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Abstract— While human behavior prediction can increase the
capability of a robotic partner to generate anticipatory behavior
during physical human robot interaction (pHRI), predictions
in uncertain situations can lead to large disturbances for the
human if they do not match the human intentions. In this paper
we present a novel control concept in which the assistive control
parameters are adapted to the uncertainty in the sense that a
the robot takes a more or less active role depending on its
confidence in the human behavior prediction. The approach is
based on risk-sensitive optimal feedback control. The human
behavior is modeled using probabilistic learning methods and
any unexpected disturbance is considered as a source of noise.
The proposed approach is validated in situations with different
uncertainties, process noise and risk-sensitivities in a tow-
Degree-of-Freedom virtual reality experiment.

I. I NTRODUCTION

Daily-life tasks involving physical coupling between col-
laborating partners are very common for example in work-
shops, households, rehabilitation, and assistance to elderly.
One of the major challenges is to replace one human partner
in such joint physical tasks by an intuitively acting robotic
assistant. It is well-known that accurate human behavior
prediction is required for intuitive interaction as it enables
anticipatory movements of the robot. However, a prediction
far away from the real human intention can be more of a
hindrance than a help. Estimating in advance how certain the
predictions are in order to adapt the physical contributionof
the robot can therefore improve its assistance. The idea of
this work is to explicitly consider the uncertainty of a learned
human behavior model within the interaction control design.

Physical human-robot interaction (pHRI) schemes are in-
vestigated for example in [1], [2], where multiple robots
assist one or multiple humans carrying a bulky object by
passively reacting to their human partners’s input. Such a
follower strategy might not be sufficient though in con-
strained scenarios, where an active task contribution fromall
participants is necessary [3]. Also, it is well-known that robot
assistance based on the anticipation of the human partner’s
action can reduce the human effort [4], [5], and increase its
transparency [6]. For the prediction of the human action in
a specified task a model is necessary. Our previous work
presented an incremental learning and prediction framework
for multiple tasks and high dimensional data based on Hidden
Markov Models (HMMs), where the prediction serves as
target configuration to generate an anticipatory movement
of the assisting robot using a position-based impedance
controller [7]. However, due to the human variability large
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deviations of the real human behavior from the predicted one
can occur. At the moment, prediction uncertainties are not
explicitly taken into account in the robot control. This may
easily lead to a robot behavior insisting on a motion along a
”wrongly” predicted path resulting in non-intuitive behavior
and even disturbance to the joint task execution. It would be
much more desirable, if the robot could adapt its role to the
uncertainty of the current situation. Here the role is defined
by the parameter of the impedance control which determine
how actively the robot tries to assist based on the predicted
human motion.

In order to solve this open issue of uncertainty-adaptive
robot behavior we propose a novel control approach for
pHRI based on stochastic optimal control (SOC) principles,
in particular risk-sensitive control. Our approach is inspired
by recent findings in human sensorimotor control [8], [9],
which state that human sensorimotor behavior is the result
of minimizing a cost function while considering process
noise and uncertainty in the dynamics. Very promising
in this context are works on the combination of learning
techniques and SOC in human sensorimotor control, which
achieve better accuracy than classical SOC models under
noisy conditions [10], [11]. These ideas are also applied
to manipulation [12] and pHRI scenarios [13]. Still, the
variability does not explicitely influence the control pa-
rameters. Risk-sensitive control [14], [15] is an extension
to classical SOC methods which addresses this issue as it
also considers the variability of the cost, i.e. cost variance.
Recent works successfully employ this concept to model
human sensorimotor behavior [16], [17]. To the best of our
knowledge, no other previous works have investigated the
potential of risk-sensitive control in pHRI.

In this work, we investigate the combination of stochas-
tic optimal control principles including risk-sensitivity with
learning techniques for application in physical human-robot
interaction. We consider a probabilistic dynamic model in
terms of a HMM for the representation of the human motion
behavior to solve a task. We further interpret any other
human behavior deviating from this model as process noise
in the system. Therefore, we first extend the classical SOC
approach by the Mahalanobis distance as distance metric
enabling a robotic partner which dynamically adapts its
impedance, i.e. its role, depending on the level of uncertainty
and process noise in the dynamics. Furthermore, we inves-
tigate a risk-sensitive optimal control approach for haptic
assistance in order to achieve different adaptation behavior.
The control approach is validated in a virtual environment
experiment using a two-Degree-of-Freedom (DoF) setup.

