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Abstract. We propose to integrate the development of component-based simulation codes for
computational sciences and engineering (CSE), the manufacturing of problem solving environments,
and the experimentation in one toolkit in one place. Such a tool can cover the whole application
lifecycle in advanced computing from the software design and development over simulation to data
postprocessing and exploration. Our prototypical realisation based upon a simplified version of the
Common Component Architecture shows that such a holistic approach’s impact on the software
development process is multifaceted: It simplifies and accelerates the traditional code development
due to synergies of software engineering tools well-established in mainstream computing with scientific
computing characteristics. It helps to make the CSE software development more agile due to the
support of continuous integration and the bridging of different simulation activities. It finally fosters
and stimulates to add features such as distributed simulation or computational steering facilities into
simulation codes without a significant overhead. All these ingredients help to overcome the CSE
software crisis becoming oppressing due to increasing hardware and software complexity as well as
increasing functional complexity, requirements, and needs.
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1. Introduction. Methodological improvements of the software development
process in computational sciences and engineering (CSE) often are influenced by three
considerations: First, software has to reflect a paradigm shift from pure forward and
batch processing towards interactive usage with interacting software artifacts. The
long-term impact of this shift is covered by the notion of the term computational
steering. Second, software has to reflect a paradigm shift from single location runs to
simulations distributed among computing centres. If the trend continues and if it is
augmented by the fact that it often does not matter where a simulation runs, the long-
term impact of this shift is covered by the term Grid computing. Finally, software
has to pick up the experience that a complex artifact benefits from black-box com-
ponents independently assembled, designed, developed, and tested before. Otherwise
the software complexity is hardly manageable [15, 30, 32] and cannot master upcom-
ing challenges [21]. Yet, software fragments often are written from scratch for each
project—apart from some exceptions proving the rule. These three considerations are
accompanied with the need for tools supporting software development, deployment,
scientific experiments, and postprocessing as well as data exploration.

Component-based architectures transforming huge monolithic applications into an
assembly of autonomous small pieces of software are one way to pick up the method-
ological considerations from above. Their “divide et impera” approach mirrors main-
stream trends from service- and object-based programming: Components control and
steer each other, they can be distributed among different computers, and the time-
to-software-delivery is reduced, as the maintainability and maturity of prefabricated
software artifacts are typically higher than those of a first-time shot. CSE tell sev-
eral component success stories: Linear algebra libraries starting from BLAS up to
PETSc or Trilinos are widely accepted and used, MPI is the de-facto standard for dis-
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tributed memory communication, and graph parallelisation libraries such as METIS
are used frequently. In particular the visualisation community yields some shining
stars of component architectures ranging from visualisation tools such as [1, 42] with
a pipeline layout to problem solving environments (PSEs) such as [2, 3] with visual
languages [43].

At the same time, component standards such as the Common Component Ar-
chitecture (CCA) [4] that are not niched, do not restrict component communication
to data flow, and promise a holistic and general-purpose architectural approach are
neither mainstream ([27] or conclusion in [12]) nor used for the majority of scien-
tific computing projects despite promising use cases [12, 27, 29, 30, 32]. Component
architectures face multifaceted concerns ranging from language likes and dislikes to
runtime overhead discussions. Different to mainstream computing where component-
based software engineering is state-of-the-art, performance often is considered to be
the fundamental different challenge, and endeavours such as CCA hence emphasise
its importance [12, 29, 30, 32]. Severe though is also a chicken-and-egg problem. If a
data-flow paradigm with fire-and-forget semantics [42] is not fitting to a developer’s
needs or if the functional requirements are exotic, often only few out-of-the-box com-
ponents are available. At the same time, refactoring components out of an existing
software base is time-consuming and involves reengineering while a-priori design to-
wards components is more difficult than tailoring a piece of software to one concrete
project. The upfront investment does not pay off. Additional effort to write for reuse
and additional complexity due to the component paradigm are the enemy of a valu-
able idea. Consequently, it is both important to give the developers time to adopt
component techniques and to allay performance concerns as well as to lower the com-
ponent development threshold. Only a joint endeavour leads to a higher productivity
in the field [26].

In this paper, we pick up the CCA and propose ideas how to make component
development for computational sciences and engineering smoother, easier, and more
agile. We follow the CCA notion of components, ports, and frameworks that is an
extended method invocation paradigm. However, we restrict ourselves to a simplified
variant of the standard, and then present a new component workbench for it. The
workbench in turn is our basis to construct problem solving environments for con-
crete simulation and computational steering applications, and to propose ideas how
to simplify and facilitate the component development and CSE workflow. The idea’s
unique selling point is the combination of five aspects: First, it seamlessly integrates
into the development cycle, as it is an Eclipse plugin [5]. With such an integrated
development environment (IDE) for formal component specifications, C/C++, Java,
and FORTRAN at hand, the developer can switch forth and back from coding ac-
tivities, refactoring, source control activities, and profiling to component deployment,
simulation assembly, experiments, and result exploration. This is continuous integra-
tion [14]. Second, it is easy to write new components. Our component specification
language also is a rigorous subset of the scientific interface definition language (SIDL)
[20, 27], and our Eclipse plugin generates any glue code for C++, Java, or remote
executables in the background, i.e. hidden from the user. Third, the workbench ho-
mogenises everything visually into one place, as the user interface follows the Eclipse
look-and-feel and integrates for example VTK [1] and remote visualisation capabil-
ities directly into the graphical user interface. Fourth, it offers the opportunity to
deploy components to remote computers within the workbench seamlessly, i.e. to the
workbench user it is hidden whether a component runs locally or at a different place.
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This is particularly relevant for executables running in parallel in their own process
on a specific remote cluster while the problem solving environment typically is hosted
on a local workstation or laptop. Finally, it offers the opportunity to deploy a prob-
lem solving environment built on top of the applications to an application expert
due to Eclipse’s rich client platform facilities, as the Eclipse plugin already includes
the complete CCA facilities. No additional middleware has to be installed on the
user’s computer. The present approach combines ideas of standardised component
architectures and component servers, problem solving environments, and IDEs. It is
designed to support, speedup, and agilise all phases of advanced scientific software
engineering—from the design of simulation codes on the component level and coding,
i.e. classical scientific computing, over assembling, and running the experiments (on
the large scale) to visualisation, data postprocessing, and data exploration. We thus
call it an advanced scientific computing development toolkit (ASCoDT).

