
1

Generation and use of sparse navigation graphs 1

for microscopic pedestrian simulation models 2

Angelika Kneidl
1
, André Borrmann

1
, Dirk Hartmann

2
 3

1
Computational Modelling and Simulation Group, Technische Universität München, Germany 4

2
Siemens AG, Corporate Technology, Germany 5

kneidl@tum.de 6
 7
 8

Abstract. For the spatial design of buildings as well as for the layout of large event areas, the 9
crowd behaviour of the future users plays a significant role. The designing engineer has to make 10
sure that potentially critical situations, such as high densities in pedestrian crowds, are avoided in 11
order to guarantee the integrity, safety and comfort of the users. To this end, computational 12
pedestrian dynamics simulations have been developed and are increasingly used in practice. 13
However, most of the available simulation systems rely on rather simple pedestrian navigation 14
models, which reflect human behaviour only in a limited manner. This paper contributes to 15
enhancing pedestrian simulation models by extending a microscopic model by a navigation graph 16
layer serving as a basis for different routing algorithms. The paper presents an advanced method 17
for the automated generation of a spatially embedded graph which is on the one hand as sparse as 18
possible and on the other hand detailed enough to be able to serve as a navigation basis. Three 19
different pedestrian types were modelled: pedestrians with good local knowledge, pedestrians with 20
partly local knowledge and those without any local knowledge. The corresponding algorithms are 21
discussed in detail. To illustrate how this approach improves on simulation results, an example 22
scenario is presented to demonstrate the difference between results with and without using a graph 23
as constructed here. Another example shows the application of the extended simulation in a real-24
world engineering context. The article concludes with an outlook of further potential application 25
areas for such navigation graphs. 26

Keywords: navigation graph, visibility graph, microscopic pedestrian simulation, A* Algorithm, 27
cellular automaton. 28
 29

1 Introduction 30

For the spatial design of buildings as well as for the layout of large event areas, the crowd 31

behaviour of the future users plays a very important role. The designing engineer has to make 32

sure that potentially critical situations, such as high densities of pedestrian crowds, are 33

avoided in order to guarantee the integrity, safety and comfort of the users. In today’s 34

engineering practice, rough approximate calculations are used to determine the space required 35

by pedestrian streams. However, these methods are neither able to capture the precise 36

geometric setup of the investigated scenario nor can they consider the complex way-finding 37

and walking behaviour of individual pedestrians. Accordingly, local phenomena are 38

disregarded and potentially critical situations are easily ignored. To overcome these 39

shortcomings, computational pedestrian dynamics simulations have been developed and are 40

increasingly used in practice. 41

mailto:kneidl@tum.de

2

However, most of the available simulation systems systems either rely on rather simple 42

pedestrian navigation models, which reflect real human behavior only in a very limited 43

manner, or are computationally expensive. This paper contributes to enhancing 44

computationally cheap pedestrian simulation models by presenting a sophisticated graph-45

based approach for modelling navigational behaviour of humans. This allows engineers and 46

architects to quickly and effortlessly evaluate different layout options. The implementation of 47

this approach includes an advanced technique for generating sparse navigation graphs from a 48

given spatial layout of the scenario under investigation. 49

2 Related work 50

The simulation of pedestrian crowds has been widely examined using a variety of approaches 51

that focus on different details depending on the objective of the simulation [1]. For example, 52

to determine minimum evacuation times for buildings or areas, macroscopic models are 53

typically used. These focus on the overall situations of the simulated scenario and are based 54

on mean values. Examples of such models are network flow models [2], fluid-dynamic 55

models [3] or gas kinetic models [4]. To simulate the individual behaviour of pedestrians on 56

the other hand, microscopic models have been developed. These models consider the 57

movements of each individual and focus on the interaction between individuals. Force models 58

(e.g. Social Force Model by Helbing and Molnár [5]) as well as cellular automata [6] or 59

agent-based models [7] belong to this category. 60

One central aspect of microscopic pedestrian simulation is to simulate the different movement 61

strategies of individuals. Pelechano and Malkawi [8] categorize “virtual human technologies” 62

into different features, such as appearance, function, time, autonomy and individuality. 63

The focus of this contribution lies on the latter: to differ between individual behaviour as a 64

factor of sex and age, and – the authors’ main focus – sense of orientation and familiarity with 65

a location. The aim is to simulate large pedestrian crowds while taking into account different 66

movement behaviours. An important constraint considered for the development of the 67

corresponding algorithms is the requirement of high computational performance which allows 68

for real-time simulations even on standard hardware. This provides the possibility to use the 69

simulator as training facility for preparing and training the security staff of major events. – a 70

feature strongly demanded by security authorities. 71

In order to assign individual behaviour to pedestrians, agent-based models are common. 72

These assign different behavioural patterns to each individual, which results in different 73

movement behaviour. Reynolds [9] models the perception of individuals with three different 74

layers, namely a locomotion layer, a steering layer and an action selection layer. Musse and 75

Thalmann [10] developed a human crowd behaviour model, consisting of a random 76

behavioural model, which can be described by a few parameters. In [11], a personality model 77

is mapped into a simulation model. Taking this a step further, Lerner [12] uses tracking from 78

video data to obtain possible movements and trajectories. As these models have to calculate 79

the new position of each pedestrian according to a complex set of rules in every time step, 80

they are very computationally intensive and are capable of simulating only few pedestrians in 81

real time. Another, faster way to assign individual behaviour is to use a navigation graph with 82

different routing algorithms according to the individuals’ preference. Since the objective is to 83

simulate a large crowd in a large area in real time, the latter approach has been chosen. 84

