The International Journal of

Robotics Research

0(0) 1-16

© The Author(s) 2011

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364911426178
ijr.sagepub.com

©SAGE

Incremental learning of full body motion
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Abstract

In this paper we describe an approach for on-line, incremental learning of full body motion primitives from observation of
human motion. The continuous observation sequence is first partitioned into motion segments, using stochastic segmen-
tation. Next, motion segments are incrementally clustered and organized into a hierarchical tree structure representing
the known motion primitives. Motion primitives are encoded using hidden Markov models, so that the same model can
be used for both motion recognition and motion generation. At the same time, the temporal relationship between motion
primitives is learned via the construction of a motion primitive graph. The motion primitive graph can then be used to
construct motions, consisting of sequences of motion primitives. The approach is implemented and tested during on-line

observation and on the IRT humanoid robot.
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1. Introduction

Learning through observation and imitation is an attractive
paradigm for humanoid robots, as it enables the robot to
take advantage of the similarity in body structure between
humanoids and humans, and avoids the need for explicit
programming of complex robot motions. Much of human
movement is thought to be composed of motion primitives,
which are combined and sequenced to generate more
complex behavior (Schaal 2006). Many algorithms have
been proposed in the literature for representing and learn-
ing motion primitives from demonstration (Breazeal and
Scassellati 2002; Schaal et al. 2003; Krueger et al. 2007).
However, most of the approaches thus far consider off-line
learning, where the data is first collected, segmented and
sorted into the motion groups to be learned, and then
a one-time, off-line learning process is used. However,
a robot operating in the human environment should be
capable of continuous learning over its’ entire lifespan. The
robot should be able to segment and classify demonstrated
actions, and learn how those actions may be combined
to perform tasks on-line during co-location and possible
interaction with the (human) teacher.

In order to extract motion primitives and behaviors
during on-line observation, several key issues must be
addressed by the learning system: automated motion
segmentation, recognition of previously learned motion
primitives, automatic clustering and learning of new motion
primitives and, finally, learning how motion primitives can

be combined into sequences to form behaviors. Since data
is being processed autonomously, in an on-line system,
later stages of the process must be robust to errors in the
preceding steps. In previous work (Kuli¢ et al. 2008b,
2009), we have been developing an approach for on-line
segmentation and clustering of whole-body human motion
primitives. In this paper, based on the previously proposed
framework for learning motion primitives, we propose
an approach for also incrementally learning the relation-
ship between the motion primitives for the formation of
longer behaviors. A graph model is built representing the
sequential relationship between the motion primitives. The
graph can then be used to generate new coherent motion
sequences for the robot, based on the learned motion
primitives and the learned relationship between them.
Since the motion primitive graph represents an abstrac-
tion of the observed patterns of behavior of the human
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demonstrator, the motion primitive graph can also further
our understanding of human motion. The motion primitive
graph can be used to detect normal and abnormal human
activity, and to predict future human movements based on
the recent history of observations. The complete system is
capable of online learning from continuous demonstration.

1.1. Related work

Robot skill learning through observation of human motion
is an attractive paradigm for humanoid robots, and has
received significant attention in the literature (Kuniyoshi et
al. 1989; Kuniyoshi and Inoue 1994; Liu and Asada 1992;
Dillmann et al. 1999). Breazeal and Scassellati (2002),
Schaal et al. (2003), and Krueger et al. (2007) provide
reviews on motion learning by imitation. Many different
approaches for representing motion primitives have been
proposed, including neural networks (Ogata et al. 2005; Erl-
hagen et al. 2006; Ito and Tani 2004; Andry et al. 2004),
stochastic models such as hidden Markov models (HMMs)
(Inamura et al. 2004; Takano et al. 2006, 2005; Billard et
al. 2006, 2004; Asfour et al. 2006), phase oscillators for
rhythmic motions (Nakanishi et al. 2004), dynamical mod-
els (Ijspeert et al. 2002), polynomial functions (Okada et al.
2002) or weighted graph structures (Breazeal et al. 2005).
In addition, some researchers focusing on learning the rela-
tionships between primitives utilize pre-programmed, static
primitive behaviors, for example Nicolescu and Matari¢
(2001, 2003, 2005), Ilg et al. (2004), and Dominey et al.
(2008). Where motion primitives are being learned, as noted
by Breazeal and Scassellati (2002), the majority of algo-
rithms proposed to date assume that the motions to be
learned are segmented and clustered a priori, and that the
model training takes place off-line.

A stochastic approach for learning both the motion prim-
itives and the transitions between them is proposed by
Taylor et al. (2006), based on the conditional restricted
Boltzmann machine (CRBM). Once trained, the system can
generate continuous motion sequences, as well as repre-
sent and generate the transitions between motions. Once
the low-level network consisting of individual motion pat-
terns has been trained, additional higher-order layers can
be added to model the higher-order structure of motion pat-
terns. However, training for all primitive level motions must
be completed before higher-level training can begin, so that
the algorithm is not able to build the model incrementally,
during on-line observation.

Jenkins and Matari¢ (2004a) describe a system for
extracting behaviors from motion capture data. In their
algorithm, continuous time series data is first segmented
using the kinematic centroid segmentation algorithm,
which is a heuristic algorithm modeling arms and legs
as pendulums, and placing segment boundaries at the
beginning and end of pendulum swings. The segmented
data is then embedded in a lower dimensional space using
the spatiotemporal Isomap (ST-Isomap) algorithm (Jenkins

and Matari¢ 2004b). Once the data has been reduced, it is
clustered into groupings using the ‘sweep-and-prune’ tech-
nique. Once a model of the primitive behaviors is formed,
a higher level re-processing of the data is performed to dis-
cover meta-behaviors, i.e. probabilistic transition probabili-
ties between the behaviors. Similarly to primitive behaviors,
meta-level behaviors are derived by extracting meta-level
feature groups using ST-Isomap. While this system
autonomously segments and clusters data, the algorithm
cannot operate incrementally, as the entire range of motions
is required to form the lower-dimensional space embedding.

