aE � �aEx aEy aEz�T and by aExy we mean aExy � �aEx aEy�T . For some ve
tors,whi
h are ex
lusively represented in one 
oordinate frame, the basis designation will be dropped.Additionally, we de�ne the basis independent unit ve
tors ex � �1 0 0�T , ey � �0 1 0�Tand ez � �0 0 1�T . The transformation from a frame E to another frame E� is given by arotation matrix RE�E > SO�3�, where SO�3� � �R > R3�3 � RTR � I3,det�R� � 1� is the spe
ialorthogonal group and Ii, i > N denotes the i � i identity matrix. The angular velo
ity of a frame
E� with respe
t to a frame E given in a frame E�� is denoted by ω

EE�
E�� > R3. The skew symmetri
operator t �y � R3 � so�3�, where so�3� � �K > R3�3 �KT � �K� is de�ned su
h that tayb � a�bre�e
ts the 
ross produ
t for a,b > R3. The inverse operator is y �t� so�3� � R

3. The unit sphereof dimension i > N is denoted by Si � �a > Ri�1 � aTa � 1�. We will also make use of the followingfun
tions: By Λ
ζu
ζl
� �0, π� � �0, sin�ζl�� we denote the fun
tion

Λ
ζu
ζl
�ζ� � ¢̈̈̈̈̈�̈̈̈̈̈¤sin�ζ� if 0 B ζ B ζl ,

sin�ζl� if ζl � ζ B ζu ,
sin�ζl�
sin�ζu� sin�ζ� if ζu � ζ B π , (1)where ζl, ζu > R� are 
onstants. Furthermore, we use the fun
tion χζ2

ζ1
� R �R �R� R,

χ
ζ2
ζ1
�ζ,ψ1�ζ,a�, ψ2�ζ,a���¢̈̈̈̈̈�̈̈̈̈̈¤ψ1�ζ,a� if ζ B ζ1 ,�ζ2�ζ�ψ1�ζ1,a���ζ�ζ1�ψ2�ζ2,a�

ζ2�ζ1 if ζ1� ζ B ζ2 ,
ψ2�ζ,a� if ζ2� ζ , (2)whi
h provides a linear interpolation between the s
alar fun
tions ψ1�ζ,a� and ψ2�ζ,a� withrespe
t to ζ in the interpolation region de�ned by ζ1 and ζ2. For some ζ1 � ζ2 � ζ3 � ζ4 wemoreover de�ne

χ
ζ3,ζ4
ζ1,ζ2

�ζ,ψ1�ζ,a�, ψ2�ζ,a�� �� χζ2ζ1 �ζ,ψ1�ζ,a�, χζ4ζ3�ζ,ψ2�ζ,a�, ψ1�ζ,a��Ǒ , (3)whi
h provides a linear interpolation from ψ1�ζ,a� to ψ2�ζ,a� and ba
k to ψ1�ζ,a�.We will frequently en
ounter the 
ase that a (s
alar, ve
tor or matrix) quantity a 
an be givenas a fun
tion f��� of 
oordinates b, i.e. a � f�b�, and also as a fun
tion f̃��� of 
oordinates c,i.e. a � f̃�c�. With a slight abuse of notation we will write a�b� to refer to f�b� and a�c� torefer to f̃�c�. Sometimes, we will also drop the argument and in that 
ase writing a may referto f�b� or f̃�c� depending on the 
ontext.Finally, some properties of the skew symmetri
 operator t �y that will be needed in the followingare stated. They 
an be found for example in [15℄. By the skew symmetry it holds that tay ��tayT . Sin
e tayb re�e
ts the 
ross produ
t a�b we also have that tayb � �tbya. Moreover,for any rotation matrix RE�E and any ve
tor a > R3 it holds that
RE�EtayRT

E�E � tRE�Eay . (4)3 Problem StatementRegarding the attitude, we model the quadrotor heli
opter as a rigid body a
tuated in torque.This 
ommonly used model exploits the generally a

epted assumption that there exists a known
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T �T � f�ω2

1, ω
2
2 , ω

2
3 , ω

2
4� (see e.g. [16℄) between the magnitude F of thethrust for
e, the torque ve
tor τ and the squares of the rotor angular rates ωi, i > �1,2,3,4�,whi
h are the real 
ontrol variables. Furthermore, the model negle
ts some minor e�e
ts like thegyros
opi
 torques of the rotors or the �apping dynami
s. We distinguish an inertial north eastdown 
oordinate frame I � �enorth,eeast,edown� and a body-�xed frame B � �x,y,z� atta
hedto the 
enter of gravity of the quadrotor and oriented as shown in Fig. 1. Then, the rigid bodyattitude dynami
s read

ṘBI � �tωIBB yRBI , (5)
Jω̇IB

B � �tωIBB yJωIB
B � τ , (6)where J � JT A 0 is the moment of inertia matrix given in B and τ � τB is the 
ontrol torque. Inthe following we assume that the statesRBI and ω

IB
B are a

essible either by dire
t measurementsor as the output of an appropriate data fusion.The 
ontrol obje
tive is to make the body-�xed frame B � �x,y,z� tra
k a desired time-varyingframe D � �xd,yd,zd�, or in terms of rotation matri
es RBI � RDI as t � ª. Regarding theerror rotation matrix RBD �RBIRID �RBIR

T
DI the obje
tive reads RBD � I3 as t�ª.The translational dynami
s of a quadrotor 
an be manipulated only along the body-�xed z-axis, sin
e the thrust ve
tor always points in the dire
tion �z. Hen
e, a higher level position
ontroller usually provides the desired z-axis dire
tion zd in its inertial representation zdI as wellas its time derivatives żdI , z̈dI . Additionally, xdI , ẋdI and ẍdI 
an be 
omputed from a knownheading 
ommand as shown in Se
tion 4. As ydI � tzdIyxdI holds, the desired frame D and itsevolution with respe
t to time is 
ompletely de�ned by the known 
ommand signals. Regardingthe rotation matrix RID it holds that

RID � �xdI tzdIyxdI zdI� , ṘID � �ẋdI tżdIyxdI � tzdIyẋdI żdI� ,
R̈ID � �ẍdI tz̈dIyxdI � 2tżdIyẋdI � tzdIyẍdI z̈dI� . (7)It proves advantageous to de
ompose the transpose of the error rotation matrix RT

BD � RDBinto two parti
ular rotations, RDB �RDARAB . This is illustrated in Figure 2. The �rst rotation
RAB is about an axis eϕ in the body-�xed xy-plane through an angle ϕ and transforms into anauxiliary frame A � �xa,ya,zd�. The rotation is su
h that the z-axis of A 
oin
ides with thedesired dire
tion zd. It immediately follows that eϕ is de�ned by the normalized 
ross produ
tof z and zd,

eϕB � 1YtzByzdBYtzByzdB � 1YtezyzdBYtezyzdB � 1¼
z2
dBx

� z2
dBy

<�����>�zdByzdBx
0

=AAAAA? . (8)The 
orresponding rotation angle is ϕ � arccos�eTz zdB� � arccos�zdBz� > �0, π�. Sin
e we willuse eϕ only in the body-�xed representation, the index B will be dropped in the followingsu
h that eϕ � eϕB holds. Finally, the se
ond matrix RDA des
ribes the remaining rotationfrom A to D about an axis parallel or antiparallel to their 
ommon z-axis zd. The rotation isthrough an angle ϑ and 
an obviously be 
omputed by ϑ � arccos�xTaAxdA� � arccos�eTxxdA� �
arccos�xdAx� > �0, π�. Sin
e A and D have a 
ommon z-axis it moreover holds that xdAz � 0 andthus it su�
es to 
onsider the redu
ed ve
tor xdAxy to spe
ify xdA. Apart from some ex
eptionsdis
ussed in Remark 1, RAB and RDA are 
ompletely de�ned by the ve
tors zdB and xdAxyand hen
e they represent an appropriate parametrization of the error rotation matrix RBD,whi
h is the natural attitude error state. More te
hni
ally speaking there exists a lo
al (but
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Figure 2: De
omposition of the attitude error into two su

essive rotations: First, from thebody-�xed frame B � �x,y,z� to the auxiliary frame A � �xa,ya,za�. Se
ond, from A to thedesired frame D � �xd,yd,zd�.almost global) di�eomorphism between zdB , xdAxy and RBD. Careful treatment of the fa
t thatthe di�eomorphism is only lo
al enables us to largely use zdB > S2 � �a > R
3 � aTa � 1� as arepresentation of the thrust dire
tion error and xdAxy > S � �a > R2 � aTa � 1� as a representationof the heading error anyway. In terms of zdB and xdAxy the 
ontrol obje
tive is zdB � ez and

xdAxy � �1 0�T as t � ª. As the translational dynami
s 
an be manipulated only in thethrust dire
tion, the alignment of the thrust is of higher importan
e than the alignment of theremaining axes. We 
onsider this in the design pro
ess by 
onstru
ting a 
ontrol law that fo
useson zdB � ez.4 Computation Of the Heading CommandThe desired heading is spe
i�ed by a time-varying unit ve
tor h > S2 lying in the horizontalplane spanned by enorth and eeast. The time derivatives ḣ and ḧ are assumed to be known andbounded. The desired x-axis dire
tion xd is now obtained by the normalized proje
tion of halong edown onto the plane perpendi
ular to zd. This proje
tion always exists as long as zd doesnot lie within the horizontal plane itself. Noting that edownI � ez, we obtain
xdI � 1YttezyhIyzdIYttezyhIyzdI � �1¼

hT
I
tezytzdIy2tezyhI tzdIytezyhI (9)and 
omputation of the time derivatives yields

