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Abstract

We suggest three superpositions of COGARCH (supCOGARCH) volatility processes

driven by Lévy processes or Lévy bases. We investigate second-order properties, jump be-

haviour, and prove that they exhibit Pareto-like tails. Corresponding price processes are

defined and studied. We find that the supCOGARCH models allow for more flexible autoco-

variance structures than the COGARCH. Moreover, in contrast to most financial volatility

models, the supCOGARCH processes do not exhibit a deterministic relationship between

price and volatility jumps. Furthermore, in one supCOGARCH model not all volatility jumps

entail a price jump, while in another supCOGARCH model not all price jumps necessarily

lead to volatility jumps.
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1 Introduction

GARCH models have been used throughout the last decades to model returns sampled at regular

intervals on stocks, currencies and other assets. They capture many of the stylized features of

such data; e.g. heavy tails, volatility clustering and dependence without correlation. Also because

of their interesting probabilistic properties as solutions to stochastic recurrence equations, they

have attracted research by probabilists and statisticians; e.g. [16]. Various attempts have been

made to capture the stylized features of financial time series using continuous-time models.

The interest in continuous-time models originates in the current wide-spread availability of

irregularly spaced and high-frequency data. There was a long debate, whether price and volatility

fluctuations are caused by jumps or not. This question was answered convincingly in previous

years by Jacod and collaborators, who developed sophisticated statistical tools to extract jumps

of price and volatility out of high-frequency data (cf. [21, 19, 1] and references therein).
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A prominent continuous-time model is the stochastic volatility model of Barndorff-Nielsen

and Shephard [4], in which the volatility process V and the martingale part of the log asset price

G satisfy the equations

dVt = −λVt dt+ dLλt, (1.1)

dGt =
√
Vt dWt + ρ dL̃λt,

where λ > 0, ρ ≤ 0, L = (Lt)t≥0 is a non-decreasing Lévy process with compensated version L̃

and W = (Wt)t≥0 is a standard Brownian motion independent of L. The volatility process V is

taken to be the stationary solution of (1.1), in other words, a stationary Lévy-driven Ornstein-

Uhlenbeck (OU) process. In this model, price jumps are modelled by (scaled) upwards jumps in

the volatility.

It was noticed early on that the exponential autocovariance function of the OU process

may be too restrictive. Two suggestions have been made to allow for more flexibility in the

autocovariance function: Barndorff-Nielsen [2] suggested to replace V by a superposition of such

processes (called supOU process), which yields more flexible monotone autocovariance functions.

It is defined as

Vt =

∫
(−∞,t]

∫
(0,∞)

e−λ(t−s) Λ(ds,dλ), t ∈ R, (1.2)

where Λ is an independently scattered infinitely divisible random measure, also called Lévy basis.

Superpositions of CARMA processes can be defined analogously; cf. [6, 12]. As shown in e.g.

[15, Prop. 2.6], supOU models can also model long range dependence for specific superposition

measures.

On the other hand, [10, 31] suggested higher order Lévy-driven CARMA models, which

also allow for non-monotone autocovariance functions. The drawback of both model classes is

their linearity and its consequences towards the stylized features of financial data. For instance,

linear models inherit their distributions from that of the Lévy increments in a linear way. As a

consequence, only when the driving Lévy process has heavy-tailed (regularly varying) increments,

they model high level volatility clusters; cf. [14, Prop. 5]. Moreover, in contrast to empirical

findings (cf. [19]), these models allow only for negative price jumps coupled to the jumps in the

volatility.

A continuous-time GARCH (COGARCH) model has been introduced in [23] with volatility

process V and martingale part of the log asset price given by

dVt = (β − ηVt) dt+ Vt−ϕd[L,L]t, (1.3)

dGt =
√
Vt− dLt,

where β, η, ϕ > 0 and L is an arbitrary mean zero Lévy process. The volatility process V is

taken to be the stationary solution of (1.3). This model satisfies all stylized features of financial

prices, exactly as the GARCH model for low frequency data. The drawback of an exponentially

decreasing covariance function has been taken care of by higher order models; cf. [11], like

generalizing from OU to CARMA.

All models mentioned above have price jumps exactly at the times when the volatility jumps,

since their prices are driven by the same Lévy process. Moreover, with the exception of the

supOU/supCARMA process, all jump sizes in volatility and price exhibit a fixed deterministic

relationship; cf. [19]. As this is not very realistic, multi-factor models are needed. In this paper

we want to contruct such a multi-factor model, based on the COGARCH.
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In contrast to the OU or CARMA models, the COGARCH model is defined as a stochas-

tic integral with stochastic integrand. But also in this framework there is a canonical way to

construct a superposition.

Starting by the fact that the ratio of volatility jumps and squared price jumps is always

equal to ϕ in the COGARCH model, we randomize this scale parameter ϕ. There are various

ways how to do this in a meaningful way, and we present three different possibilities, all leading

to multi-factor COGARCH models. Our three models have different qualitative behaviour. For

instance, the first supCOGARCH allows for jumps in the volatility, which do not necessarily

lead to jumps in the price process. On the other hand, for certain choices of the distribution of

the random parameter ϕ, the third supCOGARCH model allows for jumps in the price without

having a jump in the volatility. More properties will be reported.

An interesting feature is that some of the presented new supCOGARCH volatility processes

can be written in terms of a so-called ambit process, which has been introduced in [3] in the

context of turbulence modelling. In our context the ambit process has a stochastic integrand,

which is not independent of the integrator. This implies that we are no longer in the framework

of [27]. Moreover, since COGARCH models are heavy-tailed, having possibly not even a second

finite moment, the theory presented in [32] is also not applicable. Instead we need the concept

presented in [12], which allows to integrate stochastic processes with respect to a Lévy basis in

the generality needed for our supCOGARCH models.

Our paper is organized as follows. In Section 2, we recall the COGARCH model and give

a short summary of Lévy bases. In Section 3, we present three different superpositions of CO-

GARCH volatility processes. For each of the three models we give necessary and sufficient

conditions for strict stationarity and derive the second order structure of the stationary process.

The superpositions allow for more flexible autocorrelation structures than the COGARCH model

(Propositions 3.4, 3.12 and 3.18). However, the stationary distributions of the supCOGARCH

processes preserve the Pareto-like tails of the COGARCH process (Propositions 3.5, 3.13 and

3.19). Section 4 is devoted to the corresponding price processes and the second-order proper-

ties of their stationary increments. Again, main characteristics of the COGARCH are preserved

like the uncorrelated increments but positively correlated squared increments (Theorems 4.1,

4.2 and 4.3). Nevertheless, each of the supCOGARCH models has its specific characteristics as

highlighted in Section 5. Furthermore, for all three models there is no longer a deterministic re-

lationship between the jump sizes in volatility and price. Although in this paper we concentrate

on the probabilistic properties of our new models, statistical issues are shortly addressed here.

Finally, Section 6 contains the proofs of our results.

2 Notation and Preliminaries

By the Lévy-Khintchine formula (e.g. [28, Thm. 8.1]) the characteristic exponent of a real-valued

Lévy process X = (Xt)t≥0 is given by

ψX(u) := logE
[
eiuX1

]
= iγXu− 1

2
σ2Xu

2 +

∫
R
(eiuy − 1− iuy1{|y|≤1}) νX(dy), u ∈ R,

where (γX , σ
2
X , νX) is the characteristic triplet of X with Lévy measure νX satisfying νX({0}) =

0 and
∫
R 1 ∧ |y|2 νX(dy) < ∞. If additionally

∫
|y|≤1 |y| νX(dy) < ∞, we may also write the
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characteristic exponent in the form

ψX(u) = iγ0Xu− 1

2
σ2Xu

2 +

∫
R
(eiuy − 1) νX(dy), u ∈ R,

and call γ0X the drift of X. This is in particular the case for subordinators, i.e. Lévy processes

with increasing sample paths. We also recall that the quadratic variation process of the Lévy

process X is given by

[X,X]t := σ2Xt+ [X,X]dt := σ2Xt+
∑

0<s≤t

(∆Xs)
2, t ≥ 0,

where [X,X]d is called the pure-jump part of [X,X].

Every Lévy process (Xt)t≥0 can be extended to a two-sided Lévy process (Xt)t∈R by setting

Xt = −X ′
−t−, t < 0, for some i.i.d. copy X ′ of X. We say that (Xt)t∈R has characteristic triplet

(γX , σ
2
X , νX) if (Xt)t≥0 has characteristic triplet (γX , σ

2
X , νX).

Throughout we use the notation R+ = (0,∞), R− = (−∞, 0) and N0 = N ∪ {0}.

2.1 The COGARCH model

Let (Lt)t≥0 be a Lévy process with characteristic triplet (γL, σ
2
L, νL) and define

St := [L,L]dt =
∑

0<s≤t

(∆Ls)
2, t ≥ 0. (2.1)

Then (St)t≥0 is a subordinator without drift and its Lévy measure νS is the image measure of

νL under the transformation y 7→ y2. For η > 0 and ϕ ≥ 0 define another Lévy process by

Xϕ
t = ηt−

∑
0<s≤t

log(1 + ϕ∆Ss), t ≥ 0, (2.2)

which is completely determined by S (and hence by L). Then Xϕ has characteristic triplet

(η, 0, νXϕ), where νXϕ is the image measure of νS under the mapping y 7→ − log(1+ϕy), and is

therefore a spectrally negative Lévy process, i.e. it only has negative jumps. For t ≥ 0 we have

E[e−uXϕ
t ] = etΨ(u,ϕ) with Ψ(u, ϕ) = −ηu+

∫
R+

((1 + ϕy)u − 1) νS(dy), (2.3)

where, whenever ϕ > 0, we have E[e−uXϕ
t ] < ∞ for u > 0 for some t > 0 or, equivalently, for

all t > 0, if and only if E[Su
1 ] < ∞ [23, Lemma 4.1]. In particular, if E[S1] < ∞ or E[S2

1 ] < ∞,

respectively, we have from [28, Ex. 25.12]

Ψ(1, ϕ) = ϕE[S1]− η and Ψ(2, ϕ) = 2ϕE[S1] + ϕ2Var[S1]− 2η. (2.4)

Recall from [23] that the COGARCH (volatility) process driven by the Lévy process L (or

the subordinator S) with parameter ϕ is given by

V ϕ
t = e−Xϕ

t

(
V ϕ
0 + β

∫
(0,t]

eX
ϕ
s ds

)
, t ≥ 0, (2.5)

where β > 0 is a constant and V ϕ
0 is a nonnegative random variable, independent of (St)t≥0.
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Moreover, the COGARCH volatility process V ϕ is a special case of a generalized Ornstein-

Uhlenbeck process (cf. [8, 25]) and is the solution of the SDE

dV ϕ
t = (β − ηV ϕ

t ) dt+ V ϕ
t−ϕ dSt = V ϕ

t−(ϕdSt − η dt) + β dt, t ≥ 0. (2.6)

It admits the integral representation

V ϕ
t = V ϕ

0 + βt− η

∫
(0,t]

V ϕ
s ds+

∑
0<s≤t

V ϕ
s−ϕ∆Ss, t ≥ 0. (2.7)

The corresponding price process or integrated COGARCH process is then defined as

Gt =

∫ t

0

√
V ϕ
s− dLs, t ≥ 0. (2.8)

2.2 Stationary COGARCH processes

By [23, Thm. 3.1], the process defined in (2.5) or equivalently in (2.7) has a strictly stationary

distribution if and only if∫
R+

log(1 + ϕy) νS(dy) =

∫
R
log(1 + ϕy2) νL(dy) < η. (2.9)

In this case, the stationary distribution of the COGARCH process is given by the distribution

of V ϕ
∞ := β

∫
R+

e−Xϕ
s ds. Note that for ϕ = 0, the stationary COGARCH reduces to V 0

t = β/η

for all t ≥ 0.