Another popular stochastic modeling technique for
human motion modeling are HMMs. HMMs have been
applied to many different domains requiring human motion
modeling, including skill transfer (Dillmann et al. 1999),
sign language and gesture modeling (Startner and Pentland
1995) and motion representation (Dillmann et al. 1999;
Calinon et al. 2007). In many of the existing approaches
using HMMs to implement human motion learning (Billard
et al. 2006; Ezaki 2000; Inamura et al. 2004; Lee and
Nakamura 2006), humanoid motion primitives have been
encoded using HMMs, and subsequently used for motion
generation. However, the initial training of the models was
carried out off-line, where all of the training examples for
each model were grouped manually.

Calinon et al. (2007) proposed a system for program-
ming by demonstration, based on Gaussian mixture models
(GMMs). In their approach, the data (including both joint
angle data and absolute and relative object position and
hand position data) is first analyzed via principal compo-
nents analysis (PCA) to determine the relevant subspace
for the task. The reduced dimensionality data is then tem-
porally aligned and abstracted into a set of Gaussian Mix-
tures. This system is also extended to an on-line, interactive
approach by developing a method for incremental train-
ing of the GMM structure (Calinon and Billard 2007b)
and developing an interactive training approach combining
demonstration and kinesthetic training (Calinon and Billard
2007a). However, it appears that the motion segmentation is
performed manually by the trainer.

Kadone and Nakamura (2005, 2006) describe a system
for automated segmentation, memorization, recognition,
and abstraction of human motions based on associative neu-
ral networks with non-monotonic sigmoid functions. Their
approach achieves on-line, incremental learning of human
motion primitives, and self-organization of the acquired
knowledge into a hierarchical tree structure. However, the
abstracted motion representation can only be used for sub-
sequent motion recognition, and cannot be used for motion
generation.

Kuli¢ et al. (2008b) have been developing algorithms for
incremental learning of motion pattern primitives through
long-term observation of human motion. Human motion
patterns are abstracted into a stochastic model represen-
tation, which can be used for both subsequent motion
recognition and generation. As new motion patterns are
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observed, they are incrementally grouped together based
on their relative distance in the model space. The resulting
representation of the knowledge domain is a tree structure,
with specialized motions at the tree leaves, and generalized
motions closer to the root. In this paper, we build on this
previously developed approach to incorporate a hierarchical
learning structure, where both the motion primitives and
their higher-order sequencing are learned at the same time.

Outside the robotics community, in the computer graph-
ics domain, there has also been a long-standing research
effort to develop algorithms for realistic human-like motion
generation for animated characters. Kovar et al. (2002) first
proposed the motion graph technique. In this approach, a
directed graph is constructed encapsulating the relation-
ships between postures extracted from a motion capture
data set. The graph can then be used to generate extended
sequences of realistic looking motions. Yamaguchi et al.
(2008) and Yamane et al. (2009) developed an algorithm
for building a motion graph via a binary tree cluster-
ing technique. Sidenbladh et al. (2002) also propose an
approach for probabilistically modeling 3D human motion
for character synthesis and tracking. In their approach,
a low-dimensional linear model of the human motion is
learned, and then used to structure the database into a binary
tree. Each leaf node in the tree represents a fixed length
(1/3 of a second) of time series data of the human move-
ment. The binary tree structure of the motion database
allows for fast search enabling on-line motion tracking and
synthesis. However, similar to the work of Jenkins and
Matari¢ (2004a) both the motion graph and the binary tree
approaches proposed in the graphics literature (Kovar et al.
2002) require that the entire database of motions is available
a priori, it is not possible to incrementally add new motions
to the database during on-line observation.

1.2. Proposed approach

The aim of our research is to develop robots which can
learn motion primitives and higher-level behaviors on-line
while observing and interacting with a human partner over
extended periods of time. In our previous work (Kuli¢ et
al. 2008b, 2009), we have been developing algorithms for
automatic extraction of motion primitives from continuous
motion data. In this paper, we extend the previously
developed framework to autonomously extract the tem-
poral and sequencing relationships between the motion
primitives concurrently with learning the motion primitives
themselves. We also integrate the learning of the motion
primitives and the learning of the primitive sequencing
into a single framework and demonstrate the complete
system during on-line observation of human motion, as
well as the application of the learned motion primitives
and their sequencing to humanoid robot motion generation.
We model motion primitives as stochastic models, either
HMMs or factorial HMMs. Motion primitives can be rep-
resented using either Cartesian data of human motion (for

example, the locations of key body parts), or using joint
angle data of a kinematic model of the human. In this paper,
we focus on full body motions, however, the framework
proposed herein can be utilized for any type of motion
primitive, such as motion primitives involving arms or legs
only. For tasks involving interaction with the environment,
the observation vector could also consist of relative position
data, such as the distance between the hand and the object
to be grasped, and other interaction data, such as contact or
grasping forces. Once the appropriate task representation
is selected, using continuous time-series data as the input,
we first segment the data into potential motion primitives,
using a modified version of the Kohlmorgen and Lemm
algorithm (Kohlmorgen and Lemm 2001) for unsupervised
segmentation (Kuli¢c et al. 2009). Next, the extracted
segments are input into an automated clustering and
hierarchical organization algorithm (Kuli¢ et al. 2008b).
The segmentation algorithm uses a HMM to represent the
incoming data sequence, where each model state represents
the probability density estimate over a window of the data.
The segmentation is implemented by finding the optimum
state sequence over the developed model. Individual motion
patterns are then clustered in an incremental fashion, based
on intra-model distances. The resulting clusters are then
used to form a model of each abstracted motion primitive,
which can be used for subsequent motion generation.
Concurrently with the learning of the motion primitives,
the relationship between primitives is learned by forming
a directed graph of the motion primitives. Each time a new
motion primitive is added, a new node is added to the graph.
Each time a consecutive pair of known motion primitives is
recognized, a transition is added to the graph, incrementally
forming a transition matrix among the motion primitives.
The motion primitive graph can then be used for subse-
quent motion sequence generation on a humanoid robot. An
overview of the combined approach is shown in Figure 1.