ẋdI � �1¼
hT
I
tezytzdIy2tezyhI �tżdIytezyhI � tzdIytezyḣI� � �hTI tezytzdIy2tezyhI�� 3

2� �hTI tezytzdIy2tezyḣI � hTI tezytzdIytżdIytezyhI� � tzdIytezyhI , (10)
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ẍdI � �1¼

hT
I
tezytzdIy2tezyhI �tz̈dIytezyhI � 2tżdIytezyhI � tzdIytezyḧI�� 3�hTI tezytzdIy2tezyhI�� 5

2 �hTI tezytzdIy2tezyḣI �hTI tezytzdIytżdIytezyhI�2� tzdIytezyhI � �hTI tezytzdIy2tezyhI�� 3

2 ��ḣTI tezytzdIy2tezyḣI� 2hTI tezytżdIytzdIytezyḣI � 2hTI tezytzdIytżdIytezyḣI �hTI tezytzdIy2tezyḧI�hTI tezytżdIy2tezyhI �hTI tezytzdIytz̈dIytezyhI� � tzdIytezyhI�2�hTI tezytzdIy2tezyḣI �hTI tezytzdIytżdIytezyhI���tżdIytezyhI � tzdIytezyḣI�� .(11)5 Attitude Tra
king Dynami
sIn terms of the error rotation matrix RBD � �xdB ydB zdB� the attitude kinemati
 equationis simply
ṘBD � �tωDBB yRBD , (12)where ω

DB
B is the relative angular velo
ity between the body-�xed frame B and the desiredframe D given in B. Sometimes it is more 
onvenient to write RBD as a ve
tor. We de�neÑRBD � �xTdB yTdB zTdB�T and a

ordinglyÑ̇RBD � <�����>�tωDBB yxdB�tωDBB yydB�tωDBB yzdB=AAAAA? � <�����>txdByωDBBtydByωDBBtzdByωDBB =AAAAA? � <�����>txdBytydBytzdBy=AAAAA?ωDB

B � t ÑRBDyωDB
B , (13)where, with a slight abuse of notation, we de�ne t ÑRBDy �� �txdByT tydByT tzdByT �T . By
omparison of (12) with

ṘBD � ṘBIRID �RBIṘID � �tωIBB yRBIRID �RBIṘIDR
T
IDR

T
BIRBIRID� �tωIBB yRBD �RBIṘIDR

T
IDR

T
BIRBD � � �tωIB

B y �RBIṘIDR
T
IDR

T
BI�RBD

(14)we re
ognize that
ω
DB
B � ztωIBB y �RBIṘIDR

T
IDR

T
BIu � ztωIBB y � tωID

B yu (15)holds. Note that all quantities appearing in (15) are known 
ommand signals or assumed to bea

essible.To derive the attitude error kinemati
s with respe
t to zdB and xdAxy we �rst noti
e that thetime derivative of zdB �RBDez is obviously given by the last three entries of (13) whi
h read
żdB � �tωDBB yzdB � tzdByωDBB . (16)The dynami
s of xdAxy are given by the �rst two rows of the dynami
s of xdA � RADex �

RABRBDex. Deriving the pre
eding expression with respe
t to time yields
ẋdA � ṘABRBDex �RABṘBDex � ṘABRBARADex �RAB��tωDB

B y�RBARADex� ṘABR
T
ABxdA �RABtωDB

B yRT
ABxdA � �ṘABR

T
AB �RABtωDB

B yRT
AB�xdA . (17)Using (4) and ṘAB � �tωBA

A yRAB the expression in bra
kets 
an be rewritten as
ṘABR

T
AB �RABtωDBB yRT

AB � �tωBAA y � tωDBA y � �tωDAA y (18)
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e
ẋdA � �tωDAA yxdA � txdAyωDAA . (19)Sin
e the relative rotation of the frames A and D o

urs only about their 
ommon z-axis it holdsthat ωDA

A � �0 0 ωDAAz �T and thus
ṘABR

T
AB �RABtωDBB yRT

AB � �tωDAA y � <�����> 0 ωDAAz 0�ωDAAz 0 0

0 0 0

=AAAAA? . (20)The expression on the left hand side of (20) is a fun
tion of zdB and ω
DB
B . To see this, we �rstexpress the rotation matrix RAB by zdB . A

ording to Euler's formula (see e.g. [15℄), whi
hindi
ates the rotation matrix in terms of axis and angle, it holds that

RAB � cos�ϕ�I3 � �1 � cos�ϕ��eϕeTϕ � sin�ϕ�teϕy . (21)Using (8), the unit length of zdB and noting that cos�ϕ� � zdBz and sin�ϕ�eϕ � tezyzdB oneobtains
RAB � zdBzI3 � �1 � zdBz��1 � z2

dBz
� <�����>�zdByzdBx

0

=AAAAA? ��zdBy zdBx 0� � ttezyzdBy� <�������>1 � z2dBx

1�zdBz

�zdBxzdBy

1�zdBz
�zdBx�zdBxzdBy

1�zdBz
1 � z2dBy

1�zdBz
�zdBy

zdBx zdBy zdBz

=AAAAAAA? . (22)
With the pre
eding equation and (16) one 
an evaluate the left hand side of (20) and identify

ωDAAz � � zdBx

1�zdBz

zdBy

1�zdBz
1�ωDBB . (23)Inserting (23) into (19) and evaluating the �rst and se
ond row �nally yields

ẋdAxy � � xdAy�xdAx	ωDAAz � � xdAy�xdAx	 � zdBx

1�zdBz

zdBy

1�zdBz
1�ωDB

B . (24)De�ning the unit ve
tor
e� � 1¼

z2
dBx

� z2
dBy

<�����>zdBxzdBy
0

=AAAAA? (25)one 
an reformulate (24) to obtain
ẋdAxy � � xdAy�xdAx	���¼z2

dBx
� z2

dBy

1 � zdBz eT� � eTz

���ωDBB . (26)Finally, the dynami
s of ωDB
B 
omplete the attitude tra
king dynami
s. Using (6), the derivativeof ωDB

B with respe
t to time is identi�ed as
ω̇
DB
B � ω̇

IB
B � ω̇

ID
B � J�1 ��tωIBB yJωIBB � τ � � ω̇

ID
B , (27)where ω̇

ID
B is obtained by deriving the expression ω

ID
B �yRBIṘIDR

T
IDR

T
BIt introdu
ed in (15)with respe
t to time, whi
h yields

ω̇
ID
B � z � tωIBB yRBIṘIDR

T
IDR

T
BI �RBIR̈IDR

T
IDR

T
BI �RBIṘIDṘ

T
IDR

T
BI�RBIṘIDR

T
IDR

T
BItωIBB yu . (28)
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s with the 
orresponding state
W � �RBD ,ω

DB
B � > W � SO�3� � R

3. Alternatively, the open loop dynami
s 
an be ex-pressed lo
ally (but almost globally) by (16), (24) and (27) with the 
orresponding state w ��zTdB xTdAxy �ωDB
B �T �T > S2 � S �R

3. This fa
t is analyzed in the following remark.Remark 1. The heading state xdAxy is not de�ned if zdB � �ez � ϕ � π, meaning that the
urrent thrust dire
tion is pointing in the opposite dire
tion of the desired one. Considering that
xdA �RABRBDex, this 
an be re
ognized by the fa
t that RAB in (22) has a singularity in that
ase. Clearly, the error rotation matrix RBD as the natural attitude error state is well de�nedeverywhere and a

ordingly also zdB , whi
h is the last 
olumn of RBD, is not subje
t to anysingularities.As a 
onsequen
e of xdAxy being not de�ned if zdB � �ez we formulate the following standingassumption that enables us to globally 
onsider the 
ontrol law developed in the following asboth a fun
tion of W and a fun
tion of w.Assumption 1 (Standing Assumption). Any expression appearing in the 
ontrol law, de�ningthe 
ontrol torque τ , is 
onstru
ted su
h that it depends only on zdB and ω

DB
B if zdB � �ez �

ϕ � π. As a 
onsequen
e we 
an globally write τ�W� as well as τ �w�.Remark 2. As 
an be easily veri�ed, the unit ve
tors e�, eϕ and ez de�ne an orthonormalbasis �e�,eϕ,ez�. This fa
t will be extensively used in Subse
tion 6.2, where the damping of the
losed loop is designed.6 Controller DesignIn this se
tion, we will �rst exe
ute an input transformation, su
h that the 
ontroller presentedin [8℄ 
ould be applied without any 
hanges. We will also motivate the basi
 idea of the 
ontrollerdesign before we restate it using the new attitude parametrization. Moreover, we apply someminor 
hanges to the potential energy, whi
h signi�
antly fa
ilitate the lo
al analysis of theequilibrium points.Inserting the input transformation
τ � k�W�tωIB