Combining a microscopic layer with such graphs or networks was proposed by [13]. Here, a 85

continuous microscopic model is used as operational model, i.e. to model the microscopic 86

pedestrians’ movement, in combination with a tactical model implemented as a network, for 87

pedestrians’ route assignment. The network consists of uniform square cells, which are 88

3

connected by links. [14] combines an agent-based approach with a macroscopic network. In 89

spite of taking cost functions and optimizing the flow, agents move through this network 90

choosing the next vertex based on different criteria. The authors call this algorithm route 91

choice self organisation (RCSO). However, both approaches do not focus on the derivation of 92

a graph from a given geometry but take either such a network as given or simply divide space 93

into uniform squares, the latter resulting in unrealistic wayfinding behaviour. 94

In contrast, this paper describes a technique for generating navigation graphs based on 95

navigation points, which precisely reflect human navigational behaviour. At the same time, 96

the graph consists of a minimum number of edges and vertices, enabling a high computational 97

efficiency of the corresponding navigation algorithms. 98

A variety of alternative techniques have been proposed to create a navigation graph or 99

roadmap from a given topography. Most of these techniques have been developed in the field 100

of Robotics. [15] gives a good overview of the most common techniques of space 101

decomposition. [16] describes all kind of planning algorithms, including motion planning 102

algorithms. One technique for deriving a roadmap is to divide the space with Generalized 103

Voronoi Diagrams [17] and to use the resulting lines as graph edges and the intersection 104

points of the lines as graph nodes. The resulting graph consists of edges which are equidistant 105

to each obstacle. A similar approach has been proposed in [18]: Here, agents navigate along 106

combined Voronoi diagrams, which include not only obstacles but other moving agents as 107

well. The intersection of the regions of the first order Voronoi diagram with the second order 108

Voronoi diagram forms the navigation graph. The authors call this graph Multi-agent 109

Navigation Graph (MaNG), which provides maximal clearance for each agent. This kind of 110

graphs is suitable for steering robots, however they do not reflect human navigational 111

cognition and are therefore of only limited applicability for pedestrian simulation. 112

Approaches which are capable to more accurately model human perception and cognition are 113

based on visibility graphs [15]. A visibility graph consists of vertices defined by sources, 114

destinations and obstacles within a scenario. Two nodes are connected if they are in line-of-115

sight. To avoid redundant edges, a reduced visibility graph can be constructed by categorizing 116

edges into supporting and separating edges [15]. In [19], such a visibility graph is used to 117

navigate agents through a scenario. Based on this visibility graph, a pre-computed shortest 118

path map is stored. If other moving agents are located on the pre-calculated path, a 119

recalculation has to be performed. Since this recalculation is very computational intensive, the 120

focus of Choset’s work lies on the approximation of agents’ positions in order to minimize the 121

number of recalculations by excluding agents which are outside the viewable region of the 122

subject under examination. Gloor et al. [20] propose to construct a visibility graph by placing 123

nodes at a certain distance from convex corners. This approach prevents simulated pedestrians 124

from walking too close around a corner, but it also produces many nodes, which are 125

dispensable. 126

In this paper we describe a novel navigation graph generation algorithm which is based on the 127

idea of placing nodes at a certain distance from each corner, but discards all superfluous 128

nodes. Furthermore, the resulting graph is not as dense as a common visibility graph because 129

geometrically close edges are omitted. 130

3 Model setup 131

An important requirement is that the simulator is able to run in real time, as the simulator is 132

designed as a training tool. To achieve such high performance, a cellular automaton model for 133

space discretization in combination with a conservative force model [21] has been chosen, i.e. 134

a model based on energy potentials that describe the influencing forces on each pedestrian 135

4

(attracting force of the destination, repellent forces of obstacles as well as the repellent forces 136

of other pedestrians). Combining the cellular automaton with these forces, the navigation of 137

single pedestrians can be modelled efficiently [22]. This combination makes it possible to 138

quickly update pedestrians’ positions while taking into account the interactions between them. 139

However, using this approach key aspects of pedestrian movement are neglected, namely the 140

individual navigational behaviour of pedestrians as well as the large-scale orientation of 141

pedestrians. Using only the cellular automaton model, the simulated pedestrians appear as 142

being short-sighted, since only neighbouring cells are considered in each update step. 143

In order to take into account different degrees of knowledge of efficient routes towards a 144

destination as well as individual navigational behaviour (e.g. keep as close as possible to the 145

direction to the destination, choose routes with less turns, etc.) without losing computational 146

speed, the basic model is extended in our proposal by a navigation graph. Pedestrians move 147

according to the cellular automaton from one graph node to the next. The graph models the 148

large-scale orientation of pedestrians. Thus the pedestrians’ decisions can now also be 149

influenced by events at the edges. An overview of the hierarchical setting of the model is 150

illustrated in Figure 1. Using this graph approach, different route choice behaviours can be 151

implemented and thus different pedestrian types (e.g. pedestrians who are / are not familiar 152

with a particular environment). 153

The navigation graph is based on the concept of visibility graphs. However, our method 154

differs from the method described in [15] and [20]. First, navigation points are constructed 155

that will serve as graph vertices and then these vertices are connected according to criteria 156

depending on the location of the sources and destinations of a scenario. 157

 158

cellular automatontime and space

discretization

potential fields

navigation graph

locomotion layer

navigation layer

Model setup

 159

Figure 1 Hierarchical setup of simulation model 160

4 Construction of a navigation graph from a geometric scenario setup 161

During the simulation, pedestrians are routed from vertex to vertex on the navigation graph, 162

until they reach their destination. Thus, one requirement for a navigation graph is that the 163

graph represents real routes of pedestrians as closely as possible. The Generalized Voronoi 164

