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Abstract

Fractional Lévy processes generalize fractional Brownian motion in a natural way. We go

a step further and extend the usual fractional Riemann-Liouville kernel to regularly varying

functions with the same fractional integration parameter. We call the resulting stochastic

processes generalized fractional Lévy processes (GFLP) and show that they may have short

or long memory increments and that their sample paths may have jumps or not. Moreover,

we define stochastic integrals with respect to a GFLP and investigate their second order

structure and sample path properties. A specific example is the Ornstein-Uhlenbeck process

driven by a time scaled GFLP. We prove a functional central limit theorem (FCLT) for such

scaled processes to a fractional Ornstein-Uhlenbeck process. This approximation applies to

a wide class of stochastic volatility models, which include models, where possibly neither the

data nor the latent volatility process are semimartingales.
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1 Introduction

This paper contributes to current discussions in various areas of applications, where high-

frequency and unequally spaced data lead to continuous-time modelling. This applies in partic-

ular to financial and computer network traffic data, but also to environmental and climate data,

where remote sensing, satellite and/or radar data have become available.

Practitioners, engineers and scientists observe different characteristics in such data. In partic-

ular, we have to distinguish Gaussian and non-Gaussian distributions (specifically heavy tails),

no jumps or jumps, which are triggered by market forces or discontinuities in physical processes,

short and long memory of various origin, as well as stochastic variability (volatility) observed in

high-frequency measurements. We shall define a new class of models, which allows for flexible

modelling of the three essential properties: distributions, memory and jump behavior.

All stochastic objects are defined on a filtered probability space (Ω,F , (Ft)t∈R, P ), which

satisfies the usual conditions of completeness and right continuity of the filtration. Recall from

Marquardt (2006) that a fractional Lévy process (FLP) has the representation

S(t) =

∫
R
{(t− x)

H− 1
2

+ − (−x)H− 1
2

+ }dL(x) , t ∈ R , (1.1)

where u+ = max(u, 0), H ∈ (0, 1) and L is a two-sided Lévy process. For L being Brownian

motion (BM) this process defines fractional Brownian motion (FBM) denoted by BH and has

been studied extensively. We extend the class of processes (1.1) to

S(t) =

∫
{g(t− x)− g(−x)}dL(x), t ∈ R,

for appropriate functions g and call S a generalized fractional Lévy process (GFLP). The class

of of functions g is determined such that S(t) exists for all t ∈ R.
As mentioned above, our motivation is based on three characteristics of a stochastic process,

the distribution or tail probabilities, the dependence structure or memory, and the sample path

properties. By introducing GFLPs, we provide a common platform for modeling these proper-

ties in a flexible way. Heavy-tailed distributions as well as long memory are often observed in

environmental data, computer network traffic, and in volatility processes of financial data, see

e.g. Doukhan et al. (2003). Sample path properties can be investigated based on high-frequency

data from various applications, indicating that data and volatilities may exhibit jumps (statis-

tical methods are presented in Jacod and Protter (2011)).

As a classic approach short range dependence models are integrated over a fractional kernel,

thus obtaining long memory versions of such processes. This applies in particular for processes

driven by BM. In the context of volatility modelling prominent papers using this method are

Comte and Renault (1996), Comte and Renault (1998), and Comte et al. (2003).

A different approach modifies the driving BM to a FBM, thus obtaining stochastic differential

equations driven by FBM; cf. Buchmann and Klüppelberg (2006) and Zähle (1998). It is then a

natural step to extend FBM to FLPs providing more flexible distributions and tail behavior than

Gaussian processes, retaining the long memory increments. This implies immediately that OU
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processes driven by FLP constitute a rich distributional class with long memory (cf. Marquardt

(2006)). They have been extended to general SDEs driven by FLP by e.g. Fink and Klüppelberg

(2011). However, all these processes can model only long memory and they have all continuous

sample path.

On the other hand, OU processes driven by a Lévy process provide besides flexible distribu-

tions both continuous sample paths (when driven by BM) and sample paths with jumps (when

driven by a Lévy process with jumps). In recent years substantial research focused on Lévy-

driven models with mostly short memory, exemplified in Barndorff-Nielsen and Shephard (2001)

or in Klüppelberg et al. (2004). However, all these processes have exponential autocovariances,

hence short memory.

Certain models, which give more flexibility for distributions and memory have been consid-

ered; for instance, CARMA models (cf. Brockwell and Lindner (2009) and references therein)

extend the class of Lévy-driven OU processes. Although they allow for more flexible autocovari-

ance functions than simple exponentials, they are restricted to short range dependence mod-

elling. Long range dependent models like the FICARMA (Brockwell and Marquardt (2005)) or

the infinite factor supOU process by Barndorff-Nielsen (2001) have been suggested. However,

FICARMA processes have again continuous sample paths, and the supOU process is a rather

complex model.

As a result, we notice a lack of stochastic processes model, which have flexible memory,

interpolating between long and exponential decay. Besides, most of the presently applied long

memory processes do not allow for jumps. In the light of these facts, the proposed GFLP can

contribute a more flexible model to the discussion.

Our paper is organized as follows. In Section 2 we define the GFLP S. We show that S

can exhibit both short memory increments (with exponentially or fast polynomially decreasing

autocovariances) and long memory increments (with slow polynomially decreasing autocovari-

ances). We investigate the sample path behavior, where we show that S has a càdlàg version

and can have continuous paths or jumps. It is an interesting feature that S can have jumps

and long memory. In Section 3 we extend the classic Riemann-Liouville fractional integrals by

allowing for more general kernel functions. For fixed kernel function we determine the class H
of integrands such that the integral with respect to S exists. We present some analytic results

for this integral. If the kernel function is positive (or negative) on R+ the isometry between the

two inner product spaces L2(Ω) and H is presented, giving the second moment structure of S.

As a prominent example we consider the Ornstein-Uhlenbeck (OU) process driven by a GFLP

and prove functional convergence of scaled versions to a fractional (Gaussian) OU process. In

Section 5 we apply our results to stochastic volatility models, proving joint weak convergence

of the data process (driven by BM or FBM) and the volatility process in the Skorokhod space

D(R2
+).
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2 Generalized fractional Lévy processes

Throughout this paper we work with a two-sided Lévy process L = {L(t)}t∈R constructed by

taking two independent copies L1 = {L1(t)}t≥0 and L2 = {L2(t)}t≥0 of a Lévy process and

setting L(t) := L1(t)1[0,∞)(t)−L2((−t)−)1(−∞,0)(t). Moreover, L is centered without Gaussian

component and the Lévy measure ν satisfies
∫
|x|>1 x

2ν(dx) <∞, i.e. E[(L(t))2] = tE[(L(1))2] =

t
∫
R x

2ν(dx) < ∞ for all t ∈ R. The distribution of L is uniquely defined by the characteristic

function (ch.f.) E[exp{iθL(t)}] = exp{tψ(θ)} for t ≥ 0, where

ψ(θ) =

∫
R
(eiθx − 1− iθx)ν(dx) , θ ∈ R . (2.1)

For more details on Lévy processes we refer to the excellent monograph of Sato (1999).

The following result is known and we recall it for later reference. It can be found in Propo-

sition 2.1 and Theorem 3.5 of Marquardt (2006) or, in a more general version, in Rajput and

Rosinski (1989).

Proposition 2.1. Let L be a Lévy process. Assume that E[L(1)] = 0 and E[(L(1))2] < ∞.

