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Abstract— With the recent advancements of sensory technolo-
gies (such as Kinect), perceiving reliably basic human actions
have become tenable. If robots were to learn or interact with
humans in a meaningful manner, the next foreseeable challenge
to face robotic research in this area is toward the semantic
understanding of human activities - enabling them to extract
and determine higher level understanding. In this paper, we
present a new methodology that account for the extraction of
observed human behaviors with an estimation of the intended
activities, follow by the automatic generation of action rules for
the synthesis of robot behaviors. Furthermore, we will show the
enhancement of the semantic representation with our reasoning
system. It is important to mention that the obtained rules are
preserved even when different kinds of kitchen scenarios are
observed. In order to test the robustness of our results, we used
three different kitchen activities: making a pancake, making a
sandwich and setting the table. Moving beyond the state-of-
the-art in imitation learning, ontology of behavioral rules from
human observations can provide more powerful tools for the
robots to learn from humans.

I. INTRODUCTION

Programming-by-demonstration (PbD) [1] is a powerful
and well-established mechanism used widely in the robotics
community to teach robots new activities. Nevertheless,
one significant challenge of this teaching technique, is to
correctly identify and answer the question: what to imitate?
[2]. The work by Billard et. al. [3], proposed an interesting
approach to identify a general policy for learning relevant
features of the task, in other words, the authors identified
what to imitate from a movement by detecting the time-
invariants of the demonstrator. A recent approach employ
the idea of a library of dynamic motion primitives (DMPs),
which enables the generalization of DMPs to new situations
[4]. This approach takes into account perturbations and in-
cludes feedback [5]. A different approach to encode observed
trajectories is presented by Takano et. al. [6], where a mime-
sis model based on the Hidden Markov Models (HMMs) is
presented to segment and generate motions trough imitation.
Nevertheless, more of these early approaches focused only
at the trajectory level, i.e., in the Cartesian and Joint spaces.
Which means that they are able to obtain relevant parameters
to identify and reproduce similar motions to those of the
demonstrator, but the system (robot) will not be able to
extract the meaning of the motion.

Then, what do we want the robot to imitate?: a) similar
motion or b) the meaning of the motion. To a large extent,
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the above-mentioned approaches have been successful in
resolving the first issue. However, less effort has been made
to answer the second question. Regarding this issue, one
noticeable work presented by Kuniyoshi et. al. [7], proposed
a solution to map between the continuous real world events
and the symbolic concepts. In a similar work [8], a (par-
tially) symbolic representation of manipulation strategies to
generate robot plans based on pre- and post- conditions is
presented. Nevertheless, those frameworks are not able to
either reason about the intentions of the users or extract the
meaning of the action. Another work that address the latter
problem, is presented here [9], where a logic sub-language
is presented to learn specific-to-general event definitions by
using manual correspondence information.

In this paper, we will present our first approach to success-
fully identify and extract the meaning of human motions by
automatically generating rules that define and explain human
motions. Those rules will be preserved even in different
scenarios. Later, we introduce our reasoning engine based
on a ontology semantic representation in order to infer new
relationships between actions and objects. An example of
our proposed framework can be depicted in Fig. 1. For
this approach the acquisition of knowledge represents a key
factor. To this end, several sources have been proposed, e.g.
the web information and natural-language instructions [10]
or annotated videos [11]. We will use annotated videos as
our source of knowledge information.

II. IDENTIFICATION OF HUMAN MOTIONS

Over the past years new methods of classifying human
motions have been proposed, for example: Conditional Ran-
dom Fields (CRF) [12], Dynamic Time Warping [13], or



with Classification and Regression Trees [14]. These earlier
techniques realise on generation of trajectories depending on
the location of the objects, and if a different environment is
being analyzed then trajectories will altered completely, thus,
new models have to be acquired for the classification.

In this work, we propose a new method to recognize the
human activities based on an abstract layer. This abstraction
method does not directly attempt to classify human activities,
but rather, it infer the activities based on the observed human
motions and the information of the object of interest. To
achieve this goal, we will combine information from the
environment and information of the human motions. We
employ annotated video information! to extract the primitive
human motion and objects information.

Three primitive human motions are labeled in the videos:

e Move: Defines any motion of the hand.

+ Not Move: Means that the hand is not moving.

o Tool-Use: Represents a more complex motion, which
involves two objects, one is used as a tool and the sec-
ond is the object that receives the action, for example:
pouring or cutting something.

Additionally, the information of the objects involved in the
activity is also considered. The possible labels are:

e Object Acted On: It means that the hand is attracted
towards an object, in other words is the object that is
going to be manipulated.

e Object In Hand: Defines the object that is physically
in the hand, i.e. the object which is being currently
manipulated.

« Object Seen’: Represents the object that the human is
looking at.

In the remainder of this paper we will refer to low-level
human Activities (such as: Reach, Take, Release, etc) as a
set of high-level human motions (i.e. Move, Not Move and
Tool Use).