The remainder of this paper is structured as follows: in



Section II the problem considered and the general architec-
ture of the proposed control scheme is introduced. The risk-
sensitive optimal feedback assistive controller is explained in
Section III. The dynamic model acquisition is presented in
Section IV. Finally, an evaluation of the proposed controller
is carried out in Section V.

II. GENERAL ARCHITECTURE

In this paper we consider the prototypical task of a human
and a robot moving together from a starting pose to a final
common goal while being physically coupled. This repre-
sentation is suitable for many types of assistive tasks such
as joint object transport/manipulation, mobility assistance to
human, and physical rehabilitation. In order to accommodate
unexpected inputs from the human, a robot should exhibit
a compliant behavior towards the force input by a human
partner. Thisreactive behavior can be achieved by an admit-
tance control law. However, a purely reactive robotic partner
becomes a heavier load rather than a help due to its reaction
time and electromechanical limitations. A better alternative is
a robot that does not only react, but also generate anassistive
behavior based on human motion prediction resulting in an
anticipatory virtual force input added to the human’s input
for the impedance control. Depending on the application, the
interaction between both partners can be through an object,
as in cooperative manipulation tasks, or directly at the end-
effector as in movement assistance for elderly or disabled or
exoskeletons. For simplicity of illustration, in our derivations
we consider a common interaction contact point between
the robot and its human partner at its end-effector. The
general assistive control architecture is presented in Fig. 1.
The reactive behavior of the robot is generated through a
position-based admittance control. Therefore we can assume
that the robot behaves like a linear time-invariant mass-
damper system reacting with a motion to the input force
u consisting of the human force inputuh and the assistive
robot force inputur

u = uh + ur = M rẍ+Drẋ , (1)

with a rendered inertiaM r, a rendered viscous frictionDr,
and ξ = (x ẋ)T the state of the system, wherex is the
position of the contact point, see also Fig. 1. The assistive
robot force is computed within the assistive control block
based on the deviation of the predicted motionξ̂ and the
current robot stateξ. The motion prediction is provided by
the task modelλ which is assumed to be learned from
previous executions with the human, i.e. it includes the
human motion behavior model. Here the main focus is on
the design of the assistive control law.

The goal of the assistive control is to minimize the human
contribution to the task‖uh‖. We assume the human intends
to follow a desired trajectoryξd which requiresud as a force
input for the given dynamics. In that case, minimizing the
human contribution means to minimize

‖uh‖ = ‖ud − ur‖ ,

+
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Fig. 1. Overall control scheme: A task model provides predictions for the
assistive controller to generate an anticipatory control input that is added
to the human force acting on the admittance-type reactive behavior of the
robot.

which obviously will be minimal if the robot would exactly
apply the desired forceud as assistive force. Note thatud(t)
can be computed perfectly if the desired trajectoryξd(t) as
well as the current stateξ(t) are exactly known. However,
the exact desired trajectory of the human is typically not
known. In this paper we assume thatλ is a probabilistic
model of the task providing an estimation in terms of means
and covarianceŝξ = {µ̂ξ, Σ̂ξ} of ξd, see also Section IV.
If the robot tracks this predicted trajectory, it will generate an
approximationũd of ud. The required human contribution
to follow the desired trajectoryξd is then

uh = ud − ũd .

As the true valueud can not be derived and instead an
approximate value based on the uncertain prediction is
employed, the human contribution ,uh can be modeled as
an independent noise input to the system, i.e.uh = ǫ.
As a result we can rewrite the force input to the rendered
admittance (1) asu = ur + ǫ.

The optimal assistive controller will be developed in
discrete time. Accordingly, the system (1) is discretized with
a sampling time interval∆t. The discrete state of the system
at time k is given byξk = (xk vk)

T, wherexk, vk are
the position and the velocity of the dyad,urk the assistive
control force of the robot, anduk the force acting on the
reactive behavior of the robot at timek. The discrete time
dynamics of the system, written in the form

ξk+1 = Aξk +Buk , (2)

is then given by
(
xk+1

vk+1

)
=

(
1 ∆t

0 1−M−1
r Dr∆t

)(
xk

vk

)
+
(

0
M−1

r ∆t

)
(urk+ǫk) ,

(3)
with the initial condition ξ0 = (x0 v0)

T.Considering
this dynamics and the task modelλ, the proposed assistive
controller produces the necessary control input to make the
dyad fulfill the task, as explained in the following section.