Both visual languages and component-based architectures look back to a long
tradition. Webservices and interoperability standards are mainstream in many appli-
cation areas, and they influence any considerations with respect to inter-language op-
erability in scientific computing. Workflow management systems are of value for some
scientific applications such as embarrassingly parallel parameter studies or Monte-
Carlo simulations (see [31] in the present paper’s context). However, few scientific
computing centres will, in the near future, run standardised, commercial web ser-
vices meeting the low-overhead requirements of CSE. Our approach facilitates the
development of tailored services. Babel [20] is the de-facto compiler and runtime
environment for SIDL applications due to its extensive feature list and support for
several languages. For our case studies, complex datatypes, interface version control,
support of not-objected-oriented languages are not required. At the same time, we
want to study communication aspects such as remote coupling in a trial-and-error
prototype manner without overhead. We thus work in the present paper with a small
subset of SIDL, a small in-house source-to-source SIDL compiler, and without any
middleware—well-aware that this decision might not stand the test of time. Out-of-
the-box CCA frameworks (cf. [27, 32] and references therein, or [4, 6, 12, 20, 44])
support the full functionality of Babel/SIDL, and each of these systems has its own
unique selling points such as support of massively distributed memory parallelisa-
tion or Grid techniques. In the present paper, we propose to embed the component
workbench into an existing integrated development environment (Eclipse) to reduce
context and application switches and to increase the programmer’s productivity due to
synergies with other tools. To reach this goal prototypically fast and to study its im-
pact on software engineering in CSE, we realised ASCoDT from scratch. Finally, the
tools with the greatest maturity in the field are most probably visualisation-centred
tools such as [2, 3, 19, 36]. On the one hand, competing with their functionality in
term of visualisation and exploration is almost impossible due to long evolution and
due to the enormous amount of available standard modules. On the other hand, these
tools emphasise data-flow communication, i.e. fire-and-forget semantics. Because of
the present focus on steering and component engineering, the more powerful, classical
method invocation paradigm is the method of our choice. It still can mirror data-flow
mechanisms.

ASCoDT is not a mature product but a case study. First, it demonstrates how
to integrate a CCA-like workbench into existing development environments. To our
knowledge, this has not been done before. Second, it generates all CCA glue code
in the background. Such a behaviour could easily be realised due to Babel with a
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building deamon running in the background for a different framework. We just give a
proof of concept, and we merge agile development and component-oriented scientific
computing. Third, ASCoDT integrates visualisation devices into the programming
environment. Such ideas have a long tradition, but have not been studied in the
context of CCA. Here, we present a prototype covering the whole process from software
specification and coding to postprocessing and visualisation. Fourth, the integration
of (Grid) deployment mechanisms into the component workbench is a natural straight-
forward approach. It could also be realised within another workbench, but also usually
is not integrated into the code development environment. Finally, the idea to deploy
an environment tailored to a specific problem is a straightforward approach to bridge
the gap from software development to problem solving environments and to smooth
the scientific code development and numerical experiment process.

The remainder is organised as follows: We first introduce our simplified variant of
CCA and generated glue code in Section 2. In Section 3, we present our graphical user
interface and component management realised as Eclipse plugin. This presentation
comprises the architecture, our idea of seamless integration and on-the-fly compilation,
as well as the interplay of a virtual scientific computing laboratory with other software
engineering tools such as source control, profilers, and auto documentation. The
workbench acts as steering layer on top of the real components interacting with each
other (Section 4) due to different communication objects. Two case studies with
computational steering present our software ASCoDT in action (Sections 5.1 and 5.2),
before a conclusion and an outlook summarise the paper and close the discussion.

2. Simplified CCA variant. A component in ASCoDT is an autonomous soft-
ware entity with a state and an interface. Multiple instances of one component may
exist. Hence, a component is similar to an object of a class, and we use class as
synonym for component definitions. Our components can be distributed among dif-
ferent computers running in processes or applications, respectively, of their own. The
static structure of our applications consists of interfaces and classes, i.e. components
interacting due to these interfaces. Both are organised in packages mirroring the
namespace concept of C++ and Java. Interfaces prescribe a signature, i.e. comprise
methods, and they can extend other interfaces. A class implements interfaces and uses
interfaces. Whenever a class implements an interface, the class has a provides port.
The port’s type is given by the interface. Whenever a class uses another interface,
the class has a uses port. The port’s type is given by the interface. This static struc-
ture in our case is written down in a simplified scientific interface definition language
(simplified SIDL).

