
Bidirectional Coupling of Macroscopic and 
Microscopic Approaches for Pedestrian 
Behavior Prediction1  

Angelika Kneidl, Markus Thiemann, André Borrmann, Stefan Ruzika, Horst 
W. Hamacher, Gerta Köster, Ernst Rank 

Technische Universität München, 80290 Munich, Germany 
Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany 
Siemens AG, CT PP2, 80200 Munich, Germany 
Corresponding author: kneidl@bv.tum.de  
 

Abstract   We combine a macroscopic and a microscopic model of pedestrian 
dynamics with a bidirectional coupling technique to obtain realistic predictions for 
evacuation times. While the macroscopic model is derived from dynamic network 
flow theory, the microscopic model is based on a cellular automaton. Output from 
each model is fed into the other, thus establishing a control cycle. As a result, the 
gap between the evacuation times computed by both models is narrowed down: 
the microscopic approach benefits from route optimization resulting in lower 
evacuation times. The network flow approach is enriched by including data of 
microscopic pedestrian behavior, thus reducing the underestimation of evacuation 
times. 

Introduction 

Modeling pedestrian dynamics to predict pedestrian behavior for both standard 
and panic situations has been examined using various approaches, as described in 
[1]. One goal of modeling pedestrian crowds is to find lower bounds for the 
evacuation time of a given scenario, e.g. buildings, regions, etc. Network flow-
based approaches are capable of yielding this information [2]. However, since 
some aspects of pedestrian behavior - such as interaction - are not taken into 
account, the estimated times will probably never be reached in real, nevertheless 
they can serve as a lower bound for evacuation times. 
Our goal is to find a more realistic lower bound. To this end, we propose to 
combine two different approaches. First, we use a macroscopic model based on 
quickest flows in dynamic networks to compute optimal routing strategies [3]. 
Then we apply a microscopic model to capture pedestrian behavior and derive a 
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heuristic upper bound. The model is based on a cellular automaton [4-7] using a 
potential field to describe forces (according to [1]). The two estimates enfold the 
true evacuation time like a sandwich [8]. We couple the two approaches by means 
of a control cycle feeding output from one model into the other, and vice versa.  
This article is organized as follows: to begin with, we describe the macroscopic 
and microscopic models. Then we specify the setup of the bidirectional coupling 
relating to the two models. Results and an outlook on further research conclude 
the article. 

Description and Setup of the Macroscopic Model (Optimization) 

The scenario (building, region, etc.) is modeled using a discrete-time dynamic 
network G = (N, A, T), where N is a set of nodes, A is a set of directed arcs, and T 
is a finite time horizon discretized into the set {0,…,T}. The node set N  subsumes 
a source s∈N and a target t∈N. Each arc (i,j)∈A has an associated time-
dependent capacity uij(θ)∈Z 

0  and a time-dependent travel time τij(θ)∈Z 
0 for all 

time steps θ=0,…,T. Here, uij(θ) limits the number of flow units that can enter arc 
(i,j) at time θ. We assume that the node capacity is zero for all nodes and all time 
steps, i.e. no waiting at nodes is permitted. The travel time τij(θ) defines the time 
needed to traverse arc (i,j) for flow departing from node i at time θ, i.e. the flow 
will arrive at node j at time θ+τij(θ). 
A flow is a function {0,...: , }x A T  Z 

0 which assigns a non-negative value to 

each arc for all time steps and which is subject to flow conservation and capacity 
constraints. For a more detailed introduction on network flows we refer readers to 
the book of Ahuja et al. [9]. 
The goal of the quickest flow problem (see [10]) is to find a feasible flow x which 
sends a given number of flow units U∈Z 

0 from s to t in the shortest time TU≤T. 

With the setting given above, the problem is called discrete-time quickest flow 
problem with time-dependent attributes. We refer to [11] for mathematical details. 

Network Setup for Realizing the Coupling 

To model pedestrian movements using dynamic network flows, we represent 
corridors, walkways, streets etc. in a given scenario as arcs in the network. Every 
arc (i,j)∈A has a corresponding fixed width wij[m] and length lij[m]. In the 
coupling setup, we predefine the maximum possible rate of flow per unit width 
Mij[peds/ms] for every arc (i,j)∈A, henceforth called the specific flow rate of arc 
(i,j). We fix the length of the basic time unit for the network parameters as z=1s. 
Based on this data we compute the capacity as ·1· /ij ij iju M zw    . Note that the 

capacity is constant over time. Moreover, an average velocity vij(θ) for every arc 
(i,j)∈A and θ={0,…,T} with corresponding travel time ( ) · ( )·ij ij ijl v z       is 

assumed to be known. 