For t ∈ R let ft ∈ L2(R). Then the integral S(t) :=
∫
R ft(u)dL(u) exists in the L2(Ω) sense.

Furthermore, for s, t ∈ R we obtain E[S(t)] = 0, the isometry

E[(S(t))2] = E[(L(1))2]∥ft(·)∥2L2(R) (2.2)

holds, and

Γ̃(s, t) = Cov(S(s), S(t)) = E[(L(1))2]

∫
R
fs(u)ft(u)du. (2.3)

Moreover, the ch.f. of S(t1), . . . , S(tm) for t1 < · · · < tm is given by

E
[
exp

{ m∑
j=1

iθjS(tj)
}]

= exp


∫
R
ψ
( m∑

j=1

θjftj (s)
)
ds

 , (2.4)

for θj ∈ R, j = 1, . . . ,m, where ψ is given in (2.1).

We define now a generalized fractional Lévy process.

Definition 2.2. Let L be a Lévy process with E[L(1)] = 0 and E[(L(1))2] <∞. Let g : R → R
with g(t) = 0 for t < 0 and such that

∫
R(g(t− s)− g(−s))2ds <∞ for all t ∈ R. The stochastic

process S = {S(t)}t∈R defined by

S(t) =

∫
R
{g(t− u)− g(−u)}dL(u) , t ∈ R , (2.5)

is called generalized fractional Lévy process (GFLP).

The process S has stationary increments and is symmetric with S(0) = 0, i.e. S(−t) d
=

−S(t), t ≥ 0. By taking g(u) = u
H− 1

2
+ we obtain a FLP.
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The integral (2.5) obviously exists in the L2(Ω) sense. In what follows we formulate as-

sumptions on g needed for the existence of a stochastic integral with respect to S considered

in Section 3 or for the existence of a functional limit of a scaled family of such processes in

Section 4.

Assumption 2.3. The function g : R → R satisfies g(t) = 0 for t < 0 and is continuously twice

differentiable on (0,∞), the limit limu↓0 |g′(u)| exists and is finite, and g′′(u) = O(u−3/2−ε) as

u→ ∞ for sufficiently small ε > 0.

We assume that Assumption 2.3 holds throughout the paper. We start with some sample

path properties of a GFLP.

Lemma 2.4. Let L be a Lévy process with E[L(1)] = 0 and E[(L(1))2] < ∞. Under Assump-

tion 2.3 on g, the GFLP S has a càdlàg version. Moreover, S has jumps if and only if g(0) ̸= 0.

Proof. We let t > 0 (w.l.o.g.) since the proof is analogous for t ≤ 0. Write

S(t) =

∫ t

0
g(t− u)dL(u) +

∫ 0

−∞
{g(t− u)− g(−u)}dL(u) =: S1(t) + S2(t).

Our assumption on the Lévy process implies the LILs (Sato, 1999, Propositions 47.11 and 48.9),

lim sup
t↓0

|L(t)|
(2t log log(1/t))1/2

= 0 a.s. and lim sup
t→∞

|L(t)|
(2t log log t)1/2

=
(
E[(L(1))2]

)1/2
a.s.

We use the fact that, if f is continuously differentiable,∫ b

a
f(s)dL(s) = f(b)L(b)− f(a)L(a)−

∫ b

a
L(s)df(s)

holds (see Lemma 2.1 of Eberlein and Raible (1999): for fixed ω the sets of jumps of L are an at

most countable Lebesgue null set). This together with the LIL at the origin and the assumptions

on g yields

S1(t) =

∫ t

0
g(t− u)dL(u) = g(0)L(t)− lim

s↓0
g(t− s)L(s) +

∫ t

0
L(u)g′(t− u)du

= g(0)L(t) +

∫ t

0
L(u)g′(t− u)du,

whereas this together with the LIL at infinity yields

S2(t) = lim
s↓−∞

{g(t− s)− g(−s)}L(s) + lim
s↓−∞

∫ 0

s
{g′(t− u)− g′(−u)}L(u)du

=

∫ 0

−∞
{g′(t− u)− g′(−u)}L(u)du.

As for the expression of S2, we apply the dominated convergence theorem to

S2(t)− S2(s) =

∫ 0

−∞
{g′(t− u)− g′(s− u)}L(u)du

to observe limt→s |S2(t)−S2(s)| = 0. Hence S2 is a.s. continuous. Similarly, the integral term of

S1 is continuous. Since L is càdlàg without drift and Gaussian components, S1 and hence S has

jumps if and only if g(0) ̸= 0.
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GFLPs can exhibit both short and long memory increments. By Proposition 2.1, when w.l.o.g.

E[(L(1))2] = 1, the covariance function of the increments has for t, s, h > 0 the form

γ(t, h) = E
[
{S(t+ s+ h)− S(t+ s)}{S(s+ h)− S(s)}

]
=

∫ h

−∞
{g(t+ h− u)− g(t− u)}{g(h− u)− g(−u)}du. (2.6)

Definition 2.5. The GFLP S is said to have long memory increments if γ(t, h) ∼ Ct−β as

t → ∞ with C > 0 and β ≤ 1 for all h > 0. (In this case γ(n, 1) is non-summable.) If γ

decreases faster we say S has short memory increments.

Whether S has long or short memory increments depends on the asymptotic behavior of g.

Lemma 2.6. Let 0 < α < 1
2 and c1 > 0. Assume that g(x) = c1x

α for x ≥M > 0. Then S has

long memory increments.

Proof. Set w.l.o.g. c1 = 1. Write γ(t, h) = γ1(t, h) + γ2(t, h) with

γ1(t, h) :=

∫ h

−M
{g(t+ h− u)− g(t− u)}{g(h− u)− g(−u)}du

γ2(t, h) :=

∫ −M/t

−∞
{g(t+ h− tv)− g(t− tv)}{g(h− tv)− g(−tv)}tdv.

By the mean value theorem, for x ≥M and y > 0 we have

g(y + x)− g(x) = (y + x)α − xα = α(x+ θy)α−1y,

where the parameter 0 < θ < 1 depends on both x and y. We apply this mean value theorem to

both γ1 and γ2 and observe for θ = θ(t, h, u) ∈ (0, 1)

γ1(t, h) = αtα−1h

∫ h

−M
(1− u/t+ θh/t)α−1{g(h− u)− g(−u)}du

∼ αtα−1h

∫ h

−M
{g(h− u)− g(−u)}du

and, similarly,

γ2(t, h) ∼ α2h2t2α−1

∫ 0

−∞
(1− v)α−1(−v)α−1dv = α2h2t2α−1B(α, 1− 2α),

where we have used the dominated convergence theorem. Hence, γ(t, h) ∼ Ct2α−1 as t → ∞
with 0 < α < 1

2 .

Example 2.7. (a) Let g(x) = e−λx1{x≥0}. Then S is a Lévy OU process, whose properties are

well-known. It has short memory increments, since (2.6) gives γ(t, h) = e−λt
∫ h
−∞(e−λ(h−u) −

e−λ(−u))2du for t, h > 0. Moreover, the sample paths of S exhibit jumps, since g(0) ̸= 0.

(b) Let g(x) = xα with 0 < α < 1
2 for x ≥M and some M > 0. Then the sample paths of S can
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have jumps or not depending on the behavior of g in 0, while S has long memory increments by

Lemma 2.6.

(c) Consider g(x) = 1/(α + λx)β1{x≥0} with parameters α, λ ≥ 0 and β > −1
2 , β ̸= 0 as on

p. 635 of Gander and Stephens (2007), where they use this function g for stochastic volatility

models driven by Lévy processes. Then the sample paths of S have jumps and S can exhibit

short or long memory increments depending on β.