Our SIDL dialect comprises only three top-level keywords: package, class, and
interface, and the dialect’s basis blocks are framed by curly brackets. Interfaces may
extend other interfaces due to an extends statement. They always are implemented
completely, i.e. we do not support the concept of partial implementation. While the
language provides the possibility to specify component signatures and relationships
in terms of interfaces, concepts such as attributes, version numbers, collaboration
cardinality constraints, functions tied to classes, and so forth are not supported. An
interface prescribes a set of named operations. They have no return type, but they ac-
cept a sequence of arguments. Each argument either is a pure incoming (in) argument,
i.e. the component does not change it, or can be modified by the component (inout).
Furthermore, it has a name, a type, and a cardinality. The type is either integer,
boolean, double, or string. Complex or user-defined datatypes are not supported, but
overloading, i.e. having several operations with the same name but different argument
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Algorithm 1 Simplified dialect of the scientific interface definition language (SIDL).
package pa {
package pb {
interface Interfacel {
foo( in bool a, inout int b );
bar( in bool a[], in string b );

}

interface Interface2 { ... }
interface Interface3 { ... }
interface Interfaced4 { ... }

}
}

package pc {
class MyClass
implements-all pa.pb.Interfacel, pa.pb.Interface2
uses pa.pb.Interface3 as LogToTerminal,
pa.pb.Interface3 as LogToFile,
pa.pb.Interface4 as UserUsesPort {

Algorithm 2 Plain C++4 mapping of SIDL file. The developer than just has to
implement the abstract types.

namespace pa {
namespace pb {
class Interfacel;

}
}

namespace pc {
class MyClass: public pa::pb::Interfacel, pa::pb::Interface2 {
private:
pa::pb::Interface3* LogToTerminal;
pa::pb::Interface3* LogToFile;
pa::pb::Interfaced4* UserUsesPort;
public:
virtual void foo( const bool& a, int& b ) = 0;
virtual void bar( bool* a, const std::string& b ) = 0;
};
}

numbers or argument types, is possible. The cardinality of an argument by default
is one, but our SIDL variant also supports one-dimensional arrays of variable length
identified by a [] postfix. We avoid discussions on row-major or column-major as only
one-dimensional arrays do exist. In our simplified CCA, the set of interfaces used by
a class and provided by a class is static and known a priori at the specification time.
A class may have multiple uses ports of the same interface. They are distinguished
in the SIDL file due to an as statement. In C++ and Java, uses ports consequently



are mapped to plain attributes, and port registry mechanisms [12] are not required.
A component has no control whether or to how many components (see discussion
later on) a uses port is connected. We provide a source-to-source compiler generating
C++ or Java from SIDL specifications. The source code mapping transcribes every
concept one to one to the destination language (the Algorithms 1 and 2 illustrate a
SIDL specification and the corresponding C++ code). Different to Babel [20], the
generated code does not require a runtime system or additional libraries to link to.

Port

Java

C++
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Port Port |— |
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>

Fic. 2.1. Ports are plain classes connecting one component with one or multiple other com-
ponents (dispatcher port; components A,B, and C). Each non-Java port has its Java counterpart
linked due to JNI (components D and E). There is also generated port variants in both C++ and
Java that stream method calls to a file or parse method invocations from a file (components F and

G).

Each interface is mapped to a port interface in the destination language, and the
compiler generates a couple of standard implementations of each port. While com-
ponents could theoretically use other components directly, the ASCoDT architecture
plugs at least one port object in-between two components for each component in-
teraction (Figure 2.1). Cascades of different ports allow the component assembly to
yield sophisticated behavioural patterns. The following standard implementations of
a port are generated:

e A plain port that forwards each call to the destination component. It mir-
rors a one-to-one component composition. Depending on the implementation
language of the component, this port either is a C++ or Java class.

e A Java version of this port if the destination language is not Java.

e A dispatcher port class holding several aggregates implementing the port’s
signature. Each time a port operation is called, the port distributes this call
to all the connected components or ports, respectively. A dispatcher port is
provided if and only if all the operations of the corresponding interface offer
exclusively in parameters. It permits one-to-many component compositions.

e A Java native interface (JNI) variant of the port. It maps calls to the cor-
responding Java implementation and the other way round. This variant is
relevant solely if the implementation language of the component is not Java.

e A file-based port offering a serialisation of outgoing calls to a file. It also can
parse an input file for incoming calls or for the attributes marked with out.

A standard workflow to develop a component reads as follows: First, we write
a SIDL file specifying the component’s interface and collaboration partners. Second,
we make the SIDL compiler generate the corresponding class templates, port imple-
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mentations, and makefiles. For this, we inform the compiler about the target. Target
here comprises both the implementation language of the final component (Java or
C++), whether the component runs remotely as stand-alone application or locally
within the workbench, and whether a stand-alone application shall communicate due
to files or via JNI. An extension of the compiler with new targets is straightforward,
as the compiler is a plain Java application realised with SableCC [7]. Third, we write
the component implementation, i.e. fill the generated class templates with code. All
the underlying steps are embedded into the Eclipse plugin.

3. Eclipse plugin. ASCoDT is an Eclipse plugin and available due to Eclipse’s
update mechanism [8]. Its user interface (Figure 3.1) comprises four major parts per
ASCoDT project: A palette, a component workbench, editors for SIDL files as well
as the components’ implementation in the target language, i.e. Java and C++, and
user-defined or component-specific respectively windows or views. Besides the graph-
ical elements, a component management system, i.e. a very lightweight component
middleware, runs in the background.

The palette enlists the components available in the current project, i.e. all classes
defined in the project’s local SIDL files as well as imported components. From this
list, the user can instantiate components via a drag-and-drop mechanism. The palette
view offers a context menu where the user can import components cased into an
external archive file. Archives later are subject of discussion. The user also can select
a class from the project’s palette and export it into a stand-alone component archive
anywhere in the file system. This way, it is possible to share components among
different projects.

