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Abstract— While human behavior prediction can increase the deviations of the real human behavior from the predicted one
capability of a robotic partner to generate anticipatory behavior  can occur. At the moment, prediction uncertainties are not
during physical human robot interaction (pHRI), predictions gy plicitly taken into account in the robot control. This may
in uncertain situations can lead to large disturbances for the . L .
human if they do not match the human intentions. In this paper easily lead to e_l robot behaV|or.|nS|_st|ng Or.] a _mouon glong a
we present a novel control concept in which the assistive contro "Wrongly” predicted path resulting in non-intuitive behiaw
parameters are adapted to the uncertainty in the sense that a and even disturbance to the joint task execution. It would be
the robot takes a more or less active role depending on its much more desirable, if the robot could adapt its role to the
confidence in the human behavior prediction. The approach is - ncertainty of the current situation. Here the role is define
based. on rlsk-sensmve.optlmal fegqpack control. The human by th t fthe i d trol which det .
behavior is modeled using probabilistic learning methods and 2Y € parameter or the impedance control which determine
any unexpected disturbance is considered as a source of noise.Now actively the robot tries to assist based on the predicted
The proposed approach is validated in situations with different human motion.
uncertainties, process noise and risk-sensitivities in a tow- In order to solve this open issue of uncertainty-adaptive
Degree-of-Freedom virtual reality experiment. robot behavior we propose a novel control approach for
pHRI based on stochastic optimal control (SOC) principles,
in particular risk-sensitive control. Our approach is insg

Daily-life tasks involving physical coupling between col-by recent findings in human sensorimotor control [8], [9],
laborating partners are very common for example in workyhich state that human sensorimotor behavior is the result
shops, households, rehabilitation, and assistance talyelde of minimizing a cost function while considering process
One of the major challenges is to replace one human partnggise and uncertainty in the dynamics. Very promising
in such joint physical tasks by an intuitively acting roleoti jn this context are works on the combination of learning
assistant. It is well-known that accurate human behaViQéChniqueS and SOC in human sensorimotor control, which
prediction is required for intuitive interaction as it efe® achieve better accuracy than classical SOC models under
anticipatory movements of the robot. However, a predictioaoiSy conditions [10], [11]. These ideas are also applied
far away from the real human intention can be more of g manipulation [12] and pHRI scenarios [13]. Still, the
hindrance than a help. Estimating in advance how certain t%riability does not explicitely influence the control pa-
predictions are in order to adapt the physical contribudbn rgmeters. Risk-sensitive control [14], [15] is an extensio
the robot can therefore improve its assistance. The idea @f classical SOC methods which addresses this issue as it
this work is to explicitly consider the uncertainty of a leed 350 considers the variability of the cost, i.e. cost varéan
human behavior model within the interaction control desigrnrRecent works successfully employ this concept to model

Physical human-robot interaction (pHRI) schemes are ithyman sensorimotor behavior [16], [17]. To the best of our
vestigated for example in [1], [2], where multiple robotsknowledge, no other previous works have investigated the
assist one or multiple humans carrying a bulky object b)éotential of risk-sensitive control in pHRI.
passively reacting to their human partners’s input. Such a|n this work, we investigate the combination of stochas-
follower strategy might not be sufficient though in con+jc optimal control principles including risk-sensitiyitvith
Strained ScenariOS, Where an aCtiVe taSk Contribution ﬁbm |earning techniques for app"cation in physica' humanetob
participants is necessary [3]. Also, it is well-known thahot  nteraction. We consider a probabilistic dynamic model in
assistance based on the anticipation of the human partnegsms of a HMM for the representation of the human motion
action can reduce the human effort [4], [5], and increase itSehavior to solve a task. We further interpret any other
transparency [6]. For the prediction of the human action iRuman behavior deviating from this model as process noise
a specified task a model is necessary. Our previous wojk the system. Therefore, we first extend the classical SOC
presented an incremental learning and prediction framewoppproach by the Mahalanobis distance as distance metric
for muItIpIe tasks and h|gh dimensional data based on H|dd@’hab“ng a robotic partner which dynamica”y adapts its
Markov Models (HMMs), where the prediction serves asmpedance, i.e. its role, depending on the level of unaemtai
target configuration to generate an anticipatory movemeghd process noise in the dynamics. Furthermore, we inves-
of the assisting robot using a position-based impedanggate a risk-sensitive optimal control approach for hapti
controller [7]. However, due to the human variability largeassistance in order to achieve different adaptation behavi

