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Figure 1.   a) Experimental setup; b) Robot. 
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Abstract—Interpersonal movement synchronization is a 

phenomenon that does not only increase the predictability of 

movements; it also increases rapport among people. In this line, 

synchronization might enhance human-robot interaction. An 

experiment is presented which explores to what extend a human 

synchronizes own movements to a non-adaptive robot during a 

repetitive tapping task. It is shown that the human does not take 

over the complete effort of movement adaptation to reach 

synchronization, which indicates the need for adaptive robots. 
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I.  INTRODUCTION  

Humans synchronize their movements in many different 
ways during their daily activities. When talking to each other, 
they adapt their postural sway [1] and when walking next to 
each other they synchronize their gait [2]. But synchronization 
is more. Valdesolo et al. [3] showed that movement 
synchronization enhances the perceptual sensitivity among 
agents which potentially enhances their ability to pursue joint 
goals. Besides that, synchronization also seems to serve a 
social purpose: it creates rapport and altruism among people 
[4, 5]. Thus, movement synchronization is a fundamental 
principle for human motor coordination and social interaction.  

Marin et al. [6] suggest that movement synchronization 
could also serve as a key element for the naturalness of 
human-like social interactions with robots. However, if 
synchronization should serve in a meaningful human-robot 
interaction, further questions have to be investigated. In our 
previous study [7] we observed that humans not only 
synchronize purely repetitive movements, they also 
synchronize when these movements are goal-directed.  This is 
important when for example thinking about joint human-robot 
pick-and-place tasks.  

Another interesting question in this context is, whether 
movement synchronization is a bidirectional phenomenon, and 
thus, only occurs if both agents (human and robot) attempt to 
synchronize or if synchronization is that “important” during 
repetitive interaction tasks, that the human takes over the 
complete adaptation effort.  

With the study presented in this report we therefore 
explore the question whether humans synchronize their 
movements to a non-adaptive robot during a repetitive goal-
directed tapping task.  

II. METHOD 

To explore whether a human would take over the complete 
adaptation effort in order to synchronize to a non-adaptive 
robot, we modified the experimental paradigm introduced in 
[7]. Human and robot were sitting vis-à-vis on a round table 
holding a pen in their right hand and gripper. LED-markers for 
motion tracking (PTI-Phoenix) were attached to the end of the 
pens. The human was wearing stereo headphones. On the 
table, four colored dots were marked which are defined to be 
start and target for each agent respectively, see Figure 1a. In 
total, 4 male and 4 female, average age 28.8 years, took part in 
the experiment.  

A. Task and procedure 

Both actors’ task was to grasp the pen, and orthogonally 
place it in the start position on the table. When the start signal 
was provided (auditory via headphone for the human), the pen 
was to be lifted and positioned in the target position and back 
again to the start position. These movement cycles were to be 
continued until an auditory stop signal was provided. Three 
start signal delays were introduced and balanced over trials: 
zero-cycle (ZC, both agents start simultaneously), quarter-
cycle (QC, the 2

nd
 agent starts when the 1

st
 agent passed half 

the way to the target) and half-cycle (HC, the 2
nd

 agent starts 
when the 1

st
 agent reached the target). 

B. Robot  

A human-size mobile robot equipped with a pair of seven 
degrees-of-freedom arms [8] was used for the experiment, see 
Figure 1b. Details on the robot’s system can be found in [9], 
[10]. For grasping the pen, the robot's arm is equipped with a 
two-finger parallel gripper (Schunk). At the beginning of the 
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Figure 2.   Distribution of relative phase 

experiment, the robot grasps the pen once in a predefined rigid 
grasping position. Using an admittance-type control scheme 
based on a wrench sensor (JR3) in the robot's wrist, compliant 
behavior of the arm is realized when touching the table in the 
tapping areas. Movements between the tapping points are 
generated by minimum-jerk profiles at a constant frequency. 

III. RESULTS AND DISCUSSION 

In line with [11, 12], the relative phase difference between 
movement signals was calculated per trial and averaged for 
each start condition respectively. If in-phase synchronization 
occurred, a peak for data in the 0-20° region should be found, 
for anti-phase synchronization in the 160-180° region.  

To access whether there was a difference in the phase 
regions, a 3 x 9 repeated measures ANOVA was performed 
with the within subject factors start (ZC, QC, HC) and phase 
region (0°-180°). A significant main effect was found for 
phase region, F(8,56) = 3.23, p < .01, see average curve in 
Figure 2. Post hoc contrasts show that this difference derives 
from a lower frequency of occurrence in the regions ranging 
from 120° to 180°. However, no peak for neither in-phase nor 
anti-phase synchronization can be found. The interaction also 
reached significance indicating a difference in the distribution 
of relative phase after different start delays, F(16,112) = 3.36, 
p < .001.  Looking at the distribution after ZC delay in Figure 
2, a peak at the 0-20° phase region can be observed. However, 
as human and robot had to start off at the same time in this 
condition, no delay was triggered and the human could move 
with no phase delay to the robot just by maintaining the 
original speed – and without synchronizing to the robot. After 
starting off with a QC or HC delay, no peak for in-phase or 
anti-phase synchronization can be observed. Post hoc 
observations show that the interaction derives from the higher 
percentage in the phase region 80-100° for the QC condition. 
During this condition, participants and the robot were 
triggered to start moving when the respective other was on 
half his way to the target. Thus, when performing in a constant 
velocity without adapting to the movements of one another, a 
phase shift of about 90° seems reasonable. 

Summing up it was found, that with a non-adaptive robot, 
synchronization does not emerge naturally like it would during 

the interaction of two humans in a similar task (see [7], [11]). 
This is in line with a suggestion of [6], claiming that if the 
robot never changes its behavior, this could be uncomfortable 
and the human would stop adapting his/her behavior. Yet the 
question remains if robotic adaptation encourages humans to 
adapt to robotic movements during goal-directed tasks 
(bidirectonality) and if adaptive robotic movements would 
lead to successful human-robot movement synchronization 
and a subjectively pleasant sense of interaction. 

IV. CONCLUSION AND OUTLOOK 

With the work at hand it was shown that people do not 
synchronize to a robot in a repetitive, goal-directed task if the 
robot is non-adaptive. As a next step, an exploration of the 
appropriate adaptation would be required. The synchronization 
model presented in [11] has to be implemented onto a robotic 
platform which will allow to test human-robot synchronization 
behavior. 
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