Histopathologische Evaluation der Toxizität des Alpha-Emitter-Immunkonjugats Bi-213-anti-EGFR-mAk an Harnblasen und Nieren von Swiss nu/nu-Mäusen nach intravesikaler Instillation

Felix Müller

Die Dissertation wurde am 13.06.2013 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 07.05.2014 angenommen.
Für meine Eltern
Inhaltsverzeichnis

1. Einleitung ..6
 1.1 Harnblasenkarzinom ...6
 1.1.1 Häufigkeit und Ätiologie ..6
 1.1.2 Histologie, Stadien und Klassifikation ...6
 1.1.3 Diagnose und Therapie ...7
 1.2 Radioimmuntherapie ..8
 1.3 Problemstellung ...10

2. Literaturübersicht ...12
 2.1 Grundlagen zum Einsatz von Alpha-Strahlern in der Radioimmuntherapie12
 2.2 Strahlenpathologie der Harnblase ..15
 2.2.1 Histologischer Aufbau der Harnblase ...15
 2.2.2 Histopathologische Befunde der Harnblase nach Bestrahlung16
 2.3 Strahlenpathologie der Niere ..19
 2.3.1 Histologischer Aufbau der Niere ...19
 2.3.2 Histopathologische Befunde der Niere nach Bestrahlung bzw.
 Radioimmuntherapie mit Alpha-Emittern ..19
 2.4 Übertritt von intravesikal applizierten Substanzen in den Kreislauf nach
 transurethraler Resektion ...21
 2.5 Biodistribution von Radioimmunkonjugaten in der Niere nach i.v.- bzw. i.p.-Injektion........21
 2.6 Biodistribution von Bi-213-anti-EGFR-mAk nach intravesikaler Applikation23

3. Material und Methoden ...24
 3.1 Chemikalien und Verbrauchsmaterial ..24
 3.2 Geräte und Software ..24
 3.3 Tiere zur histologischen Untersuchungen der Toxizität ..25
3.4 Histologie ...26
3.4.1 Fixierung, Entwässerung, Einbettung und Schnitt ...26
3.4.2 Entfernung des Paraffins, Färbung, Einbettung und Begutachtung27
4. Ergebnisse ...28
4.1 Histopathologische Befunde der Harnblase ..28
4.2 Histopathologische Befunde der Niere ..34
5. Diskussion ..39
5.1 Histopathologie der Harnblase nach Bi-213-anti-EGFR-mAk-Instillation39
5.2 Histopathologie der Niere nach Bi-213-anti-EGFR-mAk-Instillation42
5.3 Schlussfolgerungen ..43
6. Zusammenfassung ...45
7. Danksagung ..48
8. Abkürzungsverzeichnis ...49
9. Abbildungsverzeichnis ..50
10. Tabellenverzeichnis ...52
11. Literaturverzeichnis ...53
12. Lebenslauf ...58
1. Einleitung

1.1 Harnblasenkarzinom

1.1.1 Häufigkeit und Ätiologie

1.1.2 Histologie, Stadien und Klassifikation

Mit ungefähr 90% der Fälle ist in Europa und Nordamerika das Urothelkarzinom unter den Harnblasenkarzinomen deutlich dominierend; Plattenepithelkarzinome (5%) und Adenokarzinome (0,5 – 2%) sind demgegenüber weitaus seltener (Schmelz et al., 2006). Harnblasenkarzinome werden hinsichtlich zweier Kriterien klassifiziert. Erstens hinsichtlich ihrer genetischen Stabilität: Genetisch stabile Tumoren werden als „low grade“ maligne und genetisch instabile Tumoren als „high grade“ maligne bezeichnet, wobei von einem „high grade“ Tumor ein signifikant höheres Ausmaß an Progression zu erwarten ist. Eine besondere Form stellt das Carcinoma in situ dar, das zwar intraepithelial lokalisiert ist, aber einen hohen Malignitätsgrad aufweist. Die zweite Klassifikation bezieht sich auf die Ausbreitung des Tumors. Unterschieden wird das nicht-muskelnegative, das muskelnegative und das metastasierte Stadium – wobei sich Therapie und Prognose dieser Stadien unterscheiden. Die Erstdiagnose wird bei 75 – 85% aller Patienten in einem nicht-muskelnegativen Stadium gestellt, in dem der Tumor also definitionsgemäß noch auf Mukosa oder Submukosa beschränkt ist – dies entspricht den Stadien pTis (Carcinoma in situ) pTa (nicht-invasiver, papillärer Tumor) oder pT1 (Tumor infiltriert die Basalmembran) (Babjuk et al., 2011). Wird die Diagnose erst in späteren Stadien gestellt, hat der
Tumor bereits die Muskelschicht der Blase (T2), das perivesikale Fettgewebe (T3) oder umliegende Organe (T4) infiltriert.

1.1.3 Diagnose und Therapie

Den Goldstandard für die Diagnose des Blasenkarzinoms stellt die Zystoskopie dar. Hierbei wird eine Biopsie entnommen, die der definitiven Diagnosesicherung dient und die Frage nach der Infiltrationstiefe klären soll. Als erster therapeutischer Schritt schließt sich der Zystoskopie die transurethrale Resektion (TUR) an, bei der der Tumor möglichst vollständig entfernt wird. Die weitere Behandlungsstrategie ist abhängig vom jeweiligen histologischen Befund (Tumorart, Differenzierung, Infiltrationstiefe) sowie den Ergebnissen der obligaten Staginguntersuchung. Bei lokalinvasiven Karzinomen (T2, T3a, T3b) ohne nachgewiesene Metastasierung ist die radikale Zystektomie die Therapie der Wahl, bei Metastasierung die systemische Chemotherapie. Allerdings ist die Prognose bei einer Fernmetastasierung mit einer Überlebensrate von meist weniger als einem Jahr infaust (Stief et al., 2006).

Nach TUR als dem ersten therapeutischen Schritt bei nicht-muskelinvasiven Stadien kommt es durch abgeschilferte Tumorzellen und verbliebene Tumorreste häufig zu einem Rezidiv bzw. Tumorprogress mit entsprechend schlechterer Prognose, wobei insbesondere bei „high grade“-Tumoren mit ca. 80% das Risiko eines Rezidivs bzw. mit 50-65% das Risiko des Übergangs in ein muskelinvasives Stadium hoch ist (Soloway et al., 2002). Das Rezidiv- und Progressionsrisiko kann durch die intravesikale Instillation von Zytostatika oder Immuntherapeutika gesenkt werden. Verwendet werden hierbei vor allem Chemotherapeutika wie Mitomycin C und Epirubicin oder auch Bacillus Calmette-Guèrin (BCG), wobei die Chemotherapie aufgrund geringerer Nebenwirkungen bevorzugt wird und BCG nur bei Patienten mit high-risk-Tumoren zur Anwendung kommt. Allerdings sind die Erfolge dieser Therapien begrenzt. Während einige Autoren längerfristig keinen Nutzen der intravesikalben Chemotherapie hinsichtlich der Rezidiv- und der Progressionsrate gegenüber der alleinigen TUR feststellen können (Lamm et al., 1995), sehen andere zumindest eine geringgradige Senkung des Rezidivrisikos um 6%, aber ebenfalls keine Verhinderung der Progression (Pawinski et al., 1996). Die Therapie mit BCG ist im Vergleich zur Chemotherapie effektiver, aber auch nebenwirkungsreicher. So wurde bei einem medianen Follow-up von 26 Monaten von einer Senkung der Rezidivrate auf 38,6% und der Progressionsrate auf 7,7% im Vergleich zu 46,4% bzw. 9,4% bei Mitomycin C berichtet (Bohle et al., 2003). Bei den
Nebenwirkungen ist neben Zystitis, Prostatitis und Epididymoorchitis vor allem die seltene, aber schwerwiegende BCG-Sepsis hervorzuleben.