III. A SSISTIVECONTROL

The goal of assistance is to track the predicted state
ξ̂1...T until a given time horizonT . The assistive controller
must consequently generate the corresponding robot’s control
input sequence,ur1...T . However, unexpected disturbances
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Fig. 2. Exemplary representation of the predicted state mean and variance
ξ̂ = {µ̂ξ, Σ̂ξ} and the effect of the Mahalanobis distance. Smaller
variances can represent constrained regions meaning highergains. Similarly,
higher variances imply unconstrained regions were lower gains are applied.

from the human side might still occur during the movement
and the assistance should still react in order to keep on reach-
ing the desired state. In such a scenario, optimal feedback
control arises as a suitable method, as it can plan the optimal
control input sequence given a cost function in the form
of a feedback control law that keeps tracking the desired
trajectory. For a finite horizon task, the cost function of an
optimal control problem is

J(ur1...T ) = h(ξT ) +

T−1∑

k=1

c(ξk,urk) , (4)

where c(ξk,urk) is the per-stage cost at timek for ξk
andurk, andh(ξT ) is the final cost. In order to make the
robot track the predicted configuration trajectoryξ̂1...T , the
cost function could be designed penalizing the (weighted)
Euclidean distance to the predicted state trajectory while
minimizing control cost. If we assume complete state obser-
vation and no sensor delays, this problem can be formulated
under the Linear Quadratic Regulator (LQR) framework.

A. Linear Quadratic Regulator

A finite time horizon LQR problem is given by a system
with linear dynamics in the form of (2) and a cost function
given by

J(ur1...T ) = zT
TQTzT+

T−1∑

k=1

(zT
kQkzk+ur

T
kRkurk) , (5)

wherezk is the state andQ andR are positive semi-definite
and positive definite weighting matrices, respectively, which
allow a trade-off between required energy and aggressiveness
of control. This standard cost function implies a zero equilib-
rium state. Our case is a tracking problem with the reference
given by the mean̂µξ

1..T
. A straightforward option would be

to definezk as the tracking errorzk = ξk − µ̂ξk
and use the

(weighted) Euclidean distance in the cost function. However,
in contrast to classical LQR here the desired trajectory is
a sequence of multivariate normal distributions represent-
ing the uncertain human motion behavior prediction. The
Euclidean distance is no longer appropriate to reflect the
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Fig. 3. Assistive control scheme for the standard stochasticoptimal control
case. The learned task model provides a target set point for the controller,
generating the robot’s control input based on the control law from (7).

distance to such a distribution. Instead the (weighted) Maha-
lanobis distance is chosen here as a suitable alternative asit
is capable of incorporating the covariance of the prediction
into the distance metric. The cost function then becomes

J = z
T
T Σ̂

−
1

2

ξ,TQΣ̂
−

1

2

ξ,T zT +
T−1∑

k=1

(zTk Σ̂
−

1

2

ξ,kQΣ̂
−

1

2

ξ,k zk+ur
T
kRurk) ,

(6)
whereΣ̂ξ,k represents the covariance of the desired trajec-
tory. Note that the state weighting matrix in the original LQR

cost function (5) is now represented byQk = Σ̂
−

1

2

ξ,kQΣ̂
−

1

2

ξ,k

and in the end-termQT = Σ̂
−

1

2

ξ,TQΣ̂
−

1

2

ξ,T . Also, for the follow-
ing derivations we will assume a constant control weighting
matrix R. The inclusion of the Mahalanobis distance allows
the following intuitive interpretation: When the prediction
variance Σ̂ξ is high, i.e. the robot is very unsure about
the desired trajectory, the Euclidean distance to the current
point of the desired trajectory will be less relevant and the

control cost
T−1∑
k=1

‖urk‖
2 will become more significant, i.e.

the optimization will tend to reduce the robot control input.
On the other side, lower variances imply more certainty about
the desired trajectory and a higher contribution of the robot
to track it, as depicted in Fig. 2.