Diagram (GVD) forms a graph with equidistant edges from each obstacle. By taking a GVD 165

as a navigation graph, pedestrians would walk equidistant to all obstacles. This would result 166

5

in large detours. With visibility graphs, the resulting routes are close to obstacle corners and 167

thus reflect human behaviour more realistically. Hence, we rely on visibility graphs as 168

navigation graphs. 169

The derivation of the visibility graph from a given geometry is achieved in multiple steps, 170

which are described in detail below. 171

 172

4.1 Derivation of navigation points (vertices) 173

In the first step, the geometry of a given simulation scenario is examined and navigation 174

points are placed around each obstacle at each convex corner. Each of these points will 175

correspond to a vertex in the visibility graph. 176

Since there are two different types of obstacles – one-dimensional (e.g. walls) and two-177

dimensional obstacles (e.g. houses) – placement of navigation points has to distinguish 178

between these two cases, as illustrated in Figure 2. 179

 180

wall

wall navigation points

obstacle

obstacle

 181

Figure 2 Navigation point placement for walls and obstacles 182

Depending on the obstacles’ geometry, an overlap of two neighbouring navigation points may 183

occur or a corner point is not visible from the corresponding corner. As a result different 184

consistency checks on navigation points are carried out: 185

 One criterion for a valid navigation point is that the imaginary sight line between the point 186

and the corresponding obstacle corner is not obstructed. If this check fails, the 187

corresponding points are re-located in such a way that they fulfil this criterion. An 188

illustration is given in Figure 3. If the distance between two obstacles is smaller than the 189

length of a cell of the cellular automaton (i.e. no pedestrians is able to walk between the 190

two obstacles), no navigation point is placed. The exact algorithm is described in [23] and 191

[24]. 192

 To avoid redundant points, i.e. points which are located geometrically close to one 193

another, a second check is performed. If two or more nodes are located close together, the 194

simplest approach would be to merge them into one single point. But, as can be seen in 195

Figure 4 (left), this may result in non-reachable destinations, since the criterion of 196

visibility between two nodes is not fulfilled (see Section 4.2 Connecting vertices: a cone-197

based search methodfor more details). To accommodate this, the following check is 198

implemented: for each navigation point, the corresponding obstacle corner is stored. If 199

another corner point lies closer to the corresponding corner than the navigation point 200

6

itself, the corresponding corner is added to this point. If the same is true vice versa, then 201

both points are merged into a new navigation point. This ensures that there is always a 202

way around each corner. An example of this approach is shown in Figure 4 (right). 203

 204

Hindernisobstacle

wall
navigation

points

Hindernisobstacle

wall
navigation

points

 205

Figure 3 Replacement of navigation points so that there are no obstructions between the point and 206
corresponding obstacle corner 207

 208

search area for geometrically close nodes

new node

source

destination

no connection

possible !

obstacle obstacle

obstacle obstacle

obstacle obstacle

navigation points

navigation points

corresponding corner corresponding corner

search area for geometrically close nodes

a b

obstacle obstacle

obstacle obstacle

a b

corresponding corners of a == corresponding corners of b

new navigation

node

csource

destination

obstacle obstacle

 209

Figure 4 Left: If all geometrically close points are merged, this can lead to non-visibility graphs: as a 210
result, there is no connection around a corner. Right: Correct merging of two adjacent nodes by checking 211
the corresponding corners of each node; only if two nodes have the same corresponding corners are they 212

merged into a new, single point. 213

4.2 Connecting vertices: a cone-based search method 214

Once all navigation points have been created, these points are connected according to certain 215

rules. The first rule is that two vertices can only be connected if there is a sight line between 216

them. This is the definition of a visibility graph and a basic requirement for the routing 217

algorithms, since the Euclidean distance is used to determine edge weights. 218

The objective is to construct a directed graph, which is able to model human navigation 219

behaviour in as much detail as possible. However, the inclusion of all possible navigation 220

options, i.e. all possible edges fulfilling the criterion of visibility, would result in a very dense 221

navigation graph, which would dramatically decrease computational efficiency. Since the aim 222

7

is to simulate large crowds in real time, the resulting graph should cover major aspects of 223

navigation decisions while at the same time being as sparse as possible. To obtain a sparse 224

graph, redundant edges are avoided. Redundant edges are those that form a loop, i.e. do not 225

lead to the destination, as well as those that are geometrically located very close to each other. 226

An example of such edges is shown in Figure 5. 227
 228

obstacle

navigation points

source

source

destination

destination

wall

obstacle

navigation points

source

source

destination

destination

wall

 229

Figure 5. Redundant edges: 230
left, geometrically close edges; right, edges that lead pedestrians back to the source. 231

