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Abstract. For the spatial design of buildings as well as for the layout of large event areas, the 9 
crowd behaviour of the future users plays a significant role. The designing engineer has to make 10 
sure that potentially critical situations, such as high densities in pedestrian crowds, are avoided in 11 
order to guarantee the integrity, safety and comfort of the users. To this end, computational 12 
pedestrian dynamics simulations have been developed and are increasingly used in practice. 13 
However, most of the available simulation systems rely on rather simple pedestrian navigation 14 
models, which reflect human behaviour only in a limited manner. This paper contributes to 15 
enhancing pedestrian simulation models by extending a microscopic model by a navigation graph 16 
layer serving as a basis for different routing algorithms. The paper presents an advanced method 17 
for the automated generation of a spatially embedded graph which is on the one hand as sparse as 18 
possible and on the other hand detailed enough to be able to serve as a navigation basis. Three 19 
different pedestrian types were modelled: pedestrians with good local knowledge, pedestrians with 20 
partly local knowledge and those without any local knowledge. The corresponding algorithms are 21 
discussed in detail. To illustrate how this approach improves on simulation results, an example 22 
scenario is presented to demonstrate the difference between results with and without using a graph 23 
as constructed here. Another example shows the application of the extended simulation in a real-24 
world engineering context. The article concludes with an outlook of further potential application 25 
areas for such navigation graphs.  26 

Keywords: navigation graph, visibility graph, microscopic pedestrian simulation, A* Algorithm, 27 
cellular automaton.  28 
 29 

1   Introduction  30 

For the spatial design of buildings as well as for the layout of large event areas, the crowd 31 

behaviour of the future users plays a very important role. The designing engineer has to make 32 

sure that potentially critical situations, such as high densities of pedestrian crowds, are 33 

avoided in order to guarantee the integrity, safety and comfort of the users. In today’s 34 

engineering practice, rough approximate calculations are used to determine the space required 35 

by pedestrian streams. However, these methods are neither able to capture the precise 36 

geometric setup of the investigated scenario nor can they consider the complex way-finding 37 

and walking behaviour of individual pedestrians. Accordingly, local phenomena are 38 

disregarded and potentially critical situations are easily ignored. To overcome these 39 

shortcomings, computational pedestrian dynamics simulations have been developed and are 40 

increasingly used in practice.  41 
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However, most of the available simulation systems systems either rely on rather simple 42 

pedestrian navigation models, which reflect real human behavior only in a very limited 43 

manner, or are computationally expensive. This paper contributes to enhancing 44 

computationally cheap pedestrian simulation models by presenting a sophisticated graph-45 

based approach for modelling navigational behaviour of humans. This allows engineers and 46 

architects to quickly and effortlessly evaluate different layout options. The implementation of 47 

this approach includes an advanced technique for generating sparse navigation graphs from a 48 

given spatial layout of the scenario under investigation. 49 

2   Related work 50 

The simulation of pedestrian crowds has been widely examined using a variety of approaches 51 

that focus on different details depending on the objective of the simulation [1]. For example, 52 

to determine minimum evacuation times for buildings or areas, macroscopic models are 53 

typically used. These focus on the overall situations of the simulated scenario and are based 54 

on mean values. Examples of such models are network flow models [2], fluid-dynamic 55 

models [3] or gas kinetic models [4]. To simulate the individual behaviour of pedestrians on 56 

the other hand, microscopic models have been developed. These models consider the 57 

movements of each individual and focus on the interaction between individuals. Force models 58 

(e.g. Social Force Model by Helbing and Molnár [5]) as well as cellular automata [6] or 59 

agent-based models [7] belong to this category.  60 

One central aspect of microscopic pedestrian simulation is to simulate the different movement 61 

strategies of individuals. Pelechano and Malkawi [8] categorize “virtual human technologies” 62 

into different features, such as appearance, function, time, autonomy and individuality.   63 

The focus of this contribution lies on the latter: to differ between individual behaviour as a 64 

factor of sex and age, and – the authors’ main focus – sense of orientation and familiarity with 65 

a location. The aim is to simulate large pedestrian crowds while taking into account different 66 

movement behaviours. An important constraint considered for the development of the 67 

corresponding algorithms is the requirement of high computational performance which allows 68 

for real-time simulations even on standard hardware. This provides the possibility to use the 69 

simulator as training facility for preparing and training the security staff of major events. – a 70 

feature strongly demanded by security authorities. 71 

In order to assign individual behaviour to pedestrians, agent-based models are common. 72 

