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Abstract

This paper proposes a system to direct high-resolution

sensor resources by cues extracted from low-resolution

data. The proposed method is highly reactive using un-

supervised saliency cues, resource efficient due to the

trained classifiers, and adequate to the present context.

1 Introduction

In recent years, the use of cameras and range sensors in

cars has increased. Low-resolution video cameras are

used for lane detection, whereas radars and laser scan-

ner are used to detect traffic participants and obstacles.

Currently, these systems are often used as stand-alone

devices, e.g. a low-resolution video camera for lane de-

tection will broadcast the detected lane trajectory, while

the acquired video image is not used for any other pur-

poses.

We propose to use low-resolution data acquired by

different sensors to direct high-resolution sensor re-

sources in an efficient manner. Our proposed method

is highly reactive due to its unsupervised real-time

saliency detection. Adequacy is ensured using trained

classifiers and assigning contextually adequate utility

functions.

2 System Overview

The proposed system processes data over various

stages, beginning at sensor level and increasing both in

level of abstraction and significance towards a contex-

tual reasoning level (cf. Fig. 1). From these, object

classification is computationally expensive. Moreover,

the quality of the subsequent reasoning highly depends

on the quality and robustness of the data level features

attributes.
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Figure 1: System overview showing the used sensors

and the respective layers of sensor data abstraction.

While the transformation from sensor level informa-

tion towards a contextual awareness is highly desirable

in order to maximise sensor resource efficiency, it re-

quires a total of three serial processing steps. It is ob-

vious that an active sensor system in a rapidly changing

environment such as road traffic has to exhibit a high de-

gree of reactivity. To ensure this criterion is satisfied, an

unsupervised novelty detection algorithm is performed

on the low level cues in parallel.
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2.1 Syntactical and Semantical Level

2.1.1 Object Recognition and Classification

Recognition and classification of objects is performed

using a set of trained classifier on the high-resolution

video image. We use a boosted cascade of Haar-like

features to detect objects in the environment (cf. Fig.

2). This concept was proposed in [10] to detect faces

in images, and has been applied to a large number of

object recognition problems since. The method is com-

putationally effective, as it discards most background

regions in the first stages of the trained cascade, which

allows to spend more time on regions promising to con-

tain the desired object category. The cascade is built

by subsequently adding simple Haar-like features to a

stage in the cascade until it rejects a certain percentage

(50% is a common value) of the background regions re-

maining after the previous stages. At the same time,

each stage in the cascade is constrained to reject no, or

only a very small amount (i.e. 0.3%) of positives.

Figure 2: Haar-like features used in the trained cas-

cades are edge features (top left), centre-surround fea-

tures (top right), and line features (bottom) [10].

Haar-like features, once trained, can naturally be

rescaled which is also exploited in [10] by using a rep-

resentation called integral images. By splitting up the

region covered by a set of features into subregions that

can be reassembled to represent all used features, the in-

tegral value of every subregion only has to be determine

once, saving computation time.

We trained Haar-like feature classifier cascades using

OpenCV1. Classification using the resulting cascades

requires 9.12 ms per 10k pixels per class on a 2 GHz

Pentium 4 processor, which is renders it computation-

ally expensive to run on a high-resolution image even if

only for a single class.

2.1.2 Saliency Detection

In literature, saliency is often derived from the fixa-

tion patterns of the human eye which, during its pre-

attentive phase, treats regions as salient, which ’pop

1OpenCV: http://www.sourceforge.net/projects/opencvlibrary/

out’ [9] of their surroundings (i.e. [3]). This definition

follows the idea of local comparisons, evaluating the

contrast between a region and its surrounding regions.

A different definition treats regions as salient, whose

feature space representation is rare - at best unique - in

their environment (i.e. [11]). The latter definition as-

sumes statistical knowledge about the entire environ-

ment and determines saliency in a global context.

Figure 3: Saliency can emerge from both global rarity

(left), and local contrast (right).

Both global and local definitions describe apparent

forms of saliency, our goal is to find an algorithm that

can detect both. The method presented in Itti, 2000 uses

a local centre-surround approach [3], yet it also includes

the notion of global rarity by dividing each feature’s

saliency map by its number of peaks before combin-

ing them into a single saliency map. In Walker et al,

1998, the Mahalanobis distance d between a local fea-

ture vector x and the environment’s mean feature vector

x̄ is computed. S represents the covariance matrix of all

feature vectors x.

d(x, x̄) =
√

(x− x̄)T S−1(x− x̄) (1)

This distance in feature space is a good measure for

a regions uniqueness and thereby global saliency.

An evaluation of both saliency detectors showed, that

the centre-surround approach [3] requires 1.65ms per

10k pixels, whereas the Mahalanobis distance is com-

putationally more expensive as it requires to calcu-

late the inverse covariance matrix of all feature vectors

(4.45ms per 10k pixels). The latter can be substantially

sped up by randomly selecting a statistically significant

subset of feature vectors (i.e. 2000 feature vectors, re-

sulting in 1.96 ms per 10k pixels).