This paper is organized as follows: In Section 2, we sum-
marize the previously proposed segmentation and cluster-
ing framework (Kuli¢ et al. 2008b, 2009), which is used
to extract motion primitives used in subsequent sections.
Section 3 describes the formation of the motion primitive
graph, which forms the model of the sequential relation-
ships of the motion primitives. In Section 4, the results of
experiments verifying the algorithm during on-line opera-
tion, and on a humanoid robot trained with a continuous
stream of human motion capture data are reported. Section
5 concludes the paper.

2. Automated segmentation and clustering

In this section we review our framework for autonomously
extracting motion primitives from continuous online
demonstration data, initially reported in Kuli¢ et al. (2008b,
2009). In the proposed approach, the continuous data
stream is first segmented into motion primitive segments
(Kuli¢ and Nakamura 2008), and then these segments are
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Fig. 1. Overview of the integrated system. [x, y, z] marker position data is first converted into joint angle data for the humanoid kinematic
model using on-line inverse kinematics. The joint angle data is next segmented using on-line stochastic segmentation (Section 2.1,
initially reported in Kuli¢ et al. (2009)). Segments are incrementally clustered and organized in a tree structure (Section 2.2, initially
reported by Kuli¢ et al. (2008b)). At the same time, the temporal relationships between segments are learned via the motion primitive

graph (Section 3). Walks on the motion primitive graph are used to generate command trajectories for the humanoid robot. The last two

modules are the focus of this paper.

incrementally clustered to extract models of motion prim-
itives (Kuli¢ et al. 2008b, 2009). We provide a basic
overview of the algorithms required for understanding how
these motion primitives are subsequently used for identify-
ing and generating sequences of behaviors; for a detailed
description and analysis of the segmentation and clustering
algorithms, the reader is referred to the original publications
(Kuli¢ and Nakamura 2008; Kuli¢ et al. 2008b, 2009).

2.1. Probabilistic segmentation

A modified version of the Kohlmorgen and Lemm segmen-
tation algorithm (Kohlmorgen and Lemm 2001; Janus and
Nakamura 2005) is used to automatically segment the con-
tinuous time series data into motion primitive candidates
(Kuli¢ and Nakamura 2008). We provide a brief overview
of the segmentation approach here, detailed analysis of the
performance and parameter sensitivity of the stand-alone
segmentation algorithm is provided in Kuli¢ and Nakamura
(2008). The same parameter settings as specified in Kuli¢
and Nakamura (2008) are used herein.

The segmentation approach was selected due to its ability
to handle observation data with a large number of degrees
of freedom in the observation vector, and the ability to
begin segmenting without any a priori knowledge about the
type of motion to be observed. The Kohlmorgen and Lemm
segmentation algorithm (Kohlmorgen and Lemm 2001) is
based on the assumption that data belonging to the same
motion primitive will have the same underlying probability
distribution. The incoming data stream is first embedded
into a higher-dimensional space, as suggested by Kohlmor-
gen and Lemm (2001). This embedding is achieved by con-
catenating temporally adjacent incoming data vectors. The
resulting data vector x has dimensionality N;*7 where N, is
the dimensionality of the incoming data (typically the num-
ber of degrees of freedom (DoFs) of the demonstrator), and
T is the embedding duration. The density distribution of the
embedded data is next estimated over a sliding window of
length W, via a standard (Parzen) density estimator with
multivariate Gaussian kernels, centered on the data points

in the window {xt_w}g:ol:
w1 _
1 1 (X — X)?
p(x)= W ; Wexp <—T , (D

where p,( x) is the density function at time ¢, x is the embed-
ded data at time ¢, X,_,, is the average of the data points in
the sliding window, and o is a smoothing parameter calcu-
lated proportional to the mean distance between each x and
its n nearest neighbors.

As more data are observed, the distance between succes-
sive data windows can be calculated based on the integrated
square error between two probability density functions (the
L,-norm):

dpapa)= [ @a(0-pa(xPax @

The segmentation analysis is carried out by defining
a HMM over a set S of sliding windows. Each window
corresponds to a state of the HMM. For each state, the
observation probability distribution is defined as

_ 1 _d(Ps(X)aPt(X))
PPN 1) = = exp ( ) G

262

where p(p,(x)|s) is the observation probability distribu-
tion, i.e. the probability that the data represented by p,( x)
is observed while in state s, p,(X) is the probability distri-
bution associated with the time window corresponding to
state s, d is the distance function based on the integrated
square error (Equation (2)), and ¢ is a free parameter in the
algorithm, which determines the variance of the observation
probability distribution.

The initial state distribution of the HMM is given by
the uniform distribution, and the state transition matrix is
designed such that transitions to the same state are k times
more likely than transitions to any of the other states:

k.
kN1

ajj
k+N—1

ifi=j,

if i # j, )
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where a;; represents the transition probability that the HMM
will transition from state i to state j, with both i and j
ranging from 1 : N, where N is the number of states of
the HMM. The Viterbi algorithm (Rabiner 1989) can then
be used to find the optimum state sequence given the cur-
rent set of observations. This state sequence represents the
segmentation result, with each change of state correspond-
ing to a segment point. We use the on-line variant of the
Viterbi algorithm (Kohlmorgen and Lemm 2001), which
incrementally builds the state path likelihoods as each new
state is observed, by re-using the estimate of the likeli-
hood and optimal state sequence from the previous time
step. The on-line formulation of the Viterbi algorithm pro-
posed by Kohlmorgen and Lemm subsumes the two free
parameters of the algorithm, ¢ and £, into a single parame-
ter which can be interpreted as the cost of state switching.
This parameter can be determined based on the expected
magnitude of change between different motions relative to
noise (Kohlmorgen and Lemm 2001). To prevent the state
list from growing to infinity as the number of observed data
points increases, Kohlmorgen and Lemm (2001) propose
removing states following a segment away from that state.
However, Janus (2006) has found that this approach leads
to over segmenting, as the considered data range becomes
too small (of the order of 5/) and therefore the algo-
rithm becomes more prone to local minima. Instead, Janus
(2006) proposes that the algorithm runs in batch mode over
a larger, fixed number of windows, and that windows should
be discarded in a first in first out (FIFO) manner. The Janus
approach is adopted herein.