Remark 2.8. (a) Like a fractional Lévy process, the GFLP S has stationary increments and

S(0) = 0 holds. Moreover, it inherits the symmetry from the driving Lévy process; i.e. S(−t) d
=

−S(t) for t ≥ 0. A novelty of the GFLP is that the process class combines processes, which

can have jumps without having independent increments, and without losing symmetry or its

stationary increments. Moreover, while fractional Lévy processes exhibit always long memory

behavior, the class of GFLPs can model both short and long memory.

(b) Continuity of
∫ t
0 L(u)g

′(t− u)du in S1 and S2 as proved in Lemma 2.4 also follows from the

Kolmogorov-Čhentsov theorem.

3 Stochastic integrals with respect to a GFLP

Recall that the Riemann-Liouville fractional integrals Iα± are defined for α ∈ (0, 1) by

(Iα−h)(u) =
1

Γ(α)

∫ ∞

u
h(t)(t− u)α−1dt and (Iα+h)(u) =

1

Γ(α)

∫ u

−∞
h(t)(u− t)α−1dt

for functions h : R → R, provided that the integrals exist for almost all u ∈ R. For details see

e.g. Samko et al. (1993).

As a motivation for what follows note that for t > 0

g(t− u)− g(−u) =
∫
R
1(0,t](v)g

′(v − u)dv .

We use now g′ for an extension of the classical Riemann-Liouville kernel function and define for

appropriate functions h

(Ig−h)(u) :=

∫ ∞

u
h(v)g′(v − u)dv =

∫
R
h(v)g′(v − u)dv. (3.1)

In what follows we assume that S is a GFLP driven by a Lévy process L with E[L(1)] = 0

and (w.l.o.g.) E[(L(1))2] = 1. Starting from the fact that

S(t) =

∫
R
(Ig−1(0,t])(x)L(dx) , t ∈ R , (3.2)

we shall define a stochastic integral for a function h in a similar way as in Marquardt (2006),

Section 5. Since g′ is continuous on (0,∞) by Assumption 2.3, the integral (3.2) is well defined

as

(Ig−1(0,t])(x) = −
∫ 0

t
g′(v − x)dv = g(t− x)− g(−x).
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For a fixed function g as above define

H̃ :=

{
h : R → R+ :

∫
R
(Ig−h)

2(u)du <∞
}
,

where Ig−h is as in (3.1). The proof of the following result is analogous to that of Proposition 5.1

of Marquardt (2006).

Proposition 3.1. Suppose that g satisfies Assumption 2.3 and for its derivative g′
∫ 1
0 |g′(s)|ds+∫∞

1 (g′(s))2ds <∞ holds. If h : R → R+ satisfies h ∈ L1(R) ∩ L2(R), then h ∈ H̃.

Proof. Starting from the fact that Ig−h ∈ L2(R) if and only if |
∫
R φ(u)(I

g
−h)(u)du| ≤ C∥φ∥L2(R)

for all φ ∈ L2(R) for some C > 0, it suffices to show that for all φ ∈ L2(R)∫
R

∫ ∞

0
|φ(u)g′(s)h(s+ u)|dsdu ≤ C∥φ∥L2(R) .

This holds, if I1 =
∫
R
∫ 1
0 |φ(u)g′(s)h(s + u)|dsdu ≤ C∥φ∥L2(R) and I2 =

∫
R
∫∞
1 |φ(u)g′(s)h(s +

u)|dsdu ≤ C∥φ∥L2(R). Applying Fubini’s theorem and the Hölder inequality we obtain

I1 =

∫ 1

0
|g′(s)|

∫
R
|φ(u)h(s+ u)|duds ≤ ∥φ∥L2(R)∥h∥L2(R)

∫ 1

0
|g′(s)|ds <∞ .

Furthermore, setting t = s+ u and using Fubini’s theorem and the Hölder inequality,

I2 =

∫
R
|h(t)|

∫ ∞

1
|φ(t− s)g′(s)|dsdt ≤

∫
R
∥φ∥L2(R)

(∫ ∞

1
(g′(s))2ds

)1/2
|h(t)|dt

≤ ∥φ∥L2(R)∥h∥L1(R)

(∫ ∞

1
(g′(s))2ds

)1/2
<∞ .

We define the space H as the completion of all functions h : R → R+ in L1(R)∩L2(R) with
respect to the norm

∥h∥H :=
(
E[(L(1))2]

∫
R
(Ig−h)

2(u)du
)1/2

.

We shall need an additional condition on g:

Assumption 3.2. In addition to Assumption 2.3, assume that g is monotone on (0,∞); i.e.

g′ > 0 or g′ < 0 on (0,∞). We call g′ a kernel function.

Assumption 3.2 implies that the sign of g′ · h is fixed on the whole of R and, thus, ∥ · ∥H
defines in fact a norm. For more details on such spaces for the classical Riemann-Liouville kernel

we refer to Pipiras and Taqqu (2000).

From the proof of Proposition 3.1 follows immediately that for h ∈ L1(R) ∩ L2(R)

∥h∥H ≤ C(∥h∥L1(R) + ∥h∥L2(R)) .

Next we define the stochastic integral with integrator S, which gives the correspondence

between the space H and that of stochastic integrals in L2(Ω). Note that we should distinguish

the functional space H of h from the space H̃ of Ig−h.
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Theorem 3.3. Suppose that g satisfies Assumption 3.2. Let S be a GFLP and h ∈ H. Then

the left-hand side integral is defined in the L2(Ω) sense and it holds that∫
R
h(u)dS(u) =

∫
R
(Ig−h)(u)dL(u) . (3.3)

Moreover, the following isometry holds:

∥
∫
R
h(u)dS(u)∥2L2(Ω) = ∥h∥2H .

Proof. To construct the integral
∫
R h(t)dS(t) for h ∈ H we proceed as usual. For the indicator

function φ(·) = 1(0,t](·) for t > 0 we calculate∫
R
φ(u)dS(u) =

∫
R
1(0,t](u)dS(u) = S(t) ,

and for the right-hand side of (3.3) we obtain∫
R
(Ig−φ)(u)dL(u) =

∫
R

∫
R
1(0,t](s)g

′(s− u)dsdL(u) =

∫
R
(g(t− u)− g(−u))dL(u) = S(t)

Let φ : R → R+ be a step function; i.e. φ(t) =
∑n−1

i=1 ai1(ti,ti+1](t), where ai ∈ R+ for i =

1, . . . , n− 1 and −∞ < t1 < · · · < tn <∞. Notice that φ ∈ H. Define∫
R
φ(t)dS(t) =

n−1∑
i=1

ai(S(ti+1)− S(ti)) ,

then the right-hand side of (3.3) is∫
R
(Ig−φ)(u)dL(u) =

∫ ∫ n−1∑
j=1

aj1(tj ,tj+1](s)g
′(s− u)dsdL(u)

=

∫ n−1∑
j=1

aj

∫ tj+1

tj

g′(s− u)dsdL(u)

=

n−1∑
j=1

aj(S(tj+1)− S(tj)) .