Vor dem Hintergrund dieser unbefriedigenden Ergebnisse scheinen effektivere Ansätze in der Therapie des Harnblasenkarzinoms sehr wünschenswert.

1.2 Radioimmuntherapie

Ein zentrales Problem der onkologischen Therapie besteht darin, dass es sich bei Tumorzellen um körpereigene Zellen handelt, die sich nur geringfügig von den übrigen Zellen des Organismus unterscheiden. Mit verschiedenen Ansätzen wird versucht, Tumorzellen möglichst gezielt abzutöten und so eine Schonung des gesunden Gewebes zu erreichen. Die Radioimmuntherapie (RIT) stellt einen neuen Versuch zur selektiven Eradikation von Tumorzellen dar. Bei der RIT binden Antikörper an Strukturen von Tumorzellen, die idealerweise auf diesen Zellen spezifisch oder zumindest im Vergleich zu nicht entarteten Zellen vermehrt vorkommen. Die Antikörper dienen hierbei als Vehikel, durch das ein Radionuklid am Zielort deponiert und so eine näherungsweise selektive Bestrahlung der Tumorzellen bei gleichzeitiger Schonung des gesunden Gewebes ermöglicht wird.

Zur Senkung der Rezidivraten nach TUR des Urothelkarzinoms wurde von der eigenen Arbeitsgruppe ein monoklonaler EGFR-Antikörper mit dem Alpha-Emitter Bi-213 konjugiert und das gewonnene Bi-213-anti-EGFR-mAk-Radioimmunkonjugat im Mausmodell zur intravesikalischen Radioimmuntherapie eingesetzt (Pfost et al., 2009)(Abb. 1). Verwendet wurde die humane

Abb. 1: Schematische Darstellung der Bindung des Radioimmunkonjugats Bi-213-anti-EGFR-mAk an den EGF-Rezeptor auf einer Urothelkarzinomzelle.

In diesem Tiermodell zeigte die Therapie mit Bi-213-anti-EGFR-mAk eine signifikante Verlängerung des Überlebens und war zudem dem Standardchemotherapeutikum Mitomycin C überlegen (Pfost et al., 2009). Die mediane Überlebenszeit der Kontrollgruppe betrug 41 Tage, bei intravesikaler Instillation von 40 µg Mitomycin C eine Stunde nach Tumorzellinstillation erreichten nur 40% der Tiere ein Überleben von mehr als 300 Tagen (Median: 289 Tage), während bei intravesikaler Instillation von 0,925 MBq Bi-213-anti-EGFR-mAk eine Stunde nach Tumordinstillation 90% der Tiere über 300 Tage überlebten (Median: über 300 Tage).

Neben der therapeutischen Effizienz von Bi-213-anti-EGFR-mAk ist auch eine möglichst geringe Beeinträchtigung der gesunden Harnblasenwand von großer Bedeutung. Eine Voraussetzung hierfür ist die weitgehend selektive Bindung von anti-EGFR-mAk an Urothelkarzinomzellen. Mittels Immunhistochemie, bei der sich die Bindung eines Antikörpers auf einem histologischen Präparat farblich darstellt, wurde bereits demonstriert, dass anti-EGFR-mAk sehr selektiv an xenotransplantierten EJ28-Zellen bindet (Pfost et al., 2009)(Abb. 2) und somit die Therapie mit Bi-
213-anti-EGFR-mAk eine gezielte Bestrahlung der Karzinomzellen bei gleichzeitiger Schonung des gesunden Gewebes verspricht.

1.3 Problemstellung

Bei der externen Strahlentherapie pelviner Tumoren wie dem Prostata-, Rektum-, und Cervixkarzinom sind unerwünschte Effekte auf die Blase von großer klinischer Bedeutung. Während sich die akuten Nebenwirkungen meist nach einigen Monaten zurückbilden, können andere Nebenwirkungen wie z.B. Dysurie, Veränderung der Miktionsfrequenz, Harndrang, Inkontinenz, Hämaturie, Fisteln, Nekrosen und Obstruktion über lange Zeiträume bestehen bleiben (Viswanathan et al., 2010). Neben einer Strahlenbelastung der Harnblase bei intravesikaler Applikation eines Alpha-Emitter-Radioimmunkonjugats sind auch potentielle
2. Literaturübersicht

2.1 Grundlagen zum Einsatz von Alpha-Strahlern in der Radioimmuntherapie

Ionisierende Strahlung wird in direkt (Alpha- und Betastrahlung) und indirekt ionisierende Strahlung (Röntgen-, Gamma- und Neutronenstrahlung) unterteilt. Während es bei direkt ionisierender Strahlung aufgrund des Ladungscharakters unmittelbar zu Ionisationen kommt, erzeugt indirekt ionisierende Strahlung bei Wechselwirkung mit der Materie zunächst geladene Teilchen, die dann die weitere Wirkung vermitteln. Ein weiterer Unterschied zwischen den verschiedenen Strahlungsarten besteht im Hinblick auf die Ionisationsdichte, d.h. der Anzahl der Ionisationen entlang des Weges der Strahlung, wobei hier prinzipiell zwischen locker und dicht ionisierender Strahlung unterschieden werden kann. Die Ionisationsdichte lässt sich messtechnisch nur schwer erfassen, weshalb stattdessen der lineare Energietransfer (LET) verwendet wird. Der LET beschreibt den Grad der Energieabgabe eines ionisierenden Teilchens pro Längeneinheit und stellt damit ein indirektes Maß für die Ionisationsdichte dar.

Abb. 3: Schematische Darstellung eines durch Alpha-Strahlung induzierten DNS-Doppelstrangbruchs im Vergleich mit Gamma-Strahlung.

Ungefähr 100 Radionuklide sind bekannt, die bei ihrem Zerfall einen oder mehrere Alpha-Partikel abgeben. Aufgrund ihrer physikalischen und chemischen Eigenschaften sowie der Verfügbarkeit sind jedoch nur wenige Alpha-Emitter für die Radioimmuntherapie nutzbar (Seidl and Senekowitsch-Schmidtke, 2008). Der von der eigenen Arbeitsgruppe ausgewählte Alpha-Strahler Bi-213 ist ein Zerfallsprodukt von Actinium-225 (Abb. 4). Bi-213 hat eine kurze Halbwertszeit von 45,6 min, weshalb eine rasche Kopplung an den Antikörper erforderlich, aber auch eine Reduktion der Strahlenbelastung des Patienten möglich ist.

