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Abstract: This paper describes the concept of multi-layer pedestrian behaviour maps, 

their creation through the application of different computational technologies, as well as 

their usage for different application purposes. 

1 Introduction 

A pedestrian behaviour map (PBM) describes the movements of individuals through a 

given spatial scenario including interior (buildings, airports etc.) and exterior spaces 

(event venues, courts, city parts). These movements are characterized by the behaviour 

between an individual and his environment – the building, obstacles and other persons. 

Pedestrian behaviour maps form a suitable basis for improving pedestrian simulation 

(Kneidl & Borrmann 2011), tracking and interpretation (Burkert et al. 2010) as well as 

indoor navigation (Schäfer, Straub, Chakraborty 2010). 

To realize the aforementioned applications, today static maps are used which represent 

the location and shape of static topographic entities but do neither describe the 

pedestrian behaviour nor take into account its dynamic evolution. A typical example is 

the use of static building floor plans for simulating pedestrian dynamics. Usually, these 

floor plans do not contain information on temporary constructions or obstacles, such as 

furniture or flexible walls. As a result, the simulation results may be erroneous or 

misleading. 

To overcome the limitations of static topographic maps, we introduce the concept of 

multi-layer pedestrian behaviour maps. They are created by continuously enhancing 

(enriching) an initially static map by behavioural data gained through the evaluation of 

different sensor data. 

2 Automatic Floor Plan Extraction 

Initial pedestrian behaviour maps are generated on the basis of static floor plans. These 

floor plans are directly derived from CAD files via an automatic extraction unit. To 

provide a general map extraction tool, CAD files in the DXF format are analyzed and 

parsed for characteristic structures. The data encoded in DXF files consist of several 

unconnected lines, arcs and poly-lines spread across several drawing layers. Lines 

depicting doors are typically grouped in one or two layers. The outlines of rooms are 



often grouped together with labels, pillars and other line information and spread over 

several layers. To extract this information we use several heuristics that automatically 

extract the entire structure of a floor (Schäfer, Knapp, Chakraborty 2011). The 

resulting map already represents a topological model. Rooms are linked with the 

according doors which serve as interconnection portals. This static map serves as basis 

for creating the initial behavioural map. 

Figure 1: A floor plan forms the basic input for the pedestrian simulation  

3 Initial behavioural pedestrian behaviour maps 

The initial PBM is generated using a pedestrian dynamics simulator. The simulation 

and thus the generated map is based on pre-defined topographic maps (floor plans, see 

Section 2); i.e., it does not include any furniture, modifications in the building 

structure, or any other topographic information which has an impact on pedestrian 

navigation behaviour. To simulate pedestrian crowds, a microscopic approach is used, 

which consists of several layers: A space discretisation layer, a locomotion layer and a 

navigation layer (Figure 2). 

 

Figure 2: Three layers used in the simulation  



The time and space discretisation is modelled by a cellular automaton, which forms the 

basic layer. To model pedestrians’ locomotion, a combination of potentials is applied. 

Each pedestrian is influenced by different forces: a driving force to the destination, 

repellent forces of obstacles situated on the way to a destination as well as repellent 

forces of other pedestrian, who walk within the scenario. These forces are 

superimposed into one potential field. A value from the potential field is mapped to 

each cell corresponding to its position. A detailed description of the potentials 

approach can be found in (Hartmann, 2010).  

The third layer describes the navigation layer, which models the spatial orientation of 

pedestrians. The layer is implemented as a navigation graph, on which different 

routing strategies can be applied, e.g. pedestrians who are familiar / are not familiar 

with a location (Höcker et al. 2010, Kneidl & Borrmann 2010, Kneidl et al. 2010).  

The simulation is run using all three layers. Simulation results are visualized by 

sequences of pictures depicting the pedestrians` individual positions in each time step. 

Flow visualization depicts location, movement direction and velocity of a pedestrian 

whereas mainstream visualization shows the occupancy rate of individual cells over 

the entire simulation time (Figure 3). 

