
Intelligent Computing in Engineering - ICE08

Collaborative Computational Steering:
Interactive collaborative design of ventilation and illumination

of operating theatres

A Borrmann1, P Wenisch1, M Egger1, C van Treeck1, E Rank1

1 Computation in Engineering, Technische Universität München, 80290 Munich, Germany
borrmann@bv.tum.de

Abstract. The layout of the ventilation system of an operating theatre is a crucial matter, because
numerous infections occurring in hospitals today are directly related to air flow induced by the air
conditioning system. The interactive fluid simulator developed by our group allows the engineer
responsible for the HVAC design of an operating theatre to interactively determine the optimum
shape and position of the inlets and outlets of the air conditioning system, as well as the ideal posi-
tion for the operating equipment which acts as an obstacle in the fluid stream. In the case of the
operating lamps we are faced with a typical multi-disciplinary optimization task, since their posi-
tion is also essential for an optimum illumination of the patient undergoing surgery. We have
therefore developed a software platform which allows engineers from different domains to come
together in a virtual session and collaboratively modify the layout of a shared geometric model. At
the same time they can use their specific interactive simulation in order to obtain results which are
necessary for their decisions - in the scenario depicted here a fluid simulator and an illumination
analysis tool. The paper discusses in detail the interactive fluid simulator and the software plat-
form enabling multi-disciplinary Collaborative Computational Steering.

1 Introduction

Computer-based simulation and analysis tools play an important role in today’s building en-
gineering workflow. Apart from the structural analysis domain where programs based on the
Finite Element Method (FEM) are normally used, numerical simulations are also employed
increasingly in other domains such as Heating, Ventilation & Air-Conditioning (HVAC), for
example.
The classical method of conducting simulations during the design and engineering stages
comprises the steps of pre-processing, simulation and post-processing. The pre-processing
step involves preparing all the geometric and non-geometric information for the simulation.
This usually means the semi-manual meshing of the simulation domain. After the simulation
has been run with this well-prepared input, its output is post-processed, i.e. the generated
datasets are analyzed and visualized in a way that makes them easy to interpret for the engi-
neer. If he is not satisfied with the simulation results he will modify the input parameters ac-
cordingly and start another run of the simulation. This leads to long optimization cycles and
often to a sub-optimal design.
Thanks to high-performance computing resources available today, the realization of interac-
tive simulations, where all three steps are combined in a single tool that allows both the modi-
fication of the simulation parameters and the visualization of the simulation results, becomes
a feasible prospect. The concept of using an immediately reacting simulation is described by
the term “Computational Steering”, which was introduced by Liere et al. (1997). Because the
design of complex products or buildings is often a multidisciplinary optimization task, the

Intelligent Computing in Engineering - ICE08

support of collaborating engineers from different domains is a very important aspect. The
combination of these two aspects leads to the concept of “Collaborative Computational Steer-
ing”, which has been implemented by means of a software platform that is presented in this
paper. Further software prototypes for interactive fluid simulations and interactive illumina-
tion analysis are also presented as well as a possible application for the design of an operating
theatre.