Moreover, for all step functions φ it follows from (2.2)

∥
∫
R
φ(u)dS(u)∥2L2(Ω) = E

[( ∫
R
(Ig−φ)(u)dL(u)

)2]
= E[(L(1))2]

∫
R
(Ig−φ)

2(u)du = ∥φ∥2H. (3.4)

Since the non-negative step functions are dense in H, there exists a sequence (φk)k∈N of such

functions such that ∥φk − h∥H → 0 as k → ∞. It follows from the isometry property (3.4)

that the integrals converge in L2(Ω) and the isometry property is preserved in this procedure.

Finally, (3.4) implies that the integral
∫
R h(t)dS(t) is the same for all sequences of step functions

converging to h.
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The second order properties of integrals, which are driven by GFLPs follow by direct calcu-

lation. It is useful to observe that L2(Ω) and H are inner product spaces with the inner products

given for h1, h2 ∈ H by⟨∫
R
h1(u)dS(u),

∫
R
h2(u)dS(u)

⟩
L2(Ω)

=
⟨
h1, h2

⟩
H
.

The inner product in L2(Ω) is the covariance, whereas an interpretation of the inner product in

H can be found in the next Proposition.

Proposition 3.4. Let S be a GFLP with kernel function g′ satisfying Assumption 3.2 and let

h1, h2 ∈ H. Then

Cov
[ ∫

R
h1(v)dS(v) ,

∫
R
h2(u)dS(u)

]
=

∫
R

∫
R
h1(u)h2(v)Γ(u, v)dudv ,

where

Γ(u, v) =
∂2Cov[S(u), S(v)]

∂u∂v
= E[(L(1))2]

∫
R
g′(u− w)g′(v − w)dw . (3.5)

In particular,⟨
h1, h2

⟩
H
= E[(L(1))2]

∫
R

∫
R
h1(u)h2(v)

∫
R
g′(u− w)g′(v − w)dwdudv .

Proof. Set w.l.o.g. E[(L(1))2] = 1. It suffices to prove the identities for the indicator functions

h1 = 1(0,s] and h2 = 1(0,t] for 0 < s < t. For s < 0 or t < 0 we use the stationarity of the

increments and the symmetry of S.

Var[S(t)] = ∥S(t)∥2L2(Ω) =

∫
(g(t− u)− g(−u))2du

=

∫
R

(∫ ∞

u
1(0,t](v)g

′(v − u)dv
)2
du = ∥1(0,t]∥2H ,

Cov[S(s), S(t)] = ⟨S(s), S(t)⟩L2(Ω)

=

∫
R
{g(s− w)− g(−w)}{g(t− w)− g(−w)}dw

=

∫
R

∫
R
1(0,s](u)1(0,t](v)

∫
R
g′(v − w)g′(u− w)dwdudv

=
⟨
1(0,s],1(0,t]

⟩
H ,

where we have used Fubini’s theorem for the second last identity, which is justified by the

definition of H.

Remark 3.5. Assumption 3.2 is needed to formulate the isometry between the space of stochas-

tic integrals with respect to S, i.e. L2(Ω), and the functional space of integrands H, which de-

pends on g. However, for defining the stochastic integral with integrator S, the weaker space H̃
suffices.

Next we define the OU process driven by a GFLP.
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Definition 3.6. Let S be a GFLP such that it satisfies Assumption 3.2, and let λ, γ > 0.

(i) For an initial finite random variable V (0) we define an OU process driven by a GFLP as

V (t) := e−λt
(
V (0) + γ

∫ t

0
eλudS(u)

)
, t ∈ R . (3.6)

(ii) If the initial random variable is given by V (0) = γ
∫ 0
−∞ eλudS(u), the OU process driven by

a GFLP is stationary and we denote its stationary version by

V (t) = γ

∫ t

−∞
e−λ(t−u)dS(u) , t ∈ R . (3.7)

(iii) Recall that, when S is replaced by FBM BH for H ∈ (1/2, 1) in (3.6) and (3.7), we obtain the

fractional (Gaussian) Ornstein Uhlenbeck (FOU) process; cf. (Cheridito et al., 2003, Lemma 2.1)

or Pipiras and Taqqu (2000). We denote the stationary FOU by Y = {Y (t)}t∈R. It will appear
as limit process in Section 4.

We show the existence of V and formulate some properties.

Proposition 3.7. Let S be a GFLP such that it satisfies Assumption 3.2 and let λ > 0 and set

w.l.o.g. γ = 1. For all t ∈ R the stochastic integral

V (t) :=

∫ t

−∞
e−λ(t−u)dS(u) =

∫ t

−∞
(Ig−e

−λ(t−·))(u)dL(u)

exists in the L2(Ω) sense. Furthermore, for all s, t ∈ R we have E[V (t)] = 0 and

Cov[V (s), V (t)] =

∫ t

−∞

∫ s

−∞
e−λ(t−u)e−λ(s−v)Γ(u, v)dudv ,

where Γ is given in (3.5). Moreover, the ch.f. of V (t1), . . . , V (tm) for t1 < · · · < tm is given by

E

exp


m∑
j=1

iθjV (tj)


 = exp


∫
R
ψ

 m∑
j=1

θj

∫ tj

−∞
e−λ(tj−v)g′(v − s)dv

 ds

 ,

where θj ∈ R, j = 1, . . . ,m, and ψ is given in (2.1).

Proof. By Theorem 3.3 and Proposition 3.4 the existence of the integral and the autocovariance

function is a consequence of the fact that e−λ(t−·)1{t≥·} ∈ H. The ch.f. follows for t ∈ R from

Proposition 2.1 by observing that ft(s) is replaced by

ht(s) =

∫ t

−∞
e−λ(t−v)g′(v − s)dv , s ∈ R .
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4 Limit theory for OU processes driven by time scaled GFLPs

Throughout this section we assume that E[(L(1))2] = 1. Moreover, we work under Assumption

3.2 so that Theorem 3.3 and Proposition 3.4 apply. For x > 0 we denote σ2(x) := Var[S(x)] and

define the time scaled GFLP Sx = {Sx(t)}t∈R by

Sx(t) :=
S(xt)

σ(x)
, t ∈ R. (4.1)

Recall the definition of Γ from (3.5) and of Γ̃ from (2.3). Note that the expression (3.2) carries

over to the time scaled GFLP as follows. For x > 0 we have

S(xt) =

∫
1(0,tx](v)dS(v) =

∫
R
(Ig−1(0,tx])(u)dL(u) , t ≥ 0 .

Consequently, we can formulate the following Lemma.

Lemma 4.1. For x > 0 let Sx be the time scaled GFLP (4.1) and assume that Assumption 3.2

holds. Then for s, t ∈ R we have

Γ̃x(s, t) := Cov[Sx(s), Sx(t)] =
Cov[S(xs), S(xt)]

Var[S(x)]
=

Γ̃(xs, xt)

σ2(x)
=

⟨1(0,xs],1(0,xt]⟩H
∥1(0,x]∥2H

,

Γ̃x(t, t) := Var[Sx(t)] =
∥1(0,xt]∥2H
∥1(0,x]∥2H

, (4.2)

Γx(s, t) =
∂2

∂s∂t
Cov[Sx(s), Sx(t)] =

1

σ2(x)

∂2

∂s∂t
Cov[S(xs), S(xt)] =

x2Γ(xs, xt)

σ2(x)
.

Proof. We prove the variance formula (4.2) for t > 0, the other formulas are proved analogously.

For s, t > 0 we have (for s < 0 or t < 0 we use the symmetry of Sx)

∥
∫
R
1(0,t](u)dSx(u)∥2L2(Ω) = ∥Sx(t)∥2L2(Ω) =

∥S(xt)∥2L2(Ω)

∥S(x)∥2
L2(Ω)

=
∥1(0,tx]∥2H
∥1(0,x]∥2H

.