The workbench shows a directed graph representing the application’s assembly,
i.e. the instantiated components, their ports, and which ports are connected to each
other. Each instantiated component is represented by a rectangular box. Its uses
ports are small rectangles on the right edge of the component’s box, its provides ports
are small rectangles on the left side. Instances can be moved around and scaled. Due
to a tool bar, the user can inform the workbench that he would like to connect ports,
select any uses port, and connect it to a provides port graphically. The result is a
link from the uses port to the provides port and an instantiation of a well-suited port
implementation. The choice is up to ASCoDT which port implementation to choose.
The workbench by default chooses a dispatcher port. If no dispatcher port exists
because of outgoing parameters in the interface definitions involved, the default port
is a plain port. If the two components are written in different target languages but
none of them is a stand-along application, it uses a JNI-based port implementation.
If the target component is running as stand-alone application, ASCoDT instantiates
file-based port implementations. The workbench’s visual layout resembles object di-
agrams of the unified modelling language: Each component instance has an object
name (an identifier), which is separated from the component’s type (class name) by
a colon. Each link between two ports has the name declared with as in the SIDL file,
and, thus, illustrates the fact that the connection is realised as object attribute. The
opportunity to give components an identifier enables the user to choose meaningful
instance names explaining the component’s purpose. Besides the object names, the
workbench also allows the user to insert notes into the workbench that document the
component assembly.

The SIDL editor is a standard text editor with syntax highlighting and auto
completion. Two component usage models are available in ASCoDT. On the one
hand, the user can import components from an archive, use them in the workbench,



assemble applications visually, and conduct experiments with them. In this case,
the underlying SIDL files are not manipulated by the user. On the other hand, the
user can realise and tailor components, i.e. create and edit SIDL files and write and
modify implementations. In this case, the underlying SIDL files are edited, and the
plugin links the editor to the SIDL compiler with an autosave/autobuild semantics,
i.e. whenever the user changes the SIDL file and saves these changes, all glue code and
ports are automatically regenerated, and component instances on the workbench are
reloaded. For the latter usage model, it is possible to open editors for the component
implementations in Java or C+4 which are also tied to the autobuild mechanism.
Both variants of components, local ones of the project and imported archives, are
available in the palette, can be used for the assembly in the workbench, and can be
the foundation of scientific experiments.

Fic. 3.1. A typical ASCoDT workbench: Palette (left), workbench (middle), and user-defined
views (right). A SIDL and a C++ editor are hidden behind the workbench.

3.1. Architecture and component GUIs. ASCoDT implements a model-
view-controller pattern [23] where the workbench, the SIDL editor, and the palette
are views on one component repository holding the Java component instances, ports
running locally, and representatives for remote components, components written in
C++, and all remote ports. Due to the representative objects in the component
repository, the workbench derives automatically which port implementations have to
be used if new component connections are established. The representatives also keep
track of component changes due to source code modifications and trigger makefiles or
a Java rebuild automatically. As all component interactions are method invocations,
the static repository is all component middleware required.

Besides elementary operations on the repository such as factory methods to create
new components and establish port connections, ASCoDT’s kernel offers a number of
standard toolboxes or extension points, i.e. interfaces that might be implemented by a
component realisation, to every component implementation to facilitate the realisation
of user interfaces.

e There is an extension point enabling components to provide one or several
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SWT-based GUIs to the user. The resulting GUI windows are displayed
within ASCoDT in a view, i.e. small subwindow, of their own.

e There is an extension point enabling components to create VTK visualisation
pipelines due to VITK’s Java wrappers [1]. The resulting three-dimensional
illustrations are displayed within ASCoDT’s workbench in a view, i.e. small
subwindow, of their own, and ASCoDT provides basic navigation mechanisms
to manipulate the view point in the three dimensional space displayed.

e There is an extension point enabling components to write visualisation al-
gorithms with Java 3DTM. The resulting three-dimensional illustrations are
displayed within ASCoDT’s workbench in a view, i.e. small subwindow, of
their own, and ASCoDT provides basic navigation mechanisms to manipu-
late the view point in the three dimensional space displayed.

e There is an extension point enabling components to connect to a remote Par-
aview server [9]. ASCoDT controls this server, it displays a small screenshot
of the remote images that is permanently updated, and it provides simple
navigation mechanisms such as zoom, rotate, and translate the data to the
user.

3.2. Software development cycle. ASCoDT’s vision covers all phases of the
component development cycle. The state-of-the-art integrated SIDL editor facilitates
the interface design of components. The autobuild mechanism generating all glue
code in the background hides the routine jobs from the developer. Eclipse’s plugins
for Java, C++4, Python, and FORTRAN allow the developer to write components in
the same place where he later on assembles the applications with other components.
These plugins can be augmented by domain-specific, i.e. scientific computing-specific
language extensions [17], and thus facilitate the development work even futher. The
standard interfaces for graphical user elements and visualisation foster permanent
scientific experiments and the evaluation and analysis of results in the same place
where the source code is developed. The palette finally offers the opportunity to
deploy finished components into files of their own.

Exported ASCoDT components are zipped archives comprising the compiled com-
ponent source code, i.e. class files or executables, its SIDL definition, additional re-
sources required by the component such as icons and configuration files, and all SIDL
definitions of provided and used ports. These components can be exchanged between
different ASCoDT projects. Bigger projects with teams thus might introduce a mar-
ketplace managed by a source control system where the team members offer tested
and mature software components to other developers and application experts. Also
components from previous projects are integrated into the project due to this com-
ponent archive mechanism. Whether premanufactured or new components are used
and assembled is completely hidden from the user of the workbench.