This approach is capable of segmenting motion data with
no a priori information about the type of motion to be
observed, and is used at the start of the learning phase.
Using a HMM to model the time series data, enables the
system to model the temporal and spatial variability in
human motion data, allowing the segmentation algorithm
to segment human movement in the face of variability
and noise. The basic segmentation algorithm works well
for finding boundaries of two different motions, but is not
as effective at correctly identifying the exact time of the
switching point for each action, for example, the transition
from arm raise to arm lower, especially for those actions
where few joints are moving. By adding information about
which joints are active, the performance of the basic algo-
rithm can be improved. As motion primitive models are
extracted from the demonstration (described in the follow-
ing section), knowledge about previously observed motion
primitives can be used to further improve the segmentation,
by modifying the state transition model, and by modify-
ing the distance function based on the knowledge of which
joints are active during the known motion primitive (Kuli¢
et al. 2009). This modification to the basic Kohlmorgen and
Lemm algorithm improves the segmentation performance,
resulting in more accurate segmentation as more motion
primitives become known. The algorithm has been vali-
dated and found to perform reliably with a variety of motion

sequences and human kinematic models (Kuli¢ et al. 2009;
Kuli¢ and Nakamura 2009). A detailed analysis and results
of the segmentation algorithm performance can be found in
Kuli¢ et al. (2009).

2.2. Incremental motion primitive learning

The segmentation algorithm described in Section 2.1
decomposes the incoming continuous data stream into short
segments of time series data, each corresponding to a poten-
tial motion primitive. The task of the motion primitive
learning component is to group these segments together
based on their similarity, and extract a model for each
group of similar segments. We consider this group model
the motion primitive. Once the incoming time series data
has been segmented, each segment is sequentially passed to
the clustering module. In the proposed clustering approach
(Kuli¢ et al. 2007c¢), a hierarchical tree structure is incre-
mentally formed representing the motions learned by the
robot. Each node in the tree represents a motion primi-
tive, which can be used to recognize a similar motion, and
also to generate the corresponding motion for the robot.
Within each local area of the motion space, a standard
clustering technique (Jain et al. 1999) is used to subdivide
motion primitives. A HMM is used to abstract the obser-
vation sequences. HMMs were selected to model motion
primitives because this type of model can encapsulate both
spatial and temporal variability, both of which are a feature
of human motion obtained during demonstration. In addi-
tion, as HMMs are a generative model, the same model can
be used for both motion recognition and generation, allow-
ing the model to be used both for discriminating between
new and known motions, and for generating the motion to
be executed by the humanoid robot.

In the tree structure to be constructed, each node repre-
sents a group of similar motion primitives, which is rep-
resented by a group HMM. Note that the HMM model
used to model an individual motion is different from the
HMM used for segmentation. In the segmentation HMM,
described in Section 2.1, each state describes the data dis-
tribution over a window of motion data. The HMMs used
for clustering describe the motion at a finer grained level,
where each state can be considered to describe a key posture
in a motion primitive. The algorithm initially begins with
one group (the root node). Each time a motion is observed,
it is encoded into a HMM and compared with existing
group models via a tree search algorithm, and placed into
the closest group. The size of the HMM model can be
selected either by use of the Akaike information criterion
(Kuli¢ et al. 2007a), or by adaptively adding chains to the
HMM based on the representation requirements (Kuli¢ et
al. 2008b). The distance between two models is computed
using the Kullback—Leibler distance:

1
D(xl,xz)=;[logP(O%I)—logP(O(”Mz)], Q)
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Fig. 2. Overview of the incremental clustering algorithm (Kulic¢ et al. 2008b) (a square represents a data sequence and a circle represents
a group): (a) A new observation sequence is observed and encoded as a HMM,; (b) the observation sequence is compared with existing
groups via tree search; (c) the new sequence is placed in the closest existing group; (d) local clustering is performed on the modified

group (zoomed in view of modified group); (e) a new subgroup is formed from similar motions in the modified group; (f) the subgroup

is added to the tree as a child of the modified group.

where i;,A, are two models, O® is an observation
sequence generated by A, and T is the length of the obser-
vation sequence. Since this measure is not symmetric,
the average of the two intra distances is used to form a
symmetric measure.

The new motion is placed into the nearest node. The
repository of known groups is organized in a tree struc-
ture, so the new observation sequence does not need to be
compared with all known behaviors, instead the comparison
procedure is implemented as a tree search. The new obser-
vation sequence is placed in the closest node, based on the
maximum node distance, otherwise it is placed in the parent
node of the closest node:

Dthresh = KmaxGDDG (6)

max*

Here Dyyesh 18 the distance threshold at which a new obser-
vation sequence is considered for inclusion to a node,
Kmaxp is the multiplication factor applied and DY, is the
maximum intra-observation distance for the given node. If
no similar motions are found, the new motion is placed in
the root node. Once a new observation sequence is added to
a group, local clustering is performed within the exemplars
of the group, using the complete link hierarchical cluster-
ing algorithm (Jain et al. 1999). If a cluster with sufficiently
similar data is found, a child group is formed with this data
subset. Two criteria are used for forming clusters: minimum
number of elements in the subgroup, and the maximum
proximity measure of the potential subgroup. The maxi-
mum proximity measure is calculated as a function of the
distribution function:

0

where Dgyofr 1 the distance (proximity) cutoff value (i.e.
only clusters where the maximum distance is less than this
value will be formed), Keuofr 1S a user-defined parameter of
the algorithm, u, is the average distance between observed
models in the group, and o, is the standard deviation among
all of the distances. If a new subgroup is formed based
on these criteria, a new group model is trained using the

Deutott = g — KeutoffOyg,

observation sequences from all of the identified subgroup
elements. The generated model is subsequently used by
the robot both to generate the movement of this motion
primitive, and to subsequently recognize when this motion
is performed again. Through continuous observation of
multiple demonstrations, the algorithm incrementally
learns and organizes the motion primitive space, based
on the robot’s lifetime of observations. The algorithm is
illustrated in Figure 2.