) ) _ . The control approach is validated in a virtual environment
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dhl ee, hirche}@um de The remainder of this paper is structured as follows: in
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Section I the problem considered and the general architecs é '

ture of the proposed control scheme is introduced. The risk4: Task Model »| Assistive | ur_ up =
sensitive optimal feedback assistive controller is ex@eiin =~ A = Control !
Section Ill. The dynamic model acquisition is presented in! u !
Section IV. Finally, an evaluation of the proposed conéwoll :
is carried out in Section V. \ 13 Rendered | ! Human
! R(_)bot !
Il. GENERAL ARCHITECTURE ,  Robot Admittance ,:

_____________________________________

In this paper we consider the prototypical task of a human

and a robot moving together from a starting pose to a fin&lg- 1. Overall control scheme: A task model provides prealiifor the
assistive controller to generate an anticipatory contnplut that is added

common goal while being physically coupled. This repreg, the human force acting on the admittance-type reactivevimhat the
sentation is suitable for many types of assistive tasks suatbot.

as joint object transport/manipulation, mobility assista to

human, and physical rehabilitation. In order to accommadat | . . . ,
unexpected inputs from the human, a robot should exhipithich obviously will be minimal if the robot would exactly

a compliant behavior towards the force input by a humafPP!Y the desired force, as assistive force. Note thak(t)
partner. Thigeactive behavior can be achieved by an admit- ©&" be computed perfectly if the desired trajectgyyt) as
tance control law. However, a purely reactive robotic partn well as the cu.rrent St?‘“?(’f) are exactly k”O",V“- quever,
becomes a heavier load rather than a help due to its reactim? exact de§|red trajectory of the human IS typ'c_?"'y_ not
time and electromechanical limitations. A better alteiesis  <'OWn- In this paper we assume thatis a probabilistic

a robot that does not only react, but also generatessigtive M0de! of the task providing an estimation in terms of means
behavior based on human motion prediction resulting in affnd covariance§ = {f¢, 3¢} of £;, see also Section IV.
anticipatory virtual force input added to the human’s inpu{'c the rqbot Frailfs this predicted trajectory, it will geas an

for the impedance control. Depending on the applicatioa, thapproxmatlonud. of “d',The req_u|red human contribution
interaction between both partners can be through an objefq, follow the desired trajectorg, is then

as in cooperative manipulation tasks, or directly at the-end Up = Ug — Ug -

effector as in movement assistance for elderly or disabted o ) )
exoskeletons. For simplicity of illustration, in our deations AS the true valueuq can not be derived and instead an
we consider a common interaction contact point betweefPProximate value based on the uncertain prediction is
the robot and its human partner at its end-effector. Th@MPloyed, the human contributionuy, can be modeled as
general assistive control architecture is presented in Eig @n independent noise input to the system, ug. = e
The reactive behavior of the robot is generated through S @ result we can rewrite the force input to the rendered
position-based admittance control. Therefore we can assu@dmittance (1) ag = w, + ¢ _ _
that the robot behaves like a linear time-invariant mass- 1€ optimal assistive controller will be developed in
damper system reacting with a motion to the input forcg|screte.tlmg. Ac_cordmgly, the sy_stem (1) is discretizethw

u consisting of the human force input, and the assistive 2 sampling time interval\¢. The discrete state of the system

robot force inputu,. at time k is given by¢, = (zi vi)T, wherexy, vy are
the position and the velocity of the dyad,.; the assistive
uw=up+u,=M,&+ D,z , (1) control force of the robot, and,; the force acting on the

reactive behavior of the robot at tinte The discrete time

with a rendered inertid/ ., a rendered viscous frictio.,  dynamics of the system, written in the form
and ¢ = (xz )" the state of the system, whene is the
position of the contact point, see also Fig. 1. The assistive §py1 = A&y + Buy )
robot force is computed within the assistive control blocks then given by
based on the deviation of the predicted motgrand the . . A . 0
current robot stat€. The motion prediction is provided by (U:ﬁ) = (0 1_ M;1DTAt> (U’;)+<M:1At) (urrter)
the task model\ which is assumed to be learned from (3)
previous executions with the human, i.e. it includes theiith the initial condition ¢, = (¢ vo)'.Considering
human motion behavior model. Here the main focus is othis dynamics and the task modg| the proposed assistive
the design of the assistive control law. controller produces the necessary control input to make the