B yJωIBB � �k�W� � 1� �tωIDB yJ�ωIB
B �ω

ID
B � � tωIB

B yJωID
B � � Jω̇ID

B � τ̃ , (29)whi
h 
onsists of both the new 
ontrol input τ̃ and suitable feedforward terms, into (27) yields
ω̇
DB
B � J�1 ��k�W� � 1�tωDB

B yJωDB
B � τ̃ � . (30)Therein, k�W� 
an be any lo
ally Lips
hitz 
ontinuous fun
tion on W satisfying Assumption1. However, in order to fa
ilitate the lo
al stability analysis in Se
tion 7.1, we will restri
t usto fun
tions, whi
h 
an be globally written as k�zdB ,ωDB

B �. For the sake of 
onvenien
e, k isoften 
hosen 
onstant. For example k � 1 will 
an
el the 
oriolis term, whereas k � 0 yields
τ � τ̃ in the 
ase of a setpoint 
ontrol (when RID is 
onstant). It will turn out that the stabilityproperties of the 
losed loop do not depend on the parti
ular 
hoi
e of k. Together with (12)or alternatively (16) and (24) the pre
eding equation forms the new open loop dynami
s. Forthe 
onvenien
e of the reader the respe
tive equations are assembled in the following. Using theglobal state representation W one obtains the open loop system

ṘBD � �tωDBB yRBD , (31)
ω̇
DB
B � J�1 ��k�zdB ,ωDB

B � � 1�tωDB
B yJωDB

B � τ̃� , (32)
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hoi
e leads to
żdB � tzdByωDBB , (33)

ẋdAxy � � xdAy�xdAx	 � zdBx

1�zdBz

zdBy

1�zdBz
1�ωDB

B , (34)
ω̇
DB
B � J�1 ��k�zdB ,ωDB

B � � 1�tωDB
B yJωDB

B � τ̃ � . (35)The 
ontrol law presented in [8℄ 
ould now be dire
tly applied to τ̃ and would a
hieve asymp-toti
 attitude tra
king. In the following some slight modi�
ations to that 
ontrol law will beintrodu
ed, but we adopt the input 
onstraintYτ̃ xyY B τ̄xy , Sτ̃z S B τ̄z , (36)where τ̄xy and τ̄z are positive 
onstants and τ̄xy Q τ̄z holds. Although τ̃ is not the a
tual 
ontroltorque, we nevertheless 
onsider the 
onstraint, sin
e, as mentioned above, τ̃ equals τ if k is
hosen to be zero and a setpoint 
ontrol is 
onsidered. Moreover, the 
onstraint 
an be easilydropped if desired. Due to the similarity of (30) and (6), we will sloppily refer to τ̃ as the 
ontroltorque from time to time, although it is 
lear that the a
tual torque is τ .The 
ontroller design is based on an energy shaping approa
h as presented e.g. in [14℄. The
ontrol law is 
onstru
ted su
h that the 
losed loop system is des
ribed by means of an assigned
ontinuously di�erentiable energy fun
tion V , whi
h has a stri
t minimum at the desired equi-librium point Wd � �I3,0�� wd � �eTz �1 0� 0T �T . In the following we will assign an energyfun
tion
V �W� � Erot�ωDB

B � �Epot�RBD� � 1

2
�ωDB

B �TJωDB
B �Epot�RBD� , (37)whi
h is 
omposed of a kineti
 and a potential energy part and ful�lls V �Wd� � 0 and V �W� A 0if W x Wd. Moreover, sin
e Erot is a radially unbounded fun
tion and the attitude spa
e is
ompa
t, it holds that all sublevel sets of V are 
ompa
t and in
lude Wd. Taking the derivativeof V with respe
t to time yields

V̇ �W� � �ωDB
B �TJω̇DB

B � ∂Epot

∂ ÑRBD

Ñ̇RBD � �ωDB
B �T τ̃ � ∂Epot

∂ ÑRBD

t ÑRBDy´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶�TT �RBD� ω
DB
B , (38)where T 
an be identi�ed as the torque �eld resulting from the potential energy Epot. Now, by
hoosing the 
ontrol law

τ̃ � T�RBD� �D�W�ωDB
B , (39)where D�W� C 0 is a state dependent damping matrix, and inserting it into (38), one obtains

V̇ �W� � ��ωDB
B �TD�W�ωDB

B B 0 . (40)It follows from (40) that the sublevel sets of V are not only 
ompa
t but also positively invariant,whi
h proves global stability of the desired equilibrium. After expli
itly de�ning the 
ontrol law(39) in the next subse
tions, further stability properties are analyzed in Se
tion 7.6.1 Shaping of the Potential EnergyWe will now state the potential energy whi
h is assigned to the 
losed loop system. Apartfrom some minor modi�
ations dis
ussed at the end of this subse
tion, it is largely identi
alto the one given in [8℄. The potential energy Epot ne
essarily needs to depend on appropriate
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tions 
hara
terizing the thrust dire
tion error and the heading error. A natural errorfun
tion indi
ating the alignment error of the thrust is the angle ϕ � arccos�zdBz� whereasthe angle ϑ � arccos�xdAx� 
an be 
onsidered a measure for the heading error. We propose apotential energy of the form Epot�ϕ,ϑ�. To be an appropriate energy fun
tion, Epot�ϕ,ϑ� has tobe 
ontinuously di�erentiable on the domain �0, π���0, π� with its only minimum at �ϕ,ϑ� � �0,0�and we moreover 
laim
∂Epot

∂ϑ
�π,ϑ� � 0 �ϑ , (41)

∂Epot

∂ϑ
�0, ϑ� A 0 if ϑ > �0, π� , (42)

∂Epot

∂ϕ
�ϕ,ϑ� A 0 if �ϕ,ϑ� > �0, π���0, π� , (43)

∂Epot

∂ϕ
�ϕ,ϑ� � 0 if �ϕ,ϑ� > �0, π� � �0, π� , (44)

∂Epot

∂ϑ
�ϕ,ϑ� � 0 if �ϕ,ϑ� > �0, π� � �0, π� . (45)The �rst 
onstraint guarantees thatT is 
ompliant with Assumption 1 by ensuring thatEpot�ϕ,ϑ�does not depend on ϑ if ϕ � π. As analyzed in Remark 1 this is ne
essary sin
e ϑ as a fun
tionof xdAxy, whi
h is not unique in this 
ase. The se
ond 
onstraint assures that the potentialenergy is in
reasing with a growing heading error at least at ϕ � 0 (and due to the di�erentia-bility also in a neighborhood of ϕ � 0). The third 
onstraint 
laims that the same is true withrespe
t to the thrust dire
tion error but independently of the heading error. Finally, the fourthand �fth 
onstraint serves to guarantee a 
ontinuous torque �eld T over the whole state spa
eW. Alltogether, the 
onstraints imply that �rst, all 
riti
al points of Epot are given by the set�ϕ,ϑ� > ��0,0� 8 �0, π� 8 �π� � �0, π�� and se
ond, Epot is maximal for �ϕ,ϑ� > ��π� � �0, π��. Itis 
lear from physi
al insight that the set of 
riti
al points of the potential energy de�nes thestate spa
e region where the torque �eld disappears and thus it also de�nes the set of equilibriumpoints of the 
losed loop system. It was shown in [1℄ that due to the topologi
al stru
ture ofthe attitude spa
e further equilibrium points besides the desired one must exist if a 
ontinuous
ontrol law is applied. In detail we 
hoose a potential energy fun
tion

Epot�ϕ,ϑ� � Eϕ�ϕ� �Eϑ�ϕ,ϑ� , (46)where
Eϕ�ϕ� � cϕ S ϕ

0

Λϕu
ϕl
�ζ� dζ , Eϑ�ϕ,ϑ� � ¢̈̈̈�̈̈̈¤ �cos�ϕ

2
��cos�ϕu

2
��2�1�cos�ϕu

2
��2 cϑ R ϑ0 Λϑu

ϑl
�ζ� dζ if ϕ B ϕu

0 if ϕ A ϕu (47)and cϕ, cϑ are positive 
onstants. The stru
ture of the energy 
omponents 
hosen in (47) imme-diately guarantees 
omplian
e with the 
onstraints (41), (42), (44) and (45). To guarantee (43)a suitable parameter set (cϕ, cϑ, ϕl, ϕu, ϑl, ϑu) has to be 
hosen, whi
h is always possible. Tosee this, note that 
hoosing cϑ su�
iently small will always lead to 
omplian
e with (43).As in (38) one has to take the derivative of Epot with respe
t to time to 
ompute the torque �eld
T that Epot generates. It holds that

Ėpot � ∂Epot
∂ϕ

ϕ̇ � ∂Epot
∂ϑ

ϑ̇ � �TT
ω
DB
B , (48)
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ϕ̇ � �żdBz¼

1 � z2
dBz

� � 1¼
z2
dBx

� z2
dBy

<�����>�zdByzdBx
0

=AAAAA?T ωDB
B � �eTϕωDB

B (49)is obtained using (16) and the unit length of zdB and
ϑ̇ � �ẋdAx¼

1 � x2
dAx

� �xdAy¼
1 � x2

dAx

���¼z2
dBx

� z2
dBy

1 � zdBz eT� � eTz

���ωDB
B (50)is 
omputed analogously using (26). De
omposing T into parts a

ording to the energy 
om-ponents Eϕ and Eϑ from whi
h they originate and a

ording to their e�e
tive dire
tions eϕ, e�and ez results in

T � Tϕ
ϕ �Tϑ

ϕ �Tϑ� �Tϑ
z , (51)where the supers
ript indi
ates the energy 
omponent and the subs
ript indi
ates the e�e
tivedire
tion. Using (48), (49), (50) and (47) the 
omponents in (51) are identi�ed as