As the system is stochastic due to the process noiseǫ in the
dynamics, the solution to the control problem is calculated
minimizing the expected cost, E[J ]. The optimal feedback
control law for such a LQR problem is given by

urk = −Kkzk , (7)

where Kk is the feedback matrix given by the Ricatti
recursion

Kk = −R−1B′(BR−1B′ +Π−1
k+1)

−1A (8)

and
Πk = Qk +A′(BR−1B′ +Π−1

k+1)
−1A , (9)

beingΠT = QT .
This assistive control strategy, shown in Fig. 3, tracks the

predicted trajectory considering its covariance.

B. Risk-Sensitive Optimal Control

While the LQR solution considers the variancêΣξ as a
measure of how precise the trajectory should be, the process
noise ǫ has no influence on the control law given by (7).
A risk-sensitive controller considers the noise of the control
input when calculating the optimal control law and adapts the
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Fig. 4. Assistive control scheme for the risk-sensitive optimal control case.
Based on the scheme from Fig. 3, the unexpected behavior of thehuman
is additionally modeled as a process noiseǫ and estimated as the expected
variance of the control input̂Σu that the risk-sensitive controller takes into
account.

feedback matrix depending on a risk-sensitivity parameterθ

minimizing the cost function

γ(θ) = −2θ−1 lnE[exp
−

1

2
θJ ] . (10)

Considering the Taylor series expansion ofγ(θ),

γ(θ) = E[J ]−
1

4
θV ar[J ] + ... , (11)

it is observable that not only the expected cost is incorpo-
rated, as in the classical LQR case, but also higher order
moments of it. Ifθ = 0, then the controller is risk-neutral
and corresponds to the LQR case explained in Sec. III-A.
For θ < 0 andθ > 0 the controller becomes risk-averse and
risk-seeking, respectively.

Solving this optimization problem leads to a modified form
of the Ricatti recursion [18]

Kk = −R−1B′(BR−1B′ + θΣ̂u +Π−1
k+1)

−1A , (12)

and

Πk = Qk +A′(BR−1B′ + θΣ̂u +Π−1
k+1)

−1A , (13)

with ΠT = QT and Σ̂u the variance of the normally
distributed zero mean noise termBǫ in (3).

Note that the solutions of (12) and (13) are the same
as the ones from (8) and (9), except for the termθΣ̂u.
Consequently, for risk-averse behaviorθ < 0, the feedback
gain will become higher adopting a pessimist attitude as if the
noise termBǫ was directing the state in the wrong direction.
For the opposite caseθ > 0, a risk-seeking behavior, the
controller will react in an optimistic manner, applying a
smaller gain, as the process noise is assumed to be acting in
the right direction.

The process noiseǫ can be interpreted as the unexpected
behavior of the human partner. In fact, it could be interpreted
as thelevel of disagreement between the partners as depicted
in Fig. 5. Solving the optimization problem requires an
estimation of the noise level. If the probabilistic modelλ

represents not only the state, but also the resulting control
input u, the process noise can be estimated as the expected
variance ofu, i.e. a normally distributed noise with zero
mean and covariance matrix given byΣ̂u, as shown in Fig. 4.
A high varianceΣ̂u implies that an unexpected behavior
from the human side could happen and a higher noise is

High force variability

due to negotiation

Obstacle

Low force

variability

Fig. 5. Exemplary representation of the expected level of disagreement
in terms of Σ̂u for a binary path following decision problem. Before a
divergence point, the expected disagreement level is higher, as the partners
might not agree.

considered in the dynamics. A low control input variance
implies a low noise in the system and the expected behavior
is closer to the noise-free dynamics.

IV. TASK MODEL ACQUISITION

Acquiring a model of a joint task with a human involved,
suggests the use of learning by demonstration techniques.
Based on observations of human behavior, a model of the
desired task can be obtained as the generalization of multiple
executions. In the pHRI case, the fact that both partners
are physically coupled makes the deterination of the human
intention more difficult as it might be influenced by the robot.
Furthermore, the control method as explained in Sec. III,
already requires a task model, which is also supposed to
represent the intentions of the human while interacting with
its partner. In order to provide a preliminary model to the
assistive robot control, an execution of the task without
assistance, i.e.ur = 0 is taken here as a rough representation
of the task. This rough model is incrementally improved
in several executions where the robot now already tries to
assist the human partner. As a result a task model of the
human interacting with an active robot is generated. This
model reflects different trajectories as well as conflicts and
disagreements in terms of higher variances of the control
input.