The goal of the assistive control is to minimize the humaiyad fulfill the task, as explained in the following section.
contribution to the taskwy, ||. We assume the human intends
to follow a desired trajectorg,; which requiresu4 as a force
input for the given dynamics. In that case, minimizing the  The goal of assistance is to track the predicted state
human contribution means to minimize &, 7 until a given time horizori’. The assistive controller

must consequently generate the corresponding robot'saont
lunl = ||lua — wrll , input sequenceu,.; . However, unexpected disturbances

I11. A sSISTIVECONTROL
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Fig. 3. Assistive control scheme for the standard stochasgticnal control
case. The learned task model provides a target set point édocdhtroller,
generating the robot’s control input based on the control flam (7).
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distance to such a distribution. Instead the (weighted)a4ah
Fig. 2. Exemplary representation of the predicted state medvariance !anOb'S d'StanFe IS Chos_en here as a_sunable alternatlye as
€ = {pg Xe} and the effect of the Mahalanobis distance. Smalleis capable of incorporating the covariance of the predictio

variances can represent constrained regions meaning fggies. Similarly,  jntg the distance metric. The cost function then becomes
higher variances imply unconstrained regions were lowanggare applied.
T—1

1 1 1 1
J = z}Z&%QZEJ{zTJr Z (z;fzag inﬁ 7 Jrur;churk) ,
k=1
from the human side might still occur during the movement ~ ' . (6) _
and the assistance should still react in order to keep omreadvhere > ;. represents the covariance of the desired trajec-
ing the desired state. In such a scenario, optimal feedbat®y. Note that the state weighting matrix in the originalRQ
control arises as a suitable method, as it can plan the optingost function (5) is now replresentled By = 2. Q% 7

control input sequence given a cost function in the formy ..o end-term)y — 2;%6223 Also. for the follow-

of a feedback control law that keeps tracking the desweﬁé derivations we will assume a constant control weighting

traj_ectory. For a finite hqrizon task, the cost function of @Matrix R. The inclusion of the Mahalanobis distance allows
optimal control problem is the following intuitive interpretation: When the prediaiio

r-1 variance 3¢ is high, i.e. the robot is very unsure about
J(upr. 1) = h(€p) + Y cl&yrthrr) (4)  the desired trajectory, the Euclidean distance to the ntrre
k=1 point of the desired trajectory will be less relevant and the

where c(&,, u,;,) is the per-stage cost at tine for &,
andu,., and (&) is the final cost. In order to make the k=1 .
robot track the predicted configuration trajectdy ., the the optimization will tend to reduge the robot contr'ol input
cost function could be designed penalizing the (weighte(zn the other side, lower variances imply more certainty abou
Euclidean distance to the predicted state trajectory whil@€ desired trajectory and a higher contribution of the tobo
minimizing control cost. If we assume complete state obsef? track it, as depicted in Fig. 2. )
vation and no sensor delays, this problem can be formulatedAS the system is stochastic due to the process rdiséne

under the Linear Quadratic Regulator (LQR) framework. dynamics, the solution to the control problem is calculated
minimizing the expected cost, E[.J]. The optimal feedback

A. Linear Quadratic Regulator control law for such a LQR problem is given by
A finite time horizon LQR problem is given by a system

T-1
control cost Y ||u,;||* will become more significant, i.e.

o o i e = —Kpzi 7
with linear dynamics in the form of (2) and a cost function Urk FEk ()
given by where K. is the feedback matrix given by the Ricatti

o recursion
J(Ury 1) = Z?QTZTJrZ(ZEQka+Ur;£Rkurk) , () Ky=—R'B(BR'B +1I;},)7'4 8)
k=1
. " Do d
wherezy, is the state and) and R are positive semi-definite an , 1 PR
and positive definite weighting matrices, respectivelyjolth My = Qp + A(BR™ B + 1) A, ©)

allow a trade-off between required energy and aggress’;\ﬁenq,eing Iy = Qr.

of control. This standard cost function |mpI|eS azero GqU” This assistive control strategy, shown in F|g 3, tracks the
rium state. Our case is a tracking problem with the referenggedicted trajectory considering its covariance.