Description and Setup of the Microscopic Model (Simulation) 

Our microscopic model is based on a cellular automaton [4-7]. The whole area of 
interest is discretized by hexagonal cells, each of which can accommodate an 
average European male [12]. At each time step, each cell can be occupied either 
by a pedestrian, an obstacle, a source or a target. Pedestrians move according to 
specific behavior rules from sources to targets. The movement of a pedestrian is 
influenced by different forces, namely the repellent forces of obstacles and other 
pedestrians and the attraction of the targets. All forces are represented by a 
common potential field. At each time step, each person moves to an accessible 
neighboring cell with minimum potential field value. Once the target has been 
reached, the person vanishes from the model. Each pedestrian is “born” with a 
certain desired walking speed – the so-called free flow velocity [1,12]. Depending 
on the local density, i.e. the number of pedestrians in the surrounding cells, 
pedestrians are forced to slow down. The code is calibrated in such a way as to 
reproduce Weidmann’s fundamental diagram [12]. For a more detailed description 
of the microscopic model, please refer to [13]. 

Extensions of the Model for Realizing the Coupling 

For the coupling, we define a graph on top of the cellular automaton that is 
automatically derived from the underlying topography – this is done by finding 
orientation points on the bisector of each convex obstacle corner (see Fig. 1). 
These orientation points refer to graph nodes and each point is subsequently 
connected to all orientation points in sight by means of an arc. In addition, they 
are connected to the source and the target in the same manner. This graph, 
including the arc parameters width and length, is used in the macroscopic setup to 
construct the network. In the microscopic model we use this graph to replace the 
target and obstacle function of our potential. 
In the simulation, a pedestrian traverses along arcs of the graph leading to his 
target. The macroscopic model yields a distribution rate for each node, according 
to which the pedestrians choose their next intermediate target. 
 

  
Fig. 1 Microscopic setup 



 

Control Cycle Setup and Constraints for Realizing the Coupling 

We define shared (fixed) parameters and variable parameters, which are adapted 
in each control cycle. A cycle consists of one optimization run followed by one 
simulation run. 

 
Scenario including the network derived - We choose different scenarios to test 
our method. Each scenario consists of one source and one final target plus some 
intermediate targets and the derived network. 
 
Number of pedestrians - The number of pedestrians has to be large enough to 
observe interaction between the two models.  
 
Time step size - The time step size describes the common interval size of the 
parameter exchange between the two models. In each time step the values are 
averaged and adapted by both models, respectively. 
 
Specific flow rate (SFR) for each arc  - The SFR on an arc corresponds to the 
maximum number of pedestrians who can move through unit width in one second 
along that arc. We determine the SFR for each arc within the simulation in a pre-
processing phase. 
 
Source flow quantity (SFQ) for each time step - The source flow quantity is a 
result of the quickest flow calculated in the optimization network. For each time 
step, the amount of flow leaving the source in the network defines the number of 
pedestrians to be generated in the corresponding time step of the simulation run. 
Interaction between pedestrians may prevent the creation of all required 
pedestrians in a single time step. In this case, they are generated in the subsequent 
time step.  
The number of effectively generated pedestrians is fed back to the optimization to 
serve as a reference. In our tests we consider two cases: one with feedback and 
adaptation of the flow quantities by the optimization, and one without. The 
adaptation of the flow quantity within the optimization works as follows: if the 
optimal flow quantity is not achieved in the simulation in a single time step, then 
the overall capacity of the source (i.e. the total amount of flow that can be sent 
from the source) in this time step is reduced to the smaller value from the 
simulation.  

Shared (fixed) parameters  Variable parameters 

Scenario including network derived with arc 
width and length 

Distribution ratios for each arc and each time 
step 

Number of pedestrians Source flow quantity for each time step 

Time step size Average velocity on each arc for each time step 

Specific flow rate for all arcs  



Time-dependent distribution ratios for each arc - The second output of the 
optimization is the time-dependent flow distribution ratio on each arc incident to 
some node. The distribution ratios are calculated as an average value at each time 
step. The pedestrians are distributed according to these ratios at the corresponding 
orientation points during the simulation. 
 

