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the macroscopic model is derived from dynamic network flow theory, the 

microscopic model is based on a cellular automaton. Output from each model is 

fed into the other, thus establishing a control cycle. As a result, the gap between 

the evacuation times computed by both models is narrowed down: The coupled 

model considers both optimized routing strategies as well as microscopic effects. 

Accordingly the typical underestimation of evacuation times by purely 

macroscopic approaches is reduced. At the same time the microscopic model is 

enhanced by a steering component which reflects the macroscopic knowledge and 

the impact of supervising personnel on the distribution of pedestrian flows. 
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1 Introduction 
Modeling pedestrian dynamics to predict pedestrian behavior for both standard 

and panic situations has been examined using various approaches as described in 

[Schadschneider et al. 2009]. One possibility to categorize the different 

approaches is to distinguish between macroscopic and microscopic models. 

Macroscopic models focus on overall situations and assume mean values (e.g. 

densities, velocities). They are widely used for determining minimum evacuation 

times. Lattice-gas models [Jiang and Wu 2007], fluid-dynamics models 

[Henderson 1974] and network flow models [Hamacher and Tjandra 2002] fall 

into this category.  

Microscopic approaches on the other hand focus on the behavior of individuals, 

i.e. they model the movements of individual persons and the interactions between 

them. These models are able to reproduce microscopic effects observable in 

reality, such as density-velocity relations, bottlenecks etc. Examples for such 

models are ASERI [IST 2004], buildingEXODUS [Galea and Galparsoro 1993], 

F.A.S.T-Model [Kretz and Schreckenberg 2006], PedGo [TraffGo], Simulex 

[Thompson and Marchant 1994]).  

One major objective of modeling pedestrian crowds is to find lower bounds for the 

evacuation time of a given scenario, including the evacuation of buildings, 

regions, etc. Network flow-based approaches are capable of providing this 

information [Chalmet et al. 1982]. They find optimal solutions assuming that each 

of the involved pedestrians takes routing decisions which result in optimal use of 

the escape way network and thus in a minimal overall evacuation time. Here, 

microscopic aspects of pedestrian behavior like interaction are not taken into 

account. Thus, the determined egress times will in most cases underestimate 

reality. Nevertheless they can serve as a valid lower bound for evacuation times.  

On the other hand, microscopic models take into account interaction and local 

phenomena such as lane formation, bottlenecks and the slow-down of dense 

crowds. However, the evacuation times determined by these models cannot serve 

as a lower bound, as the simulated pedestrians have no overall-knowledge and 

move according to locally optimal decisions.  

To improve the quality of the computed lower bound for evacuation times, we 

propose to combine both approaches. In the first step, a macroscopic 

(optimization) model is used which is based on quickest flows in dynamic 

networks to compute optimal routing strategies [Hamacher and Tjandra 2001]. 

Then, a microscopic (simulation) model is applied to capture pedestrian behavior 

and derive a heuristic upper bound. The model is based on a cellular automaton 

[Burstedde et al. 2001, Emmerich and Rank 1997, Kinkeldey 2003, Klüpfel 2003, 

Kretz 2007] using a potential field to describe forces acting on individual 

pedestrians (according to [Schadschneider et al 2009]).  

The estimates computed by each of these approaches enclose the true minimum 

evacuation time like a sandwich [Heller et al. 2010]. In this paper, it is shown how 

these two approaches can be coupled by means of an iterative control cycle 

feeding output from one model into the other and vice versa. We get distribution 



ratios at each node of the network from the macroscopic model, which guide the 

pedestrians of the simulation to their target. The simulation on the other hand 

produces average travel times for each arc while taking into account pedestrian 

deceleration according to the densities on the arcs. We show that the proposed 

coupling significantly diminishes the gap between the predicted evacuation times 

from simulation and optimization. 