In the sequel we denote by the set ΦL all ϕ ≥ 0 where (2.9) is satisfied. By monotone

convergence, the left-hand side of (2.9) is continuous in ϕ and converges to +∞ as ϕ → ∞,

which means that ϕmax := supΦL is finite and hence ΦL = [0, ϕmax).

Let us recall the moment structure of V ϕ in the stationary case. It follows by direct compu-

tation from [7, Thm. 3.1] that, if κ > 0 is a constant, then

E[Smax{κ,1}
1 ] <∞ and logE

[
e−κXϕ

1

]
= Ψ(κ, ϕ) < 0 (2.10)

imply E[(V ϕ
0 )κ] <∞. If (2.10) holds for κ = 1 or κ = 2, respectively, for every t ≥ 0, h ≥ 0 the

first two moments of the stationary process V ϕ are given by ([23, Cor. 4.1])

E[V ϕ
t ] = − β

Ψ(1, ϕ)
=

β

η − ϕE[S1]
, (2.11)

E[(V ϕ
t )2] = β2

2

Ψ(1, ϕ)Ψ(2, ϕ)
and (2.12)

Cov[V ϕ
t , V

ϕ
t+h] = ehΨ(1,ϕ)Var[V ϕ

0 ] = ehΨ(1,ϕ)β2
(

2

Ψ(1, ϕ)Ψ(2, ϕ)
− 1

Ψ(1, ϕ)2

)
(2.13)

= eh (ϕE[S1]−η) β2ϕ2Var[S1]

(ϕE[S1]− η)2(2η − 2ϕE[S1]− ϕ2Var[S1])
.

From (2.10) we have the clear picture that, although a stationary V ϕ exists for all ϕ ∈ ΦL =

[0, ϕmax), moments only exist on some subinterval, which shrinks with the increasing order of

the moment. Moreover, it is known that no COGARCH process has moments of all orders [23,

Prop. 4.3]. For later reference we set

Φ
(κ)
L := [0, ϕ(κ)

max) with ϕ(κ)
max = sup{ϕ : E[(V ϕ

0 )κ] <∞}. (2.14)
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We have 0 < ϕ
(κ2)
max ≤ ϕ

(κ1)
max < ϕmax <∞ whenever 0 < κ1 ≤ κ2 <∞, i.e. Φ

(κ2)
L ⊂ Φ

(κ1)
L ⊂ ΦL.

In [24] the tail behaviour of the COGARCH process is studied. In particular, it is shown

that under rather weak assumptions the distribution of V ϕ
0 has Pareto-like tails [24, Thm. 6].

Regarding the price process Gϕ in the stationary case, it is known from [23, Prop. 5.1]

that Gϕ has stationary increments that are uncorrelated on disjoint intervals while the squared

increments are, under some technical assumptions, positively correlated, an effect which is typical

for financial time series.

For later reference we extend the stationary COGARCH volatility process (2.5) to a two-

sided process in the following way. For a two-sided Lévy process (Lt)t∈R we obtain a two-sided

subordinator (St)t∈R by setting

St :=
∑

0<s≤t

(∆Ls)
2, t ≥ 0 and St := −

∑
t<s≤0

(∆Ls)
2, t ≤ 0. (2.15)

Now we automatically obtain for every ϕ another two-sided Lévy process (Xϕ
t )t∈R given by

Xϕ
t = ηt−

∑
0<s≤t

log(1 + ϕ∆Ss), t ≥ 0, Xϕ
t = ηt+

∑
t<s≤0

log(1 + ϕ∆Ss), t < 0. (2.16)

The two-sided COGARCH process (V ϕ
t )t∈R is then given by

V ϕ
t := β

∫
(−∞,t]

e−(Xϕ
t −Xϕ

s ) ds, t ∈ R, (2.17)

and it is well-defined for every ϕ ∈ ΦL. Obviously, the restriction of this process to t ≥ 0

equals the process given in (2.5) with starting random variable V ϕ
0 := β

∫
(−∞,0] e

Xϕ
s ds. Hence

the two-sided COGARCH is always stationary with the same finite-dimensional distributions as

the one-sided stationary COGARCH.

2.3 Lévy bases

Let (Ω,F ,F = (Ft)t∈R,P) be a filtered probability space satisfying the usual assumptions of

completeness and right-continuity. Denote the space of all P-a.s. finite random variables by L0,

the optional (resp. predictable) σ-field by O (resp. P) and set P̃ := P ⊗ B(Rd), where B(Rd)

is the Borel-σ-field on Rd. Now let (Ek)k∈N be a sequence of measurable subsets increasing to

Rd and define P̃b as the collection of all P̃-measurable subsets of Ω × (−k, k] × Ek for k ∈ N.
Similarly, set Bb :=

⋃∞
k=1 B((−k, k]× Ek).

In this set-up, we use the term Lévy basis as follows:

Definition 2.1. A Lévy basis on R× Rd is a mapping Λ: P̃b → L0 satisfying:

(a) Λ(∅) = 0 a.s.

(b) If (An)n∈N are pairwise disjoint sets in P̃b whose union again lies in P̃b, then

Λ
( ∞⋃

n=1

An

)
=

∞∑
n=1

Λ(An) a.s.

(c) If (Bn)n∈N are pairwise disjoint sets in Bb, then (Λ(Ω×Bn))n∈N is a sequence of independent

random variables with each of them having an infinitely divisible distribution.
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(d) If A ∈ P̃b is a subset of Ω× (−∞, t]× Rd for some t ∈ R, then Λ(A) is Ft-measurable.

(e) If A ∈ P̃b, t ∈ R and F ∈ Ft, then Λ
(
A∩ (F × (t,∞)×Rd)

)
= 1FΛ

(
A∩ (Ω× (t,∞)×Rd)

)
.

(f) For all t ∈ R and measurable U ⊂ Ek for some k ∈ N, we have Λ(Ω× {t} × U) = 0 a.s.

In the following, we often write Λ(B) = Λ(Ω×B) for a set B ∈ Bb. �

A natural choice for F is certainly the augmented natural filtration G = (Gt)t∈R of the Lévy

basis Λ, which means that for t ∈ R, Gt is the completion of the σ-field generated by the collection

of all Λ(B) with B ∈ Bb, B ⊆ (−∞, t]× Rd.

The first three points of Definition 2.1 are similar to the notion of infinitely divisible inde-

pendently scattered random measures in [27]. Further we have added condition (f) because this

ensures that Λ induces a jump measure µΛ by

µΛ(ω, dt,dx,dy) :=
∑
s∈R

∑
ξ∈Rd

1{Λ({s}×{ξ})(ω)6=0}δ(s,ξ,Λ({s}×{ξ})(ω))(dt,dx,dy), ω ∈ Ω, (2.18)

where δ stands for the Dirac measure. We will follow the usual convention of suppressing ω in

the sequel. Thanks to (d) and (e), µΛ is an optional P̃-σ-finite random measure in the sense of

[20, Theorem II.1.8]. Therefore, the predictable compensator Π of µΛ is well-defined.

In this paper, we will only consider Lévy bases Λ, which are of the form

Λ(ds,dx) =

∫
R
y µΛ(ds, dx,dy). (2.19)

In addition, the predictable compensator of µΛ in the augmented natural filtration G will always

be given by Π(ds,dx,dy) = ds π(dx) ν(ds), where π is some probability measure on Rd and ν

the Lévy measure of a subordinator. In this particular case, if we write

W (s, x, y) ∗ µΛt :=W ∗ µΛt :=


∫
(0,t]×Rd×R

W (s, x, y)µΛ(ds,dx,dy), if t ≥ 0,∫
(t,0]×Rd×R

W (s, x, y)µΛ(ds,dx,dy), if t < 0,

for some O ⊗ B(Rd) ⊗ B(R)-measurable function W which is integrable w.r.t. µΛ (ω-wise as a

Lebesgue integral), then we have

E[W ∗ µΛt ] = E[W ∗Πt] =

∫
(0,t]×Rd×R

E[W (s, x, y)] Π(ds, dx,dy), t ≥ 0, (2.20)

for all integrable functionsW (and similarly for t < 0), see [20, Theorem II.1.8]. Moreover, when

taking stochastic integrals with respect to Λ, these can be expressed in terms of µΛ:∫
(0,t]×Rd

H(s, x) Λ(ds,dx) =

∫
(0,t]×Rd×R

H(s, x)y µΛ(ds, dx,dy), t ≥ 0,

for all H which are integrable w.r.t. Λ on (0, t] (similarly for t < 0); see [12] for integrability

conditions and further details on Lévy bases.

For later reference, we also introduce the pure-jump part of the quadratic variation measure

of Λ defined as

[Λ,Λ]d(A) :=

∫
R×Rd×R

1A(t, x)y
2 µΛ(dt,dx,dy), A ∈ P̃b. (2.21)
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3 Superposition of COGARCH (supCOGARCH) processes

In the following three subsections we propose different approaches to construct a superposition of

COGARCH processes. As seen in Eq. (2.6), the parameters β and η only influence the continuous

part of the COGARCH process, whereas ϕ scales its jump sizes. Since our goal is to find a model

which shares the basic features of the COGARCH model but has a more flexible jump structure,

we let β and η be fixed in the following three approaches and only allow the parameter ϕ to

vary.