A spatial index, namely an R*-Tree [25] is used to make visibility graphs more sparse. Using 232

this data structure, nearest neighbours of a point can be found efficiently in a search space that 233

exists of one- and two-dimensional objects such as polygons and points. In [24] we propose to 234

always connect a node with its three nearest neighbour nodes via an edge. However, this 235

procedure is not sufficiently flexible for arbitrary geometries since cases can occur where 236

individual vertices have more than three neighbours that need to be connected in order to 237

cover the full directional range. One example is illustrated in Figure 6: the picture on the left 238

shows the complete visibility graph, the picture in the centre the resulting edges from the 239

former method: here, the source is connected with the three vertices inside the red circles, but 240

the vertices to the far left and far right are not connected. The picture on the right shows the 241

result of our improved method: the connecting edges lead in every direction. This improved 242

method is outlined in more detailed below. 243

 244

source

destination

graph edges

connecting

source in

visibility

graph

source

destination

graph edges

connecting

three nearest

neighbors

destination

source

destination

graph edges

connecting

source

 245

Figure 6: Examples of a geometry, where the algorithm presented in [24] would not find all important 246
neighbouring vertices of a source. Left: a complete visibility graph; middle: connecting the three nearest 247

vertices; right: resulting edges for cone-based method. 248

The algorithm consists of a cone-based search for finding the most relevant neighbours to be 249

connected. The basic idea is that the angle between two outgoing edges has to be larger than a 250

8

certain threshold. If the angle is smaller, the longer edge is discarded. The algorithm works as 251

follows: The graph is initialized by inserting all navigation points as vertices. It starts with an 252

arbitrary vertex vi. For this vertex, a rectangular search area is defined, such that the inspected 253

vertex vi as well as all destinations of the given scenario are located inside that area. 254

Furthermore, if any obstacle obstructs the sight lines between vi and each of the reachable 255

destinations, the search area is extended until it encompasses these obstacles (256

Figure 9a). Inside this area, a search is conducted for all vertices within sight of vi, sorted 257

according to their distance to vi (258

Figure 9b). An edge is created between the closest vertex and vi. Starting from vi, a cone-259

shaped area is defined around the edge with an angle αcone. This cone-shaped area (260

Figure 9c) is then subtracted from the search area and the next vertex chosen with the smallest 261

distance to the vertex vi. The same procedure is conducted with this vertex, i.e. this vertex is 262

connected and the corresponding cone-shaped area removed from the search area. The 263

resulting edges of vi are shown in 264

Figure 9d. The algorithm is repeated for every graph vertex. Figure 7 shows the pseudo code 265

of the algorithm. 266

 267

 268

Figure 7: Pseudo-code for graph generation algorithm 269

The number of the resulting edges can be varied by changing the value of the angle αcone, 270

which defines the cone-shaped sections. Larger angles correspond to sparser graphs, since 271

larger cones are removed from the search area. In Figure 8, different graphs for different 272

values αcone are illustrated. For all further examples, we chose an angle αcone= π/20. 273

 274

9

 275

Figure 8: Resulting graphs for different alpha values: Left: αcone= π/15; Middle: αcone= π/20; Right: αcone= 276
π/25 277

The resulting graph provides at least one route from each source to every destination if there 278

is one. This follows directly from the algorithm: by definition, there is at least one navigation 279

point in the line of sight in each search area. Thus each vertex is connected to at least one 280

other vertex. This connected vertex refers either to the destination itself or it is connected to a 281

vertex which leads around an obstacle that obstructs the sight line between this vertex and the 282

destination. Accordingly, there is either a path from the start vertex to the destination or no 283

connection at all between source and destination. Since the search is directed, the order of the 284

inspected vertices can be chosen arbitrarily, but the resulting graph always remains the same. 285

 286

vi

search area

source

(a)

destination_2

destination_1

vi

destination_1
source

destination_2

vertices in

line-of-sight

(b) 287
vi

destination_1
source

edge

(c)

destination_2

vertices in

line-of-sight

cone-shaped

area

destination_1
source

vi

connected

vertices from vi

(d)

destination_2

 288
Figure 9: Steps connecting node vi with neighbours: (a) defined search area (b) all vertices visible from vi 289

(c) cone-shaped section for excluding vertices in same direction (d) resulting edges from vertex vi 290

10

4.3 Connectivity check 291

An essential feature of the visibility graph is to provide at least one route leading from all 292

sources to all assigned destinations. A check is undertaken to ascertain if there are any 293

vertices that are not connected to any source or destination. This is likely because the 294

algorithm inspects every given navigation point (i.e. vertex). These vertices and their 295

corresponding edges can be discarded. To remove these, the connected components are first 296

identified within the graph [26]. This is done using a breadth-first iterator which starts from 297

each source vertex and checks if at least one destination can be reached. If so, the source and 298

destination belong to a connected component and all vertices of this connected component are 299

going to be kept. 300

Figure 10 shows an example of a graph consisting of two connected sets, but only one set 301

contains source and destination: the second set can, therefore, be discarded. 302

Note, that by applying this technique the resulting graph is no longer generic but directly 303

depends on the locations of sources and destinations within the scenario. This reduced graph 304

improves the performance of the route-finding algorithms. 305

 306

source

destination

obstacle

obstacle

source

destination

obstacle

obstacle

 307

Figure 10: A graph with two connected sets (left) and a graph with only one connected set that contains 308
source and destination (right) 309