Few attempts have been made to combine macroscopic and microscopic models 

for pedestrian dynamics. [Peng 2006] proposed a hybrid model including data of a 

quickest dynamic network flow in a simulation model. [Dressler et al. 2009] 

compute an earliest arrival flow in a dynamic network model to assign optimal 

exits to evacuees in the simulation. In this paper, we go one step further by 

implementing a full control cycle which does not only improve the results of each 

individual approach but provides a better estimate of an evacuation time by 

reducing the gap between microscopic predictions and macroscopic lower bounds.  

 

This article is organized as follows: First, the macroscopic and microscopic 

models are presented. Then, we specify the setup of the bidirectional coupling 

relating to the two models. The results and the discussion as well as an outlook on 

further research conclude the article. 

2 Description and Setup of the Macroscopic 

Model 
The scenario (building, region, etc.) is modeled using a discrete-time dynamic 

network G = (N, A, T), where N is a set of nodes, A is a set of directed arcs, and T 

is a finite time horizon discretized into the set {0,…,T}. The node set N subsumes 

a source sN and a target tN. Each arc (i,j)A has an associated time-

dependent capacity uij(θ)Z 

0
 and a time-dependent travel time τij(θ)Z 

0
for all 

time steps θ=0,…,T. Here, uij(θ) limits the number of flow units that can enter arc 

(i,j) at time θ. We assume that the node capacity is zero for all nodes and all time 

steps, i.e. no waiting at nodes is permitted. The travel time τij(θ) defines the time 

needed to traverse arc (i,j) for flow departing from node i at time θ, i.e. the flow 

will arrive at node j at time θ+τij(θ). 

A flow is a function {0,...: , }x A T Z 

0
which assigns a non-negative value to 

each arc for all time steps and which is subject to flow conservation (equation (1)) 

and capacity constraints (equation (3)). No flow is left in the network after time T 

(equation (2)). For a more detailed introduction on network flows we refer readers 

to the book of Ahuja et al. [Ahuja et al. 1993]. 
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The goal of the quickest flow problem (see [Burkard et al. 1993]) is to find a 

feasible dynamic flow x which sends a given number of flow units UZ 

0
from s 

to t in the shortest time TU ≤T. With the setting given above, the problem is called 

discrete-time quickest flow problem with time-dependent attributes. We refer to 

[Tjandra 2003] for mathematical details. Tjandra proposed an algorithm to solve 

this problem by successively finding earliest arrival augmenting paths from source 

to target in the network. When the total amount of flow augmented along these 

paths exceeds the initial flow, the time of the last augmenting path determines the 

quickest flow. In context of evacuation problems, for a given scenario, the value 

of the quickest flow is the fastest evacuation time for a known number of evacuees 

from source s to target t. The function x provides a pattern for the optimal 

evacuation routes in the network.  

2.1 Network Setup for Realizing the Coupling 

To model pedestrian movements using dynamic network flows, we represent 

corridors, walkways, and streets etc. in a given scenario as arcs in the network. 

Every arc (i,j)A has a corresponding fixed width wij[m] and length lij[m]. In the 

coupling setup, the maximum possible rate of flow per unit width Mij[1/ms] for 

every arc (i,j)A is predefined, henceforth called the specific flow rate (SFR) of 

arc (i,j). We fix the length of the basic time unit for the network parameters as 

z=1s. Based on this data we compute the capacity as ·1· /ij ij iju M zw    . Note 

that the capacity is constant over time. Moreover, an average velocity vij(θ) for 

every arc (i,j)A and θ={0,…,T} with corresponding travel time 

( ) · ( )·ij ij ijl v z       is assumed to be known. Figure 1 shows an example for the 

network modeling. 

 

 
Figure 1 Example for modeling a corridor (left) as an arc in the network (right). 

Assumed velocity v=1.3 m/s, source flow rate M=1.5 (ms)-1 



3 Description and Setup of the Microscopic 

Model 
The employed microscopic model is based on a cellular automaton [Burstedde et 

al. 2001, Emmerich and Rank 1997, Kinkeldey 2003, Klüpfel 2003, Kretz 2007]. 