The segmentation and clustering approaches can be com-
bined to allow for fully automated motion primitive extrac-
tion (Kuli¢ et al. 2009). The primitives extracted through
this approach generally correspond well to motion prim-
itives as they would be extracted by a human observer,
such as arm raise, arm lower, etc. The algorithm allows
the robot to incrementally learn and classify motion prim-
itives observed during continuous observation of a human
demonstrator. The generation of a hierarchical structure of
the learned behaviors allows for easier retrieval, and the
automatic generation of the relationships between behaviors
based on their similarity and inheritance. In addition, the
robot’s knowledge is organized based on the type of training
received, so that the robot’s knowledge will be most special-
ized in those areas of the motion primitive space where the
most data has been observed.

The constructed tree structure bears some similarity to
the binary tree proposed by Sidenbladh et al. (2002). How-
ever, in the approach developed by Sidenbladh et al., a
fixed time sequence is always used for the motion primi-
tives. Here, we temporally segment the data into variable
length motion primitives, based on the data properties of
the motion, so that the leaf nodes correspond to recogniz-
able motion primitives. In addition, since we only consider
the distance between any two models, our approach allows
for the incremental building of the motion database. On the
other hand, Sidenbladh et al. use the variance over the entire
data set to construct the tree structure, implying that the
entire training data must be available prior to the start of
the tree construction.
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Fig. 3. Example motion primitive graph. Each node represents a
motion primitive, while each edge represents an observed sequen-
tial ordering between primitives. In this example graph, motion
primitive 1 is always followed by motion primitive 2, which can
be followed by primitives 1, 3, or 4.

3. Motion primitive graph

Concurrently with the construction of the hierarchical
tree structure representing the motion primitives, we learn
the relationship between the primitives by constructing
a directed graph representing the observed transitions
between the primitives. Each node in the motion primi-
tive graph represents a motion primitive, while each edge
represents an observed transition between two motion prim-
itives. An example motion primitive graph is illustrated in
Figure 3.

Initially, the graph is empty, as no motion primitives are
known at initialization. Each time a new motion primitive
is abstracted by the clustering algorithm as a leaf node
(described in Section 2.2), a corresponding node is added
to the motion primitive graph. The incremental clustering
algorithm also performs motion recognition. When a newly
observed motion segment is placed in an existing (non-
root) node of the tree, this indicates that the motion segment
has been recognized as the motion primitive corresponding
to the selected node. A motion primitive transition model
is built incrementally by monitoring for instances when a
sequence of two motion primitives are recognized by the
incremental clustering algorithm. Each time a recognized
motion primitive transition is detected, the corresponding
edge is incremented. In this way, the robot incrementally
learns how motion primitives may be combined during
behavior execution.

The constructed graph can then be used to generate
sequences of primitives by concatenating a set of nodes con-
nected in the graph, for example, by searching the graph
for a valid path given a starting and target position. The
graph can also be used to generate novel sequences of
primitives, not observed from the demonstrator. In this
way, the robot can generate novel behaviors based on its
known motion primitives and their relationships. In addi-
tion, the motion graph represents an abstracted model of
the observed human behavior. It can also be used to detect
and monitor human activity, and to predict future movement
of the observed human, based on the sequence of primitives
executed thus far.

The general problem of learning transition matrices is
a well-studied topic in machine learning, and particularly

reinforcement learning (Sutton and Barto 1998). The pro-
posed approach is similar to the motion graph approach
employed for graphics character animation (Kovar et al.
2002; Yamaguchi et al. 2008; Yamane et al. 2009). How-
ever, a key difference from the motion graph approach is
that, in the approach proposed herein, the motion data is
encapsulated in two hierarchical levels: the level of the
motion primitive and the level of the motion primitive
graph. At the level of the motion primitive, each node (each
state of the HMM) can be thought to correspond to a pos-
ture. At the level of the motion primitive graph, each node
corresponds to a motion primitive, rather than an individ-
ual posture. Conversely, with the motion graph approach,
only a single layer of hierarchy is used, such that each
node corresponds to a posture only. An alternative way of
conceptualizing the motion primitive approach is that the
motion primitives discover the postures which only transi-
tion to each other, and these are grouped into nodes at the
motion primitive graph level. This means that the resulting
graph is much smaller and therefore more easily search-
able, and requires less computational effort for generating
appropriate paths. The motion primitive graph is at a higher
abstraction level, since motion primitives serve to abstract
continuous motions into a single logical concept.

Unlike the motion graph approaches, the algorithm pro-
posed herein also allows the graph structure to be built
incrementally rather than requiring the data to be available
prior to the start of training.

In the current implementation, only the leaf nodes gener-
ated by the clustering algorithm are used to form the motion
primitive graph. Higher abstractions could also be achieved
by constructing the primitive motion graph at higher lev-
els of the motion primitive hierarchy, by making use of the
hierarchy of motion primitives identified by the tree struc-
ture of the motion primitives generated by the clustering
algorithm. As the number of motion primitives becomes
large, higher-level motion primitive graphs could be used
to further reduce search time by searching first at the higher
level, where the number of nodes is fewer, and searching
at the lower level within the subspace identified by the ini-
tial higher-level search. For example, a large tree of motion
primitives might include a higher-level node which encap-
sulates reaching motions, and child nodes which model dif-
ferent types of reaching motion. A motion primitive graph
at the higher level could first be used to identify that a reach-
ing primitive is required, and then a local search within the
lower-level graph could be employed to determine the most
appropriate type of reaching motion.

4. Realtime implementation and experimental
results

The proposed approach was tested in two experimental sce-
narios. In the first scenario, described in Section 4.1, the
system was tested using a 40-DoF human kinematic model,
during on-line, interactive demonstration. In the second
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scenario, described in Section 4.2, a humanoid kinematic
model corresponding to a 30-DoF humanoid robot was
used, to allow the motion to be directly generated on the
humanoid robot.