2 The interactive fluid simulator

Over the past few years, our group has developed an interactively steerable fluid simulator
which allows the user to modify simulation parameters online during a running simulation
which allows for tracking the impact of these modifications on the fluid flow (Kühner, 2003;
Wenisch, 2008). A special feature is the possibility of modifying geometric boundary condi-
tions, i.e. to insert, relocate and remove obstacles and to reposition inlets and outlets (van
Treeck et al, 2008). The user can also change non-geometric simulation parameters, such as
the inlet flow velocity or the outlet pressure, dynamically.
The simulation kernel we have developed is based on the lattice-Boltzmann method (LBM)
which has emerged as a complementary technique for the computation of fluid flow phenom-
ena (Zanettti & McNamara 1988, Krafczyk 2001, van Treeck 2004). Traditional simulation
methods solve the Navier-Stokes equations numerically by discretizing the non-linear partial
differential equations applying finite volume or finite difference techniques, for instance
(Ferziger & Peric, 2001). By contrast, the LBM represents a bottom-up approach which starts
with a discrete microscopic model preserving the desired quantities, such as mass and mo-
mentum, by construction in order to obtain hydrodynamic behavior on a macroscopic scale
corresponding to the incompressible Navier-Stokes equations.
The LBM satisfies the demands of Computational Steering perfectly, especially in terms of
the possibilities for an interactive modification of geometric boundary conditions, because it
uses Cartesian grids, an explicit time-stepping scheme and a marker-and-cell-like approach to
define boundaries and obstacles.
However, there is a certain trade-off between interactivity and precision: an interactive simu-
lation requires fast computation and accordingly a coarser grid which results in reduced preci-
sion. Nevertheless, the results of the physically simplified interactive simulations are able to
show basic trends and thereby serve as a good basis for fundamental design decisions. In our
concept, the engineer will perform a detailed non-interactive simulation after the basic deci-
sions have been made for generating results with the desired accuracy (see Section 5).

3 Application in operating theatre ventilation

The layout of the ventilation system of an operating theatre is a crucial matter, because nu-
merous infections occurring in hospitals today are directly related to air flow induced by the
air conditioning system. Special care has to be taken to ensure that the patient is not exposed
to air possibly infected with viruses or bacteria (Carey, 2003). Commercially available, non-
interactive CFD software is currently used to simulate the air flow in the projected operating
theatre or hospital ward (Chow & Yang, 2003; Tsou et al. 2004), calling for a separation of
the engineering steps pre-processing, simulation and post-processing, as discussed in Sec-
tion 1.
If instead the HVAC engineer is using the interactive fluid simulator discussed above, he is
able to interactively determine the optimal layout for the room ventilation by modifying the

Intelligent Computing in Engineering - ICE08

inlet(s) and outlets of the air conditioning with respect to position, size and inflow velocity
(Wenisch, 2008). The LBM-based fluid simulator running in the background reacts directly to
the changed boundary conditions, thus enabling the HVAC engineer to observe the impact of
the modifications on the resulting air flow within the operating room. Figure 1 shows a
screenshot of the client program used for steering the simulation.

4 Collaborative Computational Steering

Besides the integration of design and simulation facilities, another major research challenge is
the development of methods and tools to improve collaboration between the engineers in-
volved in the design process, regardless of whether they are from the same or from different
engineering disciplines. Due to on-going specialization in all engineering domains, colla-
boration will play an even more dominating role in the future.
One important aspect of designing a software platform that shall support collaborating engi-
neers is the fact that specialists from different domains make different demands on the appli-
cation they are using while taking part in the collaborative session. Technologically simple
approaches like desktop or application sharing are therefore often unsuitable.
This is also the case in our demonstration scenario devised for optimizing the design of an
operating theatre in terms of (1) the fluid flow resulting from air-conditioning and ventilation,
and (2) the illumination of the operating table. Because the different design goals might be
prove to be conflicting as regards the positioning of the operating lamps, for example, we
envision that the HVAC engineer and the lighting engineer join forces in a virtual session to
find a solution that is suitable for both domains. During that session, the HVAC engineer will
use an interactive fluid simulator to assess the fluid flow (Fig.1, left-hand side), whereas the
lighting engineer uses an interactive rendering software to perform the illumination analysis
(Fig.1, right-hand side). To realize such multi-disciplinary Collaborative Steering we have
developed the CoCoS platform which will be presented in the next sections.

Fig. 1. The client applications of the collaborating engineers from the HVAC and the lighting domain, respectively. While
the client of the HVAC engineer (left-hand side) depicts the results of the fluid simulation by means of streamlines, the client
of the lighting engineer (right-hand side) shows the illumination analysis obtained from the interactive rendering. Whereas
the geometric model is identical for all participants, the view point and the view direction can be chosen independently as
well as the source of simulation data. The geometry setup was taken from a commercially distributed VRML scenario avail-
able from www.turbosquid.com .