The whole area of interest is discretized by hexagonal cells, each of which can 

accommodate an average European male [Weidmann 1992]. At each time step, 

each cell can be occupied either by a pedestrian, an obstacle, a source or a target. 

Pedestrians move according to specific behavior rules from sources to targets. The 

movement of a pedestrian is influenced by different forces, namely the repellent 

forces of both obstacles and other pedestrians as well as the attraction force of the 

target. All forces are superimposed and represented by a common potential field. 

At each time step, each person moves to an accessible neighboring cell with 

minimum potential field value. Once the target has been reached, the person is 

removed from the model.  

Each pedestrian is created with a certain desired walking speed – the so-called free 

flow velocity [Schadschneider et al. 2009, Weidmann 1992]. This free flow 

velocity differs for each pedestrian. Following [Weidmann 1992] a Gaussian 

distribution of the free flow velocities is assumed. Since time and space are 

discretized in our approach, the velocities are also discrete. We call each discrete 

velocity a velocity class. The number of velocity classes corresponds to the 

number of micro time steps subsumed by one macro time step. During one macro 

time step, each pedestrian can move from one cell to the next as often as his 

velocity class permits. At the end of each macro time step, the velocities of all 

pedestrians are synchronized. 

Pedestrians are forced to slow down depending on the local density, i.e. the 

number of pedestrians being present in the surrounding cells. The simulation 

program has been calibrated to reproduce Weidmann’s fundamental diagram 

[Weidmann 1992]. For a more detailed description of the microscopic model, 

please refer to [Klein et al. 2010]. 

3.1 Extensions of the Model for Realizing the Coupling 

To implement the coupling approach, we define a graph on top of the cellular 

automaton that is automatically derived from the underlying topography (Höcker 

et al. 2010, Kneidl et al. 2011). This is done by creating orientation points on the 

bisector of each convex obstacle corner. These orientation points refer to graph 

nodes and each point is subsequently connected to all orientation points in sight by 

means of an arc. In addition, they are connected to the source and the target in the 

same manner (see Figure 2). A similar approach for deriving this graph is 

described in [Chooramun et al. 2010].  

This graph, including the arc parameters width and length, is used for the 

macroscopic setup to construct the network. In the microscopic model, this graph 

is used to guide the pedestrians to their target, thus replacing the original 

functionality of both the target and the obstacle function of the potential field. The 
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target function is now used only for the navigation between two adjacent nodes. 

The Euclidean distance between these nodes is used as arc weight in the network. 

The obstacle function is obsolete as intermediate targets are in sight if an arc 

connects them. The complete setup of the microscopic model is shown in Figure 

3. 

 

obstacle

Intermediate Targets = 

Graph nodes

TargetSource

Graph arcs

obstacle

TargetSource

Orientation Points = 

Intermediate Targets 

 
Figure 2 Graph derivation from scenario 

 

In the simulation, a pedestrian traverses along arcs of the graph leading to his 

target and passing intermediate targets along the way. The macroscopic model 

yields a distribution ratio for each node, according to which the pedestrians choose 

their next intermediate target. 

 

graph

+

potentials

+

cellular 

automaton

Simulator setup

+

+

 
Figure 3 The microscopic model includes three different layers: The cellular 

automaton, the potential fields and the navigation graph  

4 Control Cycle Setup and Constraints for 

Realizing the Coupling 
In this section, the coupling setup is described in detail. First, we describe all 

parameters which have to be specified for the coupling, followed by a detailed 

description of the coupling procedure. 

 



4.1 Parameter Description 

We define shared (fixed) parameters, summarized in Table 1 and variable 

parameters, summarized in Table 2. While the former are kept constant during the 

entire experiment, the latter are adapted in each control cycle. A cycle consists of 

one optimization run followed by one simulation run. 