 
Fig. 2 Coupling setup 

 
Average velocity on each arc for each time step - The simulation returns the 
average velocities for each arc and time step.  
In coupling cycle i∈{1,...,number of coupling cycles}, these velocities are read in 
by the optimization in the following manner: 

1(1 ) .i i i
regulation regulationv v v      

Here, 0
regulationv is the velocity used in the initial dynamic network of cycle zero. 

The parameter [0,1]  refers to the predefined weight of the new average 

velocities.  
 
Fig. 2 gives an overview of all parameters and the way they are exchanged within 
one coupling cycle.   

The Control Cycle 

Before the actual control cycle starts, the SFR is derived on each arc of the 
network by means of a pre-processing phase, as described above. The initial 
dynamic network is currently established with the arc parameters (width and 
length) and, for simplicity, an average walking speed of 1.34 m/s for all 
pedestrians, as in [12]. The quickest flow is computed in this network. The 
corresponding time-dependent flow distribution ratios on each arc and the time-
dependent flow quantity of the source are returned as input parameters for the 
simulation. The simulation sends the pedestrians from the source towards the 
target according to these two variable parameters. We get time-dependent average 



 

walking speeds on each arc as a result. The time-dependent travel times of the arcs 
in the dynamic network are adjusted on the basis of these average velocities. The 
quickest flow is computed in the modified network, the source quantities and flow 
distributions are updated and, once again, returned to the simulation. This cycle is 
repeated for a fixed number of times or until a stopping criterion is satisfied. 

The Results of the Bidirectional Coupling 

Choice of Scenario 

We tested the coupling in several scenarios. In this article, we present results for 
one representative scenario, combining different effects observed during the 
testing of the coupling. We consider a triangular walkway in combination with a 
bottleneck. The topography used in the simulation and the corresponding 
optimization network with arc parameters width and length are given in Fig. 3. 
There are two points of special interest in the scenario – the junction at a and the 
bottleneck b. 
 

 
Fig. 3 Topography of example scenario (a) and corresponding network (b) 

Parameter Variation 

We investigate the scenario with various parameter configurations. 
The first varying parameter is the source flow quantity (SFQ) feedback of the 
simulation. Secondly, we adjusted the time step size - we contemplate the results 
for 5 and 10 seconds.  

Configuration SFQ feedback Time step size (s) 

Config_a no 10  

Config_b yes 10  

Config_c no 5  

Config_d yes 5  

Table 1 List of tested configurations 

(b) 

(a) 



Parameter Value 

No. of pedestrians 1,000 

α 0.3 

Initially assumed velocity 1.34 m/s 

Number of coupling cycles 25 

SFR Computed in preprocessing phase 

Table 2 Parameter overview 

 
The different configurations are summarized in Table 1 . Table 2 shows all other 
parameters which are left unchanged for all configurations. 

Results 

The results for the different configurations are summarized in Fig. 4. The curves 
show the time of the quickest flow obtained by network flow optimization 
compared to the egress time computed by the simulation. For the simulation we 
define as egress time the moment when 99% of the pedestrians have reached the 
target. In the simulation, pedestrians may be diverted from their original path onto 
the secondary path in a dense crowd. Not yet having implemented personal 
strategy changes, they must resume their original path after it has been cleared. 
Thus they become extreme latecomers. Without the 99% rule, they would distort 
the results. In the following, we refer to the egress time as simulation time. 
Simulation times are plotted for each cycle starting with the values of “cycle zero” 
showing the output of both models without coupling. We ran 25 cycles to get a 
representative statement. 
Fig. 4 shows a steady increase of the quickest flow in all four configurations 
during the first few cycles of the coupling. In the remaining cycles it oscillates 
around a steady state. The simulation time, on the other hand, decreases from its 
initial value to approach a steady state from above. Again, we observe the typical 
oscillations of a control cycle. In this case, the oscillations are caused by the 
difficulty of controlling the pedestrians in front of the junction a. A slightly 
different distribution at node a may result in slightly more or less congestion at the 
junction and therefore in an increased or reduced total egress time, respectively.  
The steady states enclose a small corridor. The only exception is Config_d, where 
the time step size of 5 seconds is too small to avoid disturbing fluctuations in the 
gliding average values for the feedback circle. We observe an approximation of 
both simulation times with a certain overshooting of the lower estimate. The 
results suggest that, with a sufficiently small time step, it is possible to achieve the 
convergence of the two approaches to a common steady state. In practice, this is 
restricted by the fact that meaningful average values can only be obtained with a 
sufficiently large time step size. But even without convergence, we achieve a 
substantial improvement of the evacuation time estimates for both approaches. 
 