Tϕ
ϕ � ∂Eϕ

∂ϕ
eϕ � Λϕu

ϕl
�ϕ�eϕ ,

Tϑ
ϕ � ∂Eϑ

∂ϕ
eϕ �� ¢̈̈̈�̈̈̈¤��cos�ϕ

2
��cos�ϕu

2
�� sin�ϕ

2
��1�cos�ϕu

2
��2 cϑ R ϑ0 Λϑu

ϑl
�ζ� dζ eϕ if ϕ B ϕu

0 if ϕ A ϕu ,
Tϑ� � ∂Eϑ∂ϑ

� xdAy
¼
z2
dBx

� z2
dBy¼

1 � x2
dAx

�1 � zdBz� e� �� ¢̈̈̈̈�̈̈̈̈¤�cos�ϕ

2
��cos�ϕu

2
��2�1�cos�ϕu

2
��2 cϑΛ

ϑu
ϑl
�ϑ� xdAy

¼
z2
dBx

�z2
dBy¼

1�x2
dAx

�1�zdBz� e� if ϕ B ϕu
0 if ϕ A ϕu ,

Tϑ
z � ∂Eϑ

∂ϑ
� xdAy¼

1 � x2
dAx

ez �� ¢̈̈̈̈�̈̈̈̈¤�cos�ϕ

2
��cos�ϕu

2
��2�1�cos�ϕu

2
��2 cϑΛ

ϑu
ϑl
�ϑ� xdAy¼

1�x2
dAx

ez if ϕ B ϕu
0 if ϕ A ϕu .

(52)

The 
hosen potential energy fun
tion (46) extends the potential energy Eϕ, introdu
ed in [7℄,by a further 
omponent Eϑ. The energy Eϕ 
an be thought of as the potential 
aused by anonlinear saturating torsion spring arranged between the a
tual and the desired thrust dire
tion.A

ordingly, it generates a torque T
ϕ
ϕ depending only on ϕ, whi
h ensures the alignment of thebody-�xed z-axis. The energy 
omponent Eϑ serves to generate 
ontrol torques that redu
ethe heading error angle ϑ. Note that the ϕ-dependent prefa
tor in Eϑ results in a de
reasingin�uen
e of this energy 
omponent with an in
reasing thrust dire
tion error ϕ. For ϕ A ϕu iteven disappears. Sin
e large thrust dire
tion errors 
an 
ause large deviations from the intendedtranslational motion of the quadrotor, they indi
ate a 
riti
al situation. Thus, the behavior of

Eϑ is favorable sin
e it for
es the 
ontroller to prioritize the thrust alignment instead of redu
ingthe heading error. In detail, the torques Tϑ
z , TϑÙ and Tϑ

ϕ are indu
ed by Eϑ. While Tϑ
z 
an be
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h, for a 
onstant ϕ, a
ts around the z-axis analogousto T
ϕ
ϕ, the 
omponents TϑÙ and Tϑ

ϕ 
an be 
onsidered "parasiti
". This is be
ause Tϑ
ϕ always
ountera
ts Tϕ

ϕ and TϑÙ indu
es a motion around eÙ, whi
h does not 
ontribute to a de
rease of
ϕ a

ording to (49). At the same time, TϑÙ redu
es the available 
ontrol authority for Tϕ

ϕ, sin
ein view of (36) YTxyY �¼�YTϕ
ϕY�YTϑ

ϕY�2 � YTϑÙY2 � τ̄xy (53)must hold. Just like 
omplian
e with the 
onstraint (43) (whi
h in turn is equivalent to YTϕ
ϕY �YTϑ

ϕY A 0) is a matter of parameterizing Epot, the same holds for guaranteeing (53) and is alwayspossible. Again, it 
an be veri�ed that 
hoosing cϑ su�
iently small will lead to 
omplian
e with(53). The se
ond 
ontrol input 
onstraint given in (36) amounts toSTz S � YTϑ
z Y � τ̄z, (54)and is ensured by 
hoosing cϑ � τ̄z

sin�ϑl� . Note that in 
ontrast to (36) we have formulated (53)and (54) as stri
t inequalities in order to reserve some 
ontrol torque for damping purposes.In 
ontrast to [8℄, the energy 
omponents Eϕ and Eϑ presented here were 
onstru
ted using aslightly modi�ed fun
tion Λ
ζu
ζl
�ζ�. Instead of a linear in
reasing and de
reasing integrand, in (1)an integrand in
reasing and de
reasing with the sine fun
tion is 
hosen. While the deviationfrom the linear fun
tion is negligible for reasonable values of ϕl, ϕu and ϑl, ϑu respe
tively, this
hoi
e signi�
antly fa
ilitates linearizing the 
losed loop system around its equilibrium pointsfor the analysis of the lo
al properties. Moreover, the ϕ-dependent prefa
tor in Eϑ is di�erent
ompared to [8℄. Again, the main reason for the modi�
ation lies in the simpli�ed lo
al analysis,while not overly in�uen
ing the 
losed loop behavior.6.2 Damping Inje
tionThe damping matrix D needed to 
omplete the 
ontrol law (39) is adopted from [8℄ without
hanges and hen
e only adapted to the parametrization and the notation used. The basi
 ideais to de
ompose the angular velo
ity ω

DB
B into 
omponents a

ording to the orthonormal basis�e�,eϕ,ez� and to damp them individually. This is reasonable be
ause they have a di�erentmeaning in view of the 
ontrol task. The de
omposition of ωDBB reads

ω
DB
B � eT�ωDB

B e� � eTϕω
DB
B eϕ � eTz ω

DB
B ez � ω�e� � ωϕeϕ � ωzez . (55)Note that a

ording to (49) it holds that ωϕ � �ϕ̇. By 
hoosing a damping matrix of the form

D�W� �κxy�W��dϕ�W�eϕeTϕ�d�e�eT� ��κz�W�dz�W�ezeTz� �κxy�W�Dxy�W� 0

0 κz�W�dz�W�	 C 0 , (56)the damping 
oe�
ients dϕ, d� and dz allow an individual damping of ωϕ, ωÙ and ωz. Thesubmatrix Dxy in (56) reads
Dxy�W� � dϕ�W�

z2
dBx

�z2
dBy

� z2dBy �zdBxzdBy�zdBxzdBy z2dBx
	 � d�

z2
dBx

�z2
dBy

� z2dBx zdBxzdBy
zdBxzdBy z2dBy

	 (57)and the gains κxy and κz serve to saturate the damping torques if ne
essary. They are de�nedas
κxy � min

κA0,[Txy�κ�Dxyω
DB
Bxy

[�τ̄xy�1, κ� , κz � min
κA0,TTz�κ�dzωDB

Bz
T�τ̄z�1, κ� (58)
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omplian
e with (36). While the angular rate ωz is about the thrust axis andhen
e does not at all in�uen
e the alignment of the thrust, this does not hold for ω�. In 
ontrast,the angular rate ω� indi
ates a motion around e� 
ausing the thrust ve
tor to move perpendi
ularaway from the shortest path to the desired thrust dire
tion, whi
h is given by a rotation around
eϕ. Consequently ω� should always be damped and d� is 
hosen to be a positive 
onstant.The 
hoi
e of the damping 
oe�
ients dϕ and dz given below, is guided by some simplifying
onsiderations on the motion of the 
ontrolled system. These simpli�
ations merely serve as toolfor the design of dϕ and dz and do not a�e
t the stability analysis in Se
tion 7.Regarding the symmetry of a quadrotor, one 
an assume that J � Ĵ � diag�Ĵ1, Ĵ1, Ĵ2� A 0approximately holds. Sin
e moreover τ̄xy Q τ̄z and the primary obje
tive is to align the thrustaxis, one will usually 
onstru
t the energies Eϕ and Eϑ su
h that the torque Tϕ

ϕ, whi
h is designedto align the thrust, signi�
antly dominates the other 
omponents Tϑ
ϕ,Tϑ� and Tϑ

z . It is thereforeplausible to assume that the 
ontrol task is 
ompleted more or less sequentially. This means that�rst ϕ is driven to zero while ϑ remains more or less 
onstant and only afterwards ϑ is redu
ed tozero. This implies that in the �rst phase the simplifying assumption ω
BD
B Õ ω̇BDB Õ eϕ is justi�edand provided that κxy � 1, the s
alar di�erential equation

Ĵ1ϕ̈ � �Tϕ � dϕ�W� � ϕ̇ if ϕ x 0 , 1 (59)approximately holds, where Tϕ � YTϕ
ϕY�YTϑ