 

Name Description  

Scenario Scenario including network derived with arc width and length 

N Number of pedestrians 

t Time step size 

SFR Specific flow rate for all arcs 

Table 1 Shared (fixed) parameters 

 

Scenario including the network - A scenario consists of one source and one final 

target plus some intermediate targets as well as the derived network. 

 

Number of pedestrians - The number of pedestrians has to be large enough to 

observe interaction between the pedestrians and hence between the two models.  

 

Time step size - The time step size describes the common interval size of the 

parameter exchange between the two models. In each time step the values of the 

variable parameters are averaged and adapted by both models, respectively. 

 

Name Description 

DR Distribution ratios for each arc and each time step 

SFQ Source flow quantity for each time step 

v Average velocity on each arc for each time step 

Table 2 Variable parameters 

 

Specific flow rate (SFR) for each arc  - The SFR on an arc corresponds to the 

maximum number of pedestrians who can move through a unit width in one 

second along that arc. The SFR for each arc is determined within the simulation in 

a pre-processing phase. 

 

Time-dependent distribution ratios (DR) for each arc – DRs refer to flow 

distributions on all arcs incident to some node, i.e. how is the flow passed from 

one node to all incident arcs. The ratios sum up to 1 for each node and can differ 

from time step to time step, thus are time-dependent. DRs are determined by the 

optimization and are calculated as an average value at each time step. The 

pedestrians are distributed according to these ratios at the corresponding 

intermediate targets during the simulation. 
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Source flow quantity (SFQ) for each time step - The source flow quantity refers 

to the number of flow units leaving the source at each time step in the 

optimization network. It is generated by the optimization network and used as 

input for the simulation run: For each time step, the amount of flow leaving the 

source in the network defines the number of pedestrians to be generated in the 

corresponding time step of the simulation run. Interaction between pedestrians 

may prevent the creation of all required pedestrians in a single time step. In this 

case, they are generated in the subsequent time step.  

The number of effectively generated pedestrians is fed back to the optimization to 

serve as a reference. The adaptation of the flow quantity within the optimization 

works as follows: if the optimal flow quantity is not achieved in the simulation in 

a single time step, then the overall capacity of the source (i.e. the total amount of 

flow that can be sent from the source) in this time step is reduced to the smaller 

value from the simulation. 

 

Average velocity on each arc for each time step - The simulation returns the 

average velocities for each arc and time step.  

In coupling cycle i{1,...,number of coupling cycles}, these velocities are read in 

by the optimization in the following manner: 
1(1) .i i i

regulation regulationv v v  

Here, 0v
regulation

 is the velocity used in the initial dynamic network of cycle zero. 

The parameter α  [0,1] refers to the predefined weight of the new average 

velocities.  

 

Figure 4 gives an overview of all parameters and the way they are exchanged 

within one coupling cycle.   

 

 
Figure 4 Coupling setup 



4.2 The Control Cycle 

Before the actual control cycle starts, the specific flow rate (SFR) is derived on 

each arc of the network by means of a pre-processing phase..  

The graph which is derived from the scenario within the simulation is extended by 

the optimization to a dynamic network, establishing it with the static parameters 

width and length of each arc and adding parameters capacity and travel time per 

arc. The capacity of an arc is determined by the given specific flow rate and width 

whereas the travel time is derived from the length of an arc and an assumed 

walking speed of each pedestrian of 1.34 m/s as suggested in [Weidmann 1992].  

The quickest flow is computed in this network with resulting time-dependent flow 

distribution ratios on each arc and the time-dependent flow quantity of the source. 

These corresponding values are returned as input parameters for the simulation.  