5 Application areas for the extended plain simulation with a navigation 310

graph 311

Using this visibility graph as a navigation graph, more complex situations can be modelled as 312

well as different pedestrian behaviours with respect to large-scale orientation. The pedestrians 313

of the simulation are no longer shortsighted, but can react to situations which occur further 314

away (such as congestion). An example of using this graph to assist security staff can be 315

found in [27]. In the following, we introduce the mapping of different walking behaviours 316

using this graph. 317

11

5.1 Modelling different pedestrian behaviour 318

This graph can be used to model individual pedestrian behaviour. There are different 319

algorithms, which take into account the different behaviour of simulated pedestrians. 320

Pedestrians are categorised into three different main types: 321

 Pedestrians who are very familiar with the environment and will choose an alternative 322

route if their current route is very crowded. 323

 Pedestrians with no detailed local knowledge who only know the direction of the 324

destination but no details about the specific route. 325

 Pedestrians who are not familiar with the location and make their decisions based on 326

local criteria: The choice of the next turn depends on the characteristics of the 327

outgoing edges (long edges vs. short edges) and the route choices of other pedestrians. 328

 329

Pedestrians with detailed local knowledge are modelled using the Fastest Path Algorithm. 330

The fastest path is calculated using the Dijkstra Shortest Path Algorithm [28] with dynamic 331

edge weights, taking travelling times instead of distances as edge weights. Hence the assigned 332

edge weights can change over time. We derive this travel time from the density on an edge 333

and the corresponding mean velocity. A detailed description of the algorithm can be found in 334

[23]. 335

 336

Pedestrians, who employ an air-line (as the crow flies) distance between their current location 337

and the destination for navigating through a scenario they are not familiar with, are modelled 338

by applying a variant of the A* Algorithm [29]. The basic idea of this heuristic algorithm is to 339

take given information into account and combine it with assumptions about missing 340

information. In our case, the given knowledge is the direction to the destination (the exact 341

route is outside the field of vision) and the current distance to the next navigation point, i.e. 342

vertex (the visibility graph ensures that the information is always available). 343

 344

Destination,

e.g. church tower

pedestrian air line

shortest path

heuristic path
 345

Figure 11 Example for the heuristic A* algorithm: due to the air-line estimation, the algorithm does not 346
find the shortest path, but the path that most approximates the air-line to the destination 347

12

To implement this, the algorithm uses real distance edge weights (or as an alternative travel 348

times) for the known part of the route and an additional heuristic measure for the unknown 349

part. This unknown part refers to the air-line distance to the destination to estimate the 350

unknown part. Figure 11 shows an example that illustrates the basic idea of the algorithm. 351

The navigation behaviour of the third type of pedestrians is modelled by a Probabilistic 352

Choice Algorithm. With this algorithm, local-based decisions as well as non-deterministic 353

route-choice behaviour of pedestrians are modelled. Furthermore, it reflects the “trail 354

behaviour” of pedestrian, i.e. the tendency to follow paths chosen by other pedestrians. The 355

algorithm is implemented according to [30]: 356

Different values of an edge, such as its derivation from the air-line to the destination as well 357

as the length of the edge and improvement of distance to destination, are totalled. This 358

combined value is its edge weight. At each node, the weight of each outgoing edge is scaled 359

to a value between 0 and 1, such that the sum of all edge weights is 1. Using roulette wheel 360

selection [31], one of the possible outgoing edges is chosen: The higher the value of an edge, 361

the higher the probability that it is selected. 362

To map the “trail behaviour”, each chosen edge is assigned an amount of pheromone, which 363

evaporates over time according to Ant Colonization Optimization algorithms [32]. 364

A detailed definition including validation of individual behaviour as well as the description of 365

the algorithms can be found in [33]. 366

This algorithm differs from the Route Choice Self Organization (RSCO) algorithm proposed 367

in [14] in such way, that Teknomo defines three different principles for edge selection: the 368

permission (whether an edge is accessible), the interaction (avoidance of crowded edges) and 369

navigation (relative enhancement to the destination). The Probabilistic Choice Algorithm 370

does not take into account any densities on the edges as a parameter for avoiding congested 371

edges, but instead it models the trail behaviour by means of evaporating pheromone, meaning 372

that pedestrians, who are unfamiliar with the location, will choose an edge more likely, if 373

there are already pedestrians walking along this edge. Secondly and more importantly, in 374

contrast to the RSCO algorithm the Probabilistic Choice Algorithm is not deterministic with 375

respect to edge choice. 376

5.2 Test case 377

 378

The developed graph generation method and navigation strategies have been applied on an 379

example scenario shown in Figure 10 (right). Here, pedestrians walk from the lower left 380

corner to the upper right corner within a room. Three obstacles are located inside this room. In 381

total, 1200 pedestrians were simulated with a generation rate of 6 pedestrians per second. 382

In a first simulation the graph layer was not used. Simulation runs using the navigation graph 383

were then conducted: pedestrians walked according to the three algorithms Fastest Path, A* 384

and Probabilistic Choice. The last simulation was based on a combination of all three 385

algorithms. 386

Figure 12 to Figure 16 show screenshots of the simulations at different points in time: 387

Without using a graph, each simulated pedestrian takes the same route. As shown in Figure 388

12, this results in significant congestion in front of the bottleneck of the right obstacle. This is 389

because simulations without a navigation graph update a pedestrian’s position solely using the 390

cellular automaton. During the simulation, all neighbouring cells are examined for each 391

pedestrian at each time step, choosing the cell with the lowest potential value if it is not 392