The component development benefits significantly from the maturity of the Eclipse
project. Tools such as source code editors, such as integrated source control manage-
ment systems, or such as refactoring wizards assist the component developer. In
particular the support of tuning and performance analysis tools is promising. Fur-
thermore, the all-in-one-place paradigm fosters agile scientific computing where the
user permanently switches from coding activities to experiments, result evaluation,
and back [14].

4. Component interaction. The present paper emphasises the interplay of
component development and software engineering in scientific computing. ASCoDT
is one prototype to illustrate how component engineering and component-based nu-
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merical simulations can be embedded into state-of-the-art software development en-
vironments. The implementation realises basically a method invocation paradigm
where components interact due to port objects. As longs as the component granu-
larity is sufficiently coarse, i.e. the application is broken down into rather big, smart
components not tightly coupled and not communicating permanently, such a method
invocation scheme is sufficient. More sophisticated approaches coupling objects di-
rectly without intermediate ports however do exist and come along without or almost
without performance penalties compared to subroutine or virtual C++ function calls
[30, 32].

The individual components have single point of contact semantics: If a component
is running in parallel (for example due to MPI or OpenMP), ASCoDT nevertheless
treats it as a single entity, and all method invocations affect only one process, i.e. rank
0 or the primary thread. Different to CCA realising a single component multiple data
(SCMD) model [12, 30] or data redistribution approaches [35], we leave it up to the
user to deploy method calls among several MPI ranks or threads. This is a drawback
for components of fine granularity, but providing more sophisticated communication
schemes is on the one hand out of scope for this work and on the other hand an
integration of well-established ideas.

4.1. Auto-parallelism and call semantics. The performance of component
architectures is influenced by the decision whether parameters passed to a provides
port are copied or passed by reference—the “to keep or not to keep” challenge [36].
For CCA, this discussion is solely relevant for arguments annotated as in arguments.
Our implementation copies in arguments if their cardinality equals one. Otherwise, it
works with pointers, i.e. it ranks the do-not-copy policy higher than the idea to map
the unidirectional data-flow semantics to the source code. This way, components can,
technically, violate the call semantics, but we circumnavigate running out of memory.

Whole operations with data-flow semantics enable the workbench to deploy such
entities to threads of their own. ASCoDT protects each component with a boolean
semaphore. Function calls comprising exclusively in parameters then are deployed
to a thread of their own and the calling function returns immediately, i.e. it is a
multithreaded non-blocking function call. While this automatic thread parallelism
speeds up the computation, its fire-and-forget semantics introduces non-deterministic
behaviour. We leave it up to the user to tackle this.

4.2. Component remote deployment. An important aspect of an integrated
development environment in scientific computing is the capability to manage and
handle distributed system. While components distributed among huge clusters are
not considered here (a massively parallel MPI application still is considered to be one
component), nevertheless the fact is taken into account that scientists often develop
software on their local workstations with their tailored environment and well-chosen
set of tools but run these components then on remote clusters.

ASCoDT supports components running remotely due to a file-based communica-
tion protocol. If the SIDL compiler is informed to generate component glue code for
a remote component, it embeds the component into a stand-alone program. This pro-
gram is started remotely by the workbench either due to SSH or due to an LoadLeveler
[10] connection. All method calls are serialised and deserialised by the corresponding
port implementations. Thus, the workbench solely has to take care to copy the corre-
sponding files to and from the destination remote computer, while the generated glue
code on the target machine comprises a polling mechanism permanently checking for
new incoming port calls.
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This realisation is primitive and introduces bottlenecks if the component granu-
larity is small, i.e. many messages are sent forth and back to and from the remote
computer. However, it fits well to the security policies and firewalls of many com-
puting centres, it already demonstrates how the handling of remote (super)computers
is integrated into the workbench, and it fits to Grid application landscapes where
method calls typically have to be serialised into messages to services [31]. Also the
fact that a remote component runs on a massively parallel system is hidden from the
user. ASCoDT’s glue code comprises write to checkpoint file and read from checkpoint
file operations. If they are overwritten with an implementation by the component, it
is possible for the workbench to shutdown remote components, perform source code
updates, trigger a recompile, and restart the application. The same way, it is possi-
ble for the workbench to shutdown remote components, transfer the checkpoints to
another machine, and to restart the application there.

Fic. 4.1. While the user’s laptop/workstation runs sciCoDE in front (left) or not visible here
(right), some of ASCoDT’s visualisation views are deployed to a remote, CAVE-like system [41] or
a powerwall in the back running the visualisation server.

4.3. Remote visualisation. Permanent visual feedback is important for com-
putational steering, for experiment control, and for debugging and analysis of new
source code. ASCoDT on the one hand provides a toolkit for Java components to
visualise data due to the VTK library or Java 3D™ within the workbench. Multi-
ple visualisation views are provided, i.e. the ASCoDT user is able to compare and
merge different visualisations. Also, visualisation modifications immediately affect
the visualisation window next to the editor. On the other hand, visualisation often
itself requires lots of computing resources. In this case, it is reasonable to deploy
visualisation tasks to dedicated nodes.

ASCoDT adopts Paraview’s [9] remote rendering and server concept. If a Par-
aview server is running remotely (in a Cave Automatic Virtual Environment, a CAVE-
like environment, or on a powerwall e.g.), ASCoDT can connect to and interact with
this server. Components running inside the workbench than may command the server
due to this connection, while a screenshot of the remote rendering is displayed lo-
cally in a downsampled resolution (Figure 4.1). This approach is similar to the Par-
aViewWeb project (cf. [9] and references therein).