The simulation sends the pedestrians from the source towards the target according 

to these two variable parameters. We get time-dependent average walking speeds 

on each arc as a result. The time-dependent travel times of the arcs in the dynamic 

network are adjusted on the basis of these average velocities. The quickest flow is 

computed in the modified network, the source quantities and flow distributions are 

updated and, once again, returned to the simulation. This cycle is repeated for a 

fixed number of times or until a stopping criterion is satisfied. A stopping criterion 

can be that the time difference between the Quickest Flow and the egress time 

derived by the simulation is smaller than a certain threshold, for example.  

An example of one cycle is given in Figure 5: Figure 5a shows the preprocessing 

phase, Figure 5b illustrates the hand-over of the optimization results to the 

simulation and in Figure 5c the feedback from the simulation back to the 

optimization is displayed.  

 

 
Figure 5a Preprocessing within the simulation derives input parameters for the first 

optimization run: It derives the graph and determines the SFR, which serves as input 

for the first optimization run 
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Figure 5b After calculation of quickest flow, the parameters FD and SFQ for each 

time step are handed over to the simulation 

 

Figure 5c The simulation provides updated velocities and a feedback of the SFQ to 

optimization; the optimization derives updated travel time for each arc; after 

optimization run, FDs and SFQs are updated and handed back to the simulation; the 

cycle continues as in Figure 5b  

5 Case studies 
We examined different aspects of the coupling approach: First, we studied the 

effect of Gaussian-distributed free flow velocities of the pedestrians in the 

simulation on the coupling and compared it to coupling with uniform free flow 

velocities of the pedestrians, as we assumed in our previous work [Kneidl et al. 

2010]. 

Secondly, specific scenario setups where the coupling leads to enhancements of 

both the simulation and optimization were studied. The impact of the coupling 

with different modifications of a given scenario was inspected. More precisely we 

examined the benefit of the coupling depending on the capacity of the shortest 

path through the scenario as well as the influence of n-way intersections within the 

scenario.  



For the simulation, we defined as egress time the moment when 99% of the 

pedestrians have reached the target. In the simulation, pedestrians may be diverted 

from their original path onto a secondary path in a dense crowd. Not yet having 

implemented personal strategy changes, they must resume their original path after 

it has been cleared. Thus, they may become extreme latecomers. Without applying 

the 99% rule, they would distort the results. Note, that this rule is applied to 

overcome a drawback of the simulation, not to ignore stragglers with small free 

flow velocities. In the following, the egress time is referred to as simulation time. 

Simulation times are plotted for each cycle starting with the values of “cycle zero” 

showing the output of both without coupling.  

5.1 Choice of fixed parameters 

In our previous work [Kneidl et al. 2010] we tested the bidirectional coupling 

approach on an example scenario with different parameter variations. We showed 

that the coupling method narrowed the gap between the total evacuation time in 

the simulation and the time of the quickest flow in the optimization. For certain 

parameter choices, the improvement became more apparent. In this work, 

parameter values which have shown to be most suitable for the coupling approach 

were used. The fixed parameters are shown in Table 3. 

 

Parameter Value 

Number of pedestrians 1,000 

α 0.3 

Initially assumed velocity (Optimization) 1.34 m/s 

Free flow velocity (Simulation) Gaussian distribution 

Number of coupling cycles 25 

SFR Computed in preprocessing phase 

Time step size 10 s 

Table 3 Parameter overview 

 

We considered three different test cases with this configuration that focus on 

different aspects to observe effects on our method. The results of our tests are 

presented in the following.  

5.1.1 First Test: Different Free Flow Velocities of Pedestrians in the 

Simulation 

In the real world, the walking behavior of pedestrians varies, e.g. according to age 

or gender. An individual free flow velocity is assigned to each pedestrian to take 

this into account. The initially assigned velocity remains unchanged for each 

individual during all coupling cycles. 