Abb. 4: Zerfallsschema von Actinium-225.
2.2 Strahlenpathologie der Harnblase

2.2.1 Histologischer Aufbau der Harnblase

Die Harnblase ist mit einem Übergangsepithel, dem Urothel, ausgekleidet, dessen Höhe bei zunehmender Füllung der Blase abnimmt. Man unterscheidet kubische Basalzellen mit einem Durchmesser von ca. 10 µm, die direkt auf der Basalmembran aufsitzen und eine einreihige Zellschicht bilden, außerdem Intermediärzellen mit einem Durchmesser von 10-25 µm, die im Querschnitt eine bis mehrere Lagen bilden sowie vielgestaltige Deckzellen mit einem Durchmesser von 25-250 µm (Apodaca, 2004). Besonders am gedehnten Urothel überspannen die Deckzellen in charakteristischer Weise die unteren Zelllagen, wobei eine dieser Zellen bis zu 20 Intermediärzellen abdecken kann.

Unter dem Urothel liegt die Lamina propria, die zahlreiche Blutgefäße sowie Nervenfasern enthält. Als dritte Schicht folgt die aus glatter Muskulatur bestehende Tunica muscularis und als äußerste Wandschicht die Tunica serosa.

Während das Urothel des Menschen aus fünf bis sieben Zelllagen aufgebaut ist, finden sich bei der Maus zwei bis vier Zellreihen- bzw. -schichten (Gude et al., 1982). Sowohl die Dicke des Urothels, als auch der darunterliegenden Schichten, ist abhängig von der Dehnung der Blase durch Urin, aber auch durch histologische Fixiermittel (Maronpot et al., 1999). Daher kann das
murine Urothen, das normalerweise zwei bis vier Zellreihen aufweist, in der Histologie dicker erscheinen, ohne dass dem eine pathologische Bedeutung zukommen würde.

2.2.1 Histopathologische Befunde der Harnblase nach Bestrahlung

Fibrose ist eine weitere, von verschiedensten Autoren beschriebene, Pathologie nach Bestrahlung der Blase, wobei das Auftreten in einem Zeitraum zwischen drei und 12 Monaten lag (Stewart et al., 1991, Vale et al., 1993, Kinsella et al., 1988, Antonakopoulos et al., 1982, Gowing, 1960,

2.2.2 Pathogenese der Strahlenwirkungen

2.3 Strahlenpathologie der Niere

2.3.1 Histologischer Aufbau der Niere

2.3.2 Histopathologische Befunde der Niere nach Bestrahlung bzw. Radioimmuntherapie mit Alpha-Emitttern

Der Zellumsatz der Niere ist im Allgemeinen langsam, wodurch sich ein Strahlenschaden häufig erst nach Monaten oder Jahren zeigt. Durch externe Strahlung verursachte Schäden der Niere sind ein durch zahlreiche Studien gut untersuchtes Gebiet, wobei unterschiedlichste Tierarten und Strahlendosen verwendet wurden. Bei Mäusen, Ratten und Hunden wurden u.a. folgende (Spät-)Schäden beschrieben: Tubulusatrophie (Jordan et al., 1978, Glatstein et al., 1977, Mostofi et al., 1964, Madrazo and Churg, 1976), Fibrose (Glatstein et al., 1977, Mostofi et al., 1964, Madrazo and

Im Gegensatz zur Harnblase wurden jedoch bereits mehrere Untersuchungen zur Wirkung von (antikörpergekoppelten) Alpha-Emittern auf die Niere durchgeführt. Der Alpha-Emitter erreicht bei den dabei durchgeführten i.v.- bzw. i.p.-Injektionen die Niere über den Kreislauf, potentielle Unterschiede in der Strahlenwirkung ergeben sich daher nicht nur aus der geringeren Reichweite und dem hohen LET der Emitter sondern auch aus der Verteilung innerhalb der Niere (siehe 2.4.2). Die verwendeten Radioimmunkonjugate, Tiermodelle, Applikationsart und Aktivitäten der in dieser Arbeit besprochenen Studien sind in Tabelle 1 zusammengefasst.

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Radioimmunkonjugat</th>
<th>Tiermodell</th>
<th>Applikation</th>
<th>Aktivität (MBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beck et al.</td>
<td>Bi-213-d9MAb</td>
<td>Maus</td>
<td>i.p.</td>
<td>7,4 bzw. 22,2</td>
</tr>
<tr>
<td>Jaggi et al.</td>
<td>Ac²²⁵-HuM195</td>
<td>Maus</td>
<td>i.v.</td>
<td>0,01295</td>
</tr>
<tr>
<td>Miederer et al.</td>
<td>Ac²²⁵-HuM195</td>
<td>Affe</td>
<td>i.v.</td>
<td>0,028 bzw.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,377/kg</td>
</tr>
<tr>
<td>Song et al.</td>
<td>Bi-213-PAI2</td>
<td>Maus</td>
<td>i.p.</td>
<td>≈ 7,0 – 14,75</td>
</tr>
</tbody>
</table>

und Kollaps (Jaggi et al., 2005) oder Dilatation (Song et al., 2007) der Tubuli. Im Interstitium kam es zu Vernarbung (Jaggi et al., 2005, Beck et al., 2007), Fibrose (Jaggi et al., 2005) und entzündlichem Infiltrat in Form von Lymphozyten (Jaggi et al., 2005) und neutrophilen Granulozyten (Song et al., 2007); ohne Bezug auf einen bestimmten Zeitraum berichten auch Miederer et al. über vereinzelte Aggregate mononukleärer Zellen (Miederer et al., 2004).

2.4 Übertritt von intravesikal applizierten Substanzen in den Kreislauf nach transurethraler Resektion

Bei der intravesikal Radioimmunontherapie mit Bi-213-anti-EGFR-mAk könnte eine Schädigung der Nieren bedingt sein durch einen Aufstieg des Radioimmunkonjugats über die Ureteren oder durch einen Übertritt in den Kreislauf durch die bei TUR geschaffene Läsion. Ein Aufstieg von Bi-213-anti-EGFR-mAk über die Ureteren sollte sich leicht durch die Wahl eines geeigneten Instillationsvolumens vermeiden lassen, potentielle Nebenwirkungen, die durch einen Übertritt des Radioimmunkonjugats in das Blut bedingt sein könnten, sind hingegen abhängig vom Ausmaß des Übertritts von Bi-213-anti-EGFR-mAk aus der Blase in den Kreislauf. Studien zum Übertritt der intravesikal applizierten Chemotherapeutika Epirubicin bzw. Mitomycin C nach TUR beim Menschen zeigen jedoch, dass es lediglich in geringem Maß zu einem Übertritt dieser Substanzen in den Kreislauf kommt. Bei Instillation von 20 bzw. 50 mg Epirubicin direkt nach TUR waren nach 30 min die maximalen mittleren Blutkonzentrationen erreicht, die mit <2,5 bzw 5,0 ng/ml sehr gering ausfielen (Tsushima et al., 1998). Bei intravesikal Instillation von 40 mg Mitomycin C zu verschiedenen Zeitpunkten beginnend 14 Tage nach TUR und einer Einwirkungszeit von 30 bzw. 60 min fand sich eine Resorption von <1% der verabreichten Dosis in die Blutzirkulation (van Helsdingen et al., 1988).