ϕY A 0. It 
an be seen from (52) that near ϕ � 0, wherethe small-angle approximation holds, the torque Tϕ 
an be 
onsidered linear in ϕ. Reasonablevalues of ϕl are rather small and a

ordingly (59) approximately be
omes
Ĵ1ϕ̈ � �c � ϕ � dϕ�W� � ϕ̇ if 0 � ϕ B ϕl , (60)where c B cϕ is a positive 
onstant (depending on the parti
ular ϑ 
onsidered 
onstant duringthe �rst phase). We 
hoose

dϕ�ϕ, ϕ̇, Tϕ� � χϕu�∆ϕ,ϕu

ϕl,ϕl�∆ϕ �ϕ, δϕ, d�ϕ�ϕ, ϕ̇, Tϕ�� , (61)where δϕ and ∆ϕ � ϕu�ϕl

2
are positive 
onstants and the fun
tion d�ϕ is dis
ussed further below.It follows from (61) that the damping is rendered 
onstant (dϕ � δϕ) for ϕ B ϕl and for ϕ C ϕu.This has two e�e
ts. First, the dynami
s (60) are rendered linear, whi
h 
ertainly is a desirablebehavior for small alignment errors of the thrust ve
tor. Se
ond, by 
hoosing

d� � δϕ , (62)we 
an ensure that, a

ording to (57), the matrix Dxy be
omes 
onstant for small and largevalues of ϕ, i.e.
Dxy � δϕI2 A 0 if ϕ B ϕl or ϕ C ϕu. (63)This way, di�
ulties with determining eϕ and e� near ϕ � 0 and ϕ � π, where z2dBx � z2dBy � 0,are e�e
tively omitted.A sophisti
ated damping strategy d�ϕ is applied in the region ϕl �∆ϕ � ϕ � ϕu �∆ϕ. There, astrategy similar to the bang-bang solution of a time optimal 
ontrol is applied. This requires toindi
ate a swit
hing 
urve sϕ�ϕ� � 0, where the transition from a

eleration (ϕ̈ � 0) to de
eler-ation (ϕ̈ A 0) o

urs. If ϕ̇ A s�ϕ�, the damping d�ϕ is 
hosen to enable maximum a

elerationbased on (59). In 
ase of ϕ̇ A 0, this means supporting the torque �Tϕ by a positive damping1Note that ϕ � 0 has to be ex
luded, sin
e we have de�ned ϕ to be positive or equal to zero. A

ordingly ϕ̇ C 0must hold for ϕ � 0. The solutions of the given di�erential equation do not ne
essarily satisfy this requirement.
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Figure 3: Visualization of the damping dϕ�ϕ, ϕ̇, Tϕ� in the phase plane. Orange areas: Constantdamping. Green areas: A

eleration supporting damping. Blue areas: De
eleration supportingdamping. White areas indi
ate regions, where the damping is interpolated.
d�ϕ A 0, su
h that the maximum torque τ̄xy is exploited. In 
ase of ϕ̇ � 0, the damping is set tozero to avoid 
ountera
ting �Tϕ. If ϕ̇ � s�ϕ� � 0 maximum de
eleration is desired, whi
h 
an bea
hieved by 
hoosing d�ϕ A 0 so high that �Tϕ is over
ompensated and τ̄xy is used to slow down.Summing up, we 
hoose

d�ϕ�ϕ, ϕ̇, Tϕ� � χrϕ�sϕ�ϕ�sϕ�ϕ� �ϕ̇, d�ϕdec�ϕ̇, Tϕ�, d�ϕacc�ϕ̇, Tϕ�� , (64)where
d�ϕacc�ϕ̇, Tϕ� � ¢̈̈̈̈̈�̈̈̈̈̈¤�Tϕϕ̇ � τ̄xy

ϕ̇
if ϕ̇ A vϕ ,�Tϕ

vϕ
� τ̄xy

vϕ
if vϕ C ϕ̇ A 0

0 if 0 C ϕ̇ , , d�ϕdec�ϕ̇, Tϕ� � �Tϕϕ̇ � τ̄xy
ϕ̇
, (65)and rϕ as well as vϕ are positive 
onstants. It is 
lear from (64) that 0 � rϕ � 1 de�nes a regionof interpolation between d�ϕacc and d�ϕdec in order to render the resulting torque 
ontinuous. Anexamination of d�ϕacc reveals that the small 
onstant vϕ A 0 prevents the damping from growingunbounded when ϕ̇ approa
hes zero. The swit
hing 
urve whi
h is used in (64) reads

sϕ�ϕ� � �½v2ϕmax � 2Ĵ1
�1
τ̄xy�ϕl � ϕ� � 0 . (66)This 
urve is simply the phase-plane traje
tory ϕ̇�ϕ� solving the di�erential equation Ĵ1ϕ̈ � τ̄xyand passing through the point ϕ̇�ϕl� � �vϕmax � 0. Figure 3 visualizes the applied dampingstrategy for dϕ in the phase plane.The damping dz is designed analogously to dϕ based on the dynami
s

Ĵ2ϑ̈ � � STz S � dz�W� � ϑ̇ if ϑ x 0 , (67)
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Figure 4: Visualization of the damping dz�ϕ,ϑ, ϑ̇, ϑ̊z, Tz�. Orange areas: Constant damping.Green areas: A

eleration supporting damping. Blue areas: De
eleration supporting damping.White areas indi
ate regions, where the damping is interpolated.whi
h result from the assumptions that κz � 1 and that the �rst phase, the alignment of thethrust dire
tion, is 
ompleted. Thus ϕ � 0 and 
onsequently ω̇ Õ ω Õ ez holds. Expli
itely, thedamping dz is
dz�ϕ,ϑ, ϑ̇, ϑ̊z, Tz� � χϕu

ϕu�∆ϕ �ϕ,χϑu�∆ϑ, ϑuϑl , ϑl�∆ϑ �ϑ, δz, d�z �ϑ, ϑ̇, ϑ̊z , Tz�� , δzǑ , (68)where ∆ϑ � ϑu�ϑl
2

and δz are positive 
onstants and the quantity ϑ̊z will be introdu
ed lateron. Note that the additional outer interpolation fun
tion is ne
essary to a

ount for the non-uniqueness of ϑ if ϕ � π and thus serves to satisfy Assumption 1. Figure 4 gives an overviewover the damping dz. The fun
tion d�z is given by
d�z�ϑ, ϑ̇, ϑ̊z, Tz� � χrϑ�sϑ�ϑ�sϑ�ϑ� �ϑ̇, d�zdec�ϑ̊z, Tz�, d�zacc�ϑ̊z, Tz�� . (69)The 
orresponding swit
hing 
urve is

sϑ�ϑ� � �½v2
ϑmax

� 2Ĵ2
�1
τ̄z�ϑl � ϑ� � 0 , (70)the damping used for a

eleration and de
eleration reads

d�zacc�ϑ̊z, Tz� � ¢̈̈̈̈̈�̈̈̈̈̈¤� STz S
ϑ̊z

� τ̄z
ϑ̊z

if ϑ̊z A vϑ ,� STz S
vϑ

� τ̄z
vϑ

if vϑ C ϑ̊z A 0 ,

0 if 0 C ϑ̊z , (71)
d�zdec�ϑ̊z, Tz� � ¢̈̈̈̈̈�̈̈̈̈̈¤� STz S

ϑ̊z
� τ̄z
ϑ̊z

if ϑ̊z � �vϑ ,� STz S�vϑ � τ̄z�vϑ if �vϑ B ϑ̊z � 0 ,

0 if 0 B ϑ̊z , (72)
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h. Rep. Auto. Cont. Vol. TRAC-7 16and vϑmax A 0, vϑ A 0 and 0 � rϑ � 1 are 
onstants. Note that we use
ϑ̊z � �xdAy¼

1 � x2
dAx

ωz (73)instead of ϑ̇ to distinguish between the 
ases in (71) and (72). This is done be
ause dz is onlye�e
tive in 
onne
tion with ωz and a

ording to (50) the quantity ϑ̊z represents the part of ϑ̇depending on ωz. Sin
e ϑ̇ only 
oin
ides with ϑ̊z if ϕ � 0 or ω� � 0, additional 
ases have to bedistinguished in (71) and (72) 
ompared to (65). This is due to the fa
t that ϑ̇ and ϑ̊z 
an havedi�erent signs. To 
larify this we give one example. Assume that ϑ̇ � s�ϑ�, whi
h means thatthe error angle is de
reasing so fast that maximum de
eleration is desired. If 0 B ϑ̊z holds at thesame time, the angular rate ωz already 
ontributes positively to ϑ̇ and a

ordingly any dampingof ωz would be 
ounterprodu
tive. It follows that dz � 0 is the best 
hoi
e in that 
ase.7 Stability PropertiesIn this se
tion we prove lo
al exponential and almost global asymptoti
 stability of the desiredequilibrium. This is done by showing �rst that apart from the desired equilibrium further unde-sired equilibria exist. Lo
al analysis shows that the desired equilibrium is lo
ally exponentiallystable and that all undesired equilibria are unstable ex
ept for one undesired equilibrium, whi
h
an only be shown to be a hyperboli
 �xed point. In a se
ond step, using LaSalle's invarian
eprin
iple we establish instability of the yet un
lassi�ed undesired equilibrium and moreover provethat the desired equilibrium exhibits a region of attra
tion that 
overs the whole state spa
e ex-
ept for a manifold of lower dimension than the state spa
e. This type of stability is referred toas almost global asymptoti
 stability, sin
e a

ording to [12, Appendix B℄ su
h a manifold hasLebesgue measure zero. As it is analyzed in [1℄, almost global asymptoti
 stability is the bestwe 
an a
hieve with a 
ontrol law that is 
ontinuous over the whole state spa
e.By inserting the 
ontrol law (39) derived in the previous se
tion into the open loop dynami
s (31),(32) and setting the left hand side to zero, the 
losed loop equilibrium points 
an be identi�ed.From (31) one 
on
ludes that ωDB
B � 0 must hold and from (32) it is 
lear that τ̃ must vanish.Sin
e ω