3.1 The supCOGARCH 1 volatility process

The obvious idea of defining a supCOGARCH process as a weighted integral of independent

COGARCH processes with different parameters ϕ yields to consider

V̄
(1)
t :=

∫
[0,∞)

V ϕ
t π(dϕ), t ≥ 0, (3.1)

for some probability measure π on [0,∞), where each COGARCH process V ϕ is driven by

Sϕ = [Lϕ, Lϕ]d and (Lϕ)ϕ∈[0,∞) are i.i.d. copies of a canonical Lévy process L which, together

with S = [L,L]d, we only use for notational convenience. As a consequence, (V ϕ)ϕ∈[0,∞) is a

family of independent COGARCH processes such that the integral in (3.1) is only well-defined

if π has countable support. This leads to the supCOGARCH 1 volatility process

V̄
(1)
t =

∫
[0,∞)

V ϕ
t π(dϕ) =

∞∑
i=1

piV
ϕi
t , t ≥ 0, (3.2)

where π =
∑∞

i=1 piδϕi for nonnegative weights (pi)i∈N with
∑∞

i=1 pi = 1.

To avoid degenerate cases we will assume throughout that

V̄
(1)
0 =

∞∑
i=1

piV
ϕi
0 <∞ a.s. (3.3)

Note that this does not automatically imply finiteness of the supCOGARCH process at all times

unless we are in the stationary case (see below).

Remark 3.1. The supCOGARCH 1 process can also be written in terms of a Lévy basis. First,

define a Lévy basis on R+ × [0,∞) by

ΛL((0, t]× {ϕi}) :=
√
piL

ϕi
t , t ≥ 0, i ∈ N,

and ΛL(R× ([0,∞) \
⋃∞

i=1{ϕi})) := 0. Now with ΛS = [ΛL,ΛL]d being the pure-jump quadratic

variation measure of ΛL (in particular, ΛS((0, t] × {ϕi}) = piS
ϕi
t ) and inserting (2.7) in (3.2),

we see that

V̄
(1)
t =

∞∑
i=1

piV
ϕi
0 + βt− η

∞∑
i=1

pi

∫
(0,t]

V ϕi
s ds+

∞∑
i=1

∫
(0,t]

piϕiV
ϕi
s− dSϕi

s (3.4)

= V̄
(1)
0 + βt− η

∫
(0,t]

V̄ (1)
s ds+

∫
(0,t]

∫
[0,∞)

ϕV ϕ
s− ΛS(ds, dϕ), t ≥ 0.

Note that for each i ∈ N, V ϕi is driven by Sϕi .
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It follows directly from (3.4) that the jumps of the supCOGARCH 1 process are given by

∆V̄
(1)
t =

∞∑
i=1

pi∆V
ϕi
t =

∞∑
i=1

piV
ϕi
t−ϕi∆S

ϕi
t =

∫
[0,∞)

ϕV ϕ
t− ΛS({t} × dϕ), t ≥ 0. (3.5)

Since the independent subordinators a.s. jump at different times, a.s. only one summand in (3.5)

is nonzero at each jump time.

The following example for a probability measure π with two-point support will be carried

through the three different supCOGARCH processes in this section to clearify their definitions.

Example 3.2. Let π = p1δϕ1 + p2δϕ2 with p1 + p2 = 1 and ϕ1, ϕ2 ∈ R+. Then the supCO-

GARCH 1 process is the weighted sum of two independent COGARCH processes. More precisely,

we have V̄
(1)
t = p1V

ϕ1
t +p2V

ϕ2
t for t ≥ 0, where V ϕ1 and V ϕ2 are driven by independent copies of

the canonical Lévy process L. From Figure 1, we clearly see that the supCOGARCH 1 process

inherits both the jumps of V ϕ1 and V ϕ2 , scaled with p1 or p2, respectively.

0 5 10 15 20 25

2
4

6
8

10
12

0.75Vϕ1

0 5 10 15 20 25

0
5

10
15

0.25Vϕ2

0 5 10 15 20 25

5
10

15

supCOGARCH V(1)

Figure 1: Sample paths of two independent COGARCH processes with different values for ϕ, scaled with the corresponding

pi, and the resulting supCOGARCH 1 process. The driving Lévy processes are independent compound Poisson processes

with rate 1 and standard normal jumps. The parameters are: β = 1, η = 1, ϕ1 = 0.5, ϕ2 = 0.95 and π = 0.75δϕ1 +0.25δϕ2,

starting value was the respective mean.

Stationarity and second-order properties of the supCOGARCH 1 process are given in the

following three results. Proofs are postponed to Section 6.1.

Theorem 3.3. Let π =
∑∞

i=1 piδϕi be a probability measure on [0,∞), {Lϕi : i ∈ N} a family of

i.i.d. Lévy processes, {Sϕi : i ∈ N} the corresponding family of subordinators and {V ϕi : i ∈ N}
the corresponding family of COGARCH processes. Assuming that (3.3) holds, a finite random

variable V̄0
(1)

can be chosen such that V̄ (1) is strictly stationary if and only if

π(ΦL) = 1. (3.6)

In the case that a stationary distribution exists, it is uniquely determined by the law of

V̄ (1)
∞ :=

∫
ΦL

V ϕ
∞ π(dϕ) = β

∫
ΦL

∫
R+

e−Xϕ
t dt π(dϕ) = β

∞∑
i=1

pi

∫
R+

e−X
ϕi
t dt. (3.7)

Proposition 3.4. Assume we are in the setting of Theorem 3.3 and let V̄ (1) be a strictly

stationary solution of (3.4). Recall the notation Φ
(κ)
L from Eq. (2.14).

(a) Suppose that π(Φ
(1)
L ) = 1. Then for every t ≥ 0,

E[V̄ (1)
t ] =

∫
ΦL

E[V ϕ
0 ]π(dϕ) = β

∞∑
i=1

pi
η − ϕiE[S1]

. (3.8)

9



(b) Suppose that π(Φ
(2)
L ) = 1. Then for every t ≥ 0, h ≥ 0 we have

Var[V̄
(1)
t ] =

∞∑
i=1

p2iVar[V
ϕi
0 ] and (3.9)

Cov[V̄
(1)
t , V̄

(1)
t+h] =

∞∑
i=1

p2iCov[V
ϕi
0 , V ϕi

h ], (3.10)

with Var[V ϕi
0 ] and Cov[V ϕi

0 , V ϕi

h ] as given in (2.12) and (2.13).

Note that the quantities in (3.8), (3.9) and (3.10) may be infinite.

Proposition 3.5. Assume we are in the setting of Theorem 3.3 and let V̄ (1) be a strictly

stationary solution of (3.4). Set ϕ̄ := inf{ϕ > 0: π((ϕ,∞)) = 0} ≤ ϕmax < ∞ and assume that

there exists κ̄ > 0 with

E[Sκ̄
1 log+(S1)] <∞ and Ψ(κ̄, ϕ̄) = 0. (3.11)

Then we have for κ > 0

lim
x→∞

xκP[V̄ (1)
0 > x] =

{
0 if κ < κ̄,

∞ if κ > κ̄,

while for κ = κ̄ there exists a constant C > 0 such that

lim
x→∞

xκ̄P[V̄ (1)
0 > x] =

{
C if π({ϕ̄}) = p̄ > 0,

0 if π({ϕ̄}) = 0.

Remark 3.6. Recall from [24, Thm. 5] that the stationary distribution of the COGARCH V ϕ

is self-decomposable, i.e. for all b ∈ (0, 1) there exists a random variable Yb such that V ϕ
∞

d
=

b(V ϕ
∞)′+Yb where (V

ϕ
∞)′ is an independent copy of V ϕ

∞. Due to the fact that self-decomposability

is preserved under scaling, convolution and taking limits, see e.g. [30, Prop. V.2.2], it follows

directly from (3.7) that the stationary distribution of the supCOGARCH 1 process V̄ (1) is self-

decomposable, too.

Remark 3.7. Unless we are in the degenerate case π = δϕ and the supCOGARCH is in fact

just the COGARCH with parameter ϕ, the supCOGARCH process V̄ (1) is no longer a Markov

process with respect to its augmented natural filtration, i.e. the smallest filtration such that V̄ (1)

is adapted and which satisfies the usual hypotheses of right-continuity and completeness. But it

follows directly from (3.4) that, letting F(1) = (F (1)
t )t≥0 be the augmented natural filtration of

((V ϕi
t )i∈N)t≥0, we have for every measurable function f : R+ → R and every t ≥ 0

E
[
f
(
V̄

(1)
t

)∣∣F (1)
t

]
= E

[
f
(
V̄

(1)
t

)∣∣(V ϕi
t )i∈N

]
.

Remark 3.8. In the representation V̄ (1) =
∑∞

i=1 piV
ϕi a priori the ϕi do not have to be pairwise

different and still the results of this section remain valid (apart from some obvious notational

changes).
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3.2 The supCOGARCH 2 volatility process

In order to deal with uncountable superpositions, one possibility is to drop the assumption of

independence, which led to the supCOGARCH 1. Hence we fix a Lévy process L, define the

subordinator (St)t≥0 by (2.1) and define the superposition as a weighted integral of COGARCH

processes V ϕ as given in (2.7) with different parameters ϕ, but all driven by the single Lévy

process L, i.e. we set

V̄
(2)
t :=

∫
ΦL

V ϕ
t π(dϕ), t ≥ 0,

for some probability measure π on the parameter space ΦL. To ensure that ϕ 7→ V ϕ
t is measurable

at all times and in particular at time t = 0, we will use two-sided COGARCH processes as in

(2.17) and define the supCOGARCH 2 volatility process

V̄
(2)
t :=

∫
ΦL

V ϕ
t π(dϕ) = β

∫
ΦL

∫
(−∞,t]

e−(Xϕ
t −Xϕ

s ) ds π(dϕ), t ∈ R, (3.12)

for (Xϕ
t )t∈R as given in (2.16). As a consequence, we have for t ≥ 0

V̄
(2)
t =

∫
ΦL

V ϕ
0 π(dϕ) + βt− η

∫
ΦL

∫
(0,t]

V ϕ
s ds π(dϕ) +

∫
ΦL

∫
(0,t]

ϕV ϕ
s− dSs π(dϕ)

= V̄
(2)
0 + βt− η

∫
(0,t]

V̄ (2)
s ds+

∫
(0,t]

∫
ΦL

ϕV ϕ
s− π(dϕ) dSs. (3.13)

In order to ensure that (3.12) is finite, we always assume∫
ΦL

V ϕ
0 π(dϕ) <∞. (3.14)

If π =
∑∞

i=1 piδϕi , we obviously have V̄ (2) =
∑∞

i=1 piV
ϕi with dependent summands.