2.5 Biodistribution von Radioimmunkonjugaten in der Niere nach i.v.- bzw. i.p.-Injektion

Antikörperfragmente werden in den Glomeruli bis zu einem Molekulargewicht von 25 kDa frei filtriert, mit zunehmendem Gewicht kommt es zu einer Abnahme bis schließlich bei ≈75 kDa kaum noch Filtration stattfindet. Allerdings ist zu beachten, dass bei entsprechender Konformation auch Antikörper mit einem höheren Gewicht den Filter passieren können (Bohrer et al., 1979). Neben
dem Filtrationsdruck ist ein weiterer die Filtration beeinflussender Faktor die negative Ladung der glomerulären Basalmembran, wodurch negativ geladene Proteine in geringerem Umfang als positiv geladene filtriert werden. Die Reabsorption der Proteine findet vor allem im proximalen Tubulus statt, wo sie über Endozytose in die Zellen aufgenommen werden. Das entstandene Endosom fusioniert mit einem Lysosom, in dem das Protein schließlich enzymatisch abgebaut und die entstandenen Aminosäuren in das Blut abgegeben werden (Sumpio and Hayslett, 1985). Radiometall-Aminosäure-Chelatkomplexe werden ebenfalls über diesen Mechanismus in die Tubuluszellen aufgenommen, dann aber im Lysosom zurück gehalten, da in diesem Fall eine Bindung an lysosomale Proteine und somit eine Akkumulation in den Zellen des proximalen Tubulus stattfindet (Lambert et al., 2004).

Entsprechend diesen Überlegungen zeigt sich im Fall von kleinen radiomarkierten Antikörperfragmenten eine schnelle renale Clearance, wohingegen intakte radiomarkierte Antikörper länger in der Zirkulation verbleiben (Behr et al., 1997, Flynn et al., 2003). Betrachtet man die Niere unter dosimetrischen Gesichtspunkten, findet sich bei Fragmenten eine höhere Aktivität in der Nierenrinde verglichen mit dem Nierenmark, bei größeren Antikörpern (Gewicht > 100 kDa) ist die in der Niere gemessene Aktivität hingegen vor allem auf die Antikörper im Blut zurückzuführen (Flynn et al., 2003, Behr et al., 1997). Die Inhomogenität dieser Verteilung dürfte im Fall von Alpha-Strahlern aufgrund der hohen Energie, die diese Radionuklide auf kurzer Strecke deponieren, von noch größerer Bedeutung sein.

In einer Studie zur Verteilung von Bi-213-anti-EGFR-mAK sowie freiem Bi-213 nach i.p.-Injektion zeigt sich übereinstimmend mit diesen Überlegungen und früheren empirischen Befunden bei Gabe von Bi-213-anti-EGFR-mAK sowie freiem Bi-213 eine Anreicherung in der Nierenrinde und dem äußeren Nierenmark (Pfost, 2009). In einer weiteren Studie mit i.p.-Injektion von Bi-213-d9MAb bzw. freiem Bi-213 zeigte sich ebenfalls eine Anreicherung in der Nierenrinde und dem äußeren Nierenmark, wobei die Verteilung für Bi-213-d9MAb und Bi-213 wiederum gleich war
(Beck et al., 2007). Beide Autoren schließen hieraus, dass auch die Anreicherung bei Gabe des Bi-213-Immunkonjugats auf freies Bi-213, das sich vom Antikörper gelöst hat, zurückzuführen ist.

2.6 Biodistribution von Bi-213-anti-EGFR-mAk nach intravesikaler Applikation

Die Biodistribution von Bi-213-anti-EGFR-mAk in Swiss nu/nu-Mäusen nach i.v.-Injektion sowie intravesikaler Instillation wurde bereits untersucht (Pfost, 2009, Pfost et al., 2009). Bei der i.v.-Injektion von 2,96 MBq Bi-213-anti-EGFR-mAk fand sich 45 min nach Applikation an tumortragenden Mäusen im Blut 32,3% und in der Niere 8,4% inj. Akt./g. (andere Organe in % inj. Akt./g: Herz 9,2, Lunge 11,5, Leber 11,6, Milz 4,9). Demgegenüber war die gemessene Aktivität in der Niere bei intravesikaler Instillation schon deutlich niedriger: Bei 6,66 MBq Bi-213-anti-EGFR-mAk betrug sie an ungekauterten Tieren 0,29% (45 min) bzw. 0,16% (90 min) inj. Akt./g (in Herz, Lunge, Leber, Milz und Darm zu beiden Zeitpunkten <0,1 % inj. Akt./g). In einem anderen Versuchsansatz mit 1,85 MBq instillierter Aktivität an ungekauterten Tieren und Messung nach 90 min fand sich in der Blase ein prozentualer Anteil von 8,2% und in der Niere von 1,5% inj. Akt./g (andere Organe in % inj. Akt./g: Blut 0,9, Herz 0,4 Lunge 0,4, Leber 0,6, Milz 0,2). Bei intravesikaler Instillation von 1,85 MBq Bi-213-anti-EGFR-mAk wurde an gekauterten Tieren nach 90 min in der Blase ein prozentualer Anteil von 6,8% und in der Niere von 2,7% inj. Akt./g gemessen (andere Organe in % inj. Akt./g.: Blut 8,3, Herz 1,6, Lunge 2,6, Leber 3,3, Milz 1,7).

Diese Ergebnisse verdeutlichen, dass bei i.v.-Applikation von Bi-213-anti-EGFR-mAk der Großteil des Radioimmunkonjugats in der Zirkulation verbleibt und es in den restlichen Organen zu einer recht homogenen Verteilung kommt, ohne dass eine herausragende Anreicherung in der Niere stattfinden würde. Prinzipiell zeigt die intravesikale Instillation bei ungekauterten Tieren eine sehr gute Retention des Radioimmunkonjugats in der Blase mit nur einem minimalen Aktivitätsanteil in den anderen Organen, wobei hier die Niere mit 0,29% bzw. 1,5 % inj. Akt./g führend ist. Dies wird von Pfost durch den bei Instillation aufgebauten intravesikalen Druck mit nachfolgendem Aufstieg von Bi-213-anti-EGFR-mAk über den Ureter in die Niere erklärt. Die Kauterung der Blase führt im Gegensatz zu Blasen ohne Läsion zu einem Anstieg der gemessenen Aktivität in allen untersuchten Organen. Der durch die Kauterung geschaffene Anschluss an die Blutzirkulation mit nachfolgendem Übertritt des Radioimmunkonjugats in die Zirkulation erklärt diese Zunahme. Allerdings ist bei gleicher instillerter Aktivität von 1,85 MBq und gleichem Messzeitpunkt von 90 min nach Applikation in der Niere nur ein moderater Anstieg von 1,5% (ungekautert) auf 2,7% (gekautert) inj. Akt./g zu verzeichnen.
3. Material und Methoden

3.1 Chemikalien und Verbrauchsmaterial

Eosin
Essigsäure 100%
Ethanol absolut 99,8%
Ethanol 70%
Formalin 4%
Hämalaun
Kaisers Glyceringelatine
Menzel-Gläser Superfrost Plus
Saures Hämalaun nach Mayer
Wässrige Eosin-Dinatriumlösung 1%
Xylol