Intelligent Computing in Engineering - ICE08

4.1 The CoCoS platform

The CoCoS platform (Borrmann, 2007) was designed as a distributed multi-user application.
Thus, everyone participating in a collaborative session can work interactively with this appli-
cation by means of an individually configurable human-machine interface. This approach has
two major advantages: on the one hand, the visual interface can range from desktop monitors
to high-end visualization equipment, such as Virtual Reality environments. On the other hand,
it enables each participant's viewing and interaction facilities to remain completely independ-
ent of one another. In this way, it is possible to avoid typical phenomena which are familiar
from collaborative environments based on shared desktop or shared application approaches,
like “mouse wars”, or sickness caused by remotely controlled viewing. The basic architecture
of the collaboration platform consists of the central collaboration server, an arbitrary number
of simulation servers and an arbitrary number of clients. Figure 2 shows these components
and the communication paths between them. Each of the components can be run on different
machines.
The modularity of the platform provides a great amount of flexibility: First of all, clients can
join and leave the collaborative session at any time. This also holds true for the simulation
servers: they can be integrated into the platform when a certain simulation facility is required
and released when the work is done. So the collaborating engineers can start to discuss a
problem within the collaborative environment without using a simulation, for example. More-
over, different clients can receive data from different simulation servers, or not receive any
simulation data at all.

Fig. 2. The CoCoS architecture consists of the central collaboration server, an arbitrary number of simulation servers and an
arbitrary number of clients. Not every client has to receive simulation data, and different clients can receive data from differ-
ent simulation servers.

The CoCoS platform aims at supporting geometry-driven, multi-disciplinary collaboration
between engineers. Rather than enforcing the search for an optimum solution, however, the
system leaves the responsibility for design decisions in the hands of the engineers. Since for-
malizing design goals of more general engineering disciplines, such as illumination and venti-
lation design, is a very complex field, the conflicting decisions made by the designers have to
be detected and resolved manually.

4.2 The shared model

The shared model forms the heart of CoCoS. It is managed by the central collaboration server
and reflects the current state of the geometrical and non-geometrical boundary conditions, as
well as the start-up and steering parameters of the simulations.
In modern data exchange theory and practice, a so-called “product model” is used to structure
the information pertaining to the common subject of interest (Eastman, 1999). In the Architec-
ture Engineering Construction (AEC) sector, product models are also referred to as Building

Intelligent Computing in Engineering - ICE08

Information Models (BIMs). A BIM represents the building in terms of its semantic entities,
e.g. a wall, a window, a ceiling, and the relations between them, e.g. a window fills the void in
a wall. The geometry of the building components is either generated from the objects’ attrib-
utes and relations (“attribute-driven geometry”) or attached to it as an explicit shape descrip-
tion. Accordingly, the core of a product model is formed by the semantics.
Generating geometry from attributes has several advantages, for instance when different rep-
resentations of a physical object are required in 2D plans and 3D renderings. It is important to
keep in mind that major parts of the AEC industry are still highly dependent on 2D plans.
However, for fluid simulations and illumination analysis, a precise three-dimensional descrip-
tion of the shape of the building components is usually needed. To this end, we follow a dif-
ferent approach for the shared model used in CoCoS than the one familiar from product mod-
eling. In our approach, the explicit shape description of the physical objects forms the core of
the model.
In building engineering, geometry is one of the most important aspects of modeling the prod-
uct on the computer. Geometry marks the start of the design process: functionality, usability
and aesthetics are defined by the shape of the product. For simulation tasks like structural
analysis, computational fluid dynamics or illumination analysis, it is the major source for de-
fining boundaries and boundary conditions.

Fig. 3. The centrally managed, shared model combining geometric and semantic data. The explicitly available meta-model
on the left describes the structure of the semantic model of a domain (domain model). Because CoCoS was conceived for
inter-disciplinary collaboration, it can be used for managing multiple domain models. The instance of a domain model holds
the semantic data and is stored and accessed using the generic classes in the middle. The shape and the position of an object
is described by means of the classes on the right-hand side.