given by the meaifi, . A straightforward option would be . - )

to definez;, as the tracking errae, = €, — i, and use the B. Risk-Sensitive Optimal Control )

(weighted) Euclidean distance in the cost function. Howeve While the LQR solution considers the variankk as a

in contrast to classical LQR here the desired trajectory ismieasure of how precise the trajectory should be, the process
a sequence of multivariate normal distributions represenmnoise e has no influence on the control law given by (7).
ing the uncertain human motion behavior prediction. Thé risk-sensitive controller considers the noise of the oant
Euclidean distance is no longer appropriate to reflect thaput when calculating the optimal control law and adapés th
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Fig. 4. Assistive control scheme for the risk-sensitive ol control case.
Based on the scheme from Fig. 3, the unexpected behavior diuman
is additionally modeled as a process naisend estimated as the expected

variance of the control inpu£,, that the risk-sensitive controller takes into

account. High force variability

due to negotiation

. . . . Fig. 5. Exemplary representation of the expected level ofgtisement
feedback matrix depending on a risk-sensitivity parameterin terms of ., for a binary path following decision problem. Before a

minimizing the cost function divergence point, the expected disagreement level is higisethe partners
might not agree.

() = —20~" lnE[eXp_%eJ] . (20)
Considering the Taylor series expansioma#), considered in the dynamics. A low control input variance
1 implies a low noise in the system and the expected behavior
7(0) =E[J] ~ EQV“T[J] T (11) s closer to the noise-free dynamics.

it is observable that not only the expected cost is incorpo-
rated, as in the classical LQR case, but also higher order
moments of it. If¢ = 0, then the controller is risk-neutral ~ Acquiring a model of a joint task with a human involved,

and corresponds to the LQR case explained in Sec. lll-Auggests the use of learning by demonstration techniques.
For & < 0 and¢ > 0 the controller becomes risk-averse andBased on observations of human behavior, a model of the

IV. TASK MODEL ACQUISITION

risk-seeking, respectively. desired task can be obtained as the generalization of reultip
Solving this optimization problem leads to a modified formexecutions. In the pHRI case, the fact that both partners
of the Ricatti recursion [18] are physically coupled makes the deterination of the human

i 1 - Z1 \—1 intention more difficult as it might be influenced by the rabot
Ky =-R7B(BRTB + 0%, +1I;,)"4, (12) Furthermore, the control method as explained in Sec. lll,
and already requires a task model, which is also supposed to

) . . L represent the intentions of the human while interactindn wit

My =Qr+A(BR B + 03, +1I, ;)" A, (13) ts partner. In order to provide a preliminary model to the
with Tly = Qp and £, the variance of the normally ass!stlve ro_bot contr_ol, an execution of the task W|th(_)ut
_ . : assistance, i.at,. = 0 is taken here as a rough representation

distributed zero mean noise terBx in (3). . - .

of the task. This rough model is incrementally improved

Note that the solutions of (12) and (13) are th? saml% several executions where the robot now already tries to
as the ones from (8) and (9), except for the tefix,,. Y

Consequently, for risk-averse behavibi 0, the feedback assist the human partner. As a result a task model of the

L . . s . ... human interacting with an active robot is generated. This
gain will become higher adopting a pessimist attitude dsaf t . . . .
. L . -~ model reflects different trajectories as well as conflictd an
noise termBe was directing the state in the wrong direction. . . . .
. . . . disagreements in terms of higher variances of the control
For the opposite case > 0, a risk-seeking behavior, the input
controller will react in an optimistic manner, applying a . .
P PPyIng To encode and generalize the observations: {&, u} we

smaller gain, as the process noise is assumed to be acting in S
the right direction. qjse an HMM as a probabilistic model of the task. HMMs

The process noise can be interpreted as the unexpecte re discrete state space models that can succesfully egpres

behavior of the human partner. In fact, it could be intemgulet IMe-Seres Qata_ [19] including force a’?d WO“O“ data [7].
. . Their discretization is already a generalization of thereep

as thelevel of disagreement between the partners as depicted . . )

A ) S . sented observations and, by the methods explained in [20],

in Fig. 5. Solving the optimization problem requires an . ; . .