DB
B � 0 the damping plays no role and the equilibrium points are determined by the set,where T vanishes. With regard to (52) and (41) � (45) two isolated equilibrium points and a
onne
ted set of equilibrium points 
an be established. The two isolated equilibria are

Wd � �I3,0� , Wu1 � ���ex �ey ez� ,0� , (74)where Wd is the desired equilibrium and Wu1 is an undesired equilibrium. The undesiredequilibrium Wu1 
orresponds to the 
ase where the thrust is aligned (zdB � ez), whereas thebody-�xed x-axis is anti-parallel to its desired orientation (xdB � �ex). In terms of w these twoequilibrium points readwd � �eTz �1 0� 0T �T , wu1 � �eTz ��1 0� 0T �T (75)and regarding the error angles ϕ and ϑ it holds that
W �Wd Ô� �ϕ,ϑ� � �0,0� , W �Wu1 Ô� �ϕ,ϑ� � �0, π� . (76)Moreover, every element of the setWu2 � �W >W �RBDez � �ez,ωDB

B � 0� (77)is also an undesired equilibrium point of the 
losed loop system. It holds that
W >Wu2 Ô� zdB � �ez Ô� ϕ � π . (78)
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omprises the set of attitudes where the thrust ve
tor is anti-parallel to itsdesired dire
tion.7.1 Lo
al PropertiesTo derive the lo
al properties, the 
losed loop system is linearized around its equilibrium points.Observe that sin
e RBD evolves on SO�3� it has only three degrees of freedom. Thus, we
an express RBD lo
ally by three minimal 
oordinates. In the following we will �rst expressall attitude dependent terms appearing in the 
losed loop dynami
s by a suitable set of lo
alminimal 
oordinates and then linearize the system in a se
ond step. From Remark 1 we knowthat w is a suitable state representation in a neighborhood of the equilibrium points Wd, Wu1and wd, wu1 respe
tively. A

ordingly, for the linearization around Wd / wd and Wu1 /wu1 wewill use �zdBxy , xdAy� as minimal 
oordinates representing �zdB ,xdAxy� and thus also RBD.To deal with the set Wu2 we exploit the fa
t that in a neighborhood of zdB � �ez � ϕ � π thedynami
s of zdB (whi
h is the last 
olumn of RBD) de
ouple from those of xdB and ydB (whi
hare the �rst two 
olumns of RBD). This 
an be easily seen by noting that the 
ontrol law (39)derived in the previous se
tion does depend solely on zdB and ω
DB
B if ϕ C ϕu. Regarding thisde
oupled part of the 
losed loop system given by (33), (35) and (39), the analysis of the setWu2simpli�es to the analysis of the single equilibrium point �zdB ,ωDB

B �u2 � ��ez,0�. Sin
e zdB > S2,it has only two degrees of freedom and we will use zdBxy as a suitable minimal representationfor zdB .Note that the subsequent linearizations are fa
ilitated by the fa
t that the damping matrix Dde�ned in Se
tion 6.2 simpli�es to a 
onstant matrix D � diag�δϕ, δϕ, δz� in a neighborhood ofany of the equilibrium points given by (74) and (77).Lo
al Stability properties of the desired equilibrium Wd / wdIn a neighborhood of Wd it holds that zdB � ez and xdAxy � �1 0�T . A

ordingly, zdBz �¼
1 � �z2

dBx
� z2

dBy
� and xdAx � ¼

1 � x2
dAy

. Inserting this into (33) and (34) yields for the dy-nami
s of �zdBxy , xdAy��żdBx
żdBy

	 � <����> ωDBBz zdBy � ωDBBy ¼1 � �z2
dBx

� z2
dBy

��ωDBBz zdBx � ωDBBx ¼1 � �z2
dBx

� z2
dBy

�=AAAA? , (79)
ẋdAy � �¼1 � x2

dAy

��� zdBxω
DB
Bx

1 �¼1 � �z2
dBx

� z2
dBy

� � zdByω
DB
By

1 �¼1 � �z2
dBx

� z2
dBy

� � ωDBBz ��� . (80)In the dynami
s (35) we have to express the attitude dependent terms of τ̃ by the minimal
oordinates. Sin
e in a neighborhood of Wd a 
onstant damping D � diag�δϕ, δϕ, δz� is appliedonly the 
omponents of T given in (52) have to be 
onsidered. Re
alling that ϕ > �0, π� andhen
e ¼z2
dBx

� z2
dBy

� sin�ϕ�, the torque T
ϕ
ϕ 
an be indi
ated as

Tϕ
ϕ � cϕ sin�ϕ� � eϕ � cϕ sin�ϕ� � 1

sin�ϕ� <�����>�zdByzdBx
0

=AAAAA? � cϕ <�����>�zdByzdBx
0

=AAAAA? . (81)The torque Tϑ
ϕ 
an be reformulated using sin�ϕ

2
� � ¼

1

2
�1 � cos�ϕ��, cos�ϕ

2
� � ¼

1

2
�1 � cos�ϕ��,
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sin�ϕ� �»1 � cos�ϕ�2 �»�1 � cos�ϕ��»�1 � cos�ϕ�� and zdBz � cos�ϕ�. One obtains

Tϑ
ϕ � cϑ ϑS

0

Λϑu
ϑl
�ζ� dζ � ��¼1

2
�1 � cos�ϕ�� � cos�ϕu

2
�� 1º

2

»
1 � cos�ϕ��1 � cos�ϕu

2
��2 � eϕ �� ϑS

0

Λϑu
ϑl
�ζ� dζ � �cϑº

2
�¼1

2
�1 � cos�ϕ�� � cos�ϕu

2
��»1 � cos�ϕ��1 � cos�ϕu

2
��2»1 � cos�ϕ�»1 � cos�ϕ� <�����>�zdByzdBx

0

=AAAAA? �� arccos�xdAx�S
0

Λϑu
ϑl
�ζ� dζ � �cϑº

2
�¼1

2
�1 � zdBz� � cos�ϕu

2
���1 � cos�ϕu

2
��2º1 � zdBz <�����>�zdByzdBx

0

=AAAAA? �� arccos�¼1�x2
dAy

�S
0

Λϑu
ϑl
�ζ� dζ � �cϑº

2
�½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
���1 � cos�ϕu

2
��2½1 �¼1 � �z2

dBx
� z2

dBy
� <�����>�zdByzdBx

0

=AAAAA? .
(82)

Using ¼1 � x2
dAx

� sin�ϑ� following from ϑ > �0, π� as well as some properties from above, enablesus to write
Tϑ� � �cos�ϕ

2
� � cos�ϕu

2
��2�1 � cos�ϕu

2
��2 � cϑ sin�ϑ� � xdAy¼z2

dBx
� z2

dBy

sin�ϑ� �1 � zdBz� � e� �� cϑ �cos�ϕ2 � � cos�ϕu

2
��2�1 � cos�ϕu

2
��2 � xdAy¼z2

dBx
� z2

dBy

1 � zdBz � 1¼
z2
dBx

� z2
dBy

<�����>zdBxzdBy
0

=AAAAA? �� cϑ �½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
��2 xdAy�1 � cos�ϕu

2
��2 �1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ <�����>zdBxzdBy

0

=AAAAA? .
(83)

The last 
omponent Tϑ
z �nally reads

Tϑ
z � �cos�ϕ

2
� � cos�ϕu

2
��2�1 � cos�ϕu

2
��2 � cϑ sin�ϑ� � xdAy

sin�ϑ� ez �� cϑ �½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
��2 xdAy�1 � cos�ϕu

2
��2 ez .