Lemma 4.1 provides a general principle by using the same construction of the integral as in

Theorem 3.3.

Theorem 4.2. For x > 0 let Sx be the time scaled GFLP (4.1) and suppose that Assumption

3.2 holds.

(i) Then for h ∈ H, ∫
R
h(u)dSx(u) =

∫
R
hx(u)dL(u) , (4.3)

in the L2(Ω) sense, where

hx(u) =
x

σ(x)

∫
R
h(v)g′((xv − u)+)dv . (4.4)

12



(ii) Assume that hs, ht ∈ H for s, t ∈ R. Then

Cov

(∫
hs(u)dSx(u),

∫
ht(u)dSx(u)

)
=

∫ ∫
ht(u)hs(v)Γx(u, v)dudv ,

where

Γx(u, v) =
x2Γ(xs, xt)

σ2(x)
=

x2

σ2(x)

∫
g′((ux− w)+)g

′((vx− w)+)dw .

(iii) Defining hxt as in (4.4) with h replaced by ht, the ch.f. of
∫
ht1(u)dSx(u), . . . ,

∫
htm(u)dSx(u)

for t1 < · · · < tm is given by

E

exp
i

m∑
j=1

θj

∫
htj (u)dSx(u)


 = exp


∫
ψ

 m∑
j=1

θjh
x
tj (u)

 du

 ,

where θj ∈ R, j = 1, . . . ,m, and ψ is as in (2.1).

Proof. To prove (4.3) it suffices to take an (interval)-indicator function as in the proof of Theo-

rem 3.3 and we omit it. Part (ii) follows from Proposition 2.1. Finally, (iii) follows from the fact

that (∫
ht1(u)dSx(u), . . . ,

∫
htm(u)dSx(u)

)
d
=

(∫
hxt1(u)dL(u), . . . ,

∫
hxtm(u)dL(u)

)
,

where hxt (u) =
x

σ(x)

∫
ht(v)g

′(xv − u)dv and
d
= denotes equality in distribution.

An important step in the proof of convergence of an OU process driven by a time scaled

GFLP is the convergence of the covariance function and its second derivative. This requires that

g′ is regularly varying; i.e. for all u > 0

lim
x→∞

g′(xu)

g′(x)
= uρ−1 (4.5)

for ρ ∈ (0, 12), and we write g′ ∈ RVρ−1. Such properties have also been used in Klüppelberg

and Mikosch (1995) and Klüppelberg and Kühn (2004) to prove convergence of scaled shot-noise

processes to self-similar Gaussian processes, in particular, to FBM. Condition (4.5) on g implies

in particular that Cov[S(s), S(t)] is bivariate regularly varying with index 1 + 2ρ and, hence,

that σ2 ∈ RV1+2ρ. For more details on regular variation we refer to Bingham et al. (1987). The

following result exploits these properties.

Theorem 4.3. Let ρ ∈ (0, 12) and g
′ ∈ RVρ−1. Define H := ρ+ 1

2 . Then for each s, t ∈ R,

lim
x→∞

Γx(s, t) = lim
x→∞

x2
∫ s∧t
−∞ g′(x(s− w)+)g

′(x(t− w)+)dw

σ2(x)

=
∂2

∂t∂s
Cov(Bρ+1/2(s), Bρ+1/2(t)) = H(2H − 1)|t− s|2H−2. (4.6)

lim
x→∞

Γ̃x(s, t) = Cov(Bρ+1/2(s), Bρ+1/2(t)) =
1

2
(|t|2H + |s|2H − |t− s|2H). (4.7)

13



Proof. We use the second moment expressions from Theorem 3.4. To prove (4.6) write

Γx(s, t) =

(
xg′(x)

g(x)

)2
∫ s∧t
−∞ g′(x(s− w)+)g

′(x(t− w)+)/(g
′(x))2dw∫ 1

−∞{g(x(1− v)+)− g(x(−v)+)}2/g2(x)dv
. (4.8)

Then by Karamata’s theorem (cf. Theorem 1.5.11 of Bingham et al. (1987)),

lim
x→∞

xg′(x)

g(x)
= ρ

and g ∈ RVρ. We first show convergence of the numerator of the factor in (4.8) by deriving bounds

in the spirit of Potter (cf. Bingham et al. (1987), Theorem 1.5.6). For 0 < ε < (1/2− ρ) ∧ ρ we

have x1−εg′(x) ∈ RVρ−ε and ρ − ε ∈ (0, 1/2). Hence, for every δ > 0 there exists some x0 such

that for all x ≥ x0 and |s− w| ≤M for some M > 0,∣∣∣∣g′(x(s− w))

g′(x)

∣∣∣∣ = (x(s− w)+)
1−εg′(x(s− w)+)

(s− w)1−ε
+ x1−εg′(x)

≤
δ + (s− w)ρ−ε

+

(s− w)1−ε
+

≤ cM (s− w)ε−1
+ ,

where cM > 0 is some constant, depending on M . On the other hand, for |s− w| > M ,∣∣∣∣g′(x(s− w)+)

g′(x)

∣∣∣∣ ≤ (1 + ε)(s− w)ρ−1+ε
+

for sufficiently large x (cf. Propositions 0.5 & 0.8 of Resnick (1987)).

If we choose M appropriately, it follows that∫ s∧t

−∞

g′(x(s− w)+)g
′(x(t− w)+)

(g′(x))2
dw

≤ (1 + ε)2
∫ s−M

−∞
(s− w)ρ−1+ε

+ (t− w)ρ−1+ε
+ dw + c2M

∫ s∧t

s−M
(s− w)−1+ε

+ (t− w)−1+ε
+ dw.

Now we apply Lebesgue’s dominated convergence theorem to the numerator of (4.8) and obtain

convergence of this numerator to that of (4.6). As for the denominator of (4.6), its convergence

follows (as also the convergence of Γ̃x in (4.7)) by a dominated convergence argument as in the

proof of Theorem 3.2 of Klüppelberg and Kühn (2004).

Since Sx is a time changed version of S, E[Sx(t)] = 0 and Var[Sx(t)] = σ2(xt)/σ2(x) hold

for all t ∈ R. Hence, we can define the following time scaled version of V .

Definition 4.4. For x > 0 let Sx be the time scaled GFLP (4.1) and suppose that Assumption

3.2 holds.

(i) For λ, γ > 0 we define the OU process Vx = {Vx(t)}t∈R driven by the time scaled GFLP Sx

by

Vx(t) := e−λt

(
Vx(0) + γ

∫ t

0
eλudSx(u)

)
, t ≥ 0.

(ii) If the initial random variable is given by Vx(0) = γ
∫ 0
−∞ eλudSx(u), then Vx is stationary

and we denote the stationary process by

V x(t) := γ

∫ t

−∞
e−λ(t−u)dSx(u), t ∈ R. (4.9)

14



The following is a consequence of Theorem 4.2 and Proposition 2.1. We have set again γ = 1

for simplicity.

Proposition 4.5. For x > 0 let Sx be the time scaled GFLP (4.1) and suppose that Assumption

3.2 holds.

(i) For t ∈ R

V x(t) =

∫ t

−∞
e−λ(t−u)dSx(u) =

x

σ(x)

∫
R

∫ t

−∞
e−λ(t−v)g′(xv − u)dvdL(u).