We propose a combined feature vector xC for our

saliency detection using (1), consisting of intensity I

and its local derivatives, range z and translational 3-D

motion which is determined using a fast motion estima-

tion algorithm described in [5].

xC =

(
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δx

δ t
,

δy
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δ t
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,
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,
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)T

(2)
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3 Reasoning Level

3.1 Sensor Resource Allocation & Control

A decision making process is invoked to combine a

highly reactive cues from the unsupervised novelty de-

tection and contextual knowledge such as the safety as-

pect and the observability of objects and regions in the

environment. In current literature, this combination is

often achieved by simple means, such as multiplica-

tion [6] or summation [2] of low-level and high-level

cues, or the centre of weight algorithm proposed in [4],

the first two employing simple yet ineffective strategies

such as winner-take-all.

An utility driven concept to satisfy two vision tasks

concurrently is presented in [3], where a winner selec-

tion society is established in order to maximise different

global efficiency concepts. Apart from an utility driven

approach, it is interesting to investigate in a concept of

context-governed bottom-up gaze concept, ensuring re-

activity and contextual efficiency at the same time.

We propose a cue combination concept derived from

utility theory also used in multi-agent resource alloca-

tion (cf. [1]). First, Koene et al, 2007 argues that a

winner-take-all approach is problematic as it disregards

all attractors of lesser value. This aspect is also sub-

stantiated in [1, 7], with the latter proposing to choose

the gaze direction with minimum overall saliency loss

for all cues. Second, multiplicative combination is good

as it is independent of scale, yet tends to annihilates a

region if only one cue does not assign any saliency to

it. Third, using absolute values as in [2, 4, 7] can be

problematic as it requires normalisation of all cues to a

common saliency metric.

All discussed gaze direction selection methods have

in common, that the gaze direction is supposed to be

centred upon a single object. However an image is a

shareable resource (cf. [1]) as it can include more than

one object and we have a fixed aspect ratio for active

cameras (typically 4:3) which typically does not coin-

cide with the aspect ratio of the object (typically 1:1

for cars, and 3:4 for lorries). Our utility optimisation

scheme is able to determine the size of a region that

conforms as much as possible to this optimum resolu-

tion and contains maximum relative cue values.

Evaluation showed, that centring upon an object of

interest increases the chances to confirm a known traf-

fic participants in high-resolution, whereas our method

shows a higher increase in newly detected objects in

high-resolution.

3.2 Contextual Knowledge

Contextual knowledge is won by combining data level

features using a set of rules and constraints. In our case,

the foremost context is our safety as well as the safety

of other traffic participants.

The safety aspect in road traffic scenes is two-fold,

as any traffic participant can be a threat or can be vul-

nerable to another traffic participant (including the ob-

serving traffic participant), or both. Whereas it would

be possible to determine all n-n relations of all partici-

pants, we limit our scope towards a 1-n relation of our

own vehicle towards other traffic participants.

For the case that our own vehicle is a car, a Failure
Mode and Effects Analysis (FMEA, [8]) focused on the
severity aspect is conducted. In our case, this turns out
as:

• A pedestrian is very vulnerable and not harmful to a car.

• A bicycle is very vulnerable and not harmful to a car.

• A car is vulnerable and harmful to a car.

• A lorry is not vulnerable and very harmful to a car.

The protection requirement of the above participants

can be defined in various manners, yet we tend to-

wards priorising the recognition of pedestrians due to

their high vulnerability. Apart from the class of a traf-

fic participant, its relative motion towards our own car

influences the safety aspect. A traffic participant mov-

ing away from our own car is much less dangerous or

vulnerable than a traffic participant moving towards it.

This information is provided by the motion vectors and

trajectories at data level. Besides motion, distance in it-

self is relevant for the safety aspect, since spatial prox-

imity is a condition for both being dangerous or vulner-

able.

Our own car’s speed and global position informs

us about the car’s actions (such as turning, driving at

30m/s, or backing a car into a parking spot) as well as

our current environment (such as urban, cross-country,

or highway). This information provides us with in-

formation about the likeliness of presence of a certain

traffic participant category (i.e. pedestrians are com-

mon in cities, and very rare on highways) as well as

the chance to detect this traffic participant in time. The

latter becomes a problem for small traffic participants

like pedestrians or bicycles in fast moving environments

such as highways, where it might not feasible to detect

and classify a pedestrian in time.
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Saliency (Walker et al, 1998)

Classification (Viola&Jones, 2004)

Cue combination by maximising
the overall sum of relative cue
strengths from all input sources.