III. AUTOMATIC GENERATION OF RULES

In this work we propose two levels of abstraction: the high-
level, which describes generalized actions such as: move,
not move or tool use, and the low-level abstraction, which
represents the basic human activities, such as: reach, take,
release, etc. Our technique uses the information from the
high-level abstraction, to infer the low-level activities. The
inference rules are obtained from a decision tree (see Fig.
1, red box) based on the C4.5 algorithm [15]. Decision
trees represent a very reliable technique to learn top-down
inductive inference rules because of its robustness to noisy
data. Also they can be represented as sets of if-then rules
to improve human readability. The central core in the C4.5
algorithm is to select the most useful attribute to classify as

IThis manual segmentation represents a first step towards an automatic
functional motion segmentation and will act as a baseline or ground truth
for the automatic segmentation.

2This object was not taken into account for the generation of rules, but
it was used for the reasoning engine as an addition to the ontology.

many examples as possible by using the information gain
measure:
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where Values(A) is the set of all possible values of the
attribute A, and S, = s € S|A(s) =wv as a collection of
examples for S, and the entropy is defined as:

Entropy(S) = Z —pilogapi 2)
i=1
where p; is the probability of S’ to belong to class .

IV. REASONING ENGINE

With the use of the reasoning engine certain facts can
be derived, these facts are not explicitly expressed in the
ontology or in the knowledge base. For example the rules
obtained from the decision trees. These rules will generate
new individuals and new relationships between individuals
(objects-properties). Those object properties will be obtained
from the definition of new computables. Then, the created
new instances and new relationships will be added into the
ontology, as part of the inferred knowledge base.

The reasoning engine presented in this work uses the Web
Ontology Language (OWL), which is an action representa-
tion based on logic description as Prolog queries. We used
KnowRob [12] as the base line ontology and we incorporated
new relationships between objects and actions, and defined
new activity classes These relationships provide us the first
perspective view of what the human sees while executing an
activity. Such information can be obtained from the head-
mounted gaze camera and this represents a good source
of information, because from this camera, it is possible to
experience what the user is focusing his/her attention during
performing certain activity.

The contributions of this work regarding the reasoning
engine are:

o Description of a new model for the semantic environ-
ment, for the pancake-making scenario.

e New classes on the ontology: ClosingABottle,
OpeningABottle, Pouring, Flipping, etc.

« Definition of new SQL computables® properties: com-
puteObjectActedOn, computeDetectedObject, etc.

« New object properties such as: detectedObject, Objec-
tActedOn, OnObject, etc.

o New prolog predicates such as: objSeenBeforeAction,
actionObjSeen, etc.

The reasoning engine enabled with new capabilities, that
help to infer new information and integrate information from
external sources such as: the semantic environment model,
and the data base (MySQL) where the object information is
stored.

3Computables, are used to obtain the semantic relationships on demand,
instead of importing everything from the ontology.



V. TASK EXAMPLES AND EXPERIMENTAL SETUP

In order to test the robustness of the generated rules
in different scenarios, we use three real-world scenarios:
making a pancake, setting the table and making a sandwich.
These three activities have different levels of complexity and
they involve different objects. This is explained in the next
sub-sections.

A. Making pancakes

In our first scenario, we recorded videos of humans mak-
ing a pancake. This scenario allows to analyze the transitions
between sequence of motions into activities, and activities
into tasks. These recordings contain one human performing
the action nine times. The human motions are captured
by three cameras located in different positions (see Fig. 2
top). Additionally, the subject was wearing a head mounted
camera, to record his/her gaze (see Fig. 2 bottom).
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Fig. 2. Top: shows one view of the 3 external cameras and some examples
of human activities using the right hand: 1) Reach, 2) Hold, 3) Pour, 4) Flip,
5) Put smt-smw and 6) Release. Bottom: illustrates the gaze recordings.

B. Setting the table

The second experimental set up, uses videos from the
TUM Kitchen Data Set, which contains observations of
four subjects setting a table (see Fig. 3). The subjects are
performing the actions in a natural way. Some subjects
perform the activity like a robot would do, transporting the
items one-by-one, other subjects behave more natural and
grasp as many objects as they can handle. We could notice
certain variations during the executed tasks, which include
actions executed in different order.

Fig. 3. The subject is performing the setting the table activity. Example of
activities for the right hand: 1) Take, 2) Reach, 3) Put something-somewhere,
4) Open-drawer, 5) Release.

C. Making a sandwich

As a final scenario, we recorded a more complex activity,
which is making a sandwich. These recordings also contain
the information of three external cameras and the gaze
camera. Fig. 4 shows the action which contains several
objects and different activities.

Fig. 4. This figure depicts the action of making a sandwich. Top: shows one
view of the three external cameras.A subset of the main activities executed

with the right hand are shown: 1) Cut, 2) Put smt-smw, 3) Cut, 4) Unwrap
5) Sprinkle, 6) Spread. Bottom: illustrates the output of the gaze camera.

VI. RESULTS

This section will introduce the obtained results into two
subsections. The first will show the rules extracted from
human observations and the second will present the new
features of the reasoning engine.