Apotheke des Klinikums rechts der Isar
Merck, Darmstadt
Apotheke des Klinikums rechts der Isar
Apotheke des Klinikums rechts der Isar
Merck, Darmstadt
Apotheke des Klinikums rechts der Isar
Menzel, Braunschweig
Apotheke des Klinikums rechts der Isar
Apotheke des Klinikums rechts der Isar
Merck, Darmstadt

3.2 Geräte und Software

Axiocam HRc
Axiolmager.A2
Axiovision 40 V 4.8.0.0
GIMP 2.6.11
Microm HM335E
Paraffin Embedding System Dispenser Unit TBS88
Shandon Excelsior ES
Shandon Hyperclean 1 Abzug
Tissue Cool Plate COP20
Tissue Flotation Bath TFB 35
Trockenöfen UL 30 und B30

Carl Zeiss Micorimaging, Jena
Carl Zeiss, Göttingen
Carl Zeiss Microimaging, Jena
GNU
Thermo Scientific, Walldorf
Medite, Burgdorf
Thermo Scientific, Walldorf
Thermo Scientific, Walldorf
Medite, Burgdorf
Medite, Burgdorf
Memmert, Schwabach
3.3 Tiere zur histologischen Untersuchungen der Toxizität

Tabelle 2: Übersicht über applizierte Aktivität, Tumorinstillation und Kauterung der Blasen der in dieser Arbeit untersuchten Swiss nu/nu-Mäuse (n=19)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Aktivität (MBq)</th>
<th>Tumorinstillation von EJ28-Zellen</th>
<th>Applikationsschema</th>
<th>Kauterung</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,925</td>
<td>nein</td>
<td>-</td>
<td>ja</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0,925</td>
<td>ja</td>
<td>7. Tag nach Tumorinstillation</td>
<td>ja</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2 x 0,925</td>
<td>nein</td>
<td>Erneute Gabe nach 7 Tagen</td>
<td>ja</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2 x 0,925</td>
<td>ja</td>
<td>1. und 7. Tag nach Tumorinstillation</td>
<td>ja</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>2 x 1,85</td>
<td>nein</td>
<td>Erneute Gabe nach 7 Tagen</td>
<td>nein</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>2 x 3,70</td>
<td>nein</td>
<td>Erneute Gabe nach 7 Tagen</td>
<td>nein</td>
<td>1</td>
</tr>
</tbody>
</table>

3.4 Histologie

3.4.1 Fixierung, Entwässerung, Einbettung und Schnitt

Die durch Immersionsfixierung in Formalin behandelten Organe wurden mit Hilfe eines Shandon Excelsior ES (Thermo Scientific) entwässert und, sofern erforderlich, in einem Trocknofen B30 (Memmert) gelagert und dann mit einem Paraffin Embedding System Dispenser Unit TBS88 (Medite) in Paraffin eingebettet. Mit einem Microm HM335E (Thermo Scientific) wurden die Paraffinblöcke bis zum jeweiligen Organ angeschnitten, dann auf einer Tissue Cool Plate COP20 (Medite) gekühlt und anschließend mit einer Dicke von 4 µm geschnitten. Die Schnitte wurden in einem Tissue Flotation Bath TFB 35 (Medite) in 42 °C warmes Wasser eingebracht und dort für
einige Minuten belassen, um das vollständige Entfalten der Schnitte zu gewährleisten. Für jedes Organ wurden dann mindestens neun Schnitte selektiert, auf Superfrost-plus-Objektträger (Menzel) aufgezogen und zum Trocknen beiseite gelegt.

3.4.2 Entfernung des Paraffins, Färbung, Einbettung und Begutachtung

Um ein besseres Anhaften der Schnitte auf den Objektträgern zu gewährleisten, wurden die Präparate anschließend für 10 min bei 60°C in einem UL 30 (Memmert) inkubiert. Für je drei Minuten wurden die Schnitte dann unter einem Hyperclean 1 (Thermo Scientific) dreimal in Xylol eingebracht, um das Paraffin zu entfernen. Darauf folgte von Hand die Hämatoxylin-Eosin-Färbung nach dem Schema: 100% Ethanol für 2 x 3 min, 90% Ethanol für 2 x 3 min, 80% Ethanol für 2 x 3 min, 70% Ethanol für 3 min, 50% Ethanol für 3 min, destilliertes H₂O für 5 min, Hämalaun für 4 min, fließendes H₂O für 10 min, Eosin für 30 s, 70% Ethanol für 10 s, 90% Ethanol für 2 min, 100% Ethanol für 2 min und Xylol für 10 min. Nicht vorhandene Ethanolverdünnungen wurden mit Leitungswasser hergestellt. Die Einbettung der gefärbten Schnitte erfolgte mit Kaisers Glyceringelatine (Merck). Die Präparate wurden dann unter einem AxioImager A2 (Zeiss) systematisch begutachtet. Von jedem Organ wurden jeweils mehrere Präparate aus verschiedenen Schnittebenen analysiert. Die Durchmusterung der Organe erfolgte komplett, d.h. alle anatomischen Schichten bzw. Strukturen wurden in die Untersuchung einbezogen. Nach dieser Analyse wurden repräsentative Organe bzw. Ausschnitte dieser Organe fotografiert (Axiocam HRC, AxioImager.A2, Axiovision 40 V 4.8.0.0; Carls Zeiss) und, soweit erforderlich, in Kontrast und Helligkeit angepasst.
4. Ergebnisse

4.1 Histopathologische Befunde der Harnblasen

Nach intravesikaler Instillation von 0,925 bzw. 2 x 0,925 MBq Bi-213-anti-EGFR-mAk zeigte das Urothel 300 Tage nach Exposition durchgehend einen regelhaften Aufbau mit unauffälligen, meist in zwei bis drei Lagen angeordneten Zellen (Abb. 5). In einem Teil der Fälle war das Urothel verdickt und in Falten aufgeworfen – diese Befunde sind aber nicht im Sinne einer Hyperplasie zu deuten, sondern durch eine geringere Dehnung des Organs bei der Fixierung zu erklären (Abb. 10).

Abb. 5: Detailansicht von unauffälligem Urothel von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 2 x 0,925 (A,B), 2 x 1,85 (C) und 2 x 3,7 (D) MBq Bi-213-anti-EGFR-mAk. 1: Urothel, 2: Lamina propria, 3: Tunica muscularis.
Bei höheren Aktivitäten von 2 x 1,85 MBq Bi-213-anti-EGFR-mAk fanden sich bei einem Tier fokale Veränderungen in Form von vergrößerten Kernen, Hyperchromasie und irregulären Kernmembranen (Abb. 6). Zudem waren in diesem Fall vesikuläre Strukturen unklarer Natur innerhalb des Urothels sichtbar.

Die Zellen der Lamina propria, der Tunica muscularis, ebenso wie die der Adventitia und Gefäße zeigten durchgehend in allen untersuchten Organen (n=19) keine Auffälligkeiten (Abb. 7). Ebenso präsentierten sich die bindegewebigen Anteile regelrecht.