(84)
For the linearization around Wd / wd, we de�ne the redu
ed state ve
tor wdr � �rTd �ωDB

B �T �T ��zdBy �zdBx �xdAy �ωDB
B �T �T . Note in parti
ular the order and the sign of the �rst three
omponents. In terms of wdr the desired equilibrium lies in zero. Linearizing (79) and (80) aroundwdr � 0 yields

∆ṙd �∆ω
DB
B . (85)The linearization of (35), 
onsidering (39), (81), (82), (83), (84) and the 
onstant damping isstraight forward but tedious and eventually results in

∆ω̇
DB
B � �J�1Cd∆rd � J�1B∆ω

DB
B , (86)
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h. Rep. Auto. Cont. Vol. TRAC-7 19where Cd � diag�cϕ, cϕ, cϑ� A 0 and B � diag�δϕ, δϕ, δz� A 0. Combining (85) and (86) yields
∆ẇdr � � 0 I3�J�1Cd �J�1B	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ad

∆wdr . (87)Sin
e J�1 is positive de�nite, there exists a nonsingular real matrix M, su
h that J�1 �MMT .By de�ning C̃d �MTCM A 0 and B̃ �MTBM A 0 one 
an rewrite Ad as
Ad � � 0 I3�MC̃dM

�1 �MB̃M�1	 � �M 0

0 M
	 � 0 I3�C̃d �B̃	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ãd

�M�1 0

0 M�1	 . (88)Sin
e the eigenvalues of Ad and Ãd are the same, we 
an restri
t the analysis to Ãd. Let
v � �vT1 vT2 �T , where v1,v2 > C3, be any eigenve
tor of Ãd 
orresponding to the eigenvalue λ.Then, Ãdv � λv implies v2 � λv1 and B̃v2 � C̃dv1 � �λv2. Inserting the �rst equation into these
ond yields λ2v1 � λB̃v1 � C̃dv1 � 0. Multiplying by the 
omplex 
onjugate v̄T1 from the leftresults in

v̄T1 v1λ
2 � v̄T1 B̃v1λ � v̄T1 C̃dv1 � aλ2 � bλ � c � 0 . (89)From the positive de�niteness of C̃d and B̃ it follows that a, b, c A 0 and from the Routh-Hurwitz
riterion for polynomials of order two all solutions of (89) lie in the left 
omplex half plane. Thisproves asymptoti
 stability of Wd / wd with lo
al exponential 
onvergen
e, [11, Theorem 4.15℄.Lo
al properties of the undesired equilibrium Wu1 / wu1In a neighborhood of Wu1 it holds that zdB � ez and xdAxy � ��1 0�T . A

ordingly, zdBz �¼

1 � �z2
dBx

� z2
dBy

� still holds and xdAx � �¼1 � x2
dAy

. As a 
onsequen
e, the dynami
s of zdBxyare still given by (79), whereas the dynami
s of xdAy be
ome
ẋdAy �¼1 � x2

dAy

��� zdBxω
DB
Bx

1 �¼1 � �z2
dBx

� z2
dBy

� � zdByω
DB
By

1 �¼1 � �z2
dBx

� z2
dBy

� � ωDBBz ��� . (90)The 
omponents of the torque �eld T 
an be 
omputed analogously as before. While Tϕ
ϕ is stillgiven by (81), we obtain for the remaining 
omponents

Tϑ
ϕ � arccos��¼1�x2

dAy
�S

0

Λϑu
ϑl
�ζ� dζ � �cϑº

2
�½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
���1 � cos�ϕu

2
��2½1 �¼1 � �z2

dBx
� z2

dBy
� <�����>�zdByzdBx

0

=AAAAA? , (91)
Tϑ� � cϑ sin�ϑl�

sin�ϑu� �½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
��2 xdAy�1 � cos�ϕu

2
��2 �1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ <�����>zdBxzdBy

0

=AAAAA? , (92)
Tϑ
z � cϑ sin�ϑl�

sin�ϑu� �½1

2
�1 �¼1 � �z2

dBx
� z2

dBy
�Ǒ � cos�ϕu

2
��2 xdAy�1 � cos�ϕu

2
��2 ez . (93)
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h. Rep. Auto. Cont. Vol. TRAC-7 20For the linearization around the undesired equilibrium Wu1 / wu1 another redu
ed state ve
torwu1r � �zdBy �zdBx xdAy �ωDB
B �T �T is de�ned, where the sign of the third 
omponent hasbeen 
hanged. Linearizing around wu1r � 0 yields

∆ẇu1r � � 0 I3�J�1Cu1 �J�1B	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Au1

∆wu1r , (94)where now the equations (80), (90), (81), (91), (92), (93) and the 
onstan
y of the dampinghave been used. A

ordingly the sti�ness matrix is Cu1 � diag�cu1, cu1,�cϑ sin�ϑl�
sin�ϑu��, where cu1 �

cϕ � cϑ
2�1�cos�ϕu

2
�� � R π0 Λϑu

ϑl
�ξ�dξ A 0. As it was shown before, the eigenvalues of Au1 
oin
ide withthe eigenvalues of

Ãu1 � � 0 I3�C̃u1 �B̃	 , (95)where C̃u1 �MTCu1M. The eigenvalues of Ãu1 in turn satisfy
v̄T1 v1λ

2 � v̄T1 B̃v1λ � v̄T1 C̃uv1 � aλ2 � bλ � c � 0 . (96)Note that Ãu1 obviously has full rank and hen
e no zero eigenvalues 
an exist, whi
h implies
c x 0. Moreover, from B̃ A 0 it follows that b A 0 and hen
e no eigenvalues 
an lie on the imaginaryaxis. One 
on
ludes that Wu1 is a hyperboli
 �xed point and hen
e no invariant 
enter manifold
W c�Wu1� exists, [12, Appendix B℄. It will be proven in the next se
tion that Wu1 is unstableand hen
e an unstable invariant manifold W u�Wu1� of at least dimension one must exist. Thisin turn limits the stable invariant manifold W s�Wu1� to be of a smaller dimension than thestate spa
e.Lo
al properties of the undesired equilibrium set Wu2As stated before, in a neighborhood of the set Wu2, more pre
isely in the region U � �W >W �
ϕ C ϕu�, it su�
es to 
onsider the de
oupled part of the 
losed loop dynami
s given by (33), (35)and (39). In that region zdB � �ez holds and a

ordingly, using zdBz � �¼1 � �z2

dBx
� z2

dBy
�, thedynami
s of zdBxy be
ome�żdBx

żdBy
	 � <����> ωDBBz zdBy � ωDBBy ¼1 � �z2

dBx
� z2

dBy
��ωDBBz zdBx � ωDBBx ¼1 � �z2

dBx
� z2

dBy
�=AAAA? . (97)Sin
e all 
omponents of the torque �eld T resulting from Eϑ are zero in that region, i.e. Tϑ

ϕ �
Tϑ� � Tϑ

z � 0, it remains to 
onsider Tϕ
ϕ, whi
h is given by

Tϕ
ϕ � cϕ sin�ϕl�

sin�ϕu� <�����>�zdByzdBx
0

=AAAAA? . (98)De�ning the redu
ed state ve
tor wu2
r � ��zdBy zdBx �ωDB

B �T �T and 
onsidering (98) and the
onstant damping, the linearization of (97) and (35) around wu2
r � 0 yields

∆ẇu2
r � � 0 �I2 0��J�1Cu2 �J�1B	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Au2

∆wu2
r , (99)
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h. Rep. Auto. Cont. Vol. TRAC-7 21where Cu2 � <������>�cϕ sin�ϕl�
sin�ϕu� 0

0 �cϕ sin�ϕl�
sin�ϕu�

0 0

=AAAAAA?. Let C0 � <������>�cϕ sin�ϕl�
sin�ϕu� 0 0

0 �cϕ sin�ϕl�
sin�ϕu� 0

0 0 0

=AAAAAA? be the matrixwhi
h extends Cu2 by an additional zero 
olumn. By a Lapla
e expansion along the third
olumn of the matrix �λI6 �A0�, where
A0 � � 0 I3�J�1C0 �J�1B	 (100)it 
an be seen that det�λI6�A0� � λdet�λI5�Au2�. Thus, all eigenvalues ofAu2 are eigenvalues of

A0, but A0 has an additional zero eigenvalue. Analogously as before one derives the 
onditionalequation (89), where C̃d is now repla
ed by the rank two matrix C̃0 �MTC0M B 0. As one 
aneasily verify that A0 has exa
tly one zero eigenvalue, the ve
tor v1,1 yielding c � v̄T1,1C̃0v1,1 � 0must be one of the three ve
tors v1,i, i > �1,2,3�, solving λ2v1,i � λB̃v1,i � C̃0v1,i � 0. This
an be understood by noting that c � 0 in (89) results in λ�λa � b� � 0, whi
h gives rise to thezero eigenvalue and additionally to a negative eigenvalue λ � �a
b
. Sin
e A0 has no further zeroeigenvalues, v1,2 and v1,3 must be linearly independent of v1,1 and thus yield c � 0. It dire
tlyfollows from λ � �b�ºb2�4ac

2a
that Au2 must posses exa
tly three eigenvalues in the left and twoeigenvalues in the right 
omplex half plane. A

ording to [12, Appendix B℄, in a su�
ientlysmall neighborhood V ` R

5 of wu2
r � 0 there exists a lo
al stable invariant manifold W s

w,loc�0�of dimension three and a lo
al unstable invariant manifold W u
w,loc�0� of dimension two. Everypoint wu2

r � ��zdBy zdBx �ωDB
B �T �T > V 
orresponds to an one-dimensional 
ompa
t manifoldin the six-dimensional state spa
e W. We denote this manifold byM�wu2

r � � �W >W �W � �RBD,ω
DB
B �,RBDez � �zdBx zdBy �¼1 � �z2

dBx
� z2

dBy
��T  .In parti
ular it holds thatM�0� �Wu2 is the set of the 
onsidered undesired equilibrium points.It follows that W s

loc�Wu2� � �
wu2

r >W s
w,loc

�0�M�wu2
r � is the four-dimensional lo
al stable invariantmanifold of the set Wu2. Let W�t,W0� denote the solution of the 
losed loop system at time tand starting in W0, i.e. W�0,W0� �W0. Then the global four-dimensional invariant manifold,whi
h 
ontains all solutions 
onverging to Wu2, is W s�Wu2� � �

tB0,W0>W s
loc

�Wu2�W�t,W0� 2.7.2 Global Stability PropertiesIn this se
tion we prove almost global asymptoti
 stability of the desired equilibrium followingthe lines of [8℄. Using LaSalle's invarian
e prin
iple (see e.g. [11, Theorem 4.4℄) this is doneby showing �rst that all solutions 
onverge to Wd, Wu1 or Wu2 and se
ond that the undesiredequilibria Wu1 and Wu2 are only attra
tive to a set given by an invariant manifold of Lebesguemeasure zero.Re
alling that all level sets of V are positively invariant and 
ompa
t, we apply LaSalle's invari-an
e prin
iple by showing that the set E �� �W > W � V̇ �W� � 0� 
ontains no invariant setsapart from the set of equilibrium points �Wd,Wu1,Wu2�. Inserting (56) in (40) and using (55)yields2While the ve
tor �eld of the 
losed loop system is forward 
omplete, the existen
e of the solutions for all
t > R� is not guaranteed. Although the somewhat sloppy expression t B 0 is intuitive, one should more pre
iselyadd t > I�W0�, where I�W0� is the maximal interval of existen
e for the solution starting in W0. Compare also[12, Appendix B℄
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V̇ �W� � �κxy�W� �dϕ�W�ω2