13

occupied by either an obstacle or another pedestrian. This selection process is conducted until 393

all pedestrians reach their destination. From this setup it is obvious that each pedestrian is 394

short sighted and chooses a similar route to walk to his destination. The only varying factor is 395

the number of pedestrians that walk the same way and occupy cells. 396

Figure 13 shows the pedestrians walking according to the Fastest Path Algorithm. One can 397

see a wider spread of routes resulting from the dynamic routing. To begin with, the fastest 398

path is identical to the shortest path. After a while, the route becomes too crowded. The route 399

south of the first obstacle becomes faster, since pedestrians taking the shortest route have to 400

slow down in response to the intensity of its use. Later in the simulation, a third route 401

becomes the fastest, as the last part of the two former routes are crowded on the last common 402

segment. 403

In Figure 14, the results of the A* Algorithm are illustrated. In spite of the results of the 404

Fastest Path Algorithm, the most likely way to the destination is south of the left obstacle. 405

This is explained by the fact that the lower route is located closer to the air-line to the 406

destination. However, as with the Fastest Path Algorithm, the route becomes too crowded 407

after a while and pedestrians start to walk on the west side of the left obstacle. This happens, 408

since travel times are used as fixed edge weights instead of Euclidean distances. At some 409

point, the bottleneck north of the right obstacle becomes crowded and pedestrians start to 410

walk along the south of the right obstacle. 411

The results of the Probabilistic Choice Algorithm are demonstrated in Figure 15. Initially, 412

there is a wide spread of the pedestrians’ route choices, since edges are chosen by probability. 413

After a while, the path north of both obstacles becomes more likely, due to greater pheromone 414

deposition. Not taking into account the densities on the edges, the pattern seen in the plain 415

simulation happens, namely congestion in front of the upper left corner of the right obstacle. 416

This reflects exactly what was supposed to be modelled: if a person is not familiar with a 417

place, he will most likely stay on his path, since he does not know alternative routes that lead 418

to the destination. 419

Each algorithm on its own maps only one kind of pedestrian behaviour. Combining all 420

algorithms, the simulation produces the results shown in Figure 16. The number of 421

pedestrians for each type is chosen according to a distribution rate, which has been derived by 422

the experiment presented in [33], in which large scale orientation is investigated: Students are 423

sent to a well-known location in the Munich city centre (Germany) without a map. On their 424

return, they document the path they have chosen. Additionally, each participant fills out a 425

questionnaire regarding way-finding behaviour and orientation. From the analysis of the 426

documented paths and the questionnaire, a distribution rate for the different types of 427

orientation has been derived. 428

One can observe that no high densities occur at any location. Likewise, the different 429

navigation behaviours seem to be reflected well, since one can identify the preferred routes of 430

each algorithm. 431

Nevertheless, the results of the experimental simulation need to be validated to ascertain how 432

realistic they are. We can, however, clearly see that the simulation becomes more realistic 433

when we apply a navigation graph, since unlikely congestions no longer occur. Realistic in 434

this context means that assuming a certain distribution rate of the simulated pedestrians’ local 435

knowledge as given, the simulation is able to reflect these different route choice behaviours 436

accordingly. 437

14

 438

Figure 12: Screenshot of a simulation of 1200 pedestrians walking from the lower left corner 439
to the upper right corner without using a navigation graph 440

after 63 seconds (left), 263 seconds (middle) and 284 seconds (right). 441

 442

 443

Figure 13: Screenshot of the same simulation using a navigation graph with Fastest Path Algorithm 444
after 63 seconds (left), 263 seconds (middle) and 284 seconds (right) 445

 446

 447

Figure 14: Screenshot of the same simulation using a navigation graph with A* algorithm 448
after 63 seconds (left), 263 seconds (middle) and 284 seconds (right) 449

 450

 451

Figure 15 Screenshot of the same simulation using a navigation graph with Probabilistic Choice after 63 452
seconds (left), 263 seconds (middle) and 284 seconds (right) 453

15

 454

Figure 16 Screenshot of the same simulation using a combination of the above algorithms 455
after 63 seconds (left), 263 seconds (middle) and 284 seconds (right) 456

5.3 Real-world application scenario 457

To illustrate the application of the developed simulation approach, we are discussing a real-458

world application scenario. Here, an architect or engineer responsible for the layout of an 459

office building is using the graph-extended pedestrian simulation to investigate different 460

options with respect to the number and localisation of (emergency) exits. The office building 461

has 4 floors. The investigated floor plan comprises 41 offices (Figure 17). For each office, the 462

number of expected occupants is known. In the first layout option, there is one exit stair 463

located on the west side and another one located on the east side (see Figure 17). 464

 465

Figure 17 Floor plan of the investigated office building with 41 offices 466

By means of the methodology introduced in Section 4, a navigation graph is automatically 467

generated for the given floor plan. The result is depicted in Figure 18. The scenario has been 468

simulated for a total number of 161 pedestrians. At the start of the simulation they are placed 469

according to the given number of occupants for each individual room. Each exit stair has been 470

16

assigned a suitable capacity. Each pedestrian is routed towards the exit which is closest to 471

his/her original position. 472

 473

Figure 18 The automatically generated navigation graph. 474

 475

Figure 19 Modified floor plan: An additional stair has been placed at the central position. 476