(ii) For s, t ∈ R, we have E[V x(t)] = 0 and

Cov[V x(s), V x(t)] =

∫
R

∫
R
e−λ(t−u)1(−∞,t](u)e

−λ(s−v)1(−∞,s](v)Γx(u, v)dudv, (4.10)

where

Γx(u, v) =
x2

σ2(x)

∫
R
g′(xu− w)g′(xv − w)dw.

(iii) The ch.f. of V x(t1), V x(t2), . . . , V x(tm) for t1 < t2 < · · · < tm is given by

E

exp
i

m∑
j=1

θjV x(tj)


 = exp


∫
R
ψ

 m∑
j=1

θj
x

σ(x)

∫ tj

−∞
e−λ(tj−v)g′(xv − u)dv

 du

 ,

where θj ∈ R for j = 1, . . . ,m and ψ is given in (2.1).

By extending earlier work of Lane (1984), who proved a CLT for the Poisson shot noise

process, it was shown in Theorem 3.2 of Klüppelberg and Kühn (2004) that, if the driving Lévy

process is compound Poisson, then the GFLP Sx converges weakly to BH in the Skorokhod space

D(R+) equipped with the metric of uniform convergence on compacts. Since the limit process has

continuous sample path, by Theorem 6.6 of Billingsley (1999) we can equivalently consider weak

convergence with respect to the Skorohod d0∞-metric on D(R+), which induces the J1 topology.

For a definition of d0∞ see e.g. (16.4) in Billingsley (1999). According to his Theorems 16.7

and 13.1 we have to show weak convergence of the finite dimensional distributions and tightness

of (V ·(t)|[0,T ])t∈R for every T > 0.

We extend this result two-fold. Firstly, we generalize the driving compound Poisson process

to a Lévy process and, secondly, we consider the convergence of stochastic volatility models

driven by a GFLP in Section 5.

Theorem 4.6. For x > 0 let V x be the stationary OU process driven by a time scaled GFLP as

defined in (4.9). Let Y be the stationary FOU process from Definition 3.6(iii) with H ∈ (1/2, 1).

Then

V x
d→ Y as x→ ∞,

where convergence holds in the Skorokhod space D(R+) equipped with the metric which induces

the Skorokhod J1 topology.
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Proof. We start proving convergence of the finite dimensional distributions. Let 0 = t1 < t2 <

· · · < tm < T and θj ∈ R for j = 1, . . . ,m. Recall from Proposition 4.5 (iii) the ch.f. of V x(t):

E
[
exp

{
i

m∑
j=1

θjV x(tj)
}]

= exp
{∫

R

∫
R
ϕ
(
y

m∑
j=1

θjh
x
tj (u)

)
ν(dy)du

}
= exp

{∫
R

∫
R
xϕ

(
y

m∑
j=1

θjh
x
tj (xu)

)
ν(dy)du

}
, (4.11)

where ϕ(x) = eix − 1− ix, and we set

hxt (s) :=
x

σ(x)

∫ t

−∞
e−λ(t−v)g′(xv − s)dv.

The outline of our prove is that we apply a Taylor expansion (Lemma 3.2 of Petrov (1995)) to

xϕ(·) in (4.11) and observe that

xϕ(y

m∑
j=1

θjh
x
tj (xw)) ∼ −y

2

2
x
( m∑
j=1

θjh
x
tj (xw)

)2
as x→ ∞. (4.12)

Then, since
∫
R y

2ν(dy) = E[(L(1))2] = 1, we will show that∫
R
x
( m∑
j=1

θjh
x
tj (xw)

)2
dw →

m∑
j,k

θjθkCov(Y (tj)Y (tk)) as x→ ∞, (4.13)

which implies that the finite dimensional distributions convergence to the corresponding Gaus-

sian process.

Firstly, in view of (4.10) and Theorem 4.3 we prove that for s, t ≥ 0,

lim
x→∞

∫
xhxs (xw)h

x
t (xw)dw = lim

x→∞
Cov(V x(s), V x(t)) = Cov(Y (s), Y (t)), (4.14)

which is the key of the proof. In view of (4.10), since Γx(u, v) should converge to the unbounded

function |u− v|2H−2 for H = ρ+ 1
2 , there is some difficulty to apply the dominated convergence

theorem directly; i.e., to find a dominant function. Alternatively, we work with the following

representation, which is obtained from integration by parts:

hxt (xw) =
g(x(t− w))

σ(x)
− λ

∫ t

−∞
e−λ(t−v) g(x(v − w))

σ(x)
dv

=
ftx(xw)

σ(x)
− λ

∫ t

−∞
e−λ(t−v) fxv(xw)

σ(x)
dv,

where we have set ft(w) = g(t − w) − g(−w). Now we apply dominated convergence to each

term of the following representation∫
xhxs (xw)h

x
t (xw)dw = Γ̃x(s, t)− λ

∫ s

−∞
e−λ(s−u)

∫
R

xfxu(xw)fxt(xw)

σ2(x)
dwdu

− λ

∫ t

−∞
e−λ(t−u)

∫
R

xfxu(xw)fxs(xw)

σ2(x)
dwdu
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+ λ2
∫ s

−∞
e−λ(s−u)

∫ t

−∞
e−λ(t−v)

∫
R

xfxu(xw)fxv(xw)

σ2(x)
dwdudv. (4.15)

From Theorem 4.3 we find

lim
x→∞

Γ̃x(s, t) = Cov(Bρ+1/2(s), Bρ+1/2(t)).

For the remaining terms, we only consider the third integral, since convergence of other integrals

can be proved similarly. By the Cauchy-Schwarz inequality the integrand in the third integral is

dominated by

e−λ(s−u)−λ(t−v)

√
σ2(xu)

σ2(x)

σ2(xv)

σ2(x)
.

We give a uniform upper bound for σ2(ux)/σ2(x). Since σ2 ∈ RV1+2ρ, for sufficiently small

δ > 0, the function γ(x) := σ2(x)|x|−1−2ρ−δ for x > 0 is regularly varying with index −δ and

γ(ux)/γ(x) converges to |u|−δ uniformly in |u| ∈ [1,∞) as x→ ∞ (cf. Theorem 1.5.2 of Bingham

et al. (1987)). Hence, we have

σ2(ux)

σ2(x)
= |u|1+2ρ+δ γ(ux)

γ(x)
≤ |u|1+2ρ+δ(1 + |u|−δ) ≤ 2|u|1+2ρ+δ, |u| ∈ [1,∞) (4.16)

for sufficiently large x. Furthermore by Karamata’s theorem σ2(ux)/σ2(x) converges to |u|1+2ρ

uniformly in |u| ∈ (0, 1], and this together with (4.16) implies

σ2(ux)

σ2(x)
≤ (c+ c′|u|1+2ρ)1{|u|≤1} + 2|u|1+2ρ+δ1{|u|>1}, (4.17)

for some c, c′ > 0. Thus the dominating function is uniformly integrable and the integral con-

verges; i.e.,

lim
x→∞

∫ s

−∞

∫ t

−∞
λ2e−λ(s−u)−λ(t−v)

√
σ2(xu)

σ2(x)

σ2(xv)

σ2(x)
dudv <∞.

Now we apply a generalized dominated convergence theorem (e.g. Theorem 1.21 of Kallenberg

(1997)) to (4.15) and obtain for the third integral of (4.15) in the limit

λ2
∫ s

−∞

∫ t

−∞
e−λ(s−u)−λ(t−v) 1

2

(
|u|2ρ+1 + |v|2ρ+1 − |u− v|2ρ+1

)
dudv.