 

 

Figure 3: Flow and mainstream visualization used to evaluate the simulation  

The evaluation of the simulation result enables the construction of an initial pedestrian 

behavioural map, which reflects the predicted pedestrian behaviour in the investigated 



environment. However, as the simulation input is based on purely static information 

(the floor plan) the simulation is not able to take into account dynamic aspects such as 

temporary obstacles like chairs or tables, for example. For this reason, the simulation 

input information is extended by incorporating movement data obtained from two 

complementary tracking approaches, the first one based on image sequence analysis 

and the second one based on inertial measurement-based tracking. 

 

Figure 4: Simulation of the scenario modified by adding a display case in 

the main floor. 

4 Image sequence-based analysis for enriching pedestrian behaviour maps 

The image sequences or videos taken by surveillance cameras are analyzed to detect 

and track the pedestrians to improve the simulation model. Vision-based crowd 

analysis dealing with detection, tracking, occlusion handling, crowd modelling and 

event inference is still an unsolved problem, e.g. (Hu et al., 2004; Jacques et al., 2010). 

In particular, much work remains in the complex field of behaviour analysis in 

unstructured and changing environments (Dee and Velastin, 2008).  

The strategy for vision-based pedestrian surveillance is split into two parts: first, single 

people are detected at the borders of the surveillance area and, second, these people are 

tracked through the following frames of the image sequence. The applied methods 

start with a simple blob detection if a pedestrian is defined with only few pixels in the 

image, e.g. (Schmidt & Hinz, 2011).The following tracking approach is accomplished 

with particle filters to enable non-linear movements of the pedestrians (Isard & Blake, 

1998). The derived trajectories of the pedestrians are now used to enrich the pedestrian 

behaviour maps.  

Event detection using extracted trajectories of pedestrians has been realized by several 

approaches, e.g. (Oliver et al., 2010; Nascimento et al., 2010). A basic method for the 

analysis of those trajectories are Hidden Markov Models (HMM) (Rabiner, 1989), 

which serve for further trajectory analysis. We aim at modelling the behaviour of 

larger groups of people interpreting their interaction using tracked pedestrians and 

simulations as input information. Behavioural maps provide important input data for 

event detection systems, because simulations enable easily modifiable training 



sources, if real-training data is not available to learn the motion patterns defined in the 

HMM.  

Starting point of the event detection is a dynamic pedestrian graph constructed with 

the trajectories of all tracked pedestrians in the investigated environment. The HMM-

based analysis of the edges in the graph is performed to derive statements of the 

motion interaction between pedestrians (Burkert et al., 2010; Burkert et al., 2011). In a 

first step, the HMM is learned offline from real-world training data of the scene of 

interest containing recurring trajectories. However, if not available, simulation data 

can be used instead for the training. As a result, pre-defined events are detected and 

can be used to improve the pedestrian behaviour maps.  

5 Inertial measurement-based tracking for enriching pedestrian behaviour 

maps 

To gain finer grained information on pedestrian movement patterns, Inertial 

Measurement Units (IMU) are used to monitor step characteristics, speeds, accelera-

tions and direction changes. Up to now we have developed foot mounted and pocket 

based sensor prototypes that are able to continuously track the movements of a 

pedestrian. Figure 4 shows the components of the current pedestrian tracking system. 
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Figure 5: IMU based individual tracking system 

 

Calibration data are collected via the GPS and the Footpod Unit to automatically 

determine a user’s step profile. The step profile gives an estimation on the users 



physiological step-frequency/speed relation. With this relation a detected step-

frequency can be transformed into a step-length estimation that is used for position 

updates. 