With components scripting a remote Paraview server, it is for example possible
for the user to work on his own laptop while sitting inside a CAVE visualising experi-
mental data from the simulation controlled by the laptop running ASCoDT. Also, the
local workstation running the component workbench neither has to have outstanding
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rendering capabilities, nor does it have to run Paraview—an important fact for ex-
ample for non-UNIX systems. Such a remote visualisation not only is impressing and
reveals simulation details probably not observable on the small scale, it also offers
the opportunity to make multiple persons work both on the same simulation data
and the same simulation software in parallel—the scientific computing counterpart of
pair programming, and an important ingredient to make the simulation development
workflow agile [14].

5. Case study. The present work explicitly addresses soft aspects of component
development in scientific computing. It is hence important to study component-
based engineering beyond technical aspects. The impact on the developers, i.e. the
“program-and-feel”, has to be studied, as well as the impact on typical developer
tasks and software designs. A comprehensive empirical study of either issue is beyond
the scope of this paper. In the present paper, we however present first results from
a survey about the impact of the development workbench, and we examined one
prototypical computational fluid dynamics. Here, we translated an existing code into
a component-based design before we extended it into an interactive computational
steering application.

5.1. A survey. We conducted our survey among Ph.D. developers from several
scientific computing groups at our university. All of them have a strong numerics
and computer science background, and they work on research codes with prototype
character and new algorithms, i.e. maintainance activities, industry-relevant simula-
tion work, and research where simulation is rather a tool to obtain insight than the
subject of study are neglected. Altogether, 76 hours of development activities were
tracked. The survey focuses on 15 developers working in teams of around 2.88 per-
sons. Twelve of them use most of the time C++4, only one prefers FORTRAN to
C/C++, and two favour domain-specific languages such as Matlab and computer al-
gebra systems. None of them used Java before we introduced ASCoDT, while all had
experience with the non-Java plugins for Eclipse. Among the most popular helper
tools were bash, gnuplot, make, and Python. On average, 2.64 applications were
used simultaneously, i.e. were held open on the active desktop and invoked frequently
throughout a programming session.

14.58%
~15 min
= Maintain and try to understand

other people's implementation

including
recompilation

m Debug
Implement new features
m Conduct experiments

19.74%

 Performance optimisation

Bugs identified at

= Compile time M Execution time  # Postprocessing (visualisation) ~  Others

Fic. 5.1. Left: development time spent on different activities; right: bugs identified throughout
the development, and time needed to fix them.

The participants spend more than one third of their time on debugging, and
another third of their time on numerical experiments—even though these are devel-
opment rather than insight-through-computing activities—and performance tuning
(Figure 5.1). The latter activity first of all covers the execution of the software on
a target machine in combination with analysis tools as well as the evaluation of the
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output of these tools. The implication is twofold. On the one hand, the figures are in
perfect accordance with other studies: “[...] HPC productivity is also greatly influ-
enced by several other less tangible factors, the most significant among them being the
preparatory stages of application execution. Thus another strategy to improve HPC
productivity is to reduce the effort involved in scientific application development. Re-
search shows that in terms of productivity, the build process, i.e., compilation, linking,
installation, deployment, and staging, may consume up to 30% of the development
effort” ([38] citing [22]). While the authors conclude that conditioning techniques are
essential to improve the productivity, also continuous deployment and compilation as
meta-techniques are important. On the other hand, the figures reveal that debug-
ging remains expensive. Techniques such as automatic testing reducing debugging
efforts significantly seem not to be mainstream in scientific computing yet. Thus,
there is a need for sophisticated debugging tools. They are integrated into ASCoDT’s
workbench due to the Eclipse foundation.

All test candidates follow an iterative programming style switching permanently
from editing, over compilation, execution, to analysis and back. This basic cycle is
followed around 3.34 times per hour. Per basic cycle, the developers switch from
one application to another 3.08 times, i.e. the development tools are not integrated
seamlessly. Only few developers however report that the seamless integration yields
a time saving: The average developer saves only 8.75 percent of his time due to the
integration. Yet, two report to have saved up to 20 percent. While individuals benefit
from ASCoDT’s seamless integration, the impact on the majority of developers is not
severe. However, this could be different if the build process itself is more expensive,
i.e. if bigger projects are studied [28].

The candidates commit source code changes 0.37 times per hour to the version
control system. Each commit comprises 4.08 files if a new feature is committed. If the
developers fix a bug, 2.58 files are involved. These numbers include solely source code
files, and they are in accordance with commercial reports where less than 10 percent of
commits affect only one file [34]. The developers report that having the experimental
data and the experiment setup at hand for each commit saves up to 37.92 percent of
the debugging time—it is easier to reconstruct why a commit had happened if the
motivating experimental data is available. ASCoDT’s holistic approach facilitates the
debugging, as components, settings, and workflows are integrated and available to the
source control system.

More than one third of all bugs are identified not before the simulation results
are postprocessed (Figure 5.1), and a fix of such a bug induces four up to five hours of
work. As the postprocessing is the last activity in the basic development cycle, these
figures reveal one reason for debugging being that expensive. The test candidates
report time savings around 13 percent if the effect of source code changes would
immediately reveal in a visualisation. Consequently, the smooth integration and the
visualisation in-place can speed-up development and debugging, but the savings are
limited and do not eliminate the debugging hurdle completely. Hence, the integrated
visualisation is a pro for the development process, but its impact on the realisation of
new applications such as steering is more severe (Table 5.1).