L2 . I a smooth generalized trajectory and heteroscedatic \wa$an
estimation of the noise level. If the probabilistic model . . . : :

. can also be obtained using Gaussian Mixture Regression.
represents not only the state, but also the resulting contrd
input u, the process noise can be estimated as the expected
variance ofw, i.e. a normally distributed noise with zero
mean and covariance matrix given B,, as shown in Fig. 4. In order to evaluate the performance of the controller we
A high variance3l,, implies that an unexpected behaviorchose a virtual environment where a heavy virtual object

from the human side could happen and a higher noise s to be moved along a given trajectory in two dimensions.

V. EXPERIMENTS
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Fig. 6. Experimental setup: 2-DoF haptic device and a virtmaironment. Fig. 8. Position trajectories of the two executions of thekta

After building a model of the task based on the human behavy,y Risk-neutral with Mahalanobis distancé: = 0 and
ior during the interaction with the robot, the performanée o using the cost function from (10) withi as in (6).

four dn‘fere_nt controllers v_wth different risk-sensitiigs are (o) Risk-averse with Mahalanobis distance= —3 and
compared in terms of their generated feedback matrices and

. X using the cost function from (10) with as in (6).
their generated force profile. (d)

Risk-seeking with Mahalanobis distanag:= 5 and
A. Experimental Setup using the cost function from (10) with as in (6).

The human partner applies forces to a haptic interfad® our experiments we choos¢ = 2-10"", R = I
in order to move a virtual object along a given trajectorythe identity matrix. For (a), we choose a diagonal
see Fig. 6 for the experimental setup. The haptic interfader = Q1 = diag{wy, w,} With w,, = 10° andw,, = 10* the
consists of a 2DoF linear-actuated deviddr(stTube) hav-  position and velocity weightings, respectively. For  (d)-(
ing a free-spinning handle at the grasping point. Attacled we setQ = diag{w,, w,} with w, = 1072 andw, = 10~?
the handle, a force/torque sensdR8) measures the human because of the low values of the variances in the order
force input. The virtual scene is visually represented on @f 10~°. The general properties of the results are not affected
display placed on top of the interface. The task to be exdcut®y that.
was to follow a path describing the letter 'p’. In the two-dimensional case, the state of the system at
The control scheme implemented MATLAB/Smulink time k is given by&;, = (zx yrx Vo vy’k)T. For this
is executed on a personal computer on thaux Real- scenario, the optimal control law from (7) becomes
Time Application Interface (RTAI) usingMatlab’s Real-Time

Workshop. The shared object is physically rendered as a poinf 8 8 8 8 22 _ Z;’:
mass with an inertia af/, = 40 kg and damped by aviscous | u,,.c | = | Ko 0 Ky, O Vo = flug,
friction of D, = 90Ns/m, emulating a heavy object. The \Ury.k 0 Kyr 0 Kyu/ \vyr— ﬂvyfl4

control scheme runs at a sampling rate of 1 kHz.

The model of the task is acquired from two different
executions of the task, depicted in Fig. 8. In the first ru
the human leads the task and no robot assistance- 0 5
is provided. The resulting motion observations are used noise{6.,% 64,”}.
the target trajectory for the risk-neutral controller ahgrithe .
second run, when the robot is already assisting. During th% Experimental Results
second execution, the human provokes some disagreement¥he resulting control gains for the settings (a)-(d) are
trying to follow a slightly different path and velocity pregs  shown in Fig. 7 in rows 1 and 3, the variances in rows 2
in order to induce relevant variances. The observations aa&d 4, and the noise in row 5. The first and the second
encoded into a HMM with 40 states. The HMM library column represent the x-components and the y-components,
is implemented in C++. For simplicity of illustration, we respectively.
only consider the diagonal of the covariance matrices in the The gain profiles of the classical LQR with standard

The four different controllers are evaluated in term of
rghelr feedback gams{Km,Ky,K,,m,Kvy} with respect
to the varlances{crm ?,64%,64,°6,,°}, and the process

further control compupation. Euclidean distance controller (a) behaves as expected: The
We test four different assistive controllers depending ogains remain largely constant. This is qualitatively difet
its risk-sensitivity and its cost function: to the gains for (b)-(d) which vary over time.