Observe that in this setting all single COGARCH processes jump at the same times and

thus we have

∆V̄
(2)
t =

∫
ΦL

ϕV ϕ
t− π(dϕ)∆St, t ≥ 0. (3.15)

Example 3.9. [Ex. 3.2 continued] Let π = p1δϕ1+p2δϕ2 with p1+p2 = 1 and ϕ1, ϕ2 ∈ ΦL. Then

the supCOGARCH 2 process is the weighted sum of two COGARCH processes with parameters

ϕ1 and ϕ2, i.e. V̄
(2)
t = p1V

ϕ1
t + p2V

ϕ2
t . In contrast to the supCOGARCH 1 process in Example

3.2, V ϕ1 and V ϕ2 are driven by the same subordinator, say S, of the form (2.1). In Figure 2 we

illustrate the typical relationship between the original COGARCH processes and the resulting

supCOGARCH 2 process. We observe that V ϕ1 , V ϕ2 and V̄ (2) all jump at the same times,

with the jump sizes of the supCOGARCH being the weighted average jump sizes of the two

COGARCH processes.

In the following we present stationarity and second-order properties of the supCOGARCH

process V̄ (2). Proofs are given in Section 6.2.

Theorem 3.10. Assume that (3.14) holds. Then (V̄
(2)
t )t∈R as defined in (3.12) is strictly sta-

tionary.

Before we can calculate the moments of the stationary supCOGARCH process V̄ (2) in Propo-

sition 3.12 we need to establish covariances between single COGARCH processes with different

parameters in the following proposition.
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Figure 2: Sample paths of two COGARCH processes V ϕ1 and V ϕ2 with different parameters, driven by the same Lévy

process L, scaled with the corresponding pi, and the resulting supCOGARCH V̄ (2). The driving Lévy process L is a

compound Poisson process with rate 1 and standard normal jumps. The parameters are the same as in Figure 1.

Proposition 3.11. Let (St)t∈R be a subordinator without drift, let ϕ, ϕ̃ ∈ ΦL be fixed and define

the stationary two-sided COGARCH processes (V ϕ
t )t∈R, (V

ϕ̃
t )t∈R according to (2.17). If

E[S2
1 ] <∞, Ψ(2, ϕ) < 0 and Ψ(2, ϕ̃) < 0,

then E[V ϕ
t V

ϕ̃
t+h] <∞ for all t ∈ R and h ≥ 0. In this case, we have for all t ∈ R that

E[V ϕ
t V

ϕ̃
t ] =

β2((ϕ+ ϕ̃)E[S1]− 2η)

(ϕE[S1]− η)(ϕ̃E[S1]− η)((ϕ+ ϕ̃)E[S1] + ϕϕ̃Var[S1]− 2η)
, (3.16)

Cov[V ϕ
t , V

ϕ̃
t ] =

β2ϕϕ̃Var[S1]

(ϕE[S1]− η)(ϕ̃E[S1]− η)(2η − (ϕ+ ϕ̃)E[S1]− ϕϕ̃Var[S1])
, (3.17)

while for all t ∈ R and h ≥ 0

Cov[V ϕ
t , V

ϕ̃
t+h] = ehΨ(1,ϕ̃)Cov[V ϕ

0 , V
ϕ̃
0 ]. (3.18)

Both covariances in (3.17) and (3.18) are nonnegative.

Now we can describe the covariance structure of the supCOGARCH process V̄ (2).

Proposition 3.12. Let V̄ (2) be the strictly stationary supCOGARCH 2 process as defined in

(3.12). Recall the notation Φ
(κ)
L from Eq. (2.14).

(a) Suppose that π(Φ
(1)
L ) = 1. Then we have for all t ≥ 0

E[V̄ (2)
t ] =

∫
ΦL

E[V ϕ
0 ]π(dϕ) = β

∫
ΦL

1

η − ϕE[S1]
π(dϕ). (3.19)

(b) Suppose that π(Φ
(2)
L ) = 1. Then for t ∈ R and h ≥ 0 we have

E[(V̄ (2)
t )2] =

∫
ΦL

∫
ΦL

E[V ϕ
0 V

ϕ̃
0 ]π(dϕ)π(dϕ̃), (3.20)

Var[V̄
(2)
t ] =

∫
ΦL

∫
ΦL

Cov[V ϕ
0 , V

ϕ̃
0 ]π(dϕ)π(dϕ̃), (3.21)

Cov[V̄
(2)
t , V̄

(2)
t+h] =

∫
ΦL

∫
ΦL

Cov[V ϕ
0 , V

ϕ̃
h ]π(dϕ)π(dϕ̃), (3.22)

with E[V ϕ
0 V

ϕ̃
0 ] and Cov[V ϕ

0 , V
ϕ̃
h ] as given in Proposition 3.11.

12



Note that the quantities in (3.19), (3.20), (3.21) and (3.22) may be infinite.

The tail behaviour of V̄ (2) is similar to the tail behaviour of the supCOGARCH 1 process.

Proposition 3.13. Let V̄ (2) be the strictly stationary supCOGARCH 2 process as defined in

(3.12). Set ϕ̄ := inf{ϕ > 0: π((ϕ,∞)) = 0} ≤ ϕmax < ∞ and assume that there exists κ̄ > 0

such that (3.11) holds. Then we have for κ > 0

lim
x→∞

xκP[V̄ (2)
0 > x] =

{
0 if κ < κ̄,

∞ if κ > κ̄,

while for κ = κ̄ there exists a constant C > 0 such that

lim
x→∞

xκ̄P[V̄ (2)
0 > x] =

{
C if π({ϕ̄}) = p̄ > 0,

0 if π({ϕ̄}) = 0.

Remark 3.14. Similarly to V̄ (1), the process V̄ (2) is no Markov process with respect to its

augmented natural filtration (unless in the degenerate case π = δϕ), but again we have a Markov

property in a wide sense. More precisely, for F(2) = (F (2)
t )t≥0 being the augmented natural

filtration of ((V ϕ
t )ϕ∈ΦL

)t≥0, we obtain for every measurable function f : R+ → R and every

t ≥ 0

E
[
f
(
V̄

(2)
t

)∣∣F (2)
t

]
= E

[
f
(
V̄

(2)
t

)∣∣(V ϕ
t )ϕ∈ΦL

]
.

3.3 The supCOGARCH 3 volatility process

Our third superposition model invokes a Lévy basis ΛL on R× ΦL such that

Lt := ΛL((0, t]× ΦL), t ≥ 0, Lt := −ΛL((−t, 0]× ΦL), t < 0,

exists for every t ∈ R. With ΛS := [ΛL,ΛL]d in the sense of (2.21), ΛS is of the form (2.19) and

we assume that the predictable compensator of µΛ
S
is given by ΠS(dt,dy,dϕ) = dt νS(dy)π(dϕ),

where π is a probability measure on ΦL and νS the Lévy measure of the following two-sided

subordinator:

St := ΛS((0, t]× ΦL), t ≥ 0, St := −ΛS((−t, 0]× ΦL), t < 0. (3.23)

For every ϕ ∈ ΦL we denote by V ϕ the two-sided COGARCH process driven by S as in (2.17).

The supCOGARCH 3 volatility process V̄ (3) is then defined by the integral equation

V̄
(3)
t = V̄

(3)
0 + βt− η

∫
(0,t]

V̄ (3)
s ds+

∫
(0,t]

∫
ΦL

ϕV ϕ
s− ΛS(ds,dϕ), t ≥ 0, (3.24)

where V̄
(3)
0 is some starting random variable independent of the restriction of ΛL to R+ × ΦL

From (3.24) it follows directly that

∆V̄
(3)
t =

∫
R+×ΦL

ϕV ϕ
t−y µ

ΛS
({t},dϕ,dy), t ≥ 0. (3.25)

We present now conditions for stationarity and calculate the second order properties. The

proofs can be found in Section 6.3.
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Proposition 3.15. The stochastic integral equation (3.24) has a unique solution given by

V̄
(3)
t = e−ηt

(
V̄

(3)
0 + β

∫
(0,t]

eηs ds+

∫
(0,t]

eηs dAs

)
, t ≥ 0, (3.26)

where

At :=

∫
(0,t]

∫
ΦL

ϕV ϕ
s− ΛS(ds,dϕ), t ≥ 0, (3.27)

is a semimartingale with increasing sample paths, finite at every fixed t ≥ 0.

Example 3.16. [Ex. 3.2 and 3.9 continued] Let π = p1δϕ1 + p2δϕ2 with p1 + p2 = 1 and

ϕ1, ϕ2 ∈ ΦL. As opposed to the supCOGARCH 1 process in Example 3.2 or the supCOGARCH 2

process in Example 3.9, the supCOGARCH 3 process is not the sum of two (independent or

dependent) COGARCH processes. In fact, there is a subordinator S driving two COGARCH

processes V ϕ1 and V ϕ2 and each time when S jumps, a value of ϕ is randomly chosen from

{ϕ1, ϕ2}: ϕ takes the value ϕ1 with probability p1 and the value ϕ2 with probability p2. Now

the jump size of the supCOGARCH 3 at a particular jump time of S is exactly the jump size of

the COGARCH with the chosen parameter ϕ. If (Ti)i∈N denote the jump times of S, we have

∆V̄
(3)
Ti

= ∆V ϕi

Ti
= ϕiV

ϕi

Ti−∆STi , i ∈ N,

and (ϕi)i∈N is an i.i.d. sequence with distribution π. Moreover, (ϕi)i∈N is independent of S. This

effect is illustrated in Figure 3.
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Figure 3: Two COGARCH processes V ϕ1 and V ϕ2 driven by the same Lévy process L and the resulting supCOGARCH

V̄ (3). L is a compound Poisson process with rate 1 and standard normal jumps. The parameters are the same as in Figure 1.

The next theorem establishes necessary and sufficient conditions for the existence of a sta-

tionary distribution of the supCOGARCH 3 process.

Theorem 3.17. Define the supCOGARCH 3 process (V̄
(3)
t )t≥0 by (3.26). Then a finite random

variable V̄0
(3)

can be chosen such that V̄ (3) is strictly stationary if and only if∫
R+

∫
ΦL

∫
R+

1 ∧ (yϕV ϕ
s e−ηs) ds π(dϕ) νS(dy) <∞ a.s. (3.28)

In the case that a stationary distribution exists, it is uniquely determined by the law of β
η +∫

R+
e−ηs dAs. In particular, setting V̄

(3)
0 := β

η +
∫
(−∞,0]

∫
ΦL

eηsϕV ϕ
s− ΛS(ds,dϕ), we obtain the

two-sided stationary supCOGARCH 3 process

V̄
(3)
t = e−ηt

(
β

∫
(−∞,t]

eηs ds+

∫
(−∞,t]

eηs dAs

)
=
β

η
+

∫
(−∞,t]

∫
ΦL

e−η(t−s)ϕV ϕ
s− ΛS(ds, dϕ)

(3.29)

for t ∈ R. Moreover, (3.28) holds in each of the following cases:
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(a) π([0, ϕ0]) = 1 with some ϕ0 < ϕmax.