Finally, the test candidates report that their software is typically installed on 2.45
machines simultaneously by them. With team sizes around 2.75 members, half of a
dozen installations is instantaneously affected by each source code modification. The
developers however switch from one machine to another place only 1.008 times per
programming session, i.e. most developers log into one machine per work unit and
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TABLE 5.1
The integration of different tools reduces the time spent on development and debugging.

Activity Savings Total Savings
Integration of development tool Development &  8.75%—20% 3.2%-7.2%
chain Experiments
Integration of source control for Debugging 37% 13 %
all ressources
Integration of visualisation Debugging 13% 4%

conduct the whole work process there. ASCoDT’s feature to integrate remote ap-
plications is important for Grid-like applications and deployment of computationally
intense jobs. It is not important for the development workflow.

These results help to understand the perceived impact of ASCoDT on the de-
velopment process. The prototype slightly reduces the time-to-numerical-experiment
and it particularly reduces the time until a bug is identified due to its seamless in-
tegration and seamless visualisation or postprocessing, respectively, of results as well
as the holistic approach merging source code with experimental settings, workflows,
and results. Both impacts also stem from glue code all generated in the background.
In combination with other tools such as performance analysis programs, we expect
the workbench to yield also higher productivity for non-debugging tasks. The inte-
grated approach adopts an existing IDE to advanced high performance computing
and shows that the tools are mature enough to be integrated into each other to in-
crease the productivity [26, 39]. The impact of seamless visualisation and remote
deployment on the programming activities is negligibly though opens the door into
Grid-based computing and computational steering.

With respect to recommendations from successful big CSE projects [37], several
important pros of ASCoDT’s ideas have to be highlighted. First, the merger of a de-
velopment environment with an experiment workbench enables application specialists
directly to work with the codes and workflows while developers still work on it. Such
an early integration of application specialists that are the real customers of new CSE
software is considered to be an important ingredient to successful CSE endeavours .
Second, several successful CSE projects report that they were built on successful pro-
totypes. ASCoDT provides a perfect environment to build such prototypes, combine
them, and interchange them prior to a production code development. Third, object-
oriented languages are considered to be a hurdle rather than a stimulus for many CSE
projects, as their learning curve is steep and their performance—if not used without
sufficient experience—poor. At the same time, many software components benefit
from object-oriented techniques in terms of maintainability and time-to-delivery due
to their power in expressiveness [25]. ASCoDT’s multi-language concept allows, while
not presented here, to combine FORTRAN and C codes with object-oriented com-
ponents and thus leaves it open to the developer to select a proper implementation
language and to combine the best of two worlds.

Despite a promising perception, these results have to be interpreted carefully.
From the low ratio of FORTRAN (and in general non-object-oriented) codes com-
pared to other scientific computing surveys [37], it becomes clear that the studied
programming activities concern new code rather than legacy code. The combination
of new code and researchers on the graduate level makes us expect that this com-
munity is more open to new ideas and improvements of their software development
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workflow than other communities [26]. We have to assume that a different test group
would be more sceptical on any workflow or tool change. Also, the small teams imply
that these projects are perfectly suited to agile development—in particular due to the
fact that it is research codes, i.e. the requirements of the code change permanently
and there is usually no such thing as a fixed implementation road map. With tradi-
tional workflows or bigger teams, the savings due to continuous integration might be
smaller. On the long term, elaborate productivity metrics and productivity studies
are necessary to draw a more detailed picture about the strengths and threats of the
approach with respect to team sizes, application field, and software performance [39].

5.2. Computational fluid dynamics. Starting point of our computational
fluid dynamics field study is a monolithic C++ solver merging two different phys-
ical models. It computes an instationary flow on complicated geometries and two
or dimensions due to a Lattice-Boltzmann formulation on adaptive Cartesian grids.
The solver runs in parallel, and it supports checkpointing. With the flow field at
hand, it virtually inserts a particle into the flow and computes this particle’s posi-
tion due to Faxéns theorems of motion without changing the original flow field. The
particle update operations are seamlessly integrated into the Lattice-Boltzmann time
stepping. This code is extended in four ways throughout this case study. First, the
existing Faxén implementation is complemented by a second implementation working
derivative-free, as the computation of flow derivatives for some adaptivity patterns
proved to be difficult. Second, there are two supercomputer budgets available for this
problem. It has to be possible to transfer the simulation to the supercomputer of
choice—typically the one with less workload. Third, multiple particles starting from
different initial positions are to be simulated simultaneously. Finally, the particle tra-
jectories are to be visualised on-the-fly. Due to these modifications, we were able to
make an existing code base [18] capable to tackle problems from [16] on a previously
impossible time scale [24].

As a preparatory step, we extract both the particle tracking and the time stepping
loop from the original Lattice-Boltzmann code into two ASCoDT components (Figure
5.2). The communication pattern then reads as follows: First, the time stepping
component informs the fluid solver to perform one time step. Second, particle tracking
passes the particle’s position on to the fluid solver. Third, the fluid solver accepts
this particle position and returns the flow field around the (virtual) particle to the
particle tracking component. Finally, the particle tracking component updates the
particle’s position. While the exact details of the data exchange are discussed in [13],
it is obvious that this refactoring into components on a very coarse level does not
introduce any performance penalty, as the time stepping of the fluid solver is the only
computationally expensive step, and as the steps two and four can run in parallel
to this time stepping. This holds even though the fact that the fluid solver is the
only code running in parallel on a remote supercomputer. The other entities are local
ASCoDT components.