These assign different behavioural patterns to each individual, which results in different 73 

movement behaviour. Reynolds [9] models the perception of individuals with three different 74 

layers, namely a locomotion layer, a steering layer and an action selection layer. Musse and 75 

Thalmann [10] developed a human crowd behaviour model, consisting of a random 76 

behavioural model, which can be described by a few parameters. In [11], a personality model 77 

is mapped into a simulation model. Taking this a step further, Lerner [12] uses tracking from 78 

video data to obtain possible movements and trajectories. As these models have to calculate 79 

the new position of each pedestrian according to a complex set of rules in every time step, 80 

they are very computationally intensive and are capable of simulating only few pedestrians in 81 

real time. Another, faster way to assign individual behaviour is to use a navigation graph with 82 

different routing algorithms according to the individuals’ preference. Since the objective is to 83 

simulate a large crowd in a large area in real time, the latter approach has been chosen. 84 

Combining a microscopic layer with such graphs or networks was proposed by [13]. Here, a 85 

continuous microscopic model is used as operational model, i.e. to model the microscopic 86 

pedestrians’ movement, in combination with a tactical model implemented as a network, for 87 

pedestrians’ route assignment. The network consists of uniform square cells, which are 88 
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connected by links. [14] combines an agent-based approach with a macroscopic network. In 89 

spite of taking cost functions and optimizing the flow, agents move through this network 90 

choosing the next vertex based on different criteria. The authors call this algorithm route 91 

choice self organisation (RCSO). However, both approaches do not focus on the derivation of 92 

a graph from a given geometry but take either such a network as given or simply divide space 93 

into uniform squares, the latter resulting in unrealistic wayfinding behaviour. 94 

In contrast, this paper describes a technique for generating navigation graphs based on 95 

navigation points, which precisely reflect human navigational behaviour. At the same time, 96 

the graph consists of a minimum number of edges and vertices, enabling a high computational 97 

efficiency of the corresponding navigation algorithms. 98 

A variety of alternative techniques have been proposed to create a navigation graph or 99 

roadmap from a given topography. Most of these techniques have been developed in the field 100 

of Robotics. [15] gives a good overview of the most common techniques of space 101 

decomposition. [16] describes all kind of planning algorithms, including motion planning 102 

algorithms. One technique for deriving a roadmap is to divide the space with Generalized 103 

Voronoi Diagrams [17] and to use the resulting lines as graph edges and the intersection 104 

points of the lines as graph nodes. The resulting graph consists of edges which are equidistant 105 

to each obstacle. A similar approach has been proposed in [18]: Here, agents navigate along 106 

combined Voronoi diagrams, which include not only obstacles but other moving agents as 107 

well. The intersection of the regions of the first order Voronoi diagram with the second order 108 

Voronoi diagram forms the navigation graph. The authors call this graph Multi-agent 109 

Navigation Graph (MaNG), which provides maximal clearance for each agent. This kind of 110 

graphs is suitable for steering robots, however they do not reflect human navigational 111 

cognition and are therefore of only limited applicability for pedestrian simulation. 112 

Approaches which are capable to more accurately model human perception and cognition are 113 

based on visibility graphs [15]. A visibility graph consists of vertices defined by sources, 114 

destinations and obstacles within a scenario. Two nodes are connected if they are in line-of-115 

sight. To avoid redundant edges, a reduced visibility graph can be constructed by categorizing 116 

edges into supporting and separating edges [15]. In [19], such a visibility graph is used to 117 

navigate agents through a scenario. Based on this visibility graph, a pre-computed shortest 118 

path map is stored. If other moving agents are located on the pre-calculated path, a 119 

recalculation has to be performed. Since this recalculation is very computational intensive, the 120 

focus of Choset’s work lies on the approximation of agents’ positions in order to minimize the 121 

number of recalculations by excluding agents which are outside the viewable region of the 122 

subject under examination. Gloor et al. [20] propose to construct a visibility graph by placing 123 

nodes at a certain distance from convex corners. This approach prevents simulated pedestrians 124 

from walking too close around a corner, but it also produces many nodes, which are 125 

dispensable.  126 

In this paper we describe a novel navigation graph generation algorithm which is based on the 127 

idea of placing nodes at a certain distance from each corner, but discards all superfluous 128 

nodes. Furthermore, the resulting graph is not as dense as a common visibility graph because 129 

geometrically close edges are omitted.  130 

3   Model setup 131 

An important requirement is that the simulator is able to run in real time, as the simulator is 132 

designed as a training tool. To achieve such high performance, a cellular automaton model for 133 

space discretization in combination with a conservative force model [21] has been chosen, i.e. 134 

a model based on energy potentials that describe the influencing forces on each pedestrian 135 
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(attracting force of the destination, repellent forces of obstacles as well as the repellent forces 136 

of other pedestrians). Combining the cellular automaton with these forces, the navigation of 137 

single pedestrians can be modelled efficiently [22]. This combination makes it possible to 138 

quickly update pedestrians’ positions while taking into account the interactions between them. 139 