(b) π(Φ
(κ)
L ) = 1 for some κ > 0.

The second-order properties of the strictly stationary supCOGARCH 3 process are as follows.

Proposition 3.18. Let V̄ (3) be the stationary supCOGARCH 3 process given by (3.29). Recall

the notation Φ
(κ)
L from Eq. (2.14).

(a) Assume that π(Φ
(1)
L ) = 1. Then for t ∈ R

E[V̄ (3)
t ] =

∫
ΦL

E[V ϕ
0 ]π(dϕ) =

∫
ΦL

β

η − E[S1]ϕ
π(dϕ). (3.30)

(b) Assume that π(Φ
(2)
L ) = 1. Then with E[V ϕ

0 V
ϕ̃
0 ] and Cov[V ϕ

0 , V
ϕ̃
0 ] as given in Proposi-

tion 3.11, for t ∈ R and h ≥ 0 we have

E[(V̄ (3)
t )2] =

∫
ΦL

∫
ΦL

(
E[V ϕ

0 V
ϕ̃
0 ] +

β

η

Var[V ϕ
0 ]− Cov[V ϕ

0 , V
ϕ̃
0 ]

E[V ϕ
0 ]

)
π(dϕ̃)π(dϕ). (3.31)

Cov[V̄
(3)
t , V̄

(3)
t+h] (3.32)

=

∫
ΦL

∫
ΦL

(
ehΨ(1,ϕ)Cov[V ϕ

0 , V
ϕ̃
0 ] + e−ηhβ

η

Var[V ϕ
0 ]− Cov[V ϕ

0 , V
ϕ̃
0 ]

E[V ϕ
0 ]

)
π(dϕ̃)π(dϕ).

Note that the quantities in (3.30), (3.31) and (3.32) may be infinite.

The supCOGARCH 3 process also exhibits Pareto-like tails.

Proposition 3.19. Let V̄ (3) be the stationary supCOGARCH 3 process given by (3.29). Set

ϕ̄ := inf{ϕ > 0: π((ϕ,∞)) = 0} ≤ ϕmax < ∞ and assume that there exists κ̄ > 0 such that

(3.11) is fulfilled. Then for κ > 0

lim
x→∞

xκP[V̄ (3)
0 > x] =

{
0 if κ < κ̄,

∞ if κ > κ̄,

and for κ = κ̄ and π({ϕ̄}) = 0 we have

lim
x→∞

xκ̄P[V̄ (3)
0 > x] = 0,

while for κ = κ̄ and π({ϕ̄}) = p̄ > 0

0 < C∗ := lim inf
x→∞

xκ̄P[V̄ (3)
0 > x] ≤ lim sup

x→∞
xκ̄P[V̄ (3)

0 > x] =: C∗ <∞.

Remark 3.20. Just like V̄ (1) and V̄ (2), the process V̄ (3) is not a Markov process with respect

to its augmented natural filtration (unless in the case π = δϕ), but, denoting the augmented

natural filtration of ((V ϕ
t )ϕ∈ΦL

)t≥0 by F(3) = (F (3)
t )t≥0, we obtain for every measurable function

f : R+ → R and every t ≥ 0

E
[
f
(
V̄

(3)
t

)∣∣(F (3)
s )s≤t

]
= E

[
f
(
V̄

(3)
t

)∣∣(V ϕ
t )ϕ∈ΦL

]
.
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4 The price processes

Recall that in the COGARCH model, or its discrete-time analogue, the GARCH model (cf.

[9]), the driving noises for volatility and price processes are the same (2.8). In this section, we

suggest and investigate price processes corresponding to the supCOGARCH volatility processes.

All proofs can be found in Section 6.4.

4.1 The integrated supCOGARCH 1 price process

For the supCOGARCH 1 volatility process V̄ (1) as defined in Section 3.1, there is no canonical

choice for a price process, since a whole sequence (Lϕi)i∈N of Lévy processes is used in its

definition. Hence a priori any function of this sequence is a reasonable candidate for the driver

in the price process. As a simple example we take the Lévy process Lϕ1 as integrator; i.e., we

define

G
(1)
t :=

∫
(0,t]

√
V̄

(1)
s− dLϕ1

s , t ≥ 0. (4.1)

It is an interesting observation that this process not only allows for common jumps of volatility

and price (as it is usual in the standard COGARCH model), but also for jumps only in the

volatility and not in the price process. There is evidence that this happens in real data (cf. [21]).

It is obvious from the definition that, if (V̄
(1)
t )t≥0 is strictly stationary, then (G

(1)
t )t≥0 has

stationary increments. Furthermore, its second-order structure is comparable to that of the

integrated COGARCH process [23, Prop. 5.1].

Theorem 4.1. Let V̄ (1) =
∑∞

i=1 piV
ϕi, ϕi ∈ ΦL, be a stationary supCOGARCH 1 process as

defined in Section 3.1, where each V ϕi is driven by Sϕi = [Lϕi , Lϕi ]d and (Lϕi)i∈N are i.i.d.

copies of a Lévy processes L with zero mean. Define the price process G(1) by (4.1) and set

∆rG
(1)
t := G

(1)
t+r −G

(1)
t =

∫
(t,t+r]

√
V̄

(1)
s− dLϕ1

s , t ≥ 0, r > 0.

Recall the notation Φ
(κ)
L from Eq. (2.14) and that the support of π is countable in this case.

(a) Assume that π has support in Φ
(1/2)
L . Then

E[∆rG
(1)
t ] = 0, t ≥ 0, r > 0.

(b) If further E[L2
1] <∞ and π has support in Φ

(1)
L , then for t ∈ R, h ≥ r > 0

E[(∆rG
(1)
t )2] = rE[L2

1]E[V̄
(1)
0 ] = rE[L2

1]

∫
Φ

(1)
L

β

η − ϕ(E[L2
1]− σ2L)

π(dϕ) and

Cov[∆rG
(1)
t ,∆rG

(1)
t+h] = 0.

(c) Assume further that E[L4
1] < ∞,

∫
R y

3 νL(dy) = 0 and that π 6= δ0 has support in Φ
(2)
L .

Then for t ∈ R, h ≥ r > 0

Cov[(∆rG
(1)
t )2, (∆rG

(1)
t+h)

2] = E[L2
1]

∫
Φ

(2)
L

ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

Ψ(1, ϕ)
Cov[(∆rG

(1)
0 )2, V ϕ

r ]π(dϕ)

> 0.
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4.2 The integrated supCOGARCH 2 price process

Let (Lt)t∈R be a two-sided Lévy process, define the subordinator S by (2.15) and let (V̄
(2)
t )t∈R

be the supCOGARCH 2 process driven by S as defined in Section 3.2. In view of the standard

definition of the integrated COGARCH price process (2.8) it makes sense to define the integrated

supCOGARCH 2 price process by

dG
(2)
t :=

√
V̄

(2)
t− dLt, G

(2)
0 = 0, t ∈ R. (4.2)

Hence, as in the standard COGARCH model, the process G(2) jumps exactly when the volatility

V̄ (2) jumps. Also (G
(2)
t )t∈R has stationary increments if (V̄

(2)
t )t∈R is strictly stationary. The inte-

grated supCOGARCH 2 process has the same second-order structure as the integrated supCO-

GARCH 1 process and, hence, as the integrated COGARCH process as shown in the following.

Theorem 4.2. Suppose that the two-sided Lévy process L has expectation 0, define S by (2.15),

the supCOGARCH volatility V̄ (2) as in Section 3.2 with π(ΦL) = 1 and the process G(2) by

(4.2). Set

∆rG
(2)
t := G

(2)
t+r −G

(2)
t =

∫
(t,t+r]

√
V̄

(2)
s− dLs, t ∈ R, r > 0.

(a) Assume that π has support in Φ
(1/2)
L . Then

E[∆rG
(2)
t ] = 0, t ∈ R, r > 0.

(b) If further E[L2
1] <∞ and π has support in Φ

(1)
L , then for t ∈ R, h ≥ r > 0

E[(∆rG
(2)
t )2] = rE[L2

1]E[V̄
(2)
0 ] = rE[L2

1]

∫
Φ

(1)
L

β

η − ϕ(E[L2
1]− σ2L)

π(dϕ),

Cov[∆rG
(2)
t ,∆rG

(2)
t+h] = 0.

(c) Assume further that E[L4
1] < ∞,

∫
R y

3 νL(dy) = 0 and π 6= δ0 has support in Φ
(2)
L . Then

for t ∈ R, h ≥ r > 0

Cov[(∆rG
(2)
t )2, (∆rG

(2)
t+h)

2] = E[L2
1]

∫
Φ

(2)
L

ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

Ψ(1, ϕ)
Cov[(∆rG

(2)
0 )2, V ϕ

r ]π(dϕ)

> 0.

4.3 The integrated supCOGARCH 3 price process

As in the case of the supCOGARCH 2 there is a canonical choice for the driving noise in the

price process of the supCOGARCH 3. With L being a Lévy process and V (3) the stationary

supCOGARCH 3 as defined in (3.29), we define the integrated supCOGARCH 3 price process

by

G
(3)
t :=

∫
(0,t]

√
V̄

(3)
t− dLt, t ≥ 0. (4.3)

Evidently, G(3) has stationary increments and, if π({0}) = 0, it jumps at exactly the times when

V̄ (3) jumps. However, whenever π({0}) > 0, the supCOGARCH 3 model features price jumps

without volatility jumps, a behaviour attested by the empirical findings of [21]. The second-order

structure of G(3) is calculated in the following theorem.
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Theorem 4.3. Suppose that L is a Lévy process with expectation 0 and that π(ΦL) = 1. Define

V (3) by (3.29) and set

∆rG
(3)
t := G

(3)
t+r −G

(3)
t =

∫
(t,t+r]

√
V̄

(3)
s− dLs, t ≥ 0, r > 0.

(a) Assume that π has support in Φ
(1/2)
L . Then

E[∆rG
(3)
t ] = 0, t ≥ 0, r > 0.