While it cannot be expected that product models for the various simulation types will become
fully standardized in the near future, there are only a limited number of geometric representa-
tions employed in practice: the constructive solid geometry (CSG) approach based on the con-
catenation of Boolean operations on simple shapes, and several boundary-representation (B-
rep) models including those which represent the surface of a solid by means of plane facets
and those which use parameterized patches (Mäntylä, 1988).

Intelligent Computing in Engineering - ICE08

However, there is usually some additional data besides geometry (such as machine and mate-
rial parameters) to be shared among the participating engineers. Accordingly, a purely geo-
metric model would not fulfill the demands of collaborative engineering. We therefore de-
cided to use a hybrid solution with the ability to attach non-geometric information to geomet-
ric objects in a generic way (Figure 3). The emphasis of the hybrid model is placed on the
geometric part: the geometry of an object is the information that all client applications must
be able to interpret.
The geometry of the shared model is described by means of a classical BRep data structure
based on a simple vertex-edge-face graph, as depicted on the right-hand side of Figure 3. To
associate non-geometric information with a geometric object, it is possible to assign a class
from the domain model to the latter. This class contains the attributes required to hold the
respective non-geometric data. By selecting the simulation resource in use, the participant
chooses the domain model and the domain classes available to him. By way of an example,
Figure 4 shows the domain model of the fluid simulator discussed in Section 2.
All users of the same simulation server share the semantic view on a geometric object, i.e. the
class associated with it and the values of its attributes. However, participants using another
simulation will assign a class from their own domain model to the same geometric object. The
operating lamps in the application scenario, for example, are light sources in the context of
the illumination analysis but obstacles in the context of the fluid simulation (Fig. 5). For this
reason we have incorporated the possibility to associate multiple classes from different do-
main models with a single geometric object.

Fig. 4. The domain model CFD which is used by the interactive fluid simulator.

To further increase the flexibility of the CoCoS platform with respect to the domain models
available, a meta-model has been integrated into the centrally managed model (Fig. 3, left-
hand side). The meta-model supports three major aspects of the object-oriented modeling
paradigm (Booch, 1994): encapsulation - by providing classes as containers for attributes,
inheritance - by making it possible to derive a class from a super-class, and the option of de-
claring a class as abstract to prevent it from being instantiated.
Using the meta-model it is possible to adapt the domain model easily to the needs of a spe-
cific simulation without any re-compilation of the collaboration server or the clients. This
offers considerable advantages especially with respect to the on-going development of nu-
merical simulators and the implied modifications to the structure of their parameters. The
same is true for simulators which comply with the basic paradigm of Computational Steering
but whose start-up and steering parameters are not known a-priori. They can be integrated
into the platform without the need for re-compilation in a plug’n’play-like manner. As soon as

Intelligent Computing in Engineering - ICE08

a simulation server joins the platform, it defines the domain model holding its specific start-
up and steering parameters. The model is then immediately accessible to all clients within the
CoCoS platform. Fig. 5 accordingly shows an instance of the meta-model which is communi-
cated from the CFD simulation server to the collaboration server using the classes of the
meta-model. Global parameters of a simulation which are not attached to a specific geometric
object such as the viscosity of the fluid are similarly modeled using the meta-model (Fig. 6).

Fig. 5. Using CoCoS, it is possible to assign multiple classes from different domain models to a single geometric object. The
example shows object 231, to which the class Obstacle from the CFD domain as well as the class LightSource from the
Illumination domain have been assigned. Note that all objects in the diagram are instances of classes shown in Fig. 3 and that
only parts of the domain models are shown.

Fig. 6. Global parameters of a simulator which are not attached to a specific geometric object are also managed within the
central model. Their structure is defined in the same way as that of semantic attributes of geometric objects using the meta-
model on the left.