In keiner der untersuchten Harnblasen, einschließlich der Blasen mit vorangegangener intravesikaler Instillation von EJ28-Zellen (n=8), konnten primäre oder sekundäre Karzinomzellen nachgewiesen werden.
Abb. 7: Unauffällige Detailansichten der Harnblasenwand von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 2 x 0,925 (A,B,D) bzw. 0,925 (C) MBq Bi-213-anti-EGFR-mAk. 1: Urothel, 2: Tunica muscularis, 3: Fettgewebe, 4: Gefäß

In der Lamina propria wie auch der Tunica muscularis waren in 15 Fällen (≈79% aller untersuchten Harnblasen) entzündliche Infiltrate in Form von nodulären Ansammlungen von Lympho-, in einem Fall auch Histiozyten sichtbar (Abb. 8). Das entzündliche Infiltrat hatte in allen untersuchten Organen dasselbe, uniforme Erscheinungsbild. In keinem der Fälle war eine Destruktion des Organs festzustellen.
Abb. 8: Harnbläsen von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 2 x 0,925 (A,B,D,E,F) bzw. 2 x 1,85 (C) MBq Bi-213-anti-EGFR-mAk. 1: Urothel, 2: Lamina propria, 3: Gefäß, 4: Tunica muscularis. Pfeile: Noduläre Infiltrate von Lymphozyten (A,B,C,D,E), teilweise auch Histiozyten (F) in der Lamina propria bzw. Tunica muscularis.

Mit n=11 (≈58% aller untersuchten Organe) wurden die Entzündung in den meisten Fällen als geringgradig klassifiziert, lediglich in n=4 (≈21% aller untersuchten Organe) lag eine ausgeprägtere Entzündung vor, die aber immer noch als mittelgradig klassifiziert wurde. Die Abb. 9 und 10
zeigen Übersichtsaufnahme zweier repräsentativer Organe und sollen einen Eindruck der quantitativen Ausprägung der jeweiligen Entzündungsgrade vermitteln. Abb. 9 zeigt die Übersichtsaufnahme der Harnblase einer Swiss nu/nu-Maus 300 Tage nach intravesikaler Instillation von 2 x 0,925 MBq Bi-213-anti-EGFR-mAk. Innerhalb der Lamina propria finden sich vereinzelt diskrete noduläre Ansammlungen von Lymphozyten (Pfeile). Die Entzündung wurde als geringgradig klassifiziert.

4.2 Histopathologische Befunde der Nieren

Nierenkörperchen, Tubuli und Sammelrohre, ebenso wie die Gefäße und die bindegewebigen Anteilen zeigten in allen untersuchten Organen (n=35) keinerlei pathologische Veränderungen (Abb. 11, 12). Bei der histologischen Interpretation ist zu beachten, dass sich bei der Maus, wie bereits oben erwähnt, sowohl Zahl als auch Volumen der Glomeruli gering ausgeprägt sind.

Abb. 11: Detailansicht unauffälliger Glomeruli von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 0,925 (A) bzw 2 x 0,925 (B) MBq Bi-213-anti-EGFR-mAk. 1: Tubuli, 2: Glomerulum, 3: Macula densa. Pfeil: Bowman-Raum

Abb. 12: Detailansicht unauffälliger Tubuli von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 0,925 (A) bzw 2 x 0,925 (B) MBq Bi-213-anti-EGFR-mAk.

Abb. 13: Detailansicht der Nieren von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 0,925 (B), 2 x 0,925 (A, C) und 2 x 3,7 (D) MBq Bi-213-anti-EGFR-mAk. 1: Kortex, 2: Gefäß, 3: Glomerulum, Pfeil: Lymphozytäres Infiltrat mit perivaskulärer Lokalisation.
Insgesamt wurde in n=20 Organen (=57% aller untersuchten Organe) eine Entzündung beobachtet, die in n=19 (=54% aller untersuchten Organe) als geringgradig und nur in einem Fall als mittelgradig klassifiziert wurde. Abb. 14 und 15 zeigen Übersichtsaufnahmen zweier repräsentativer Nieren von Swiss nu/nu-Mäusen nach intravesikaler Instillation von 0,925 (Abb. 14) bzw. 2 x 0,925 MBq Bi-213-anti-EGFR-mAk und sollen wiederum einen Eindruck des quantitativen Ausmaßes der Entzündung vermitteln. Auf beiden Abbildungen sind innerhalb des Nierenkortex sehr diskrete noduläre Ansammlungen von Lymphozyten (Pfeile) sichtbar. In beiden Fällen wurde die Entzündung als geringgradig klassifiziert.

Die Befunde hinsichtlich des beobachteten entzündlichen Infiltrats in Blasen und Nieren der in dieser Arbeit untersuchten Tiere sind in Tabelle 3 aufgeschlüsselt nach Applikationsschema, Tumorinstillation und Kauterung der Blasenwand zusammengefasst.
Tabelle 3: Verteilung und Ausprägung der entzündlichen Infiltrate aller in dieser Arbeit untersuchten Tiere

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Aktivität (MBq)</th>
<th>Instillation von EJ28-Zellen</th>
<th>Applikationsschema</th>
<th>Kauterung</th>
<th>n</th>
<th>Entzündliches Infiltrat in der Blase</th>
<th>Entzündliches Infiltrat in der Niere</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,925</td>
<td>nein</td>
<td>-</td>
<td>ja</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,925</td>
<td>ja</td>
<td>7. Tag nach Tumorinstillation</td>
<td>ja</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>++</td>
<td>+ n.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>+</td>
<td>+ n.u.</td>
</tr>
<tr>
<td>C</td>
<td>2 x 0,925</td>
<td>nein</td>
<td>Erneute Gabe nach 7 Tagen</td>
<td>ja</td>
<td>1</td>
<td>+</td>
<td>+ n.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>D</td>
<td>2 x 0,925</td>
<td>ja</td>
<td>1. und 7. Tag nach Tumorinstillation</td>
<td>ja</td>
<td>1</td>
<td>+</td>
<td>+ n.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>2 x 1,85</td>
<td>nein</td>
<td>Erneute Gabe nach 7 Tagen</td>
<td>nein</td>
<td>1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F</td>
<td>2 x 3,70</td>
<td>nein</td>
<td>Erneute Gabe nach 7 Tagen</td>
<td>nein</td>
<td>1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

- = keine Entzündung; + = geringgradige Entzündung, ++ = mittelgradige Entzündung, n.u. = nicht untersucht
5. Diskussion

5.1 Histopathologie der Harnblase nach Bi-213-anti-EGFR-mAk-Instillation

verantwortlich zu machen, die zu einer lokalen Anreicherung des Immunkonjugates innerhalb der Blase geführt haben könnten. Aufgrund der spezifischen Bindung von Bi-213-anti-EGFR-mAk an den EGF-Rezeptor ist jedoch insgesamt eine Schädigung von gesundem Urothel nicht zu erwarten. Bei den ebenfalls in diesem einen Fall bei 2 \times 1,85 MBq beobachteten vesikulären Strukturen innerhalb des Urothels könnte es sich um Keimeinschlüsse handeln, möglicherweise aber auch um Veränderungen, die beim murinen Urothel als Reaktion auf verschiedene Noxen auftreten können und als Vakuolenbildung mit eosinophilen Einschlüssen beschrieben wurden (Frith, 1979) (Abb. 16).

an eine Verursachung durch Bi-213-anti-EGFR-mAk zu denken. Als ein möglicher Mechanismus wäre hier beispielsweise an eine subzelluläre Schädigung der physiologisch wichtigen Urothelbarriere mit konsekutiver Zystitis zu denken.