(b) If further E[L2
1] <∞ and π has support in Φ

(1)
L , then for t ≥ 0 and h ≥ r > 0

E[(∆rG
(3)
t )2] = rE[L2

1]E[V̄
(3)
0 ] = rE[L2

1]

∫
Φ

(1)
L

β

η − ϕ(E[L2
1]− σ2L)

π(dϕ),

Cov[∆rG
(3)
t ,∆rG

(3)
t+h] = 0.

(c) Assume further that E[L4
1] < ∞,

∫
R y

3 νL(dy) = 0 and π 6= δ0 has support in Φ
(2)
L . Then

for t ≥ 0 and h ≥ r > 0

Cov[(∆rG
(3)
t )2, (∆rG

(3)
t+h)

2]

= E[L2
1]

[
e−η(h−r) − e−ηh

η
Cov[(∆rG

(3)
0 )2, V̄ (3)

r ]

+

∫
Φ

(2)
L

(
ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

Ψ(1, ϕ)
+

e−ηh − e−η(h−r)

η

)
Cov[(∆rG

(3)
0 )2, V ϕ

r ]π(dϕ)

]
> 0.

5 Comparison and conclusions

This section is devoted to highlight the analogies and differences between the three supCO-

GARCH processes, and to compare them to the standard COGARCH process. First note that

in all three models, setting π = δϕ for ϕ ∈ ΦL yields the standard COGARCH process (V ϕ
t )t≥0

as defined in (2.5). Hence it seems natural that some features of the COGARCH process are

preserved under superpositioning. The next remark summarizes the most important properties.

Remark 5.1. (a) Comparing the autocovariance functions of the supCOGARCH volatility

processes (cf. (3.10), (3.22) and (3.32)) to those of the COGARCH (cf. (2.13)), we find for large

lags h exponential decay in all three supCOGARCH models, but allowing for more flexibility

than in the COGARCH model for small and medium lags.

(b) The important property of Pareto-like tails of the stationary distribution of a COGARCH

process [24, Thm. 6] persists as shown in Propositions 3.5, 3.13 and 3.19.

(c) Another similarity is given in the behaviour between jumps, where the COGARCH process

exhibits exponential decay [24, Prop. 2]. More precisely, assuming that V̄ (1), V̄ (2) and V̄ (3) only

have finitely many jumps on compact intervals, and fixing two consecutive jump times Tj < Tj+1,

we obtain for i ∈ {1, 2, 3} and t ∈ (Tj , Tj+1)

d

dt
V̄

(i)
t = β − ηV̄

(i)
t , V̄

(i)
t =

β

η
+

(
V̄

(i)
Tj

− β

η

)
e−η(t−Tj).
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(d) An important difference between the supCOGARCH processes and the COGARCH process

is the jump behaviour. This is highlighted in Corollary 5.2 and Example 5.3.

(e) In general, all supCOGARCH models have common jumps in volatility and price as it is

characteristic for the COGARCH model. Additionally, the supCOGARCH 1 model also features

volatility jumps without price jumps and the supCOGARCH 3, if π({0}) > 0, also price jumps

without volatility jumps. Moreover, if we replace Lϕ1 in (4.1) by a (finite or infinite) linear

combination of (Lϕi)i∈N, we can control the proportion of common volatility and price jumps

to sole volatility jumps in the supCOGARCH 1 model.

(f) Our three models have different degrees of randomness in the following sense. The sup-

COGARCH 1 is defined via a sequence of independent Lévy processes. So by the adjustment

of π there is an arbitrary degree of randomness in the model. The supCOGARCH 2 model

has only one single source of randomness, namely the driving Lévy process. Finally, the sup-

COGARCH 3 incorporates two sources of randomness: one originating from the Lévy process

L = ΛL((0, ·]× ΦL) and one from the sequence (ϕi)i∈N chosen at the jump times of L.

One of the motivations for this study was the observation made in [19] that for a COGARCH

process (V ϕ, Gϕ) there is always a deterministic relationship between volatility jumps and price

jumps given by

qϕT :=
φ(V ϕ

T−, V
ϕ
T )

ψ(Gϕ
T−, G

ϕ
T )

≡ ϕ

for deterministic functions

ψ(x, y) = (y − x)2, φ(x, y) = y − x. (5.1)

and every jump time T of the driving Lévy process.

From the following corollary, which is a direct consequence of the respective definitions,

we see immediately that for all three supCOGARCH models such a deterministic functional

relationship between volatility and price jumps is no longer present.

Corollary 5.2. Let T be a jump time of Lϕ1 for the supCOGARCH 1, and a jump time of

L for the supCOGARCH 2 and 3. Furthermore, define ϕ̄ := inf{ϕ > 0: π((ϕ,∞)) = 0} and

ϕ := sup{ϕ > 0: π((0, ϕ)) = 0} (using the convention sup ∅ := 0, inf ∅ := ∞).

(a) We have

∆V̄
(1)
T = p1ϕ1V

ϕ1

T−(∆L
ϕ1

T )2, ∆G
(1)
T =

√√√√ ∞∑
i=1

piV
ϕi

T−∆L
ϕ1

T (5.2)

∆V̄
(2)
T =

∫
ΦL

ϕV ϕ
T− π(dϕ)(∆LT )

2, ∆G
(2)
T =

√∫
ΦL

V ϕ
T− π(dϕ)∆LT (5.3)

∆V̄
(3)
T = ϕTV

ϕT
T− (∆LT )

2, ∆G
(3)
T =

√
V̄

(3)
T−∆LT , (5.4)

where in the last line ϕT is a random variable which has distribution π and is independent

of L.

(b) Define

q
(i)
T :=

φ(V̄
(i)
T−, V̄

(i)
T )

ψ(G
(i)
T−, G

(i)
T )

(5.5)
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for i = 1, 2, 3 with φ and ψ given in (5.1). Then we have

q
(1)
T ≤ ϕ̄ and ϕ ≤ q

(2)
T ≤ ϕ̄;

moreover, if ϕT = ϕ̄ (resp. ϕT = ϕ), we have

q
(3)
j ≥ ϕ̄ (resp. q

(3)
j ≤ ϕ).

Example 5.3. [Ex. 3.2, 3.9 and 3.16 continued] Let us compare the jumps in the supCOGARCH

volatility processes for π = p1δϕ1 + p2δϕ2 with p1 + p2 = 1 and ϕ1, ϕ2 ∈ ΦL: We see from (5.2)

that in the supCOGARCH 1 model a squared jump of Lϕi is always scaled with piϕiV
ϕi
t− and,

hence, the parameter ϕi as well as the weight pi take part in the scaling. In contrast, defining

Sϕi = ΛS((0, ·] × {ϕi}) for i = 1, 2 in the case of the supCOGARCH 3 process, each jump of

S = Sϕ1+Sϕ2 = [L,L]d is scaled with ϕ1V
ϕ1
t− or ϕ2V

ϕ2
t− , depending on whether S1 or S2 actually

jumps. Here the probabilities pi do not influence the scaling of the jump, but the intensity of

the driving processes Sϕi , in other words, the pi determine the probability for the value ϕi

to be chosen at a specific jump time. Finally, for the supCOGARCH 2 process, the jump size

of the subordinator S = [L,L]d is always scaled with p1ϕ1V
ϕ1
t− + p2ϕ2V

ϕ2
t− , so all weights and

parameters are involved here.

Simulation results

To illustrate the theoretical findings above, we present simulations of the different supCO-

GARCH volatility processes as well as the different price processes in Figures 5 and 6 below. As

Lévy process L we choose a variance gamma process arising through time changing a standard

Brownian motion by an independent gamma process with mean and variance 1.

Note that we have chosen different parameters for the simulations presented in Figures 5

and 6, respectively, in order to better visualize the differences between the three volatility and

the three price processes.

To illustrate the profound difference between the COGARCH and the three supCOGARCH

models with reference to (5.1), we also compute q(1), q(2) and q(3) as defined in (5.5) for the jump

times of the simulation in Figure 6. The histograms of log q(i) are given in Figure 4. We see that

both the supCOGARCH 1 and 2 exhibit a certain interval of values for log q(1) and log q(2). As we

would expect from Corollary 5.2, both log q(1) and log q(2) are bounded from above by logϕ2, but

only log q(2) is bounded from below by logϕ1 whereas the log q
(1) has a relatively long tail on the

negative side. Also, in general, the values of q(1) tend to be smaller than those of q(2). This is due

to the fact that at a common jump time of volatility and price, the volatility jump size is the sum

of two terms for the supCOGARCH 2 but only a single term for the supCOGARCH 1 (see (5.3)

and (5.2)). As a result, the nominator in (5.5) is usually smaller for the supCOGARCH 1 than

for the supCOGARCH 2. Finally, again in coincidence with Corollary 5.2, the supCOGARCH 3

shows two disjoint intervals for the values of q(3), corresponding to the two different values of ϕ

chosen for the superposition.
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Figure 4: The pictures (from left to right) show the histograms for log(q(1)), log(q(2)) and log(q(3)).

Estimation

A thorough investigation of the statistical analysis of the supCOGARCH processes via parameter

estimation goes far beyond the scope of this paper. Nevertheless let us shortly comment on

the main task, namely the estimation of the superposition measure π, for which no standard

estimation procedure is available as it is typical for multifactor models.

In the case of the supOU stochastic volatility model, several attempts have been made to

infer the underlying superposition measure. For example, assuming the form π =
∑K

i=1 piδϕi

for some known K ∈ N, in [4, 5] a least-square fit of the autocovariance function is employed.

In [29] a generalized method of moments is used to estimate the supOU model under the hy-

pothesis of a gamma distribution for π. Further, in [17, 18] a Bayesian nonparametric approach

is proposed in the case that π is a discrete or continuous measure, respectively. Whether and

how these approaches, or the estimation procedures for the COGARCH model mentioned in the

Introduction can be adapted to the supCOGARCH case, is open.

6 Proofs and auxiliary results

6.1 Proofs for Section 3.1

Proof of Theorem 3.3. First assume that (3.6) holds. Then we know that each COGARCH pro-

cess V ϕi in the representation V̄ (1) =
∑∞

i=1 piV
ϕi admits a unique stationary distribution given

by the law of V ϕi
∞ = β

∫
R+

e−X
ϕi
t dt and that by choosing V ϕi

0
d
= V ϕi

∞ independently of Sϕi , the

corresponding COGARCH process V ϕi is strictly stationary. Thus setting V̄
(1)
0 :=

∑
i∈N piV

ϕi
0 ,

V̄ (1) becomes strictly stationary as shown in the following.