When the step-profile is complete the user can be tracked using only the pocket 

mounted sensor. The sensor’s data is first used to determine the user’s state (whether 

he is resting or moving). In the latter case the data is used to establish a virtual horizon 

of the user’s movements. The horizon filter enables the system to remove the 

movement artifact introduced by the periodic hip oscillations during walking. Via the 

succeeding fusion filter the user’s current orientation is merged with a forward 

movement when a new step is detected via a step analyzing unit. The orientation is 

fused together with the distance update in a map matching particle filter. In this filter 

illegal position updates, such as updates traversing a wall are deleted and the plausible 

position updates are propagated. Hence the particle filter constantly produces 

individual position updates. When several users are equipped with the described 

sensors, the tracking data can be collected at a central server. Server based algorithms 

can then be used to extend an existing map with temporal movement patterns. The sum 

of these patterns indicates reachable regions of the map and the density gives a hint on 

the utilization of a certain area. Together with the temporal information time 

dependent utilization scenarios can be stored in the resulting map. 

6 Resulting enhanced behavioural behaviour map 

After incorporating the tracking information from both sensors systems, the resulting 

pedestrian behaviour map contains improved information on pedestrian movements in 

high spatial and temporal resolution.  

The enhanced behavioural map can be seen as a “three-layered” information source. 

Layer 1 contains the topography of the scenario as given by ordinary building plans. 

Layer 2 enhances this topography by indicating paths frequently followed by 

pedestrians as well as regions that are scarcely visited. These scarcely visited areas 

give hints on obstacles that are not depicted in Layer 1. On the other hand it reflects 

the behaviour of people visiting a building. The third layer refines this behavioural 

information by describing temporal movement streams and distilling probabilistic 

descriptions of interaction events.  

Such an enhanced behavioural map forms an improved basis for performing pedestrian 

simulations, since on the one hand it implicitly contains also the obstacles and 

attraction points not represented in the initial floor plans, and on the other hand it 

describes their evolvement and influence on pedestrian movements over time. 

Moreover, behavioural maps link spatial zones with pedestrian behaviour patterns 

(waiting, slow motion, etc.) as well as pedestrian interaction patterns (meeting, 

separation, etc.). The knowledge of the spatio-temporal distribution of these patterns 

forms an important input for the pedestrian simulation, resulting in improved accuracy 

of the predicted behaviour. 



In addition, behavioural maps provide important input data for pedestrian tracking and 

event detection systems: For event detection, simulation runs based on the proposed 

map provide easily modifiable training sources. For example, frequently used Hidden 

Markov Models for the automatic interpretation of the detected trajectories (e.g. event 

detection) can be trained or tested against simulated data. Also for tracking 

applications, the resulting maps are highly beneficial since the different layers allow 

the formulation of tighter bounds for filtering mechanisms (e.g., paths frequently used 

in the past are also more likely to be taken in the future). 

Finally, pedestrian behaviour maps serve as a suitable basis for comparing simulation 

results with real-world data gained using tracking and event-detection technology, thus 

enabling the validation of the simulation system. 

7 Summary and Conclusion 

This paper presented the concept, creation and use of pedestrian behaviour maps 

which describe the movements and interactions of individuals in a given spatial 

scenario. These maps are created starting from a static floor plan, continuously 

enriching it by dynamic data gained through computational pedestrian simulations as 

well as real-world tracking and event detection data.  

The resulting map defines not only the spatio-temporal evolvement of primary 

pedestrian stream characteristics, such as mean velocities and densities, but also 

aggregated trajectories as well as zones of typical pedestrian behaviour (waiting, slow 

motion, etc.) and typical pedestrian interactions (meeting, separation, etc.). On the one 

hand, this advanced pedestrian behaviour information provides more detailed input for 

improving the accuracy of both, pedestrian simulations as well as tracking 

applications. On the other hand, it serves as a suitable basis for comparing simulation 

results with real-world data, thus enabling the validation of the simulation system. 

In the future, the authors of this paper will continue collaborating to realize the 

concept of multi-layer pedestrian behaviour maps and prove its advantages for various 

application domains. 
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