Gegen eine infektiöse Ursache spricht allerdings, dass an keiner der untersuchten Harnblasen, wie auch der Nieren, eine Destruktion des Organs festgestellt werden konnte, die bei einer chronischen Infektion, insbesondere bei bestehender Immundefizienz, zu erwarten wäre.

5.2 Histopathologie der Niere nach Bi-213-anti-EGFR-mAk-Instillation

Zu einer Schädigung der Niere bei der intravesikalen Therapie mit Bi-213-anti-EGFR-mAk könnte es zum einen durch einen applikationsbedingten Aufstieg des Konjugats über den Ureter, zum anderen durch einen Übertritt des Radioimmunkonjugats in das Blut über die bei der Kauterung bzw. TUR geschaffene Läsion kommen. Während bei einem Aufstieg von Bi-213-anti-EGFR-mAk über die Ureter intakte Radioimmunkonjugate die Niere erreichen und so potentiell ubiquitäre Läsionen erzeugen können, spielt bei sich im Kreislauf befindenden Konjugaten v.a. vom Immunkomplex abgelöstes Bismuth (Pfost, 2009, Beck et al., 2007) eine Rolle, da das Molekulargewicht von anti-EGFR mit 180 kDa deutlich über der Filtrationsgrenze von ≈75 kDa liegt. In diesem Fall wäre vor allem eine Schädigung der Nierenrinde zu erwarten, da freies Bismuth sich hier bevorzugt ablagert (Russ et al., 1975, Zidenberg-Cherr et al., 1987). Allerdings haben Untersuchungen zur Biodistribution von intravesikal instilliertem Bi-213-anti-EGFR-mAk gezeigt, dass 90 min nach intravesikaler Applikation von 1,85 MBq Bi-213-anti-EGFR-mAk sowohl bei intakter (1,5% inj. Akt./g) als auch bei gekauterter (2,7% inj. Akt./g) Blasenwand nur eine sehr moderate Anreicherung in der Niere zu erwarten ist (Pfost et al., 2009, Pfost, 2009).

Im Gegensatz zur Harnblase können im Fall der Niere spezifische Studien zu Nebenwirkungen der i.v.- bzw. i.p.-applizierten Radioimmuntherapie mit Alpha-Strahlern einschließlich Bi-213 vergleichend herangezogen werden. Die in einem Zeitraum von 20 bis 40 Wochen p.e. beobachteten Veränderungen umfassen Hyalinisierung und Sklerose der Glomeruli (Jaggi et al., 2005, Beck et al., 2007), Dilatation des Bowman-Raums (Jaggi et al., 2005), Atrophie, Lyse bzw. Nekrose des Tubulusepithels (Jaggi et al., 2005, Beck et al., 2007, Song et al., 2007), intraluminale Zylinder (Jaggi et al., 2005, Song et al., 2007), Tubulusepithelzellen mit prominenten Kernen, Pyknose, Karyorrhexis, Schwellung, Vakuolen, verkümmerte Basalmembran und Kollaps (Jaggi et al., 2005), Dilatation der Tubuli (Song et al., 2007), Narbenbildung (Jaggi et al., 2005, Beck et al., 2007) und Fibrose (Jaggi et al., 2005). Keine dieser Veränderungen - auch nicht bei Aktivitäten oberhalb des therapeutischen Bereichs - wurde in dieser Studie beobachtet. Es konnte bereits gezeigt werden, dass die Retention des Radioimmunkonjugats in der intakten Blase exzellent ist und es

5.3 Schlussfolgerungen

Bei der intravesikalalen Therapie mit Bi-213-anti-EGFR-mAk sollte gesundes Urothel aufgrund der spezifischen Bindung dieses Radioimmunkonjugats an den EGF-Rezeptor nicht oder nur sehr gering beeinträchtigt werden. In dieser Studie wurden Auffälligkeiten des Urothels nur in einem Fall bei einer applizierten Aktivität von 2 x 1,85 MBq beobachtet. Diese Veränderungen sind gut durch die Wirkung eines Alpha-Emitters zu erklären, können jedoch unter praktischen Gesichtspunkten vernachlässigt werden, da bereits (fraktionierte) Gaben von 0,925 MBq Bi-213-anti-EGFR-mAk sehr effizient sind und höhere Aktivitäten keinen weiteren therapeutischen Vorteil mit sich bringen.

Als einziger weiterer Befund wurden sowohl in Harnblasen als auch in Nieren (noduläre) lymphozytäre Infiltrate beobachtet. Das Auftreten entzündlicher Infiltrate nach Strahlenexposition ist sowohl für die Blase, als auch für die Niere beschrieben, jedoch wurden bisher nur im Fall der Niere die Wirkungen von Alpha-Emittern untersucht. Für die Harnblase wurden bei externer Bestrahlung mit anderen Strahlenqualitäten granulozytäre (Vale et al., 1993,

6. Zusammenfassung

In der überwiegenden Zahl der Fälle wird das Urothelkarzinom in einem nicht-muskelinvasiven Stadium diagnostiziert. Die Standardbehandlung besteht in diesem Stadium aus transurethraler Resektion (TUR) und, um verbliebene maligne Zellen abzutöten, nachfolgender intravesikaler Chemotherapie. Trotzdem kommt es innerhalb eines medianen Follow-up von 26 Monaten in ca. 45% zu einem Rezidiv. Die intravesikale Radioimmuntherapie (RIT) mit Bi-213-anti-EGFR-mAk ist ein neuer Ansatz, um diese hohe Rezidivrate nach TUR zu senken. Es wurde bereits gezeigt, dass die intravesikale Therapie mit Bi-213-anti-EGFR-mAk bei Swiss nu/nu-Mäusen das Überleben nach Instillation von EJ28-Urothelkarzinomzellen signifikant verlängert und dem Standardchemotherapeutikum Mitomycin C überlegen ist. EGFR wird in bis zu 86% aller Urothelkarzinome überexprimiert, wodurch eine weitgehend selektive Bindung von Bi-213-anti-EGFR-mAk an die Karzinomzellen bei gleichzeitiger Schonung des gesunden Urothels gewährleistet wird. Der Alpha-Emitter Bi-213 eradiziert aufgrund der hohen zytotoxischen Potenz bei einer geringen Reichweite von 50-100 µm gezielt Karzinomzellen.