17

The simulation results, depicted in Table 1 left-hand side, show that this setup results in 477

congestion in front of the stair. In an emergency situation, such constellations must be 478

avoided. 479

For this reason, in the second option an additional stair has been placed in the floor at a 480

central position (Figure 19). Again, the navigation graph is automatically generated. The 481

results of the subsequent simulation run are depicted in Table 1, right hand side. It can be seen 482

that in this option, no congestions occur and thus a critical situation is avoided. 483

The engineer can take these simulation results into account for the final decision regarding the 484

number and position of the exit stairs. The automated navigation graph generation method 485

introduced in this paper provides the possibility for a quick and effortless evaluation of floor 486

plan alternatives with respect to evacuation situations. 487

 488

Time Option 1: Two exit stairs Option 2: Three exit stairs

After 15

seconds

After 30

seconds

After 60

seconds

Table 1 Results of the simulation: The left column depicts the simulation results for the two exit stairs 489
option, the right columns shows the results for the three exit stairs option. Whereas for the first option 490

critical congestion occur during an evacuation, they do not so for the second option. 491

18

6 Discussion 492

Engineers responsible for the layout of public buildings and large event areas have to consider 493

the movement and behaviour of pedestrian crowds in order to prevent critical situations. 494

Recently, computational simulations have been increasingly used to predict the dynamics of 495

pedestrian crowds. However, most of the available simulation systems either rely on rather 496

simple pedestrian navigation models, which reflect human behaviour only in a very limited 497

manner, or are computationally very expensive. In this paper, a sophisticated graph-based 498

approach has been presented, which allows integrating advanced navigational behaviour with 499

computationally efficient simulations. 500

The implementation of this approach includes an advanced technique for generating sparse 501

navigation graphs from a given spatial layout of the scenario under investigation. This graph 502

is a subset of a standard visibility graph. It can be used to not only map individual pedestrian 503

behaviour in pedestrian simulations, but also to model the large-scale orientation of 504

pedestrians. 505

The advantage of using such a navigation graph instead of using an agent-based approach is 506

an enormous reduction in computational effort. Furthermore, a scenario can be easily changed 507

during runtime. Closing doors or making routes non-accessible, for example due to fire, can 508

be modelled simply by deleting the corresponding edges. 509

The paper introduces a new method for constructing a navigation graph from a given 510

geometry by reducing a visibility graph with a cone-based search method. The main 511

advantage of the method is that the resulting graph is very sparse. Unlike standard visibility 512

graphs, geometrically close edges are merged into a single edge, while at the same time 513

maintaining broad spatial coverage for ensuring a better modelling of navigational behaviour. 514

Furthermore, all vertices are discarded that are not part of any connected component with 515

sources as well as destinations. 516

To measure the quality of the resulting graph, a next step in our research will be to define a 517

metric and evaluate the navigation graph according to this metric in comparison to existing 518

graphs. 519

To demonstrate the advantage of a graph-extended simulation, the results of a set of sample 520

simulation scenarios have been presented. Different levels of local knowledge are modelled 521

using three different routing algorithms: Pedestrians who are familiar with a location are 522

simulated using a Fastest Path Algorithm. Pedestrians with partial knowledge of a location 523

are modelled according to the heuristic A* Algorithm. The movements of pedestrians with no 524

local knowledge are modelled using the Probabilistic Choice Algorithm – a derivation of an 525

Ant Colonization Algorithm. The application of these three algorithms within the simulation 526

improved the simulation results significantly, since artificial congestions produced by the 527

static cellular automaton model could be eliminated. Furthermore, a wide range of diverging 528

route choice behaviour is realized, i.e. not just the shortest routes are taken by the simulated 529

persons, but also non-optimal ones, which reflects human navigation more naturally. In 530

addition to the modelling of different route choices, the application of the navigation graph 531

resolves the problem of short-sightedness in conventional simulation models and makes it 532

possible to consider the pedestrians’ sense of large-scale orientation. 533

In future research we plan to continue validating the simulation results to ensure the quality of 534

the different routing algorithms. According to these validation results, we will further improve 535

the algorithm and incorporate interactions between the different types of pedestrians. 536

 537

 538

539

19

References 540

 541
[1] A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch, A. Seyfried, Evacuation 542

dynamics: Empirical results, modeling and applications, Encyclopedia of Complexity and System 543
Science (2009) 3142–3176. 544

[2] H.W. Hamacher, S.A. Tjandra, Mathematical modelling of evacuation problems: A state of the 545
art, in: M. Schreckenberg (Ed.), Pedestrian and Evacuation Dynamics, Springer, Berlin, 2002, pp. 546
227–266. 547

[3] D. Helbing, A fluid-dynamic model for the movement of pedestrians, in: Complex Systems, 548
1992, pp. 391–415. 549

[4] L.F. Henderson, The Statistics of Crowd Fluids, Nature 229 (1971) 381–383. 550
[5] D. Helbing, P. Molnár, Social Force Model for Pedestrian Dynamics, Physical Review E 5 (1995) 551

4282–4286. 552
[6] C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Simulation of pedestrian dynamics using 553

a two-dimensional cellular automaton, Physica A: Statistical Mechanics and its Applications 3-4 554
(2001) 507‐525. 555

[7] N. Ronald, L. Sterling, M. Kirley, An Agent-Based Approach To Modelling Pedestrian 556
Behaviour, Lecture Notes in Computer Science (2007) 145‐156. 557