However, using this approach key aspects of pedestrian movement are neglected, namely the 140 

individual navigational behaviour of pedestrians as well as the large-scale orientation of 141 

pedestrians. Using only the cellular automaton model, the simulated pedestrians appear as 142 

being short-sighted, since only neighbouring cells are considered in each update step. 143 

In order to take into account different degrees of knowledge of efficient routes towards a 144 

destination as well as individual navigational behaviour (e.g. keep as close as possible to the 145 

direction to the destination, choose routes with less turns, etc.) without losing computational 146 

speed, the basic model is extended in our proposal by a navigation graph. Pedestrians move 147 

according to the cellular automaton from one graph node to the next. The graph models the 148 

large-scale orientation of pedestrians. Thus the pedestrians’ decisions can now also be 149 

influenced by events at the edges. An overview of the hierarchical setting of the model is 150 

illustrated in Figure 1. Using this graph approach, different route choice behaviours can be 151 

implemented and thus different pedestrian types (e.g. pedestrians who are / are not familiar 152 

with a particular environment).  153 

The navigation graph is based on the concept of visibility graphs. However, our method 154 

differs from the method described in [15] and [20]. First, navigation points are constructed 155 

that will serve as graph vertices and then these vertices are connected according to criteria 156 

depending on the location of the sources and destinations of a scenario.  157 

 158 
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navigation graph
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Model setup

 159 

Figure 1 Hierarchical setup of simulation model 160 

4   Construction of a navigation graph from a geometric scenario setup 161 

During the simulation, pedestrians are routed from vertex to vertex on the navigation graph, 162 

until they reach their destination. Thus, one requirement for a navigation graph is that the 163 

graph represents real routes of pedestrians as closely as possible. The Generalized Voronoi 164 

Diagram (GVD) forms a graph with equidistant edges from each obstacle. By taking a GVD 165 

as a navigation graph, pedestrians would walk equidistant to all obstacles. This would result 166 
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in large detours. With visibility graphs, the resulting routes are close to obstacle corners and 167 

thus reflect human behaviour more realistically. Hence, we rely on visibility graphs as 168 

navigation graphs.  169 

The derivation of the visibility graph from a given geometry is achieved in multiple steps, 170 

which are described in detail below. 171 

 172 

4.1 Derivation of navigation points (vertices)   173 

In the first step, the geometry of a given simulation scenario is examined and navigation 174 

points are placed around each obstacle at each convex corner. Each of these points will 175 

correspond to a vertex in the visibility graph.  176 

Since there are two different types of obstacles – one-dimensional (e.g. walls) and two-177 

dimensional obstacles (e.g. houses) – placement of navigation points has to distinguish 178 

between these two cases, as illustrated in Figure 2. 179 

 180 
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wall navigation points

obstacle
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 181 

Figure 2 Navigation point placement for walls and obstacles 182 

Depending on the obstacles’ geometry, an overlap of two neighbouring navigation points may 183 

occur or a corner point is not visible from the corresponding corner. As a result different 184 

consistency checks on navigation points are carried out: 185 

 One criterion for a valid navigation point is that the imaginary sight line between the point 186 

and the corresponding obstacle corner is not obstructed. If this check fails, the 187 

corresponding points are re-located in such a way that they fulfil this criterion. An 188 

illustration is given in Figure 3. If the distance between two obstacles is smaller than the 189 

length of a cell of the cellular automaton (i.e. no pedestrians is able to walk between the 190 

two obstacles), no navigation point is placed. The exact algorithm is described in [23] and 191 

[24].  192 

 To avoid redundant points, i.e. points which are located geometrically close to one 193 

another, a second check is performed. If two or more nodes are located close together, the 194 

simplest approach would be to merge them into one single point. But, as can be seen in 195 