For the second Faxén implementation, we create a common interface for the parti-
cle tracking and realise two different classes implementing this interface. Throughout
this process, we also rewrite the original C+4 Faxén simulation with Java. Next, we
extend the time stepping component and decide before each time whether to continue
the simulation. If we do not continue, we ask the Lattice-Boltzmann code to check-
point and close the session. Afterwards, the checkpoint files are copied to another
supercomputer, and we restart the simulation component there. With the particle
tracking and the simulation code being two different components, it is straightfor-
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ward to instantiate the particle tracking component multiple times to keep track of
multiple particles simultaneously. Finally, these particle tracking components forward
the current particle position to a VT K-based visualisation. As the particle tracking is
refactored out from the original code, it is easy to extend this component and enable
the user to interactively modify the virtual particles’ positions and to add and remove
particles.

FiG. 5.2. The monolithic application is initially split into three components. It serves as basis to
track the trajectories of several particles in a flow field. On the right, the particles’ initial positions
are ordered along one line similar to the classical stream line visualisation.

The experience of this case study reads as follows: Once the application is split
up, an extension of the application is simpler, as the net lines of code for the Faxén
simulation were reduced from 11665 C++ lines of code to 4994 in Java, while the
latter figure already comprises the visualisation. The distribution of the component
among the local workstation and the supercomputer as well as the migration of the
fluid solver components from one supercomputer to the other are straightforward, too.
Tricky is the checkpointing implementation and the parallelisation. However, both are
due ot the component developer and cannot be covered by an environment. Our file-
based communication, the splitting into separate components, and the distribution
among the supercomputer, the local workstation, and even a visualisation server do
not induce any performance penalty for this example. If a component however is
decomposed more aggressively, or if the data exchange memory footprint is bigger, or
if the data exchange is bidirectional and cannot be hidden behind the computation,
performance would suffer.

6. Conclusion and outlook. With the increasing computing power also the
software complexity grows. Component architectures and component-based designs
are an important step towards big, heterogeneous, interactive, distributed scientific
computing applications, and they are one ingredient to manage the ever-increasing
complexity of today’s simulation software. To enter mainstream, component ap-
proaches have to master multiple technical challenges, in particular the developers’
concerns about the performance overhead. Otherwise, they will not be accepted by
the majority of computational scientists. In the present paper, we however emphasise
that the acceptance threshold is not only a technical one. It is also important to
improve and simplify the software development and the computational experiment
process, i.e. the improve the CSE developer’s productivity. For this, we propose to
integrate both the component development environment, the component management
system, and the experiment workbench into one single piece of software. This soft-
ware shall also offer well-established tools such as source control, testing, and tuning
facilities. ASCoDT is a first prototype for such an integrated approach. It makes the
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development of complex software systems easier.

Beyond that, the integration has an impact on the meaning of computational
steering. Steering traditionally circumscribes (real-time) visualisation in combination
with an interactive algorithm and input data modifications. Our integration implies a
shift from an experiment-centric towards a code-centric understanding of steering. No
longer is solely the final artifact and data subject of steering, we also propose the in-
teractive and seamless modification of source code parts and the algorithms. ASCoDT
prototypically switches from a waterfall process to a holistic, agile starting point real-
ising big picture thinking that covers all phases of scientific software development and
experiment. This adds an additional flavour to the traditional computational steering
challenges.

Our piece of software is based upon a dramatically simplified variant of the com-
mon component architecture and it covers only a very small subset of the facilities
standard CCA-related tools such as Babel [20] offer today. This simplification brings
along pros and cons. It makes the handling of the component idea simpler for the
user, and allows us to study new ideas rapidly. It lacks features that are relevant for
scientific computing. Future work thus comprises a cautious adaption of the CCA
standard and integration of other tools. In particular bindings to C, FORTRAN,
Python, other scripting languages, and domain-specific language extensions such as
[17] are necessary. Furthermore, a support of complex data types is important. In
this case, an integration of Babel and Babel-related work, in particular with respect of
the type system [27], might be the only reasonable strategy. However, we do not con-
sider the graphical user interface as prototyping and development layer that is later
replaced by a script as soon as components are deployed to a supercomputer [12].
We consider ASCoDT to remain the central steering and interaction point for the ap-
plication expert and supercomputing specialist, as, finally, the adaption of Grid and
Cloud techniques in combination with remote deployment of components is promising
[31, 33].

If the integration into the software development cycle is smooth, performance
arguments finally again enter the discussion on component architectures. The straight
next evolution step for ASCoDT with respect to this issue hence is two-fold. On the
one hand, we replace the file-based data exchange pattern with a tighter coupling
based upon direct remote method invocation or an abstraction of the file idea due
to remote memory access [40]. This avoids the file overhead. On the other hand,
we replace our one-to-many and single-point-of-contact communication scheme with
a many-to-many approach. Here, several MPI processes distributed among a cluster
of computing nodes communicate due to ASCoDT’s ports directly with many MPI
processes running on a different or the same cluster. For this, IO forwarding and array
striding are essential techniques to be studied, and it carefully has to be analysed
whether data distribution should be the responsibility of the component developer
due to a single component multiple data paradigm or whether it does make sense to
integrate the data redistribution into SIDL to preserve the language interoperability
[35].
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ASCoDT is based upon Eclipse hosted by the Eclipse Eclipse Foundation [5]. It
uses Eclipse’s Graphical Editing Framework (GEF) and can be linked with the J2SSH
libraries [11] and the Java wrappers of VTK [1]. The underlying compiler frontends
are realised with SableCC [7].
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