A CoCoS client uses a generic interface (Fig. 3, middle) to query a geometric object for its
non-geometric data. Typically, it will display them in a generic manner and provide means for
modifications. In most cases, this will be simple tables with the name of an attribute on the
left-hand side, and the editable value on the right-hand side.
Why do we not use simple name-value pairs to describe simulation parameters? Name-value
pairs do not involve typing of any kind. Thus, a user can add any pair regardless of whether
its name can be interpreted by the simulation facility or the data type of the value is correct.
By contrast, strong typing as provided by domain models prevents the user from erroneous

Intelligent Computing in Engineering - ICE08

inputs. The explicitly available meta-model allows all components of the CoCoS platform to
know which parameters exist, and what type they are.

4.3 The collaboration server

The central collaboration server is the most important component of the CoCoS platform. It
has to perform the following tasks:

• management of the shared model,
• management of users, their current view points and directions, their roles and rights,
• concurrency control and
• management of the simulation servers, their locations, their start-up and steering pa-

rameters, as well as the structure of the simulation data they are producing.
Each of these tasks corresponds to a dedicated module in the collaboration server, as shown in
Figure 7.

Fig. 7. The modules of the collaboration server.

The core of the collaboration server is the model management module. As discussed in Sec-
tion 4.2, a hybrid model joining the geometric and the semantic model is used. In the HVAC
domain, for example, the model represents the obstacles in the fluid domain and the fluid do-
main hull. Boundary conditions are managed as semantic data attached to geometric objects.
Modifications like adding, removing or transforming obstacles are communicated from the
performing client to the collaboration server. In order to avoid conflicts between the partici-
pants, the collaborative work is coordinated by means of locking mechanisms. As long as an
object is locked by a certain user it cannot be modified by any other user.
The simulation management module keeps track of the simulators available, their locations
and current state. When a simulation server joins the CoCoS platform, it registers with the
collaboration server and provides all the required data. A client queries the collaboration
server in order to connect to a specific simulation facility.
Each Simulation Server announces the structure of the numerical results it produces. This
involves the type of grid, the denomination of each single field variable and the identification
of scalar and vector fields. Up to now, only grids (uniform, recti-linear and structured) are
supported, but the concept is open for unstructured meshes to be added in the future. The in-
formation is used by the clients to provide suitable visualization techniques and to display the
results accordingly. For vector fields, for example, streamline and vector plane visualization
are provided whereas scalar fields can be depicted by simple value planes or isometric sur-
faces.
The user management module provides information about the users currently participating in
the collaborative session. This is necessary to support the several different levels of aware-
ness, as discussed in (Borrmann et al., 2006). Besides information on the current view point

Intelligent Computing in Engineering - ICE08

and direction, the visualization method currently utilized by the participating engineers is
stored on the Collaboration Server. There are three visualization methods supported by Co-
CoS: vector planes, value planes, streamlines and isometric surfaces. The parameters of each
visualization object are stored on the Collaboration Server and changes are passed to the cli-
ents by means of a notification mechanism.

4.4 The clients

The CoCoS clients serve as visualization and interaction interfaces for the engineers taking
part in the collaborative session. The following basic services have to be provided by each
client application:

• logging into / logging out of the collaboration server,
• visualization of the geometric objects, interaction facilities for transforming them,

support for locking mechanisms,
• displaying semantic data attached to the geometric object (at least via attribute-value

tables),
• displaying the current participants, notification of participants entering and leaving the

session.
For the HVAC usage scenario, the prototype client CoFluids was implemented. It enables a
user to transform the obstacles inside an office and to depict the CFD simulation data in the
form of vector planes, iso-surfaces or streamlines. The client can be run in single-window
mode capable of stereoscopic rendering - for use in Virtual-Reality environments, or in
multi-viewer mode - for use on desktop computers. Obstacles that are modified by another
participant are shown in a different color and cannot be modified, i.e. they are locked.
In CoFluids, awareness of the activities of the other participants is provided by a list of cur-
rently registered users, and by means of messages that signal whenever a participant joins or
leaves the collaborative session. Furthermore, CoFluids can display the viewpoint and the
view direction of the other participants using avatars. Audio communication between the par-
ticipants is provided by integrating a third-party Voice-over-IP solution.