Figure 4 (left), this may result in non-reachable destinations, since the criterion of 196 

visibility between two nodes is not fulfilled (see Section 4.2 Connecting vertices: a cone-197 

based search methodfor more details). To accommodate this, the following check is 198 

implemented: for each navigation point, the corresponding obstacle corner is stored. If 199 

another corner point lies closer to the corresponding corner than the navigation point 200 
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itself, the corresponding corner is added to this point. If the same is true vice versa, then 201 

both points are merged into a new navigation point. This ensures that there is always a 202 

way around each corner. An example of this approach is shown in Figure 4 (right).  203 

 204 
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 205 

Figure 3 Replacement of navigation points so that there are no obstructions between the point and 206 
corresponding obstacle corner 207 
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 209 

Figure 4 Left: If all geometrically close points are merged, this can lead to non-visibility graphs: as a 210 
result, there is no connection around a corner. Right: Correct merging of two adjacent nodes by checking 211 
the corresponding corners of each node; only if two nodes have the same corresponding corners are they 212 

merged into a new, single point. 213 

4.2 Connecting vertices: a cone-based search method   214 

Once all navigation points have been created, these points are connected according to certain 215 

rules. The first rule is that two vertices can only be connected if there is a sight line between 216 

them. This is the definition of a visibility graph and a basic requirement for the routing 217 

algorithms, since the Euclidean distance is used to determine edge weights.    218 

The objective is to construct a directed graph, which is able to model human navigation 219 

behaviour in as much detail as possible. However, the inclusion of all possible navigation 220 

options, i.e. all possible edges fulfilling the criterion of visibility, would result in a very dense 221 

navigation graph, which would dramatically decrease computational efficiency. Since the aim 222 
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is to simulate large crowds in real time, the resulting graph should cover major aspects of 223 

navigation decisions while at the same time being as sparse as possible. To obtain a sparse 224 

graph, redundant edges are avoided. Redundant edges are those that form a loop, i.e. do not 225 

lead to the destination, as well as those that are geometrically located very close to each other. 226 

An example of such edges is shown in Figure 5.  227 
 228 
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 229 

Figure 5. Redundant edges:  230 
left, geometrically close edges; right, edges that lead pedestrians back to the source. 231 

A spatial index, namely an R*-Tree [25] is used to make visibility graphs more sparse. Using 232 

this data structure, nearest neighbours of a point can be found efficiently in a search space that 233 

exists of one- and two-dimensional objects such as polygons and points. In [24] we propose to 234 

always connect a node with its three nearest neighbour nodes via an edge. However, this 235 

procedure is not sufficiently flexible for arbitrary geometries since cases can occur where 236 

individual vertices have more than three neighbours that need to be connected in order to 237 

cover the full directional range. One example is illustrated in Figure 6: the picture on the left 238 

shows the complete visibility graph, the picture in the centre the resulting edges from the 239 

former method: here, the source is connected with the three vertices inside the red circles, but 240 

the vertices to the far left and far right are not connected. The picture on the right shows the 241 

result of our improved method: the connecting edges lead in every direction. This improved 242 

method is outlined in more detailed below. 243 

 244 
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 245 

Figure 6: Examples of a geometry, where the algorithm presented in [24] would not find all important 246 
neighbouring vertices of a source. Left: a complete visibility graph; middle: connecting the three nearest 247 

vertices; right: resulting edges for cone-based method. 248 

The algorithm consists of a cone-based search for finding the most relevant neighbours to be 249 

connected. The basic idea is that the angle between two outgoing edges has to be larger than a 250 
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certain threshold. If the angle is smaller, the longer edge is discarded. The algorithm works as 251 

follows: The graph is initialized by inserting all navigation points as vertices. It starts with an 252 

arbitrary vertex vi. For this vertex, a rectangular search area is defined, such that the inspected 253 

vertex vi as well as all destinations of the given scenario are located inside that area. 254 

Furthermore, if any obstacle obstructs the sight lines between vi and each of the reachable 255 

destinations, the search area is extended until it encompasses these obstacles ( 256 

Figure 9a). Inside this area, a search is conducted for all vertices within sight of vi, sorted 257 

according to their distance to vi ( 258 

Figure 9b). An edge is created between the closest vertex and vi. Starting from vi, a cone-259 

shaped area is defined around the edge with an angle αcone. This cone-shaped area ( 260 

Figure 9c) is then subtracted from the search area and the next vertex chosen with the smallest 261 

distance to the vertex vi. The same procedure is conducted with this vertex, i.e. this vertex is 262 

connected and the corresponding cone-shaped area removed from the search area. The 263 

resulting edges of vi are shown in  264 

Figure 9d. The algorithm is repeated for every graph vertex. Figure 7 shows the pseudo code 265 

of the algorithm.  266 

 267 

 268 

Figure 7: Pseudo-code for graph generation algorithm 269 

The number of the resulting edges can be varied by changing the value of the angle αcone, 270 

which defines the cone-shaped sections. Larger angles correspond to sparser graphs, since 271 

larger cones are removed from the search area. In Figure 8, different graphs for different 272 

values αcone are illustrated. For all further examples, we chose an angle αcone= π/20.  273 