Assume for a moment that π has finite support. Then for every 0 ≤ t1 < t2 < . . . < tn,

n ∈ N, h > 0 we can use the independence of (V ϕi)i∈N to obtain

(V̄
(1)
t1
, . . . , V̄

(1)
tn ) =

(
m∑
i=1

piV
ϕi
t1
, . . . ,

m∑
i=1

piV
ϕi
tn

)
=

m∑
i=1

pi(V
ϕi
t1
, . . . , V ϕi

tn )

d
=

m∑
i=1

pi(V
ϕi

t1+h, . . . , V
ϕi

tn+h) = (V̄
(1)
t1+h, . . . , V̄

(1)
tn+h).

Due to the fact that
∑m

i=1 piV
ϕi
t is strictly increasing in m, the case for π having countable

support follows now by a standard monotonicity argument.

Conversely, assume that (3.6) is violated, i.e. there exists a ϕj with π({ϕj}) > 0 such that

V ϕj has no stationary distribution. Then by [23, Thm. 3.1] V
ϕj

t converges in probability to ∞
as t→ ∞. This yields that also V̄

(1)
t = pjV

ϕj

t +
∑∞

i=1,i 6=j piV
ϕi
t converges in probability to ∞ as

t→ ∞ since
∑∞

i=1,i 6=j piV
ϕi
t is nonnegative. Hence V̄

(1)
t cannot be strictly stationary.
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c) V̄ (1)

d) V̄ (2)

e) V̄ (3)
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Figure 5: The parameters are: β = 1, η = 0.05, ϕ1 = 0.02, ϕ2 = 0.045, π = 0.9δϕ1 + 0.1δϕ2 , starting value is the mean;

a) L is a variance gamma process with mean 0 and variance 1; b) COGARCH process driven by L with parameter ϕ2; c)

supCOGARCH process V̄ (1) where V ϕ2 is driven by L and V ϕ1 is driven by an independent copy of L; d) supCOGARCH

process V̄ (2) driven by L; e) supCOGARCH process V̄ (3) driven by L.

Proof of Proposition 3.4. The moment conditions as well as the formulas for expectation and

covariance follow directly from (3.7) together with the corresponding results for the COGARCH
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a) L

b) Gϕ2

c) G(1)

d) G(2)

e) G(3)
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Figure 6: The parameters are: β = 1, η = 1, ϕ1 = 0.5, ϕ2 = 0.995, π = 0.9δϕ1 + 0.1δϕ2 ; a) L is the same Lévy process

as in Figure 5; b) COGARCH price process driven by L with parameter ϕ2; c), d) and f) supCOGARCH price processes

G(1), G(2) and G(3) driven by L.

process (2.10), (2.11) and (2.13) observing that all appearing processes are strictly positive.

Proof of Proposition 3.5. Throughout this proof we slightly change our notation as follows.

Given i.i.d. subordinators (Si)i∈N, we denote the COGARCH process driven by Si with pa-
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rameter ϕ > 0 by V i,ϕ such that we have V̄ (1) =
∑∞

i=1 piV
i,ϕi . If κ < κ̄, then we know by the

definition of Ψ in (2.3) and [23, Lemma 4.1(d)] that for every ϕ ∈ (0, ϕ̄] there exists a unique

constant κ(ϕ) > 0 which satisfies (3.11) with κ̄ replaced by κ(ϕ) and such that κ(ϕ) is strictly

decreasing in ϕ. Moreover, as shown in [24, Thm. 6], for each i ∈ N the tail of V i,ϕ is asymptot-

ically equivalent to C(ϕ)x−κ(ϕ) with some specific constant C(ϕ) > 0. So by [13, Lemma A3.26]

we have

xκP[V̄ (1)
0 > x] ≤ xκ−κ̄xκ̄P

[ ∞∑
i=1

piV
i,ϕ̄
0 > x

]
→ 0

as x→ ∞ for all κ < κ̄. Conversely, if κ > κ(ϕi) for some i ∈ N, then

xκP[V̄ (1)
0 > x] ≥ xκP[piV i,ϕi

0 > x] = xκ−κ(ϕi)p
κ(ϕi)
i (x/pi)

κ(ϕi)P[V i,ϕi
0 > x/pi] → ∞.

Recalling that κ(ϕ) is defined via the equation Ψ(κ(ϕ), ϕ) = 0, this result is still valid for κ > κ̄

since we have infi∈N κ(ϕi) = κ̄ by the implicit function theorem.

Finally, it remains to consider the case κ = κ̄. If π({ϕ̄}) = 0, then using [24, Lemma 2] and

again [13, Lemma A3.26], we obtain

xκ̄P[V̄ (1)
0 > x] ≤ xκ̄P

∑
ϕi≤ϕ

piV
i,ϕ
0 +

∑
ϕi>ϕ

piV
i,ϕ̄
0 > x

 ∼ xκ̄P

[∑
ϕi>ϕ

piV
i,ϕ̄
0 > x

]
→
∑
ϕi>ϕ

pκ̄i C(ϕ̄)

as x → ∞ for every ϕ ∈ (0, ϕ̄). Letting ϕ → ϕ̄, the assertion follows. The case π({ϕ̄}) =: p̄ > 0

now follows from the results above and (̄i is the index corresponding to ϕ̄)

xκ̄P[V̄ (1)
0 > x] = xκ̄P

[∑
ϕi<ϕ̄

piV
i,ϕi
0 + p̄V ī,ϕ̄

0 > x

]

≤ xκ̄P[p̄V ī,ϕ̄
0 > x(1− ε)] + xκ̄P

[∑
ϕi<ϕ

piV
i,ϕi
0 > εx

]
→
(

p̄

1− ε

)κ̄

C(ϕ̄).

Letting ε→ 0, we may set C := p̄κ̄C(ϕ̄).

6.2 Proofs for Section 3.2

For the proof of Theorem 3.10 we need the following lemma.

Lemma 6.1. Let (St)t∈R be a subordinator without drift and define the double-indexed processes

(Xϕ
t )t∈R,ϕ∈ΦL

and (V ϕ
t )t∈R,ϕ∈ΦL

according to (2.16) and (2.17). Then for all n ∈ N, −∞ < t1 <

t2 < . . . < tn <∞, h > 0

((V ϕ
t1
)ϕ∈ΦL

, (V ϕ
t2
)ϕ∈ΦL

, . . . , (V ϕ
tn)ϕ∈ΦL

)
d
= ((V ϕ

t1+h)ϕ∈ΦL
, (V ϕ

t2+h)ϕ∈ΦL
, . . . , (V ϕ

tn+h)ϕ∈ΦL
),

i.e. the RΦL-valued stochastic process ((V ϕ
t )ϕ∈ΦL

)t∈R is strictly stationary. In particular, every

finite-dimensional process (V ϕ1
t , . . . , V ϕm

t )t∈R, m ∈ N, is strictly stationary.

Proof. Imitating the proof of [23, Thm. 3.2] for the finite-dimensional process (V ϕ1
t , . . . , V ϕm

t )t∈R,

m ∈ N, one readily sees that(
(V ϕ1

t1
, . . . , V ϕm

t1
), . . . , (V ϕ1

tn , . . . , V
ϕm
tn )

) d
=
(
(V ϕ1

t1+h, . . . , V
ϕm

t1+h), . . . , (V
ϕ1

tn+h, . . . , V
ϕm

tn+h)
)
.

As stochastic processes with the same index space are equal in distribution, whenever their finite-

dimensional distributions are equal (e.g. [22, Prop. 2.2]), this already yields the assertion.
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Proof of Theorem 3.10. The result follows from the definition of V̄ (2) and Lemma 6.1.

To prove Proposition 3.11, another auxiliary lemma will be established.

Lemma 6.2. Let (St)t∈R be a subordinator without drift, let ϕ, ϕ̃ ≥ 0 be fixed and define the

processes (Xϕ
t )t∈R and (X ϕ̃

t )t∈R according to (2.16). Set Xt := Xϕ
t +X ϕ̃

t , t ∈ R.

(a) The process (Xt)t∈R is a Lévy process with characteristic triplet (2η, 0, νX) where νX =

νS ◦ T−1 for T : R+ → R−, y 7→ − log(1 + (ϕ+ ϕ̃)y + ϕϕ̃y2).

(b) Let ϕ, ϕ̃ > 0. Then E[e−κXt ] is finite at κ > 0 for some t > 0, or, equivalently, for all

t > 0, if and only if E[S2κ
1 ] <∞. In this case we have E[e−κXt ] = ethκ(ϕ,ϕ̃), where

hκ(ϕ, ϕ̃) = −2ηκ+

∫
R+

(
((1 + ϕy)(1 + ϕ̃y))κ − 1

)
νS(dy).

For κ = 1 we have

h(ϕ, ϕ̃) := h1(ϕ, ϕ̃) = −2η + (ϕ+ ϕ̃)E[S1] + ϕϕ̃Var[S1]. (6.1)

Proof. (a) Observe that by definition

Xt = 2ηt−
∑

0<s≤t

log
[
(1 + ϕ∆Ss)(1 + ϕ̃∆Ss)

]
= 2ηt−

∑
0<s≤t

log(1 + (ϕ+ ϕ̃)∆Ss + ϕϕ̃(∆Ss)
2)

for t ≥ 0, which directly yields the assertion.

(b) By [28, Thm. 25.17] E[e−κXt ] is finite for some, or, equivalently, for every t > 0 if and only if∫
|y|>1

e−κy νX(dy) =

∫
|y|>1

e−κy νS(T
−1(dy)) =

∫
y∈Dc

(1 + (ϕ+ ϕ̃)y + ϕϕ̃y2)κ νS(dy) <∞

where D =

[
−(ϕ+ϕ̃)−

√
(ϕ−ϕ̃)2+4ϕϕ̃e

2ϕϕ̃ ,
−(ϕ+ϕ̃)+

√
(ϕ−ϕ̃)2+4ϕϕ̃e

2ϕϕ̃

]
. This directly yields (b).