To encode and generalize the observationsO = {ξ,u} we
use an HMM as a probabilistic model of the task. HMMs
are discrete state space models that can succesfully represent
time-series data [19] including force and motion data [7].
Their discretization is already a generalization of the repre-
sented observations and, by the methods explained in [20],
a smooth generalized trajectory and heteroscedatic variances
can also be obtained using Gaussian Mixture Regression.

V. EXPERIMENTS

In order to evaluate the performance of the controller we
chose a virtual environment where a heavy virtual object
has to be moved along a given trajectory in two dimensions.



Fig. 6. Experimental setup: 2-DoF haptic device and a virtualenvironment.

After building a model of the task based on the human behav-
ior during the interaction with the robot, the performance of
four different controllers with different risk-sensitivities are
compared in terms of their generated feedback matrices and
their generated force profile.

A. Experimental Setup

The human partner applies forces to a haptic interface
in order to move a virtual object along a given trajectory,
see Fig. 6 for the experimental setup. The haptic interface
consists of a 2DoF linear-actuated device (ThrustTube) hav-
ing a free-spinning handle at the grasping point. Attached to
the handle, a force/torque sensor (JR3) measures the human
force input. The virtual scene is visually represented on a
display placed on top of the interface. The task to be executed
was to follow a path describing the letter ’p’.

The control scheme implemented inMATLAB/Simulink
is executed on a personal computer on theLinux Real-
Time Application Interface (RTAI) usingMatlab’s Real-Time
Workshop. The shared object is physically rendered as a point
mass with an inertia ofMr = 40 kg and damped by a viscous
friction of Dr = 90Ns/m, emulating a heavy object. The
control scheme runs at a sampling rate of 1 kHz.

The model of the task is acquired from two different
executions of the task, depicted in Fig. 8. In the first run
the human leads the task and no robot assistanceur = 0
is provided. The resulting motion observations are used as
the target trajectory for the risk-neutral controller during the
second run, when the robot is already assisting. During this
second execution, the human provokes some disagreements
trying to follow a slightly different path and velocity profiles
in order to induce relevant variances. The observations are
encoded into a HMM with 40 states. The HMM library
is implemented in C++. For simplicity of illustration, we
only consider the diagonal of the covariance matrices in the
further control compupation.

We test four different assistive controllers depending on
its risk-sensitivity and its cost function:
(a) LQR with standard Euclidean distance:θ = 0 and using

the cost function from (5).
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Fig. 8. Position trajectories of the two executions of the task.

(b) Risk-neutral with Mahalanobis distance:θ = 0 and
using the cost function from (10) withJ as in (6).

(c) Risk-averse with Mahalanobis distance:θ = −β and
using the cost function from (10) withJ as in (6).

(d) Risk-seeking with Mahalanobis distance:θ = β and
using the cost function from (10) withJ as in (6).

In our experiments we chooseβ = 2 · 10−7, R = I

the identity matrix. For (a), we choose a diagonal
Qk = QT = diag{ωp, ωv} with ωp = 105 andωv = 104 the
position and velocity weightings, respectively. For (b)-(d)
we setQ = diag{ωp, ωv} with ωp = 10−2 andωv = 10−3

because of the low values of the variances in the order
of 10−5. The general properties of the results are not affected
by that.

In the two-dimensional case, the state of the system at
time k is given byξk =

(
xk yk vx,k vy,k

)T
. For this

scenario, the optimal control law from (7) becomes



0
0

urx,k

ury ,k


 =




0 0 0 0
0 0 0 0

Kx,k 0 Kvx,k 0
0 Ky,k 0 Kvy ,k







xk − µ̂xk

yk − µ̂yk
vx,k − µ̂vxk

vy,k − µ̂vyk




(14)
The four different controllers are evaluated in term of
their feedback gains{Kx,Ky,Kvx

,Kvy
}, with respect

to the variances{σ̂x
2, σ̂y

2, σ̂vx

2σ̂vy

2}, and the process
noise{σ̂ux

2, σ̂uy

2}.