4.5 The simulation servers

The main task of a simulation server is to build a bridge between the distributed collaborative
system and a particular simulation kernel. Like the clients, the simulation server is listening to
the event channels provided by the collaboration server. It is accordingly notified of any
changes in the geometry and the corresponding boundary conditions and forwards this infor-
mation to the simulation kernel.
At the start-up of the simulation server, it registers with the collaboration server and defines
the model it uses for the start-up and steering parameters by means of the meta-model (see
Section 4.2). In addition, it announces the structure of the numerical results that it produces.
This information is retrieved by the client via the collaboration server in order to connect to
the simulation server and to display the simulation results together with the available steering
parameters accordingly.
The minimum service that a simulation server must provide is an interface to start and stop
the simulation and to pass on steering parameters. It has to notify the connected clients when
the simulation has been started or stopped, and when a steering parameter has been changed.
For the transmission of the simulation data from the simulation server to the clients, we ex-
perimented with two different configurations: a push and a pull communication mode.

Intelligent Computing in Engineering - ICE08

There are two main criteria for estimating the efficiency of the configuration: First, the simu-
lation should not be slowed down by the communication overhead. Secondly, the transmis-
sion should be as fast as possible and as flexible as required. As opposed to streaming-based
communication solutions, as applied in video and audio broadcasting, for a Computational
Steering client it is not necessary to receive every single ‘frame’ of the simulation results, but
it is more important that it receives the most current simulation data.
In the first configuration, we used a CORBA Event Service implementation in order to dis-
tribute the simulation data. In this case, the data is pushed from the simulation server to the
event service, which in turn pushes the data to the listening clients. The advantage of this con-
figuration is that the distribution of the simulation results is completely decoupled from the
simulation process. The major disadvantage is that each and every result set is transmitted,
even if there are more up-to-date sets of result available on the simulation server. So occa-
sionally the event channel becomes choked by obsolete simulation data, if one of the clients is
not fast enough to receive and process it.
The use of pull communication is more appropriate here. In this mode, the client pulls the
data whenever it is ready to process it. This method ensures that a client always receives the
latest simulation data available. This should be regarded as the highest priority for a Compu-
tational Steering application.

5 Non-interactive simulation runs

After basic decisions have been made about the size and position of the HVAC inlets and the
operating lamps during the collaborative computational steering session, non-interactive
simulations with higher spatial resolutions and thus longer computation times have to be per-
formed to obtain reliable results with a suitable precision.

Fig. 7. Results of the non-interactive illumination analysis using the open-source renderer Blender and the commercial tool
3DS MAX, respectively.

Figure 7 shows the results of the non-interactive illumination analysis using the Open-Source
renderer Blender and the commercial tool 3DS MAX, which are based on advanced ray-
tracing algorithms. Figure 8 shows the results of the non-interactive CFD simulation realized
with the help of the LBM simulator developed by our group (van Treeck et al., 2006).

Intelligent Computing in Engineering - ICE08

Fig. 8. Results of the non-interactive CFD simulation realized through the LBM simulator developed by our group

6 Summary

This article presents the CoCoS platform, a highly flexible distributed system for multi-disci-
plinary collaboration enabling the integration of interactive simulators. In order to provide the
collaborating engineers with suitable analysis and simulation capabilities, we have illustrated
the flexible integration of simulation servers into the distributed system. The suitability of the
concept has been proved by the implementation of clients and servers for a collaborative
HVAC engineering scenario. It demonstrates the integration of a CFD simulation server
whose kernel is based on the lattice-Boltzmann method, thus providing an interactive fluid
simulation.
The basis of the collaboration platform is formed by a centrally managed, shared model join-
ing an explicit geometric model and a variable semantic model. Because of its vital im-
portance for analysis and simulation tools and its domain-independent validity, its emphasis
lies on the geometric model. By separating the functionality of the collaboration server and
the simulation servers, it possible to use different simulation facilities without the need to re-
implement the generic functionality of geometry-focused, collaborative engineering. In addi-
tion, it is possible to use simulators for different physical phenomena at the same time, thus
providing the basis for multi-disciplinary synchronous collaboration.