We chose a Gaussian velocity distribution following [Weidmann 1992] which is 

shown in Figure 1.. The coupling is tested with individual velocities on the 

“triangle example” of Figure 2. For comparison, coupling with a fixed free flow 
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velocity of 1.34 m/s as proposed in [Kneidl et al. 2010] is carried out. The results 

are shown in Figure 2. 
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Figure 1 Free-flow velocity distribution according to [Weidmann 1992] 

 

 
Figure 2 (a) Topography and (b) network of the first test 

 

Figure 3 shows that the gap between the evacuation times of simulation and 

optimization almost closes for both cases; using uniform free flow velocities and 

using Gaussian-distributed free flow velocities for the pedestrians. 

In the non-coupled simulation (“cycle zero”), the evacuation time predicted for 

Gaussian-distributed free flow velocities is significantly higher than the 

evacuation time for uniform free flow velocities. With Gaussian-distributed free 

flow velocities, slow pedestrians occur and will be latecomers, even if they take 

the shortest path from source to target. Thus, they increase the total evacuation 

time in the simulation. Therefore we observe higher values of the simulation and 

optimization times even in the last coupling cycles. 

Furthermore, Figure 3 (b) shows that the gap between the evacuation times 

predicted by simulation and optimization does not close to the same degree in the 



setup with Gaussian-distributed free flow velocities as for uniform free flow 

velocities. This can be explained by a wider variety of initial velocities in the 

Gaussian-distributed case: For each time step, some of the pedestrians were 

assigned higher, others a smaller free flow velocity than the average. The travel 

times on the arcs of the dynamic network are computed by taking the average of 

all pedestrian velocities on this arc in one time step. Thus, the individual travel 

time along an arc of pedestrians with small free flow velocities is significantly 

longer than the average travel time on this arc in the network. 

The plot of the simulation time in the case of Gaussian-distributed free flow 

velocities is not as smooth as in the case of uniform free flow velocities. This is 

again a consequence of the wider spread of free flow velocities: Since the travel 

time on each arc in the network is averaged over the individual velocities of the 

pedestrians on this arc, extreme velocities of individual pedestrians on this arc are 

not considered. The flow distribution on the arcs, which is handed over to the 

simulation, is as well an average value for each time step. Altogether, pedestrians 

with an extreme small or large free flow velocity are either faster or slower than 

the average; this results in pedestrians reaching nodes at time steps in which they 

are not expected to do so according to the optimization result. Since this 

phenomenon cannot be reproduced by the optimization (only average values are 

used), the simulation cannot reproduce the optimal flow because congestions can 

occur at intermediate targets. 

To sum it up, coupling with different individual velocities still decreases the gap 

between the egress times of the micro- and macroscopic model like in the case of 

coupling with uniform free flow velocities. However, the results in the first case 

are not as smooth as they are in the latter. Nevertheless, individual free flow 

velocities are more realistic for modeling pedestrian dynamics than uniform free 

flow velocities; hence the slightly declined results are acceptable. 
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Figure 3 Results of the first test. (a) without Gaussian-distributed free flow velocities 

(b) with Gaussian distribution of the free flow velocities 

 

5.1.2 Second Test: Variation of the Capacity of the Shortest Path 

To determine scenario settings for which the coupling leads to a significant 

improvement of the microscopic approach, we varied the width of the shortest 

path of a scenario and examined the effects on the coupling. The test scenario is a 

simple triangular passageway with an additional corridor. The topography is 

shown in Figure 2a, the corresponding network can be seen in Figure 4, 

respectively. The coupling was run with a varying width of the bottleneck of the 

shortest path, i.e. the corridor between orientation points a and t is successively 

chosen as 0.5 m, 1 m, 2 m, and 4 m. The results are summarized in Figure 5. 

 

 
Figure 4 Network of second test 



 

Figure 5 shows, that for each of the four different choices of width, the gap 

between the evacuation times of simulation and optimization closes during the 

coupling.  