Classification (Viola&Jones, 2004)

Figure 4: Cue combination method maximising overall utility. The selected region is analysed in high-resolution,

confirming two previous classifications and detecting an additional car.

4 Conclusion and Future Work

We present a utility driven system to allocate and con-

trol high-resolution sensor resources based upon low-

resolution cues.

The proposed system is implemented and evaluated

on real-life traffic sequences and shows a substantial in-

crease in detection of cars from 38 to 76 by 100%, of

which 29 are confirmed by the high-resolution classifi-

cation. For lorries, this increase is only 20% from 10

to 12 detected lorries, three of which are confirmed in

high-resolution.

Evaluation of the performance on pedestrian recog-

nition is future work as well as a detailed description of

our resource allocation scheme and the extension of the

latter towards a scheduling behaviour over time.
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Snapshot

Motivation

§ Trend

§ Amount of sensors in cars is steadily
increasing

§ Data volume increases accordingly

§ Complexity and computational load
are very high, too high for real-time
processing

§ One-box design for sensors

§ Shortcomings

§ Data cannot be processed in real-time

§ Sensor data is not shared among
driver assistance systems

§ Inefficient sensor resource usage
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Proactive Sensor System

Through the Looking-Glass,
and What Alice Found There

Saliency (Walker et al,
1998)

Classification (Viola and 
Jones, 2004)

Cue combination and
maximisation.

Classification (Viola and 
Jones, 2004)
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Proactive Sensor System

Schematic Overview
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Proactive Sensor System

Unsupervised Saliency Detection

Source Image

Saliency using a global approach
(Walker et al, 1998)

Saliency using a local approach
(Itti, 2000)
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Proactive Sensor System

Trained Classifier

We use the trained classifier proposed in Viola and Jones, 2004.

Positive samples

Negative samples

Classifier cascade using
simple Haar-like features. 0,92
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Proactive Sensor System

Classification Results

Car Cascade Lorry Cascade Pedestrian Cascade

We trained three cascades for cars, lorries, and pedestrians.
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Proactive Sensor System

Computational Costs I

Computation time for image processing (in ms per 10k pixel)

• Saliency using Walker et al, 1998 1.96 ms
• Object classification using Viola and Jones, 2004 9.12 ms

Saliency can be computed on low-resoluton image (i.e. 64x48 pixel).

• Computation time for saliency 0.60 ms

Object classification must be computed on high-resolution image
(i.e. 320x240 pixel). Also, object classification must also be computed
separately for every object class.

• Computation time for 3 object classes 210.12 ms

We are still missing bicycles, motorcycles, etc.
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Proactive Sensor System

How does nature handle this?

From: Itti, Rees, Tsotsos (Eds.): 
Encyclopedia of Visual Attention, 
Chapter 3, Elsevier, Oxford, 2005.

The human visual system handles this bottleneck
by selecting regions of interest, which are focused
and scrutinised for known objects (or categories).

The information is reduced to

The required reduction is not nearly as much in 
our case.
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Proactive Sensor System

Schematic Overview (Reprise)
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Proactive Sensor System

Computational Costs II

Computation time for image processing (in ms per 10k pixel)

• Saliency using Walker et al, 1998 1.96 ms
• Object classification using Viola and Jones, 2004 9.12 ms

Saliency can be computed on low-resoluton image (i.e. 64x48 pixel).

• Computation time for saliency 0.60 ms

Object recognition on low-resolution image (i.e. 64x48 pixel) for 5 classes.
• Computation time for 5 object classes 14.01 ms

Object classification on focused high-resolution image
(i.e. 128x96 pixel) for 5 classes

• Computation time for 5 object classes 56.03 ms

We now include bicycles and motorcycles in the classification process.

Total computation time is 70.64ms à over 14 fps.

April 8, 2008Stephan Matzka Slide 14

Proactive Sensor System

Schematic Overview (Reprise)
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Proactive Sensor System

Contextual Knowledge

We have prior knowledge based upon:

• Type of traffic environment (motorway, urban road, …)
• Position and category of classified traffic participants (pedestrian, bicycle, car, lorry, …)
• Behaviour of our own car and surrounding traffic participants (fast, slow, turning, …)

An ontology-based framework will determine adequate cue combination weights and tuned
recognition cascades.
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Outlook

Summary and Future Work

Summary

• We propose a system to efficiently control high-resolution sensors using cues
(unsupervised saliency and trained classifiers) acquired from low-resolution sensor data.

• Reducing the data from 640 x 480 pixel to 128 x 96 pixel (4%) is not as much as the
human eye (0.3%) but allows to process data faster than 10 frames per second.

• Results show an increase in the number of correctly classified traffic participants (up to 
100% for cars) as compared to a fixed-gaze system.

Future Work

• Extensive evaluation and publication of the proposed sensor resource allocation scheme.

• Further investiagion of contextual influence on classification performance.

Thank you for your attention.
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