4.1. On-line learning during interactive motion
capture

In the first set of experiments, the system is tested dur-
ing on-line, interactive demonstration. For this purpose,
a visualization system has also been developed (Kuli¢ et
al. 2009), which allows the user to visualize the state of
the system’s knowledge as it is being acquired. This sys-
tem provides a visual overview of the motion database,
the motion primitive graph, and individual motion primi-
tives. The human demonstrator is outfitted with 34 reflective
markers located on various parts of the body, and the marker
[x, v, z] position is captured and computed by the motion
capture system online. The marker data is then passed to
the combined motion extraction and visualization system,
which performs the on-line inverse kinematics (Yamane and
Nakamura 2003) to generate joint angle data, displays an
animation character performing the demonstrator motions,
and simultaneously passes the data to the segmentation,
clustering and motion primitive extraction module for pro-
cessing. In previous work, a simplified inverse kinematics
model was used (20 DoFs) (Kuli¢ et al. 2009), however,
here we use a more realistic 40-DoF model, which is better
able to capture the full range of human motion. In addition,
for this demonstration, Cartesian data is used, as this data is
not being re-targeted for humanoid motion generation, and
we have found that Cartesian data produces better segmen-
tation results when large DoF models are used (Kuli¢ and
Nakamura 2009). During the demonstration, the demonstra-
tor can view the current status of the learning system on the
large video screen located in front of the demonstrator, to
determine when a motion primitive has been learned and
the demonstration can move on to the next set of primitives.

In the experiment shown here, the demonstrator first
teaches the system a set of four motion primitives (both
arms raise motion, both arms lower motion, bend down
motion, bend return motion), and then teaches the system
the correct sequencing of the primitives. During the first
part of the demonstration sequence, the demonstrator exe-
cutes multiple examples of the motion primitives. These are
consistently segmented so that a group model for each prim-
itive can be formed. During the second part of the sequence,
the demonstrator performs a longer sequence of combina-
tions of the motion primitives, which are not necessarily in
the same order as the order observed in the first part. These
are again correctly segmented and classified to enable the
motion primitive graph to be learned.

The experimental setup and frames extracted from the
video of the user performing the motion primitives are
shown in Figure 4. As can be seen from the figure, the user
can observe the motions being abstracted and the current

state of the knowledge base, so that the demonstrator is
able to easily determine when the demonstrated action or
sequence of actions has been acquired. Figure 5 shows
the system output as seen by the demonstrator during the
sequence, showing the evolution of the motion primitive
graph and the tree structure during the demonstration.
Figure 6 shows the final tree structure at the end of
the demonstration, and Figure 7 shows the final motion
primitive graph.

4.2. Motion generation for a humanoid robot

4.2.1. Humanoid robot platform and low-level control.
The proposed approach was tested on the IRT platform
humanoid robot (shown in Figure 14). The IRT robot is a
human-size humanoid robot, with 38 DoFs. The robot has
three joints actuating the head, seven joints in each of the
arms, six joints in each of the legs, and the one joint at the
hip, with an additional eight DoFs in the fingers and toes
which were not used during these experiments.

A low-level controller takes the generated trajectories as
input and generates motor commands for the robot. Our
control approach currently aims at the on-line imitation of
the human’s upper body motion, while both feet remain
in contact with the ground. The joints of the lower body
are used for balancing the robot and implementing the hip
height and orientation as described in Ott et al. (2008).

The controller design is divided into the control of the
upper and lower body (Figure 8) according to the realtime
controller hardware of our humanoid robot, in which one
realtime computer is used for controlling the upper body
joints, and a second realtime computer is used for control-
ling the lower body joints. The joint angles ¢ and the desired
frame for the robot’s base link (hip) /4, are transmitted from
the upper body computer to the lower body computer via
a UDP socket interface. Following simple filtering and the
utilization of a linear joint interpolator for limiting the joint
velocity to the robot’s velocity constraints, we command the
joint angles of the upper body directly to the joint position
controllers. The commanded trajectory is also transferred
to the controller of the lower body where it influences the
balancing task.

For the balancing, we aim at keeping the center of gravity
(COG) at a constant position ¢, inside the support poly-
gon of the feet. From the viewpoint of the popular mass-
concentrated ‘inverted pendulum model’, this has the con-
sequence, that the zero moment point also stays at the same
point such that the constraints on the ground reaction force
can be satisfied (Kajita 2005).

In addition to the balancing, the joints of the legs should
also implement the orientation of the base link as a second
objective. The optimization of the two criteria can be per-
formed separately by gradient descent. Thereby, we obtain
a desired COG velocity v; and a desired angular velocity
w for the body frame, which are executed by means of a
velocity based inverse kinematics (see Figure 8).
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Fig. 4. Frames from the video sequence of the interactive demonstration. The top row shows the both arms raise and lower motions, the

bottom row shows the bend down and bend retract motions.

Fig. 5. Frames from the visualization system output as the motion primitives and the motion primitive graph are acquired. The demon-

strator first demonstrates the four motion primitives, and then teaches the motion primitive sequencing. Here, motion primitive 1 = both

arms lower, motion primitive 2 = both arms raise, motion primitive 3 = bend retract, and motion primitive 4 = bend down.

The current controller assumes that both feet always
remain on the ground. In order to extend the system to
stepping motions, one possible way would be to iden-
tify the occurrence of these motions in the commanded
motion primitive and perform an online step planning for
generating a trajectory which can be executed with the
humanoid.

4.2.2. Data collection and analysis. A large data set was
collected in a motion capture studio to test the proposed
algorithms on a lengthy continuous sequence of a variety
of whole-body motions. Figure 9 shows the motion capture
setup and marker locations. A total of 34 markers was used.
The data set consists of 16 minutes of continuous whole-
body motion data of a single human subject. During the
data sequence, the subject performs a variety of full body

motions, including a walk in place motion, a squat motion,
kicking and arm raising. There are approximately the same
number of examples of each motion type in the dataset. In
some cases, there is a pause between motions, while other
motions are fluidly connected. Therefore, the learning sys-
tem is exposed to both motions executed in isolation, as well
as motions which are sequenced together, and may exhibit
co-articulation, i.e. motions which may partially overlap
when executed sequentially.