A. Automatic generation of rules

The weka data miming software was used to generate
the decision tree [16]. We use the labeled information of
the motions and objects from the complete pancake-making
videos to build the decision tree, which will contain the rules
to infer the human activities. The obtained tree is shown in
Fig. 5. We would like to stress that a similar tree is obtained
if we used as training set the labeled information obtained
from the setting-the-table or sandwich-making actions.
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Fig. 5. This figure shows the tree obtained from the pancake making action.

From the above tree the following collection of rules are
obtained:
if RightHand(Move) and ObjectInHand(None)
and ObjectActedOn(Object) — Activity(Reaching) (3)
if RightHand(Move) and ObjectInHand(None)
and Object ActedOn(None) — Activity(Realeasing)
if RightHand(Move) and ObjectInHand(Object)

— Activity(PuttingSomethingSomewhere) (5)

“)

It is important to notice that the differentiation between
“Reaching” and “Releasing” is very challenging because the
Cartesian trajectories of both activities are very similar, but
if we take into account the objects, as we proposed in this
work, then the distinction is possible.

From Fig. 5 we can observed that the activities: Pour, Flip
and Slide-out are inferred using the same rule:

if RightHand(Tool_use) — Activity(GranularActivity)  (6)



This means that these activities need more information
in order to be correctly classified. Those activities does
not represent human basic activities, and we will call them
granular activities and their definition is beyond the focus
of this document.

Now, using the obtained tree from the pancake-making
activity, we are able to classify the activities involved in the
sandwich-making activity, which is more complex and has
more instances. The accuracy of the correctly classification of
instances is 92.17% and the corresponding confusion matrix
can be observed in Table I.

TABLE I
CONFUSION MATRIX FROM THE ACTIVITY OF SANDWICH MAKING

Classified as
Actual Class a b ¢ d e f
a)Reach 316 21 8 3 0 71
b)Take 6 114 34 28 0 0
c)PutSomethingSomewhere 13 14 | 2034 | 30 65 46
d)Release 31 1 6 248 0 208
e)Granular 0 4 57 0 3862 0
f)No_Motion 83 0 0 80 0 2951

Similar to the above procedure, we use the rules obtained
from the pancake-making activity to infer the setting-the-
table* activities. The accuracy of the correctly classification
of instances is 91.58%.

The important contribution of these results is the definition
of rules that make possible the inference of basic human
activities in different scenarios with an accuracy above 90%.
This presents the first step towards the generalization of those
kinds of activities.

B. Reason engine results

First, we generate a new semantic environment model for
the pancake making scenario (see Fig. 1, green box). Second,
we define new SQL computables and classes. For example,
we can ask the following: what object(s) do I see before I
Reach my goal? . The prolog query will be’:

objSeenBeforeAction(' Action’, 7ObjectSeen, 70bjGoal ): -

rdf triple(knowrob'be fore’,! Action’, ?0bjectSeen),
rdf triple(knowrob’ object ActOn' ) Action’, 70bjGoal).

where Action is replaced by Reaching, then the output will
be: ?ObjectSeen = Spatula and 7ObjGoal = Spatula or
?0bjectSeen = Pancake and 70bjGoal = Pancake or
?0bjectSeen = Spatula and 70bjGoal = Pancake, etc.
This means that in most of the cases, we first look at the
object that we will reach. This represents an important con-
tribution because this new information will help to decrease
the search space for the perception module, because we could
focus on the object that the human is currently seeing and
infer that, most probably, it will be the object that is going to
manipulate in the close future. Further analysis on this topic
is being consider as future work.

4The testing data set was not used during the training period.
5The presented prolog queries are simplified and they are used only for
illustration purposes.

We could also infer from our system, the current activity
that the subject is performing when the pancake mix is being
manipulated. Also, it is possible to answer if the human
focuses his attention to the manipulated object or he is seeing
something else:

actionObjSeen(? Action,’ObjInHand',?0ObjSeen):—
rdf triple(knowrob:’obj Hand',? Action,’ ObjInHand'),
rdf triple(knowrob: detecObject’, ? Action, ?0bjGoal).

where ObjInHand = pancakeMix and the outputs are:
?Action = CloseBottle and 70bjSeen = pancakeMix
or ?Action = OpenBottle and 70bjSeen = pancakeMix
or ?Action = Pouring and 70bjSeen = pancake, etc.
Therefore, we can observe that most of the time, the people
look at the object that he/she is manipulating, but we could
also notice that during certain actions, such as pouring, a
new object appear (pancake) and we most likely will focus
our attention on that new object. Those inference rules, could
help the robot during the planing process.

VII. CONCLUSIONS

This paper presents two contributions:

o Automatic generation of rules from human observations.
Those rules have the important characteristic that they
can be used in different scenarios and the accuracy to
correctly infer human activities is above 90%. This rep-
resents our approach to find rules that could generalize
basic human activities.

e We show that by adding new capabilities into the
reasoning engine, we will be able to compute new
relationships between objects and actions. Therefore,
the reasoning engine could be improved, taking into
account information from the human gaze.
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