  274 
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 275 

Figure 8: Resulting graphs for different alpha values: Left: αcone= π/15; Middle: αcone= π/20; Right: αcone= 276 
π/25 277 

The resulting graph provides at least one route from each source to every destination if there 278 

is one. This follows directly from the algorithm: by definition, there is at least one navigation 279 

point in the line of sight in each search area. Thus each vertex is connected to at least one 280 

other vertex. This connected vertex refers either to the destination itself or it is connected to a 281 

vertex which leads around an obstacle that obstructs the sight line between this vertex and the 282 

destination. Accordingly, there is either a path from the start vertex to the destination or no 283 

connection at all between source and destination. Since the search is directed, the order of the 284 

inspected vertices can be chosen arbitrarily, but the resulting graph always remains the same. 285 
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    288 
Figure 9: Steps connecting node vi with neighbours: (a) defined search area (b) all vertices visible from vi 289 

(c) cone-shaped section for excluding vertices in same direction (d) resulting edges from vertex vi 290 
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4.3 Connectivity check   291 

An essential feature of the visibility graph is to provide at least one route leading from all 292 

sources to all assigned destinations. A check is undertaken to ascertain if there are any 293 

vertices that are not connected to any source or destination. This is likely because the 294 

algorithm inspects every given navigation point (i.e. vertex). These vertices and their 295 

corresponding edges can be discarded. To remove these, the connected components are first 296 

identified within the graph [26]. This is done using a breadth-first iterator which starts from 297 

each source vertex and checks if at least one destination can be reached. If so, the source and 298 

destination belong to a connected component and all vertices of this connected component are 299 

going to be kept.  300 

Figure 10 shows an example of a graph consisting of two connected sets, but only one set 301 

contains source and destination: the second set can, therefore, be discarded. 302 

Note, that by applying this technique the resulting graph is no longer generic but directly 303 

depends on the locations of sources and destinations within the scenario. This reduced graph 304 

improves the performance of the route-finding algorithms.  305 

 306 
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 307 

Figure 10: A graph with two connected sets (left) and a graph with only one connected set that contains 308 
source and destination (right) 309 

5 Application areas for the extended plain simulation with a navigation 310 

graph  311 

Using this visibility graph as a navigation graph, more complex situations can be modelled as 312 

well as different pedestrian behaviours with respect to large-scale orientation. The pedestrians 313 

of the simulation are no longer shortsighted, but can react to situations which occur further 314 

away (such as congestion). An example of using this graph to assist security staff can be 315 

found in [27]. In the following, we introduce the mapping of different walking behaviours 316 

using this graph. 317 
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5.1 Modelling different pedestrian behaviour 318 

This graph can be used to model individual pedestrian behaviour. There are different 319 

algorithms, which take into account the different behaviour of simulated pedestrians.  320 

Pedestrians are categorised into three different main types:  321 

 Pedestrians who are very familiar with the environment and will choose an alternative 322 

route if their current route is very crowded.  323 

 Pedestrians with no detailed local knowledge who only know the direction of the 324 

destination but no details about the specific route.  325 

 Pedestrians who are not familiar with the location and make their decisions based on 326 

local criteria: The choice of the next turn depends on the characteristics of the 327 

outgoing edges (long edges vs. short edges) and the route choices of other pedestrians.  328 

 329 

Pedestrians with detailed local knowledge are modelled using the Fastest Path Algorithm. 330 

The fastest path is calculated using the Dijkstra Shortest Path Algorithm [28] with dynamic 331 

edge weights, taking travelling times instead of distances as edge weights. Hence the assigned 332 

edge weights can change over time. We derive this travel time from the density on an edge 333 

and the corresponding mean velocity. A detailed description of the algorithm can be found in 334 

[23]. 335 

 336 

Pedestrians, who employ an air-line (as the crow flies) distance between their current location 337 

and the destination for navigating through a scenario they are not familiar with, are modelled 338 

by applying a variant of the A* Algorithm [29]. The basic idea of this heuristic algorithm is to 339 

take given information into account and combine it with assumptions about missing 340 

information. In our case, the given knowledge is the direction to the destination (the exact 341 

route is outside the field of vision) and the current distance to the next navigation point, i.e. 342 

vertex (the visibility graph ensures that the information is always available).  343 