B. Experimental Results

The resulting control gains for the settings (a)-(d) are
shown in Fig. 7 in rows 1 and 3, the variances in rows 2
and 4, and the noise in row 5. The first and the second
column represent the x-components and the y-components,
respectively.

The gain profiles of the classical LQR with standard
Euclidean distance controller (a) behaves as expected: The
gains remain largely constant. This is qualitatively different
to the gains for (b)-(d) which vary over time.

For the settings (b)-(d) the controller gains exhibit similar
characteristics in terms of their profiles even if they differ
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Fig. 7. Control gains for the different controllers together with the variances for the predictions and process noise. The first row and the third row
show the position and the velocity gain respectively, whilethe second and the fourth rows show the predicted position and the velocity variance. The fifth
row shows the process noise in terms of the control input variance. The first column of each row refer to the x-component and thesecond one to the
y-component. In rows 1 and 3, the dotted cyan line correspondsto (a) LQR with standard Euclidean distance, the red dash-dotted line to (b) risk-neutral
θ = 0 with Mahalanobis distance, the green dashed line to (c) risk-averseθ < 0 with Mahalanobis distance, and the blue solid line to (d) risk-seeking
θ < 0 with Mahalanobis distance.

in value. The variances of the tracking error for the posi-
tion (row 2) and the velocity (row 4) are considered in the
Mahalanobis distance for the cost function and clearly influ-
ence the results. Lower variance periods imply higher gains
making the robot adopt a more rigid behavior, while higher
variances produce lower gains, i.e. less stiffness/damping,
tolerating higher deviations from the expected state trajectory
and letting the human partner more flexibility, as shown
in Fig. 9. This effect becomes more evident in the position
gains (row 1) than in the velocity gains (row 3) because the
position accuracy factorωp is set higher than the velocity
accuracy factorωv.

The setting (b)-(d) differ in their risk-sensitivity, i.e.how
the noise / level of disagreement (row 5) affects the controller
as depicted in Fig. 10. The risk-neutral controller (b) depicted
by the red dash dotted line does not consider the process
noise asθ = 0. However, the risk-averse controller (c)

considers the process noise as if it was leading the dyad
to a wrong direction and therefore the gains during periods
with a higher noise become higher in order to track the
reference more dominantly. On the other hand, the risk-
seeking controller (d) assumes that the process noise is
leading the system to the right direction and consequently
the gains during periods with a higher noise become smaller,
as the noise is assumed to be already doing part of the work.

These results show that the risk-averse controller becomes
stiffer adopting higher gains in case of higher noise. In case
of disagreement, the robot tries to impose its path to the
human partner becoming more dominant. On the other hand,
the risk-seeking controller becomes less stiff, suggesting its
partner to decide the way to follow.

In summary, the extension of the classical LQR framework
to include the uncertainty of the human behavior prediction
and disagreement through the Mahalanobis distance and
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controllers adapt their gains depending on their risk-sensitivity. Low noise
levels lead to similar gains for the three controllers.

the concept of risk-sensitivity provides meaningful results
concerning a confidence-based role allocation to the robot.
It remains to show in future human user studies that this
behavior is indeed beneficial for haptic assistance.

VI. CONCLUSIONS

In this paper we present a novel control approach for
haptic assistance. The approach is based on the concept of
risk-sensitivity and the replacement of the Euclidean distance
metrics by the Mahalanobis distance in tracking control
problems which are based on uncertain reference trajectories.
The uncertain reference trajectory stems from a task/ human
behavior model which is inevitable uncertain and which we
assume to be represented by probabilistic models (HMMs).
With the novel approach the assitive control feedback gains
and therewith the robot role adapt to the uncertainties of
the human behavior prediction. Moreover, depending on
the risk-sensitivity the robot manages disagreement betwen
the partners measured in terms of the force variance in a

more or less dominant way. The approach is successfully
evaluated in a 2-DoF experiment with a virtual environment.
Studying human preferences regarding the risk-sensitivity
and applying this control scheme to more complex tasks is
the matter of our future work.
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