Acknowledgements

The presented project has been supported by Siemens Corporate Technology and the Bavar-
ian Competence Network of Scientific High Performance Computing (KonWiHR).

Intelligent Computing in Engineering - ICE08

7 References

Booch, G. (1994). Object-oriented Analysis and Design with Applications, Benjamin-Cummings Publishing.
Borrmann, A. (2007). Computerunterstützung verteilt-kooperativer Bauplanung durch Integration interaktiver Simulationen

und räumlicher Datenbanken, Ph.D. thesis, Lehrstuhl für Bauinformatik, Technische Universität München.
Borrmann, A., Wenisch, P., van Treeck, C. and Rank, E. (2006). “Collaborative computational steering: Principles and ap-

plication in HVAC layout.” Integrated Computer-Aided Engineering Vol. 13, No. 4, pp. 361–376.
Carey, A. (2003). “My air conditioner gave me SARS.” EcoLibrium Vol. 7, pp. 5–6.
Chow, T.-T. and Yang, X.-Y. (2003). “Performance of ventilation system in a non-standard operating room.” Building and

environment Vol. 38, No. 12, pp. 1401–1411.
Eastman, C. (1999). Building Product Models: Computer Environments Supporting Design and Construction, CRC Press.
Ferziger, J. H. and Peric, M. (2001). Computational Methods for Fluid Dynamics, Springer.
Kühner, S. (2003). Virtual Reality - basierte Analyse und interaktive Steuerung von Strömungssimulationen im Bauingeni-

eurwesen, Ph.D. thesis, Lehrstuhl für Bauinformatik, Technische Universität München.
Krafczyk, M. (2001). Gitter-Boltzmann-Methoden: Von der Theorie zur Anwendung, Habilitation, Lehrstuhl für Bauinfor-

matik, Technische Universität München.
Liere, R., Mulder, J. and Wijk, J. (1997). “Computational Steering.” Future Generation Computer Systems Vol. 12, No. 5,

pp. 441–450.
Mäntylä, M. (1988). An Introduction to Solid Modelling, Computer Science Press.
van Treeck, C. (2004). Gebäudemodell-basierte Simulation von Raumluftströmungen, Ph.D. thesis, Technische Universität

München.
van Treeck, C., Rank, E., Krafczyk, M., Tölke, J. and Nachtwey, B. (2006). “Extension of a hybrid thermal LBE scheme for

Large-Eddy simulations of turbulent convective flows.” Computers and Fluids Vol. 35, No. 8-9, pp. 863–871.
van Treeck, C., Wenisch, P., Pfaffinger, M., Egger, M. and Rank, E. (2008). “Computational Steering of Thermal Comfort

Assessment.” Proc. of IndoorAir 2008.
Tsou, J. Y., Wong, G. W. K. and Chow, B. (2004). “Design of Rapidly Assembled Isolation Patient Ward – IT-Supported

Collaborative Design Process between Architects and Medical Officers.” Proc. of the 10th Int. Conf. on Computing in Ci-
vil and Building Engineering (ICCCBE-X).

Wenisch, P. (2008). Computational Steering of CFD Simulations on Terraflop-Supercomputers, Ph.D. thesis, Lehrstuhl für
Bauinformatik, Technische Universität München.

Zanetti, G. and McNamara, G. R. (1988). “Use of the Boltzmann equation to simulate lattice-gas automata.” Phys. Rev. Lett.
Vol. 61, pp. 2332–2335