 344 
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pedestrian air line

shortest path
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  345 

Figure 11 Example for the heuristic A* algorithm: due to the air-line estimation, the algorithm does not 346 
find the shortest path, but the path that most approximates the air-line to the destination 347 
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To implement this, the algorithm uses real distance edge weights (or as an alternative travel 348 

times) for the known part of the route and an additional heuristic measure for the unknown 349 

part. This unknown part refers to the air-line distance to the destination to estimate the 350 

unknown part. Figure 11 shows an example that illustrates the basic idea of the algorithm. 351 

The navigation behaviour of the third type of pedestrians is modelled by a Probabilistic 352 

Choice Algorithm. With this algorithm, local-based decisions as well as non-deterministic 353 

route-choice behaviour of pedestrians are modelled. Furthermore, it reflects the “trail 354 

behaviour” of pedestrian, i.e. the tendency to follow paths chosen by other pedestrians. The 355 

algorithm is implemented according to [30]:  356 

Different values of an edge, such as its derivation from the air-line to the destination as well 357 

as the length of the edge and improvement of distance to destination, are totalled. This 358 

combined value is its edge weight. At each node, the weight of each outgoing edge is scaled 359 

to a value between 0 and 1, such that the sum of all edge weights is 1. Using roulette wheel 360 

selection [31], one of the possible outgoing edges is chosen: The higher the value of an edge, 361 

the higher the probability that it is selected.  362 

To map the “trail behaviour”, each chosen edge is assigned an amount of pheromone, which 363 

evaporates over time according to Ant Colonization Optimization algorithms [32]. 364 

A detailed definition including validation of individual behaviour as well as the description of 365 

the algorithms can be found in [33]. 366 

This algorithm differs from the Route Choice Self Organization (RSCO) algorithm proposed 367 

in [14] in such way, that Teknomo defines three different principles for edge selection: the 368 

permission (whether an edge is accessible), the interaction (avoidance of crowded edges) and 369 

navigation (relative enhancement to the destination). The Probabilistic Choice Algorithm 370 

does not take into account any densities on the edges as a parameter for avoiding congested 371 

edges, but instead it models the trail behaviour by means of evaporating pheromone, meaning 372 

that pedestrians, who are unfamiliar with the location, will choose an edge more likely, if 373 

there are already pedestrians walking along this edge. Secondly and more importantly, in 374 

contrast to the RSCO algorithm the Probabilistic Choice Algorithm is not deterministic with 375 

respect to edge choice. 376 

5.2 Test case 377 

  378 

The developed graph generation method and navigation strategies have been applied on an 379 

example scenario shown in Figure 10 (right). Here, pedestrians walk from the lower left 380 

corner to the upper right corner within a room. Three obstacles are located inside this room. In 381 

total, 1200 pedestrians were simulated with a generation rate of 6 pedestrians per second. 382 

In a first simulation the graph layer was not used. Simulation runs using the navigation graph 383 

were then conducted: pedestrians walked according to the three algorithms Fastest Path, A* 384 

and Probabilistic Choice. The last simulation was based on a combination of all three 385 

algorithms. 386 

Figure 12 to Figure 16 show screenshots of the simulations at different points in time: 387 

Without using a graph, each simulated pedestrian takes the same route. As shown in Figure 388 

12, this results in significant congestion in front of the bottleneck of the right obstacle. This is 389 

because simulations without a navigation graph update a pedestrian’s position solely using the 390 

cellular automaton. During the simulation, all neighbouring cells are examined for each 391 

pedestrian at each time step, choosing the cell with the lowest potential value if it is not 392 
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occupied by either an obstacle or another pedestrian. This selection process is conducted until 393 

all pedestrians reach their destination. From this setup it is obvious that each pedestrian is 394 

short sighted and chooses a similar route to walk to his destination. The only varying factor is 395 

the number of pedestrians that walk the same way and occupy cells.   396 

Figure 13 shows the pedestrians walking according to the Fastest Path Algorithm. One can 397 

see a wider spread of routes resulting from the dynamic routing. To begin with, the fastest 398 

path is identical to the shortest path. After a while, the route becomes too crowded. The route 399 

south of the first obstacle becomes faster, since pedestrians taking the shortest route have to 400 

slow down in response to the intensity of its use. Later in the simulation, a third route 401 

becomes the fastest, as the last part of the two former routes are crowded on the last common 402 

segment.   403 

In Figure 14, the results of the A* Algorithm are illustrated. In spite of the results of the 404 