Hence with (4.15) we conclude

lim
x→∞

Cov(V x(s), V x(t)) =
1

2
(|t|2ρ+1 + |s|2ρ+1 − |t− s|2ρ+1)

−λ
∫ s

−∞
e−λ(s−u) 1

2
(|t|2ρ+1 + |u|2ρ+1 − |t− u|2ρ+1)du

−λ
∫ t

−∞
e−λ(t−u) 1

2
(|s|2ρ+1 + |u|2ρ+1 − |s− u|2ρ+1)du

+λ2
∫ s

−∞

∫ t

−∞
e−λ(s−u)−λ(t−v) 1

2
(|u|2ρ+1 + |v|2ρ+1 − |u− v|2ρ+1)dudv

17



= ρ(2ρ+ 1)

∫ s

−∞
e−λ(s−u)

∫ t

−∞
e−λ(t−v)|u− v|2ρ−1dudv

= Cov(Y (s), Y (t)),

which proves (4.14).

We turn to the proof of (4.12) and (4.13). From the representation

fxt(xw)

σ(x)
= x−1/2 {g(x(t− w))− g(x(−u))}/g(x)

(
∫
R(fx(xu))

2du/g2(x))1/2

we observe that fxt(xw)/σ(x) = O(x−1/2) and hence hxt (xw) = O(x−1/2). Then (4.12) is implied

by a Taylor expansion: for sufficiently large x we have

x

∣∣∣∣∣∣ϕ
(
y

m∑
j=1

θjh
x
tj (xw)

)
+
y2

2

( m∑
j=1

θj(h
x
tj (xw))

)2

∣∣∣∣∣∣ = y3

6

(
x1/3

m∑
j=1

θjh
x
tj (xw)

)3
= O(x−1/2),

and the right-hand side tends to 0 as x → ∞. In the light of (4.14) and the same generalized

dominated convergence theorem as above (e.g. Theorem 1.21 of Kallenberg (1997)), it suffices for

the proof of (4.13) to show that the integral of a dominating function for xϕ(y
∑m

j=1 θjh
x
tj (xw))

converges as x→ ∞. We choose the dominating function by

x
∣∣∣ϕ(y m∑

j=1

θjh
x
tj (xu)

)∣∣∣ ≤ y2

2
x
∣∣∣ m∑
j=1

θjh
x
tj (xu)

∣∣∣2 = ax(u, y), x ∈ R.

such that its integral can be estimated as∫
R

∫
R
ax(u, y)ν(dy)du ≤ x

2

∫
R
y2ν(dy)

∥∥∥∥∥∥
m∑
j=1

θjh
x
tj (x·)

∥∥∥∥∥∥
2

L2(R)

≤ x

2
2m−1

m∑
j=1

∥∥∥θjhxtj (x·)∥∥∥2L2(R)

= 2m−2
m∑
j=1

θ2j

∫
R
x(hxt (xu))

2du, (4.18)

where we use Minkowski’s inequality and the fact
∫
y2ν(dy) = 1. Since the right-hand side

converges as x → ∞ by (4.14), we apply the generalized dominated convergence theorem to

(4.11) and obtain

lim
x→∞

E

exp
i

m∑
j=1

θjV x(tj)


 = E

exp
i

m∑
j=1

θjY (tj)


 ,

which implies convergence of the finite dimensional distributions.

Next we prove tightness. For 0 ≤ s < t <∞ choose T > 0 such that s, t ∈ [0, T ]. By equation

(13.14) of Billingsley (1999) it suffices to show E[(V x(t) − V x(s))
2] ≤ cT (t − s)1+ρ for some

constant cT > 0, By stationarity of V x we have

V x(t)− V x(s)
d
= V x(t− s)− V x(0) =

(
e−λ(t−s) − 1

)
V x(0) +

∫ t−s

0
e−λ(t−s−u)dSx(u).
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Applying Young’s inequality gives

E
[(
V x(t)− V x(s)

)2] ≤ 2
(
e−λ(t−s) − 1

)2
E
[
(V x(0))

2
]
+ 2E

[( ∫ t−s

0
e−λ(t−s−u)dSx(u)

)2]
.

Since |e−λ(t−s) − 1| ≤ c′T (t − s)(1+ρ)/2 for t > s and some constant c′T > 0, it suffices to show

that

E
[( ∫ t−s

0
e−λ(t−s−u)dSx(u)

)2]
≤ c′′T (t− s)1+ρ

for some constant c′′T > 0. Observe that by integration by parts as in (4.15),

E
[( ∫ t−s

0
e−λ(t−s−u)dSx(u)

)2]
=

∫
R

( x

σ(x)

∫ t−s

0
e−λ(t−s−w)g′((xu− w)+)du

)2
dw

≤ 2
σ2((t− s)x)

σ2(x)
+ 2λ2e−2λ(t−s)

∫ t−s

0

∫ t−s

0
eλ(u+v)

√
σ2(xu)

σ2(x)

σ2(xv)

σ2(x)
dudv

≤ 2
σ2((t− s)x)

σ2(x)
+ 2λ2c′′′T e

−2λ(t−s)
(∫ t−s

0
eλudu

)2

= 2
σ2((t− s)x)

σ2(x)
+ 2c′′′T (e

−λ(t−s) − 1)2

for some constant c′′′T > 0. Since σ2 ∈ RV1+2ρ, similarly as in the proof of Theorem 3.2 (p. 349)

of Klüppelberg and Kühn (2004), the bounded function η(x) := σ2(x)/x1+ρ is regularly varying

with index ρ; i.e., η(x(t−s))/η(x) converges to (t−s)ρ as x→ ∞ uniformly in t > s on compact

subsets of R+. This implies that for each M > 0 and x ≥ xM for some xM

σ2(x(t− s))

σ2(x)
≤ (T ρ + 1)(t− s)1+ρ.

This (together with the Cauchy-Schwarz inequality) implies the tightness condition (13.14) of

Billingsley (1999), which gives our result.

Remark 4.7. The proof of convergence of the finite dimensional distributions resembles that

of Theorem 1 in Pipiras and Taqqu (2008). However, the ch.f. (4.11) of our stochastic integrals

is more complicated than the one on p. 303, line 3 of that paper, as we have to deal with an

additional integral with respect to Lebesgue measure.

5 Limits of stochastic volatility models

We propose a flexible model class for stochastic volatility (SV) models: the data are driven by

BM or FBM, and the volatility process is an OU process driven by a time scaled GFLP. This

allows for different distributions by varying the driving Lévy process, it gives flexible dependence

structures, ranging from exponential short memory to polynomial, including long memory, and

it also allows for jumps in the volatility by the behavior of g in 0.
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Moreover, we allow for time scaled versions of the SV model, which gives, when we apply

Theorem 4.6, in the limit a function of a FOU process with H ∈ (1/2, 1). Consequently, we can

adjust the model for the roughness of its sample paths, from those with jumps to continuous

ones.

For H ∈ [1/2, 1) let WH be FBM (BM corresponding to H = 1/2). For x > 0 and a

continuous function f : R → R+ we define the SV model

zx(t) := µt+ β

∫ t

0
vx(s)ds+

∫ t

0

√
vx(s−)dWH(s), (5.1)

vx(t) := f(V x(t)).

The integral in the data equation is for H > 1/2 a path integral as defined in Young (1936) or

Mikosch and Norvaĭsa (2000), and requires p-variation of the sample path vx for appropriate p.