The time corridor of the steady state decreases with the width of the corridor a-t, 

from 460 s to 550 s for w = 0.5 m and from 370 s to 400 s for w = 4 m. For a wide 

a-t-path, the shortest path from s to t has a large capacity. Thus, the majority of the 

pedestrians can take the shortest path without causing congestion and the 

evacuation time is small. In contrast, a narrow a-t-path has a smaller capacity, 

hence more pedestrians are routed through the longer way from s via a and b to t. 

The overall evacuation time increases. 

The evacuation time of the non-coupled simulation is displayed in cycle zero of 

each plot. In these simulation runs, all pedestrians take the shortest path from s via 

a to t. We observe that the simulation time significantly increases with decreasing 

the width of the a-t-corridor. The reason for this behavior is on the one hand that 

for an a-t-corridor which is narrower than the corridor from s to a, congestion in 

front of the bottleneck a occurs. On the other hand, pedestrians with a small free 

flow velocity slow down their faster followers because overtaking is more difficult 

in a narrow corridor. In the case of w=0.5 m, overtaking in the a-t-corridor is not 

possible at all, since the cell size in the cellular automaton prevents two cells 

abreast in the corridor. This effect leads to fluctuations of the simulation time: If 

in one coupling cycle, a pedestrian with a late starting time has a small free flow 

velocity and takes the a-t-corridor, he will slow down his followers on this 

corridor and decrease the total evacuation time. In another coupling cycle, this 

pedestrian takes the wider path from a via b to t. In this case, he can be overtaken 

by his followers; they will arrive at t earlier. Since the simulation time represents 

the time when 99% of the pedestrians have reached t, this one slow pedestrian will 

not influence the simulation time. 

We observe that the non-coupled simulation time is improved by the coupling for 

the width w  {0.5 m, 1 m, 2 m}. The optimization sends some pedestrians along 

the longer path from s via a and b to t. This results in a bigger throughput at a, 

thus the overall evacuation time decreases. The narrower the a-t-corridor is, the 

more significant this effect. For an a-t-corridor of 4 m width, the capacity of this 

corridor is as big as the capacity of the s-a-corridor, hence congestion does not 

occur and the coupling does not improve the simulation time. 

Summarized, we identified scenario settings within this experiment for which the 

coupling leads to an improvement of the simulation time: If the capacity of the 

shortest path is smaller than the capacity of the arcs defining the longer route to 

the target, the optimization can help to increase the egress time of the simulation. 

If the shortest path has a capacity which is the same as the path in front of 

intersections, the optimization does not contribute any optimal routing as the 

shortest path is the best path to walk for all pedestrians. For all choices of widths 

we observed a rise in the optimization times as the effect of pedestrian interaction 

is taken into account in the network flow model. 
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Figure 5 Results of the second test for width of corridor a-t (a) 0.5 m, (b) 1 m, (c) 2 m, 

(d) 4 m 

 



5.1.3 Third Test: Three-way Intersection 

 

As a third aspect we examined the influence of n-way intersections to our method. 

Therefore, a scenario was constructed, in which the route to the target splits into 

three possible routes at node a. The shortest way has the smallest capacity; both 

remaining routes are symmetric and are about one and a half times longer. The 

sum of the width of all three possible routes is the same as the corridor width in 

front of the intersection. The scenario and the corresponding network are shown in 

Figure 6. 

 
Figure 6 Setup for three-way intersection test 

 

The results of the coupling procedure are shown in Figure 7. The simulation and 

optimization egress times approximate during the first six coupling cycles and 

remain close to each other with an average gap of five seconds. The remaining 

oscillations are explained by the interaction between the pedestrians at the 

intersection of node a. Since some pedestrians at the top of the corridor are 

assigned the bottom route to continue and vice versa, they interfere with each 

other and hence produce congestions at the intersection. Nevertheless the result 

reflects a typical control cycle with small oscillations.  