Fastest Path Algorithm, the most likely way to the destination is south of the left obstacle. 405 

This is explained by the fact that the lower route is located closer to the air-line to the 406 

destination. However, as with the Fastest Path Algorithm, the route becomes too crowded 407 

after a while and pedestrians start to walk on the west side of the left obstacle. This happens, 408 

since travel times are used as fixed edge weights instead of Euclidean distances. At some 409 

point, the bottleneck north of the right obstacle becomes crowded and pedestrians start to 410 

walk along the south of the right obstacle. 411 

The results of the Probabilistic Choice Algorithm are demonstrated in Figure 15. Initially, 412 

there is a wide spread of the pedestrians’ route choices, since edges are chosen by probability. 413 

After a while, the path north of both obstacles becomes more likely, due to greater pheromone 414 

deposition. Not taking into account the densities on the edges, the pattern seen in the plain 415 

simulation happens, namely congestion in front of the upper left corner of the right obstacle. 416 

This reflects exactly what was supposed to be modelled: if a person is not familiar with a 417 

place, he will most likely stay on his path, since he does not know alternative routes that lead 418 

to the destination. 419 

Each algorithm on its own maps only one kind of pedestrian behaviour. Combining all 420 

algorithms, the simulation produces the results shown in Figure 16. The number of 421 

pedestrians for each type is chosen according to a distribution rate, which has been derived by 422 

the experiment presented in [33], in which large scale orientation is investigated: Students are 423 

sent to a well-known location in the Munich city centre (Germany) without a map. On their 424 

return, they document the path they have chosen. Additionally, each participant fills out a 425 

questionnaire regarding way-finding behaviour and orientation. From the analysis of the 426 

documented paths and the questionnaire, a distribution rate for the different types of 427 

orientation has been derived.  428 

One can observe that no high densities occur at any location. Likewise, the different 429 

navigation behaviours seem to be reflected well, since one can identify the preferred routes of 430 

each algorithm.  431 

Nevertheless, the results of the experimental simulation need to be validated to ascertain how 432 

realistic they are. We can, however, clearly see that the simulation becomes more realistic 433 

when we apply a navigation graph, since unlikely congestions no longer occur. Realistic in 434 

this context means that assuming a certain distribution rate of the simulated pedestrians’ local 435 

knowledge as given, the simulation is able to reflect these different route choice behaviours 436 

accordingly.   437 



14 

 

   438 

Figure 12: Screenshot of a simulation of 1200 pedestrians walking from the lower left corner  439 
to the upper right corner without using a navigation graph  440 

after 63 seconds (left), 263 seconds (middle) and 284 seconds (right).  441 

      442 

   443 

Figure 13: Screenshot of the same simulation using a navigation graph with Fastest Path Algorithm  444 
after 63 seconds (left), 263 seconds (middle) and 284 seconds (right) 445 

       446 

 447 

Figure 14: Screenshot of the same simulation using a navigation graph with A* algorithm  448 
after 63 seconds (left), 263 seconds (middle) and 284 seconds (right) 449 

        450 

 451 

Figure 15 Screenshot of the same simulation using a navigation graph with Probabilistic Choice after 63 452 
seconds (left), 263 seconds (middle) and 284 seconds (right) 453 
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       454 

Figure 16 Screenshot of the same simulation using a combination of the above algorithms  455 
after 63 seconds (left), 263 seconds (middle) and 284 seconds (right) 456 

5.3 Real-world application scenario 457 

To illustrate the application of the developed simulation approach, we are discussing a real-458 

world application scenario. Here, an architect or engineer responsible for the layout of an 459 

office building is using the graph-extended pedestrian simulation to investigate different 460 

options with respect to the number and localisation of (emergency) exits. The office building 461 

has 4 floors. The investigated floor plan comprises 41 offices (Figure 17). For each office, the 462 

number of expected occupants is known. In the first layout option, there is one exit stair 463 

located on the west side and another one located on the east side (see Figure 17). 464 