The video of the motion sequence is also observed by
a human observer and manually segmented and labeled.
The human observer was guided to segment the data into
segments which would be visually recognizable as a dis-
crete movement, no further criteria was used. Qualitatively,
the human observer segmentation corresponds very closely
to the zero velocity crossing segmentation output (Fod et
al. 2002), where a segment is located each time there is
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Fig. 6. Resulting tree structure. Here, motion primitive 1 = both
arms lower, motion primitive 2 = both arms raise, motion primitive
3 = bend retract, and motion primitive 4 = bend down.

Fig. 7. Resulting motion primitive graph structure. Here, motion
primitive 1 = both arms lower, motion primitive 2 = both arms
raise, motion primitive 3 = bend retract, and motion primitive 4 =
bend down.

a stop in movement, or a change in movement direction.
The human observer data is considered as the ground truth,
against which the automated system is measured. The man-
ual labeling identifies a total of 751 motion segments in the
entire 16 minute sequence.

The motion capture system (Kurihara et al. 2002) cap-
tures the Cartesian position of markers located on the body
(for example, shoulder, elbow, wrist, hip, knee, etc.) with
a sampling rate of 10 ms. In order to map this trajectory
to our humanoid robot, we perform an inverse kinemat-
ics computation (Yamane and Nakamura 2003) based on
a kinematic model. Unlike in previous works (Kuli¢ et al.
2008b,a), where a generic 20-DoF human model was used,
here the specific humanoid kinematic model corresponding
to the IRT robot was used. To correct for the difference in
height between the demonstrator and the robot, a scaling
was applied to the vertical dimension of all marker data.
This allows the joint angle trajectory to be learned directly,

Upper body control
Joint angle trajectory following

Lower body control

M

COG Body orientation
optimization optimization

X7

Inverse
Kinematics

| joint velocities (right leg)

/

joint angles (right leg)

computation of the
left leg joint angles

Fig. 8. Control system: the control task is split up into joint track-
ing control for the upper body and a balancing control task for
the lower body. The lower body joints also implement the hip
height and orientation, while stepping motions are currently not
considered in the controller. The balancing algorithm is based on
a separate optimization of center of gravity position and the hip
orientation.

so that the learned trajectory can be easily applied to the
humanoid robot.

The continuous time series data consisting of the robot
base body and joint angles was used to learn the motion
primitives and the motion primitive graph. A data flow dia-
gram showing an overview of the entire process is shown
in Figure 1. While in this case the learning was performed
following data acquisition, the data was fed to the algorithm
incrementally, simulating on-line acquisition, and the learn-
ing was performed at a rate faster than the real-time length
of the data sequence, demonstrating the suitability of the
proposed method for on-line learning.

Following a single presentation of the data sequence,
the segmentation and clustering algorithm correctly extracts
17 of the 22 motion primitives, requiring 6—8 demonstra-
tions of a motion primitive prior to building a model for
that primitive. No spurious, incorrect motion primitives are
extracted. The resulting tree structure is shown in Figure 10.
Following a second presentation of the data sequence, all
motion primitives are extracted correctly. For the extracted
motion primitives following the first presentation, the false-
positive error rate is 3.5% and the false-negative rate is
6.7%. Here, the false-positive error rate is defined as the
number of motion primitives recognized incorrectly and the
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Fig. 9. Motion capture and marker setup.

false-negative rate is defined as the number of motion prim-
itives not recognized, even though there is a known model.
Note that the algorithm does not attach word labels to the
extracted motion primitives, these are generated manually
by inspection of the extracted primitives. The motions gen-
erated from the both arm raise (BAR) and the right kick
raise (RKR) motion primitive models are shown in Figures
11 and 12, respectively.

The resulting motion primitive graph consists of 17
nodes, encapsulating the majority of the 751 motion seg-
ments in the entire 16 minute sequence. The generated
representation encapsulates 77% of the observed sequence.
This number represents the percentage of motions recog-
nized out of all motions presented.

To compare the proposed approach to existing techniques
in the literature, the motion graph approach proposed by
Yamane et al. (2009) was implemented and tested on the
same dataset. Note that the approach of Yamane et al.
does not require pre-segmentation, so the Kohlmorgen and
Lemm segmentation was not applied to the dataset prior to
graph formation. The system was tested on a computer with
32 GB of memory, but as the Yamane approach requires that
all frames be stored, this memory size was not sufficient to
handle the dataset. Owing to these memory constraints, it
was not possible to generate a tree using the motion graph
approach with the entire database, so the dataset was first
downsampled to reduce the memory requirements. Using

every second frame of the dataset, the resulting motion
graph, using the parameter values recommended in Yamane
et al. (2009), results in 1,306 nodes. The size of the motion
primitive graph highlights a key difference between the
proposed method and previous approaches (Kovar et al.
2002; Yamane et al. 2009). By using two levels of hier-
archy to describe the motion, i.e. a motion primitive level
and a higher-level graph, rather than a flat structure based
on postures alone, a significant reduction in the graph
size can be achieved. As can be seen from these results,
the approach of Yamane et al. already encountered mem-
ory constraints with this size dataset, requiring downsam-
pling, while the proposed method has significantly smaller
memory requirements.

To verify performance on unseen data, the method is also
tested by separating the training sequence into a training
and testing set. In this experiment, the full learning algo-
rithm is run on the first half of the data set. During this
first half of the sequence, 10 leaf nodes are formed rep-
resenting motion primitives. The training is then stopped,
and recognition performance is tested on the second half
of the dataset. The second half of the dataset is processed
by applying the segmentation only. The primitive models
formed during the first half of the dataset are then used to
recognize motions in the second half, as data is processed
on-line. No further updating of the primitive models takes
place during the testing stage. The false-positive error rate
is 4.8%, while the false-negative error rate is 19.9%.

Following motion primitive and motion primitive graph
extraction, the motions were generated and implemented on
the IRT humanoid robot, using the lower-level controller as
described in Section 4.2.1.