Once again it can be observed that the optimization delivers distribution ratios at 

the intersection to lower the total egress time of the simulation. 
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Figure 7 Results of the three-way intersection test 

 

Summarizing all presented tests, we observe that the egress time of the non-

coupled simulation (“cycle zero”) is reduced within the coupling by about 20 to 25 

percent by taking into account optimal routing strategies in the simulation. The 

optimization times of the first coupling cycles increased around 10 to 25 percent 

compared to later coupling cycles due to updated travel times. 

In general we observe that the more influencing route-choices exist in the scenario 

the more both models are enhanced by the coupling method. 

The gap between both models remains (depending on the scenario settings) 

between 60 seconds (~15 percent of the mean time between both plots) for the 

“three-way”-example and around 10 seconds (~ 5 percent) for the “shortest way”-

example. 

6 Conclusion 
In this article, a method for combining a microscopic and a macroscopic 

pedestrian evacuation model in a control cycle has been presented. We studied 

several test scenarios with uniformly and Gaussian distributed free flow velocities 

to better capture pedestrian behavior. For both choices of free flow velocities, it 

was demonstrated that the evacuation times predicted by the simulation as well as 

the lower bounds derived from optimization, narrow and approach steady states.  

Also, the impact of the optimization on the simulation was studied for different 

scenario settings. The width of the shortest way to the target was varied and the 

egress time of the simulation was examined: The smaller the capacity of the 

shortest way the greater the influence of the optimization on the simulation. We 

observed a clear decrease of the egress times of the simulation with each control 

cycle.  



Our method leads to the following improvements for all tested aspects:  

The simulation benefits from the routing which is induced by the results of the 

optimization. Pedestrians are distributed on the available paths according to the 

routing determined by optimizing the dynamic network flow. As a result, corridors 

are less congested and the egress time decreases. This reflects the macroscopic 

knowledge and the impact of supervising personnel on the distribution of 

pedestrian flows. The latter is typically realized by placing security staff at 

specific points such as intersections to route the pedestrians. 

Moreover, the optimization model delivers improved lower bounds for the 

evacuation times. This follows from adjusted travel times on the network arcs, 

which are refined by the coupling. More precisely, the travel times are adjusted by 

taking an average of individual, Gaussian distributed velocities. Thus, individual, 

microscopic aspects are transferred to the macroscopic model, and therefore, the 

overall egress time of the optimization model reflects Weidmann’s measured 

density-velocity relation of pedestrians. 

 

In the tests presented in this paper we could show, that the gap between the egress 

times predicted by microscopic simulation and macroscopic optimization narrows 

down significantly using the coupling approach. It will have to be investigated 

further under which assumptions a better convergence could be expected. Also, in 

several cases, we did not manage to completely dampen the oscillations of the 

simulation from one control cycle to the next. Here a statistically derived averaged 

velocity may improve the situation.  

7 Outlook 
The results for simple scenarios that focus on important aspects of pedestrian 

evacuation presented encourage us to apply our technique on general, more 

complex evacuation scenarios. 

A next step will be to run the coupling procedure on scenarios representing 

complete buildings or a street scene with more intersections and a more complex 

overall geometry. 

The challenges of generalizing our approach include the following questions: 

  

 How can the derived graph be mapped to rooms inside a building? 

 How can the width of a graph arc be defined more generally?  

 Do subsequent intersections lead to further oscillations? 

 Will the gap between the computed egress times of both models still 

narrow significantly? 

 

Up to now, we have only modeled scenarios with one source and one target. 

Evacuation scenarios usually consist of multiple starting points and safety areas. 

Accordingly, future work will be undertaken in upgrading the coupling approach 
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so that it can handle scenarios with multiple sources and targets. The presented 

cellular automaton can be extended to the multiple sources and targets case 

without additional effort. In a dynamic network model, the quickest flow problem 

is extended to a multiple sources and targets network flow problem by the quickest 

transshipment problem [Hoppe and Tardos 1995, Miller-Hooks and Stock 

Patterson 2004].  
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