 465 

Figure 17 Floor plan of the investigated office building with 41 offices 466 

By means of the methodology introduced in Section 4, a navigation graph is automatically 467 

generated for the given floor plan. The result is depicted in Figure 18. The scenario has been 468 

simulated for a total number of 161 pedestrians. At the start of the simulation they are placed 469 

according to the given number of occupants for each individual room. Each exit stair has been 470 
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assigned a suitable capacity. Each pedestrian is routed towards the exit which is closest to 471 

his/her original position.  472 

 473 

Figure 18 The automatically generated navigation graph. 474 

 475 

Figure 19 Modified floor plan: An additional stair has been placed at the central position. 476 
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The simulation results, depicted in Table 1 left-hand side, show that this setup results in 477 

congestion in front of the stair. In an emergency situation, such constellations must be 478 

avoided.  479 

For this reason, in the second option an additional stair has been placed in the floor at a 480 

central position (Figure 19). Again, the navigation graph is automatically generated. The 481 

results of the subsequent simulation run are depicted in Table 1, right hand side. It can be seen 482 

that in this option, no congestions occur and thus a critical situation is avoided. 483 

The engineer can take these simulation results into account for the final decision regarding the 484 

number and position of the exit stairs. The automated navigation graph generation method 485 

introduced in this paper provides the possibility for a quick and effortless evaluation of floor 486 

plan alternatives with respect to evacuation situations. 487 

 488 

Time Option 1: Two exit stairs Option 2: Three exit stairs 

After 15 

seconds 

  

After 30 

seconds 

  

After 60 

seconds 

  

Table 1 Results of the simulation: The left column depicts the simulation results for the two exit stairs 489 
option, the right columns shows the results for the three exit stairs option. Whereas for the first option 490 

critical congestion occur during an evacuation, they do not so for the second option. 491 
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6   Discussion 492 

Engineers responsible for the layout of public buildings and large event areas have to consider 493 

the movement and behaviour of pedestrian crowds in order to prevent critical situations. 494 

Recently, computational simulations have been increasingly used to predict the dynamics of 495 

pedestrian crowds. However, most of the available simulation systems either rely on rather 496 

simple pedestrian navigation models, which reflect human behaviour only in a very limited 497 

manner, or are computationally very expensive. In this paper, a sophisticated graph-based 498 

approach has been presented, which allows integrating advanced navigational behaviour with 499 

computationally efficient simulations.  500 

The implementation of this approach includes an advanced technique for generating sparse 501 

navigation graphs from a given spatial layout of the scenario under investigation. This graph 502 

is a subset of a standard visibility graph. It can be used to not only map individual pedestrian 503 

behaviour in pedestrian simulations, but also to model the large-scale orientation of 504 

pedestrians. 505 

The advantage of using such a navigation graph instead of using an agent-based approach is 506 

an enormous reduction in computational effort. Furthermore, a scenario can be easily changed 507 

during runtime. Closing doors or making routes non-accessible, for example due to fire, can 508 

be modelled simply by deleting the corresponding edges.  509 

The paper introduces a new method for constructing a navigation graph from a given 510 

geometry by reducing a visibility graph with a cone-based search method. The main 511 

advantage of the method is that the resulting graph is very sparse. Unlike standard visibility 512 

graphs, geometrically close edges are merged into a single edge, while at the same time 513 

maintaining broad spatial coverage for ensuring  a better modelling of navigational behaviour. 514 

Furthermore, all vertices are discarded that are not part of any connected component with 515 

sources as well as destinations.  516 

To measure the quality of the resulting graph, a next step in our research will be to define a 517 

metric and evaluate the navigation graph according to this metric in comparison to existing 518 

graphs. 519 

To demonstrate the advantage of a graph-extended simulation, the results of a set of sample 520 

simulation scenarios have been presented. Different levels of local knowledge are modelled 521 

using three different routing algorithms: Pedestrians who are familiar with a location are 522 

simulated using a Fastest Path Algorithm. Pedestrians with partial knowledge of a location 523 

are modelled according to the heuristic A* Algorithm. The movements of pedestrians with no 524 

local knowledge are modelled using the Probabilistic Choice Algorithm – a derivation of an 525 

Ant Colonization Algorithm. The application of these three algorithms within the simulation 526 

improved the simulation results significantly, since artificial congestions produced by the 527 

static cellular automaton model could be eliminated. Furthermore, a wide range of diverging 528 

route choice behaviour is realized, i.e. not just the shortest routes are taken by the simulated 529 

persons, but also non-optimal ones, which reflects human navigation more naturally. In 530 

addition to the modelling of different route choices, the application of the navigation graph 531 

resolves the problem of short-sightedness in conventional simulation models and makes it 532 

possible to consider the pedestrians’ sense of large-scale orientation.     533 

In future research we plan to continue validating the simulation results to ensure the quality of 534 

the different routing algorithms. According to these validation results, we will further improve 535 

the algorithm and incorporate interactions between the different types of pedestrians. 536 

 537 

 538 

539 
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