[8] N. Pelechano, A. Malkawi, Evacuation simulation models: Challenges in modeling high rise 558
building evacuation with cellular automata approaches, Automation in Construction 4 (2008) 559
377–385. 560

[9] C. Reynolds, Steering Behaviors for Autonomous Characters, in: Game Developers Conference, 561
1999. 562

[10] S.R. Musse, D. Thalmann, A Model of Human Crowd Behavior: Group Inter-Relationship and 563
Collision Detection Analysis, in: Workshop Computer Animation and Simulation of 564
Eurographics, 1997, pp. 39‐52. 565

[11] F. Durupinar, J.M. Allbeck, N. Pelechano, N. Badler, Creating crowd variation with the OCEAN 566
personality model, in: Proceedings of the 7th international joint conference on Autonomous 567
agents and multiagent systems - Volume 3, International Foundation for Autonomous Agents and 568
Multiagent Systems, Richland, SC, 2008, pp. 1217‐1220. 569

[12] A. Lerner, Y. Chrysanthou, D. Lischinski, Crowds by Examples, in: D. Cohen-Or, P. Slavík 570
(Eds.), EUROGRAPHICS 2007, 2007. 571

[13] M. Asano, T. Iryo, M. Kuwahara, Microscopic pedestrian simulation model combined with a 572
tactical model for route choice behaviour, Transportation Research Part C: Emerging 573
Technologies 6 (2010) 842–855. 574

[14] K. Teknomo, Modeling mobile traffic agents on network simulation, in: Proceeing of the 16th 575
Annual Conference of Transportation Science Society of the Philippines (TSSP), Manila, 2008. 576

[15] H.M. Choset, Principles of robot motion, MIT Press, Cambridge, Mass., 2005. 577
[16] S.M. LaValle, Planning Algorithms, Cambridge University Press, Cambridge, U.K, 2006. 578
[17] F. Aurenhammer, Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure, 579

ACM Comput. Surv. (1991) 345‐405. 580
[18] A. Sud, E. Andersen, S. Curtis, M.C. Lin, D. Manocha, Real-Time Path Planning in Dynamic 581

Virtual Environments Using Multiagent Navigation Graphs, IEEE Transactions on Visualization 582
and Computer Graphics (2008) 526‐538. 583

[19] O. Arikan, S. Chenney, D.A. Forsyth, Efficient multi-agent path planning, in: In Proceedings of 584
the 2001 Eurographics Workshop on Animation and Simulation, 2001, pp. 151‐162. 585

[20] C. Gloor, P. Stucki, K. Nagel, Hybrid Techniques for Pedestrian Simulations, in: P. Sloot, B. 586
Chopard, A. Hoekstra (Eds.), Cellular Automata, Springer Berlin / Heidelberg, 2004, pp. 581–587
590. 588

[21] W. Klein, G. Köster, A. Meister, Towards The Calibration of Pedestrian Stream Models, in: J. 589
Weglarz, R. Wyrzykowski, B. Szymanski (Eds.), 8th Int. Conf.on Parallel Processing and 590
Applied Mathematics, Springer, Berlin, 2010. 591

[22] D. Hartmann, Adaptive pedestrian dynamics based on geodesics, New Journal of Physics 4 592
(2010) 43032. 593

20

[23] M. Höcker, V. Berkhahn, A. Kneidl, A. Borrmann, W. Klein, Graph-based approaches for 594
simulating pedestrian dynamics in building models, in: University College Cork (Ed.), 8th 595
European Conference on Product & Process Modelling (ECPPM), Cork, Ireland, 2010. 596

[24] A. Kneidl, A. Borrmann, D. Hartmann, Einsatz von graphbasierten Ansätzen in einer 597
mikroskopischen Personenstromsimulation für die Wegewahl der Fußgänger, in: T. Krämer, S. 598
Richter, F. Enge, B. Kraft (Eds.), Forum Bauinformatik 2010, Shaker, Aachen, 2010. 599

[25] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an efficient and robust access 600
method for points and rectangles, SIGMOD Rec. 2 (1990) 322‐331. 601

[26] A. Gibbons, Algorithmic graph theory, Cambridge Univ. Press, Cambridge, 1999. 602
[27] A. Kneidl, M. Thiemann, D. Hartmann, A. Borrmann, Combining pedestrian simulation with a 603

network flow optimization to support security staff in handling an evacuation of a soccer stadium, 604
in: Proceedings of European Conference Forum 2011, Cork, Cork, 2011. 605

[28] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269. 606
[29] Y. Li, M. Höcker, Heuristische Navigationsalgorithmen für Fußgängersimulationen, in: P. von 607

Both (Ed.), Forum Bauinformatik 2009, Universitätsverl., Karlsruhe, 2009, pp. 25–36. 608
[30] D. Angus, Solving a unique Shortest Path problem using Ant Colony Optimisation. 609
[31] T. Bäck, Evolutionary algorithms in theory and practice, Oxford Univ. Press, New York, 1996. 610
[32] M. Dorigo, Optimization learning and natural algorithms, Dissertation, Mailand, 1992. 611
[33] A. Kneidl, A. Borrmann, How Do Pedestrians find their Way? Results of an experimental study 612

with students compared to simulation results, in: W. Jaskolowski, P. Kepka (Eds.), EMEVAC, 613
The Main School of Fire Service, Warsaw, 2011. 614

 615