 

  
Fig. 4 Coupling results for scenario of Fig. 3 comparing the quickest flow and simulation time for 

Config_a (top left), Config_b (top right), Config_c (bottom left), Config_d (bottom right) 
 
The incremental value of the quickest flow results from increasing travel times on 
the arcs of the network induced by the simulation feedback: the simulation 
captures pedestrian interaction which slows down the crowd. It returns a realistic 
average velocity below the optimal average velocity to the flow model. 
  
The decreasing value of the simulation is caused by both the adapted source flow 
quantity (SFQ) in the simulation and the adapted distribution ratio at the node a:  
In the stand-alone simulation run, all pedestrians take the shortest path from a via 
b to t. The adaptation of the distribution ratio from the optimal flow ensures that, 
for certain time steps, a given percentage of the pedestrians deviates to the longer 
route from a via c to t. This results in less congestion on the original path, 
especially in front of the bottleneck b, and the pedestrians move faster. After a few 
coupling cycles, the last individuals in the pedestrian streams on the two paths 
from a to t reach the target almost simultaneously. This is exactly what one 
expects from an optimal flow in a network. 
The effect of the SFQ is as follows: the capacities on the arcs of the network are 
bounded by the maximum possible specific flow rate (SFR) in the simulation. 
Since every feasible flow in the dynamic network maintains the SFR on every arc, 
congestion is averted. By adapting the value for the SFQ in each time step and 
sending the pedestrians along paths corresponding to the optimal flow, the 
simulation similarly maintains the SFR on every arc for all time steps, thus 
preventing congestion (especially in front of the bottlenecks). This in turn reduces 
the total time needed for all pedestrians to reach the target. 



Comparing Config_a and Config_b in Fig. 4 shows the positive influence of the 
SFQ feedback. For a time step size of ten seconds, near-convergence of the steady 
states of the two approaches is reached with the SFQ feedback (Config_b). The 
SFQ feedback reduces network capacities whenever the simulation is unable to 
actually generate the number of pedestrians suggested by the flow model. 
Otherwise the two models tend to decouple and converge to their separate steady 
states. 
Config_c and Config_d in Fig. 4 show the same results for a time step size of five 
seconds with the overshooting due to fluctuations in the average velocity values. 
We describe one cause of the overshooting: Very small average velocities derived 
from a short period of observing congestion induce smaller source flow quantities 
on the optimization side in the next cycles. While these velocities rise again in the 
next coupling cycle (because no congestion occurs), the source quantities will not 
increase due to our definition of how the SFQ values are handled. This leads to a 
capacity limit that is too strict, hence the value of the quickest flow increases. To 
summarize, both parameters influence each other very sensitively and can 
therefore induce a chain reaction causing an overshooting of the lower steady 
state. 
 
The bidirectional coupling leads to an improvement in the evacuation time 
estimate for both models. Using parameter variation we are able to adjust the 
interaction sensitivity of the two models during the control cycle. However, 
parameters have to be adapted with caution. For the given scenario, the 
optimization curve approximates the simulation curve best with the adapted SFQ 
feedback.  

Outlook 

We have presented a control cycle to combine a macroscopic and a microscopic 
approach for modeling pedestrian behavior. The coupling leads to a modification 
of the dynamic network so that the computed quickest flow is almost reproducible 
by the simulation. At the same time, the total egress time of the pedestrians in the 
simulation is lowered due to the source flow quantity and flow distribution given 
by the optimization.  
For the given example, the egress times computed by both models approach 
steady states. The steady states enclose a small corridor. This effect could also be 
observed for other scenarios. The results of the simple scenario suggest that, with 
the right choice of parameters, the gap can almost be closed.   
We propose to continue our work by testing the control cycle for bigger scenarios 
with more junctions and bottlenecks to answer questions such as: Will the results 
remain as smooth as in the small examples? Will it be possible to close the gap 
between the two models in a more complex setup? Also, in the experiments 
presented here, all pedestrians share the same free flow velocity. This is 



 

unrealistic. In a follow-up step, we will assign individual free flow velocities 
through a Gauss distribution, as described in [12] and observe the effects on the 
control cycle.  
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