(@) LQR with standard Euclidean distanée= 0 and using For the settings (b)-(d) the controller gains exhibit sanil
the cost function from (5). characteristics in terms of their profiles even if they diffe
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Fig. 7. Control gains for the different controllers togetheth the variances for the predictions and process noise first row and the third row
show the position and the velocity gain respectively, witile second and the fourth rows show the predicted positidntta velocity variance. The fifth
row shows the process noise in terms of the control input mee€iaThe first column of each row refer to the x-component andséoend one to the
y-component. In rows 1 and 3, the dotted cyan line corresptmda) LQR with standard Euclidean distance, the red dastedidine to (b) risk-neutral
6 = 0 with Mahalanobis distance, the green dashed line to (c}avgksed < 0 with Mahalanobis distance, and the blue solid line to (di-gseking

6 < 0 with Mahalanobis distance.

in value. The variances of the tracking error for the posieonsiders the process noise as if it was leading the dyad
tion (row 2) and the velocity (row 4) are considered in théo a wrong direction and therefore the gains during periods
Mahalanobis distance for the cost function and clearly influwith a higher noise become higher in order to track the
ence the results. Lower variance periods imply higher gaingference more dominantly. On the other hand, the risk-
making the robot adopt a more rigid behavior, while higheseeking controller (d) assumes that the process noise is
variances produce lower gains, i.e. less stiffness/dagnpinleading the system to the right direction and consequently
tolerating higher deviations from the expected statedtajg  the gains during periods with a higher noise become smaller,
and letting the human partner more flexibility, as showras the noise is assumed to be already doing part of the work.
in Fig. 9. This effect becomes more evident in the position These results show that the risk-averse controller becomes
gains (row 1) than in the velocity gains (row 3) because thstiffer adopting higher gains in case of higher noise. Irecas
position accuracy factow, is set higher than the velocity of disagreement, the robot tries to impose its path to the
accuracy factot,,. human partner becoming more dominant. On the other hand,
The setting (b)-(d) differ in their risk-sensitivity, i.@ow the risk-seeking controller becomes less stiff, sugggsts

the noise / level of disagreement (row 5) affects the colerol partner to decide the way to follow.

as depicted in Fig. 10. The risk-neutral controller (b) dega In summary, the extension of the classical LQR framework
by the red dash dotted line does not consider the procegsinclude the uncertainty of the human behavior prediction
noise asf = 0. However, the risk-averse controller (c)and disagreement through the Mahalanobis distance and



more or less dominant way. The approach is successfully
evaluated in a 2-DoF experiment with a virtual environment.
Studying human preferences regarding the risk-sengitivit
and applying this control scheme to more complex tasks is
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Fig. 9. Experiment excerpt showing the the x-component of thetion
gain for the risk-neutral controller (b), red dash-dottete| together with (2]
the position variance, black line. Due to the inclusion & ¥ahalanobis
distance, when high variances are expected, the contgalerfalls accord-
ingly and vice versa.
(3]
600
[4]
500
S
= — 5
\Zg 400 < [5]
S ol
£ 300 ® 6]
= 3
e ©
£ 200 <o
]
]
100
(8]
Time(s) [:{g]]
Fig. 10. Experiment excerpt showing the x-component of th&ipasgyain
for the risk-sensitive controllers together with the expdmoise. The blue,
red and green lines represent the controllers (b),(c) ancegpectively. The [11]
black line represent the expected noise level. Under higkenlevels, the
controllers adapt their gains depending on their risk-ggitg. Low noise
levels lead to similar gains for the three controllers.
[12]

the concept of risk-sensitivity provides meaningful résul
concerning a confidence-based role allocation to the robgig)
It remains to show in future human user studies that this

behavior is indeed beneficial for haptic assistance. [14]

VI. CONCLUSIONS [15]

In this paper we present a novel control approach for
haptic assistance. The approach is based on the concept of
risk-sensitivity and the replacement of the Euclideanatice [16]
metrics by the Mahalanobis distance in tracking control
problems which are based on uncertain reference trajestori -
The uncertain reference trajectory stems from a task/ human
behavior model which is inevitable uncertain and which we
assume to be represented by probabilistic models (HMMs{)l.
With the novel approach the assitive control feedback gainso
and therewith the robot role adapt to the uncertainties of
the human behavior prediction. Moreover, depending B0
the risk-sensitivity the robot manages disagreement betwe
the partners measured in terms of the force variance in a

8]

the matter of our future work.
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