Untersucht wurden Tiere mit bzw. ohne vorherige Instillation von EJ28-Urothelkarzinomzellen, die wie folgt mit Bi-213-anti-EGFR-mAk behandelt wurden: Einmalig mit 0,925 MBq (n=5; 3 Tiere mit / 2 ohne EJ28 Zellen), zweimalig mit 0,925 MBq (n=10; je 5 Tiere mit/ohne EJ28 Zellen), zweimalig mit 1,85 MBq (n=2; Tiere ohne EJ28 Zellen) oder zweimalig mit 3,7 MBq (n=2; Tiere ohne EJ28). Die Organe wurden 300 Tage nach Instillation von Bi-213-anti-EGFR-mAk entnommen, für die Histologie aufgearbeitet, mit Hämatoxylin und Eosin gefärbt und lichtmikroskopisch analysiert. Bei applizierten Aktivitäten von 0,925 bzw. 2 x 0,925 MBq zeigten sich keine Veränderungen des Urothels. Lediglich bei 2 x 1,85 MBq wurden in einem Fall fokale Veränderungen in Form von atypischen Zellen, vergrößerten Kernen, Hyperchromasie und irregulären Kernmembranen

7. Danksagung

Mein besonderer Dank gilt Frau Prof. Dr. Dr. Reingard Senekowitsch-Schmidtke für die Überlassung des Themas und die sehr freundliche und liebenswürdige Betreuung. Außerdem danke ich meiner gesamten Arbeitsgruppe für die nette Aufnahme, die außergewöhnlich gute Stimmung und insbesondere Frau Annette Frank, Frau Christina Lesti und Herr Dr. Christof Seidl für die immer sehr freundliche und geduldige Hilfe. Herrn PD Dr. Gregor Weirich danke ich für die Unterstützung bei der Befundung der Präparate. Den Mitarbeitern des Instituts für Pathologie des Klinikums Rechts der Isar danke ich für die Möglichkeit, an ihren Geräten arbeiten zu können. Frau Dr. Sarah Longhi vom Deutschen Herzzentrum München danke ich für die vielen Ratschläge und die sehr nette Unterstützung beim Mikroskopieren.
8. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff/Englischer Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>% inj. Akt./g</td>
<td>Prozent der injizierten Aktivität pro Gramm Gewebe</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>µsec</td>
<td>Mikrosekunden</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacillus Calmette-Guérin</td>
</tr>
<tr>
<td>Bi-213</td>
<td>Bismuth-213</td>
</tr>
<tr>
<td>d</td>
<td>Tage</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor-Rezeptor</td>
</tr>
<tr>
<td>h</td>
<td>Stunden</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>keV</td>
<td>Kilo-Elektronenvolt</td>
</tr>
<tr>
<td>LET</td>
<td>Linearer Energietransfer</td>
</tr>
<tr>
<td>mAk</td>
<td>Monoklonaler Antikörper</td>
</tr>
<tr>
<td>MBq</td>
<td>Megabecquerel</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>p.e.</td>
<td>post expositionem</td>
</tr>
<tr>
<td>s</td>
<td>Sekunden</td>
</tr>
<tr>
<td>TUR</td>
<td>Transurethrale Resektion</td>
</tr>
<tr>
<td>Z.n.</td>
<td>Zustand nach</td>
</tr>
</tbody>
</table>
9. Abbildungsverzeichnis

Abb. 1: Schematische Darstellung der Bindung des Radioimmunkonjugats Bi-213-anti-EGFR-mAk an den EGF-Rezeptor auf einer Urothelkarzinomzelle.

Abb. 3: Schematische Darstellung eines durch Alpha-Strahlung induzierten DNS-Doppelbruch im Vergleich mit Gamma-Strahlung.

Abb. 5: Detailansicht von unauffälligem Urothel von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 2 x 0,925 (A,B), 2 x 1,85 (C) und 2 x 3,7 (D) MBq Bi-213-anti-EGFR-mAk. 1: Urothel, 2: Lamina propria, 3: Tunica muscularis

Abb. 7: Unauffällige Detailansichten der Harnblasenwand von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 2 x 0,925 (A,B,D) bzw. 0,925 (C) MBq Bi-213-anti-EGFR-mAk. 1: Urothel, 2: Lamina muscularis, 3: Fettgewebe, 4: Gefäß

Abb. 8: Harnblasen von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 2 x 0,925 (A,B,D,E,F) bzw. 2 x 1,85 (C) MBq Bi-213-anti-EGFR-mAk. 1: Urothel, 2: Lamina propria, 3: Gefäß, 4: Tunica muscularis. Pfeile: Noduläre Infiltrate von Lymphozyten (A,B,C,D,E), teilweise auch Histiozyten (F) in der Lamina propria bzw. Tunica muscularis.

Abb. 11: Detailansicht unauffälliger Glomeruli von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 0,925 (A) bzw 2 x 0,925 (B) MBq Bi-213-anti-EGFR-mAk. 1: Tubuli, 2: Glomerulum, 3: Macula densa. Pfeil: Bowman-Raum

Abb. 12: Detailansicht unauffälliger Tubuli von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 0,925 (A) bzw 2 x 0,925 (B) MBq Bi-213-anti-EGFR-mAk

Abb. 13: Detailansicht der Nieren von Swiss nu/nu-Mäusen 300 Tage nach intravesikaler Instillation von 0,925 (B), 2 x 0,925 (A, C) und 2 x 3,7 (D) MBq Bi-213-anti-EGFR-mAk. 1: Kortex, 2: Gefäß, 3: Glomerulum, Pfeil: Lymphozytäres Infiltrat mit perivaskulärer Lokalisation.

Abb. 17: Murine Blasen mit nodulären lymphozytären Infiltraten (Pfeile) als Normalbefund. Abb. übernommen aus Hedrich and Bullock, 2004 (A) bzw. Maronpot et al. 1999 (B).
10. Tabellenverzeichnis

Tabelle 1: Übersicht der in dieser Arbeit besprochenen histologischen Studien zur Wirkung von Alpha-Emitter-Immunkonjugaten auf die Niere

Tabelle 2: Übersicht über applizierte Aktivität, Tumorinstillation und Kauterung der Blase in dieser Arbeit untersuchten Swiss nu/nu-Mäuse (n=19)

Tabelle 3: Verteilung und Ausprägung der entzündlichen Infiltrate aller in dieser Arbeit untersuchten Tiere
11. Literaturverzeichnis

GOWING, N. 1960. III. Pathological changes in the bladder following irradiation *Br J Radiol*, 33, 484-487.

12. Lebenslauf

Felix Müller

Praxis

Seit 04/2013 Assistenzarzt, Universitäre Psychiatrische Kliniken (UPK), Basel, Schweiz
2011-2012 Praktisches Jahr in Nephrologie, Toxikologie, Kardiologie, Gefäßchirurgie, Psychiatrie
2009-2012 Doktorand an der Nuklearmedizinischen Klinik und Poliklinik des Klinikums Rechts der Isar der Technischen Universität München
2009-2011 Mitarbeiter Universites allied for essential medicines
2006-2011 Studentische Beschäftigung auf einer Intensivstation des Deutschen Herzzentrums München
2000-2001 Zivildienst in einer Werkstätte für geistig und körperlich behinderte Menschen in Schwäbisch Hall

Ausbildung

11/2012 Zweites Staatsexamen in Humanmedizin
2008-2012 Klinisches Studium der Humanmedizin an der Technischen Universität München
2010-2011 Akademie für Psychoanalyse und Psychotherapie München
09/2008 Erstes Staatsexamen in Humanmedizin
2006-2008 Vorklinisches Studium der Humanmedizin an der Ludwig-Maximilians-Universität München
07/2005 Bakkalaureat in Philosophie
2002-2005 Studium der Philosophie, Logik und Wissenschaftstheorie an der Ludwig-Maximilians-Universität und der Hochschule für Philosophie München
06/2000 Allgemeine Hochschulreife am Wirtschaftsgymnasium Schwäbisch Hall