For H = 1/2 we take the usual Itô-integral.

We shall show that for x → ∞ the bivariate process {(zx(t), vx(t))}t≥0 converges in the

Skorokhod space D(R2
+) to

z(t) := µt+ β

∫ t

0
v(s)ds+

∫ t

0

√
v(s−)dWH(s),

v(t) := f(Y (t)).

Recall first that vx = f(V x), so that by the continuous mapping theorem weak convergence

of vx follows from that of V x.

Theorem 5.1. For x > 0 let (zx, vx) be as in (5.1). Assume that zx = {zx(t)}t≥0 is driven

by FBM (or BM) with H ∈ [1/2, 1). Assume furthermore that vx = {vx(t)}t≥0 is positive, has

a.s. càdlàg sample paths, and that it is independent of WH . Suppose that for every T > 0 and

t ∈ [0, T ] for all x sufficiently large

E[(vx(t))
2] ≤M, t ∈ [0, T ], (5.2)

for some constant M > 0, which may depend on T . For H > 1/2 we additionally assume that
√
vx is of finite p-variation for p < 1/(1−H). If

vx
d→ v as x→ ∞, (5.3)

in the Skorkohod space D(R+) with the metric which induces the Skorokhod J1 topology, and if
√
v is again of finite p-variation with p < 1/(1−H), then also

(zx, vx)
d→ (z, v) as x→ ∞,

in the Skorokhod space D(R2
+) with the metric which induces the Skorokhod J1 topology.

Proof. In order to prove weak convergence we show convergence of the finite dimensional distri-

butions and tightness. We shall often condition zx on the σ-field

G := σ {vx(s), s ∈ [0, T ], 0 < x <∞}
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so that, given G, the process zx is a Gaussian process. Now we take 0 = t1 < t2 < · · · < tm ≤ T

and 0 = t′1 < t′2 < · · · < t′n ≤ T for m,n ∈ N and prove

(zx(t1), zx(t2), . . . , zx(tm), vx(t
′
1), vx(t

′
2), . . . , vx(t

′
n))

d→ (z(t1), z(t2), . . . , z(tm), v(t′1), v(t
′
2), . . . , v(t

′
n))

by the Cramér-Wold device. For (γ11, γ12, . . . , γ1m, γ21, . . . , γ2n) ∈ Rm+n we shall show that

m∑
j=1

γ1jzx(tj) +
n∑

k=1

γ2kvx(t
′
k)

d→
m∑
j=1

γ1jz(tj) +
n∑

k=1

γ2kv(t
′
k).

Observe that

m∑
j=1

γ1jzx(tj) +
n∑

k=1

γ2kvx(t
′
k) =

m∑
j=2

 m∑
h=j

γ1j

 (zx(tj)− zx(tj−1)) +
n∑

k=1

γ2kvx(t
′
k)

with zx(t1) = 0 and, hence, it suffices to show that

m∑
j=2

γ1j(zx(tj)− zx(tj−1)) +
n∑

k=1

γ2kvx(t
′
k)

d→
m∑
j=2

γ1j(z(tj)− z(tj−1)) +
n∑

k=1

γ2kv(t
′
k).

We use the independence of vx and WH and the conditional Gaussianity of both zx and z given

the σ-field G to obtain the ch.f.

E
[
eiλ{

∑m
j=2 γ1j(zx(tj)−zx(tj−1))+

∑n
k=1 γ2kvx(t

′
k)}

]
= E

[
E
[
eiλ{

∑m
j=2 γ1j(zx(tj)−zx(tj−1))+

∑n
k=1 γ2kvx(t

′
k)}

∣∣∣G]]
= E

[
eiλ

∑n
k=1 γ2kvx(t

′
k)E

[
eiλ

∑m
j=2 γ1j(zx(tj)−zx(tj−1))

∣∣∣G]]
= E

[
e
iλ

∑n
k=1 γ2kvx(t

′
k)+iλ

∑m
j=2 γ1j

(
µ(tj−tj−1)+β

∫ tj
tj−1

vx(u)du
)

e
−λ2

2
H(2H−1)

∑m
j,k γ1jγ1k

∫ tj
tj−1

∫ tk
tk−1

√
vx(u)

√
vx(w)|u−w|2H−2dudw

]
=: E[h(vx)].

Since h(·) is continuous, the continuous mapping theorem yields h(vx)
d→ h(v). Furthermore,

the fact that |h| ≤ 1 together with Lemma 3.11 of Kallenberg (1997) implies that E[h(vx)] →
E[h(v)] as x → ∞ (see also 3.8 in Ch. VI of Jacod and Shiryaev (2003)). Again by conditional

independence, reversing the argument which led to E[h(vx)] yields

E[h(v)] = E
[
eiλ{

∑m
j=2 γ1j(z(tj)−z(tj−1))+

∑n
k=1 γ2kv(t

′
k)}

]
,

This concludes the first part of the proof.

Secondly, we prove tightness. For the process zx we apply the tightness condition of (13.14)

in Billingsley (1999). Since WH has zero mean, it suffices to prove tightness of

I(1)x (t) :=

∫ t

0
vx(s)ds and I(2)x (t) :=

∫ t

0

√
vx(s)dW

H(s), t ≥ 0.
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For 0 ≤ s < t we have

E

[(
I(1)x (t)− I(1)x (s)

)2
]

= E

[∫ t

s

∫ t

s
vx(u)vx(w)dudw

]
=

∫ t

s

∫ t

s
E[vx(u)vx(w)]dudw

≤
∫ t

s

∫ t

s

√
E[(vx(u))2]E[(vx(w))2]dudw

≤ M(t− s)2,

where we have used the Cauchy-Schwarz inequality and (5.2). This ensures the tightness con-

dition for the Lebesgue integral I
(1)
x . As for tightness of the (fractional) Brownian integral I

(2)
x

recall that, given the σ-field G, I(2)x is Gaussian. We distinguish two cases.

For H > 1/2 we calculate

E

[(
I(2)x (t)− I(2)x (s)

)2
]

≤ E

[
E

[(
I(2)x (t)− I(2)x (s)

)2 ∣∣∣G]]
≤ cE

[∫ t

s

∫ t

s

√
vx(u)

√
vx(w)|u− w|2H−2dudw

]
≤ cM(t− s)2H ,

where c is a finite positive constant, and apply (13.14) of Billingsley (1999) with β = 1/2.

For H = 1/2 we apply the same condition with β = 1 giving

E

[(
I(2)x (t)− I(2)x (s)

)4
]
= E

[
E

[(
I(2)x (t)− I(2)x (s)

)4 ∣∣∣G]] ≤ cE

[(
I(1)x (t)− I(1)x (s)

)2
]
,

using properties of the quadratic variation of BM, and c is again a finite positive constant. Now

since the limit process z is continuous, the bivariate tightness of {(zx(t), vx(t))}t≥0 follows from

Corollary 3.33 of Ch. VI of Jacod and Shiryaev (2003).

Remark 5.2. (a) The same remark as made before Theorem 4.6 holds for the bivariate model.

Since the bivariate limit process has continuous sample paths, weak convergence also holds in the

Skorokhod space D(R2
+) equipped with the metric of uniform convergence on compacts (Jacod

and Shiryaev, 2003, 1.17 (b), VI).

(b) Assume that vx = V x is the stationary OU process driven by a time scaled GFLP as defined

in (4.6). If V x satisfies the moment condition (5.2) and the p-variation condition on the sample

path, then Theorem 5.1 applies.
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