Owing to the current hardware implementation, motions
involving foot raising (such as kicking or walking) are man-
ually removed from the motion graph prior to generating
motion sequences. The final motion primitive graph result-
ing from the extracted primitives (with the foot raising
motions removed) is shown in Figure 13. Once these motion
primitives are removed, motion sequences are generated
by random sampling of the output edges from each sub-
sequent node on the motion primitive graph. Each motion
primitive is generated using deterministic generation from
the associated HMM (Kuli¢ et al. 2007b). The concate-
nated sequence is then low-pass filtered and interpolated
prior to being passed to the robot as a trajectory command.
The low-pass filtering is necessary due to the deterministic
generation approach, which results in discontinuous edges
in the joint trajectory at state transitions. Using a differ-
ent generation method, such as generating by sampling and
averaging (Takan 2006) or based on the nearest example
(Lee and Nakamura 2006) would eliminate the need for this
step. Owing to the velocity limits of the robot, the generated
trajectory was interpolated to generate motions at half the
human execution speed.

Figure 14 shows frames from a motion primitive
sequence executed by the robot. In this particular sequence,
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Fig. 10. Tree diagram of the extracted motion primitives following 16 minutes of observation. ‘LKR’ = left kick raise, ‘MMID’ =
march mid step, ‘MRL = march right leg raise, ‘BAR’ = both arms raise, ‘BAD’ = bow down, ‘BAU’ = bow up, ‘RAR’ = right arm
raise, ‘LAR’ = left arm raise, ‘LAL = left arm lower, ‘RAL = right arm lower, ‘BAL = both arms lower, ‘AR’ = arms ready, ‘RKR’ =
right kick raise, ‘LPR’ = left punch retract, ‘SQD’ = squat down, ‘MLR’ = march left raise, ‘SQR’ = squat raise
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Fig. 11. Frames from the generated sequence of the both arm raise (BAR) abstracted motion primitive.
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Fig. 12. Frames from the generated sequence of the right kick raise (RKR) abstracted motion primitive.

==

0.17

0.42
0.08
0.14
0.25
0.25 @

1.00

0.20
0.80

0.08

Fig. 13. Generated motion primitive graph. The node label corresponds to the tree node in Figure 10, while the number in brackets
indicates the node formation order.
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Fig. 14. Frames from the video capturing the experiment. A frame is extracted once for every second of the video sequence.

the robot executes the following sequence of primitives:
‘left arm raise’, ‘left arm lower’, ‘bow down’, ‘bow up’,
‘right arm raise’, ‘right arm lower’, ‘bow down’, ‘bow
up’, ‘right arm raise’, ‘right arm lower’, ‘squat down’,
‘squat up’, ‘left arm raise’, ‘left arm lower’, ‘bow down’,
‘bow up’, ‘both arm raise’, ‘both arms lower’, and ‘right
arm raise’. As can be seen from the sequence and from
the extracted motion graph (see Figure 13), the system
correctly extracts sequencing information about primitives
which must be consecutive, such as ‘bow down’ must be
followed by ‘bow up’, as well as those motion primitives
which can be followed by multiple other primitives, such
as ‘left arm down’ can be followed by ‘bow down’ or
‘squat down’. The full autonomous segmentation and
clustering approach generates extracted primitives which
are sufficiently accurate, such that they can be concatenated

according to the learned motion primitive graph and
used to generate smooth continuous motions, with only a
simple low-pass filter. The sequence of motion primitives
to be executed is determined in realtime based on the
likelihood computed from the motion primitive graph of
Figure 13. Since the motion primitive graph is static in
this case, the realtime determination of the sequence may
seem trivial and not critically important. In more realistic
applications in the future, however, the motion primitive
graph will be continuously updated and therefore will
not be static but dynamic. Furthermore the sequence of
motion primitives could be determined not only based on
the motion primitive graph, but also by including other
contextual information, such as sensory information, lin-
guistic information, object/environment information, and
so on to compute conditional probabilities for executing
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a given sequence. Although these experiments are still
within the rather simple information framework, they show
the feasibility of computation of motion sequences based
on probability and its use in realtime humanoid robot
control.

A key advantage of the proposed approach is the sig-
nificant reduction in size of the motion primitive graph.
The smaller graph facilitates robot motion generation, as
it reduces the search time for motion planning, as well as
the memory requirements for graph storage. A key issue
with the proposed approach is the granularity of the motion
primitives. Longer motion primitives (for example, consid-
ering both an arm raise and lower as a single primitive) have
the potential to further reduce the size of the graph, but
may limit the variety of motions that the robot could per-
form. This tradeoff can be controlled by the performance
of the segmentation algorithm, which can generate longer
or shorter motion primitive candidates for clustering. One
approach would be to generate shorter candidates for initial
node formation, and then after sufficient data is observed,
apply node merging for those nodes which are only con-
nected to one other node. For example, in Figure 13, the
node SQD is always followed by node SQR (transition prob-
ability of 1.0), and there are no other incoming paths to
SQR, nor outgoing paths from SQD. These nodes could be
merged into a single SQ node.

5. Conclusions and future work

This paper presents an approach for online, continuous
learning of full body motion primitives and allowable
motion primitive sequencing through observation of a
human demonstrator. The proposed approach is general and
can be applied to any type of observation data, including
Cartesian data for the position of the human limbs and/or
relevant objects in the environment, or joint angle data for
a humanoid robot. The selected observation data is first
autonomously segmented into potential motion primitives
using stochastic segmentation (Kohlmorgen and Lemm
2001; Kuli¢ and Nakamura 2008). Segmented motion prim-
itive candidates are incrementally clustered to abstract gen-
erative models of the motion primitives (Kuli¢ et al. 2008a).
As each motion primitive is learned, it is also added to a
motion primitive graph, which is incrementally updated to
learn the relationship and sequencing rules of the motion
primitives. The generated motion graph can then be used to
generate extended motion sequences composed of motion
primitives.

Future work will focus on implementing foot raising and
walking motions on the humanoid robot, as well as motions
involving interaction with the environment. In addition,
techniques for generating motions with a desired goal or
execution criteria based on the motion primitive graph will
be developed, as well as the use of the motion primitive
graph for human activity detection and motion prediction.
We are also working on collecting a larger and more varied

dataset of human motions, which will enable the learning
and abstraction of a larger set of human motion primi-
tives. This larger dataset will enable the construction of a
larger motion primitive graph, so that the use of hierarchical
motion primitive graphs can be further investigated.
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