ϕ � d�ω2�� � κz�W�dz�W�ω2

z . (101)Taking into a

ount that κxy, κz A 0 the derivative V̇ only vanishes if dϕ�W�ω2
ϕ � d�ω2� �

dz�W�ω2
z � 0 holds. Outside the equilibrium points, in the set W̃ � W��Wd,Wu1,Wu2�, this
ondition is only ful�lled in the subset E1, whi
h is the set of all states with zero angular velo
ity,and in the sets E2, E3, E4, in whi
h ω

DB
B x 0 while ω� � dϕ�W�ω2

ϕ � dz�W�ω2
z � 0. Thus, the setsE2, E3, E4 are subsets of the state spa
e regions where dϕ�W� � 0 or dz�W� � 0 holds. In viewof (61) and (68) a ne
essary 
ondition for this to happen is ϕ > Φ � �ϕ � ϕl �∆ϕ B ϕ B ϕu �∆ϕ�or ϑ > Θ � �ϑ � ϑl �∆ϑ B ϑ B ϑu �∆ϑ�. Expli
itly stated, the sets E1, E2, E3, E4 areE1 � �W > W̃ � ωDBB � 0� , (102)E2 � �W > W̃ � ϕ > Φ, ϑ > Θ, rϕsϕ�ϕ� B ϕ̇ B 0, rϑsϑ�ϑ� B ϑ̊z B 0, ϕ̇ � ϑ̊z x 0, ω� � 0� , (103)E3 � �W > W̃ � ϕ > Φ, ϑ ¶ Θ, rϕsϕ�ϕ� B ϕ̇ � 0, ω� � 0, ωz � 0� , (104)E4 � �W > W̃ � ϕ � ϕl �∆ϕ, ϑ > Θ, rϑsϑ�ϑ� B ϑ̊z � 0, ω� � 0, ωϕ � 0� . (105)Note that ωϕ � �ϕ̇ as well as ωz � �¼

1�x2
dAx

xdAy
ϑ̊z holds and 
onsequently ω

DB
B x 0 in E2 8 E3 8 E4.Moreover, sin
e ω� � 0 it follows from (73) and (50) that ϑ̊z � ϑ̇ and a

ordingly ωz � �¼

1�x2
dAx

xdAy
ϑ̇.Next, we show that �Wd,Wu1,Wu2� is the largest invariant set 
ontained in E � E1 8 E2 8 E3 8E4 8 �Wd,Wu1,Wu2�.Imagine that W > E1, then τ̃ x 0 and sin
e ω

DB
B � 0, we have ω̇

DB
B x 0 from (32). Thus, thestate will exit the subset E1 instantaneously, whi
h shows that no invariant sets are 
ontained inE1.We pro
eed by showing that no invariant sets are 
ontained in E2. As long as the state of the
losed loop system is inside the subset E2, it follows from (55) that

ω
DB
B � �ϕ̇eϕ � ¼

1 � x2
dAx

xdAy
ϑ̇ ez x 0 . (106)A lower bound ω for the angular velo
ity 
an be derived solving

Erot0 � 1

2
�ωDB

B0 �TJωDBB0 � 1

2
λ̄�J�ω2 A 0 , (107)where λ̄�J� denotes the largest eigenvalue of J, Erot0 is the rotational energy and ω

DB
B0

theangular velo
ity at the time t � 0. Sin
e in the set E2 no damping o

urs, using (52) the torque
an be identi�ed as τ̃ � T � T
ϕ
ϕ �Tϑ

ϕ �Tϑ� �Tϑ
z � kϕ � eϕ � k� � e� � xdAy¼

1�x2
dAx

kz � ez with kϕ A 0 and
kz A 0. Now as long as W > E2, it holds that Ėrot � �ωDB

B �T τ̃ � �ϕ̇kϕ � ϑ̇kz A 0 and 
onsequently
ω2 B �ωDB

B �TωDBB � ϕ̇2 � ϑ̇2 . (108)Based on (66) and (70), a lower bound for ϕ̇ and ϑ̇ is given by�L �min�sϕ�π�, sϑ�π�� �min�ϕ̇, ϑ̇� � 0. (109)Making use of (109), we 
an hen
e extend (108) to obtain
ω2 B ϕ̇2 � ϑ̇2 � �L�ϕ̇ � ϑ̇�. (110)
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0

�ϕ̇ � ϑ̇�dt (111)
ertainly is an upper bound of the time at whi
h the state must leave E2 at the latest. Byinserting (110) in (111) and evaluating the integral, we obtain the inequality�ϕl �∆ϕ� � �ϑl �∆ϑ� B �ϕ0 � ϑ0� � ω2

L
t̃, (112)whi
h reveals that t̃ itself is upper bounded by

t̃ B L�ϕ0 � �ϕl �∆ϕ�� � �ϑ0 � �ϑl �∆ϑ��
ω2

. (113)A

ordingly, E2 is left in any 
ase and 
annot 
ontain any invariant sets. The same holds true forE3 and E4. This 
an be shown by pro
eeding 
ompletely analogously as before and is thereforeomitted here. Moreover, also the union of E1, E2, E3 and E4 
annot 
ontain any invariant sets.Indeed, the state may 
ross over from E1 into ea
h of the other sets and also from E2 to E3or E4 but no other transitions are possible. Hen
e, the union of the sets of equilibrium points�Wd,Wu1,Wu2� is the largest invariant set 
ontained in E and a

ording to LaSalle's invarian
eprin
iple every traje
tory 
onverges to Wd, Wu1 or Wu2.In order to prove almost global asymptoti
 stability of Wd we �rst noti
e that V �Wd� � 0,
V �Wu1� � Eϑ�0, π� A 0 and V �W� � Eϕ�π� A 0, �W >Wu2. It follows from (41) and (43) that
Eϕ�π� �max�Epot�ϕ,ϑ�� and 
onsequently Eϑ�0, π� � Eϕ�π�. If we 
hoose any initial state W0,su
h that V �W0� � Eϑ�0, π�, we ex
lude Wu1 and Wu2 from the initial sublevel set of V andthe solution 
an only approa
h Wd. Hen
e, Wd is an asymptoti
ally stable equilibrium point.Sin
e the set �W > W � V �W� � Eϑ�0, π�� is adja
ent to Wu1, the pre
eding argumentationalso proves that Wu1 is an unstable equilibrium and a

ording to the analysis in Se
tion 7.1its stable invariant manifold W s�Wu1� must be of smaller dimension than the state spa
e, i.e.
dim�W s�Wu1�� � 6. From the analysis ofWu2 in Se
tion 7.1 we moreover know that all solutions
onverging toWu2 are 
ontained in the stable invariant manifoldW s�Wu2�, whi
h is of dimensionfour. A

ordingly, the set of undesired equilibria �Wu1,Wu2� only attra
ts solutions along theinvariant manifold W s�Wu1� 8W s�Wu2�, whi
h is of smaller dimension than the state spa
e.It is known that an m-dimensional invariant manifold of an n-dimensional system has Lebesguemeasure zero if m � n, see e.g. [12, Appendix B℄. This proves almost global asymptoti
 stabilityof Wd.8 Con
lusionIn this paper we have presented an energy based attitude tra
king 
ontroller for a quadrotorheli
opter. The proposed 
ontroller prioritizes the alignment of the thrust axis 
ompared to theheading and thus 
onsiders the signi�
an
e of the thrust axis for the translational motion ofa quadrotor heli
opter. On the one hand the nonlinear 
ontroller is a dire
t extension of theredu
ed attitude tra
king 
ontroller presented in [7℄. On the other hand it 
an also be per
eivedas an extension of the attitude setpoint 
ontroller presented in [8℄ that involves the additionof feedforward terms to the 
ontrol law as well as some modi�
ations of the potential energy.Sin
e the 
losed loop error dynami
s of the tra
king 
ontrol problem and the setpoint 
ontrolproblem are very similar, we refer the interested reader to [8℄ for a performan
e analysis basedon simulation results. Compared to [8℄ the 
ontrol problem has been additionally reformulatedusing the rotation matrix as the attitude representation of 
hoi
e. Hereby, the ambiguity of
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losedloop dynami
s, indi
ating a zero tra
king error, is lo
ally exponentially and almost globallyasymptoti
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