Proof of Proposition 3.11. Due to Lemma 6.1 (V ϕ
t , V

ϕ̃
t )t∈R is strictly stationary such that it

suffices to consider t > 0. Assume w.l.o.g. that 0 < ϕ ≤ ϕ̃. Then it follows from the definition of

the COGARCH process that V ϕ ≤ V ϕ̃. Hence E[V ϕ
t V

ϕ̃
t ] ≤ E[V ϕ̃

t V
ϕ̃
t ] and similarly E[V ϕ

t V
ϕ̃
t+h] ≤

E[V ϕ̃
t V

ϕ̃
t+h], which are both finite as (2.10) is given for κ = 2. We start with the computation of

E[V ϕ
t V

ϕ̃
t ] and use (2.5) to obtain

E[V ϕ
t V

ϕ̃
t ] = β2E

[∫
(0,t]

eX
ϕ
s −Xϕ

t ds

∫
(0,t]

eX
ϕ̃
r −Xϕ̃

t dr

]
+ βE[V ϕ̃

0 ]E

[∫
(0,t]

eX
ϕ
s −Xϕ

t −Xϕ̃
t ds

]
+

+ βE[V ϕ
0 ]E

[∫
(0,t]

eX
ϕ̃
r −Xϕ̃

t −Xϕ
t dr

]
+ E[V ϕ

0 V
ϕ̃
0 ]E[e−Xϕ

t −Xϕ̃
t ]

=: β2I1 + βE[V ϕ̃
0 ]I2 + βE[V ϕ

0 ]I3 + E[V ϕ
0 V

ϕ̃
0 ]I4. (6.2)

Recall the Lévy process X defined in Lemma 6.2 and observe that the increments of X and Xϕ

on disjoint intervals are mutually independent. Thus we have by (2.3) and Lemma 6.2(b)

I1 = E

[∫
(0,t]

∫
(0,r]

eX
ϕ
s −Xϕ

r +Xϕ
r −Xϕ

t +Xϕ̃
r −Xϕ̃

t dsdr

]
+ E

[∫
(0,t]

∫
(r,t]

eX
ϕ̃
r −Xϕ̃

s +Xϕ̃
s −Xϕ̃

t +Xϕ
s −Xϕ

t dsdr

]
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=

∫
(0,t]

∫
(0,r]

e(r−s)Ψ(1,ϕ)+(t−r)h(ϕ,ϕ̃) ds dr +

∫
(0,t]

∫
(r,t]

e(s−r)Ψ(1,ϕ̃)+(t−s)h(ϕ,ϕ̃) dsdr

=
−aect + ceat + a− c

a2c− ac2
+

−bect + cebt + b− c

b2c− bc2
,

where a := Ψ(1, ϕ), b := Ψ(1, ϕ̃) and c := h(ϕ, ϕ̃). Very similar calculations lead to

I2 =
ebt − ect

b− c
, I3 =

eat − ect

a− c

while we know from Lemma 6.2(b) that I4 = ect.

According to (2.11) we have E[V ϕ
0 ] = −β/a and E[V ϕ̃

0 ] = −β/b. Furthermore, we have

E[V ϕ
0 V

ϕ̃
0 ] = E[V ϕ

t V
ϕ̃
t ] due to stationarity. Putting all this into (6.2), we obtain

(1− ect)E[V ϕ
t V

ϕ̃
t ] = β2(1− ect)

(
1

ac
+

1

bc

)
.

Since t > 0 we have 1− ect 6= 0, so dividing the last equation by this term yields

E[V ϕ
t V

ϕ̃
t ] =

β2

Ψ(1, ϕ̃)h(ϕ, ϕ̃)
+

β2

Ψ(1, ϕ)h(ϕ, ϕ̃)

from which (3.16) and (3.17) follow immediately.

To obtain the formula for Cov[V ϕ
t , V

ϕ̃
t+h] observe first that

V ϕ̃
t+h = Aϕ̃

t,t+hV
ϕ̃
t +Bϕ̃

t,t+h, (6.3)

where

Aϕ̃
t,t+h = e−(Xϕ̃

t+h−Xϕ̃
t ) and Bϕ̃

t,t+h = β

∫
(t,t+h]

e−(Xϕ̃
t+h−Xϕ̃

s ) ds.

In particular, we see that Aϕ̃
t,t+h and Bϕ̃

t,t+h are independent of (V ϕ
t , V

ϕ̃
t ) such that

E[V ϕ
t V

ϕ̃
t+h] = E[V ϕ

t (Aϕ̃
t,t+hV

ϕ̃
t +Bϕ̃

t,t+h)] = E[Aϕ̃
t,t+h]E[V

ϕ
t V

ϕ̃
t ] + E[V ϕ

t ]E[Bϕ̃
t,t+h]. (6.4)

Now since

E[Aϕ̃
t,t+h] = E[e−(Xϕ̃

t+h−Xϕ̃
t )] = E[e−Xϕ̃

h ] = ehΨ(1,ϕ̃)

and

E[Bϕ̃
t,t+h] = β

∫
(t,t+h]

e(t+h−s)Ψ(1,ϕ̃) ds =
β

Ψ(1, ϕ̃)

(
ehΨ(1,ϕ̃) − 1

)
= E[V ϕ̃

0 ]
(
1− ehΨ(1,ϕ̃)

)
,

Eq. (6.4) directly yields

E[V ϕ
t V

ϕ̃
t+h] = ehΨ(1,ϕ̃)E[V ϕ

0 V
ϕ̃
0 ] +

(
1− ehΨ(1,ϕ̃)

)
E[V ϕ

0 ]E[V ϕ̃
0 ],

which gives (3.18).

Proof of Proposition 3.12. Due to the fact that all appearing processes are nonnegative we can

use Tonelli’s Theorem to determine the given formulas directly from the definition of V̄ (2).

Proof of Proposition 3.13. The proof is mainly the same as the proof of Proposition 3.5, so we

only indicate the differences. For κ < κ̄ use the estimation P[V̄ (2)
0 > x] ≤ P[V ϕ̄

0 > x]. For κ > κ̄

and π({ϕ̄}) = 0, it suffices to consider κ > κ(ϕi) after having chosen sequences (ϕi)i∈N and

(εi)i∈N with π((ϕi − εi, ϕi]) > 0 for each i ∈ N. Using P[V̄ (2)
0 > x] ≥ P [π((ϕi − εi, ϕi])V

ϕi
0 > x]

gives the result. Similarly, use P[V̄ (2)
0 > x] ≤ P

[
π((0, ϕ])V ϕ

0 + π((ϕ, ϕ̄])V ϕ̄
0 > x

]
for κ = κ̄ and

π({ϕ̄}) = 0. For κ = κ̄ and π({ϕ̄}) =: p̄ > 0, we may use V̄ 2
0 =

∫
(0,ϕ̄) V

ϕ
0 π(dϕ) + p̄V ϕ̄

0 . Finally,

the case κ > κ̄ and π({ϕ̄}) > 0 follows from the preceding arguments.
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6.3 Proofs for Section 3.3

Proof of Proposition 3.15. By (2.16) and (2.17), the function ϕ 7→ V ϕ
s is increasing in ϕ for

every s ∈ R. As a consequence, we have for all t ≥ 0

At ≤
∫
(0,t]

∫
ΦL

ϕmaxV
ϕmax
s ΛS(ds,dϕ) = ϕmax

∫
(0,t]

V ϕmax
s dSs <∞.

Since A is by definition càdlàg, G(3)-adapted and increasing, A is a semimartingale [20, e.g. Def.

I.4.21] such that uniqueness of the solution of (3.24) follows from [26, Thm. V.7]. It remains to

show that (3.26) solves (3.24). Using integration by parts [20, Def. I.4.45] and [20, Prop. I.4.49d],

we obtain

dV̄
(3)
t =

(
V̄

(3)
0 +

∫
(0,t]

eηs dAs + β

∫
(0,t]

eηs ds

)
d
(
e−ηt

)
+ e−ηt(eηt dAt + βeηt dt)

= −ηV̄ (3)
t dt+ dAt + β dt = (β − ηV̄

(3)
t ) dt+ dAt.

In order to show that the supCOGARCH 3 process V̄ (3) from (3.24) has a stationary solution

we need a series of lemmata.

Lemma 6.3. Let n,m ∈ N. For −∞ < t1 < . . . < tm+1 <∞, 0 < ϕ1 < . . . < ϕn+1 < ϕmax and

h > 0 we have

(V ϕi
tj
,ΛS((tj , tj+1]× (ϕi, ϕi+1]) : i ≤ n, j ≤ m) (6.5)

d
= (V ϕi

tj+h,Λ
S((tj + h, tj+1 + h]× (ϕi, ϕi+1]) : i ≤ n, j ≤ m).

Proof. For 1 ≤ i ≤ n and 1 ≤ j ≤ m write Λi
j := ΛS((tj , tj+1] × (ϕi, ϕi+1]) and Λi

j,h :=

ΛS((tj + h, tj+1 + h] × (ϕi, ϕi+1]) and let Zm and Zm
h denote the left- and right-hand side of

(6.5), respectively. We first consider m = 1. On the one hand, we obtain from Lemma 6.1

that (V ϕ1
t1
, . . . , V ϕn

t1
)

d
= (V ϕ1

t1+h, . . . , V
ϕn

t1+h). On the other hand, due to the independence of their

single components, the vectors (Λ1
1, . . . ,Λ

n
1 ) and (Λ1

1,h, . . . ,Λ
n
1,h) have the same distribution. Since

additionally the V -vector is independent of the ΛS-vector, the assertion in the casem = 1 follows.

For m ≥ 2, using induction and the independence of Λi
m and Zm−1, it suffices to show that the

conditional distribution of (V ϕi
tm : i = 1, . . . , n) given Zm−1 does not change if shifted by h. By

Markovianity (see [23, Thm. 3.2]) this distribution only depends on (V ϕi
tm−1

,Λi
m−1 : i = 1, . . . , n)

such that by (6.3) and using the notation there, we only need to consider the distribution

of (Aϕi
tm−1,tm

, Bϕi
tm−1,tm

: i = 1, . . . , n) given (Λi
m−1 : i = 1, . . . , n). Since the former vector is a

measurable transformation of (∆Ss : tm−1 ≤ s ≤ tm), it is evident that this distribution is

invariant under a shift by h, which finishes the proof.

In connection to (3.27), we show a further auxiliary result. To this end define

At :=

∫
(0,t]

∫
ΦL

ϕV ϕ
s− ΛS(ds,dϕ), t ≥ 0, At := −

∫
(t,0]

∫
ΦL

ϕV ϕ
s− ΛS(ds,dϕ), t < 0. (6.6)

Lemma 6.4. The process (At)t∈R defined in (6.6) has stationary increments, i.e. for every

n ∈ N, −∞ < t1 < . . . < tn+1 <∞ and h > 0 we have

(At2 −At1 , . . . , Atn+1 −Atn)
d
= (At2+h −At1+h, . . . , Atn+1+h −Atn+h). (6.7)
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Proof. By an approximation via Riemann sums (note that ϕ 7→ V ϕ
s is continuous in ϕ for all s),

cf. [20, Prop. I.4.44], we may use Lemma 6.3 to obtain

(At2 −At1 , . . . , Atn+1 −Atn) =

(∫ t2

t1

∫
ΦL

ϕV ϕ
s− ΛS(ds,dϕ), . . . ,

∫ tn+1

tn

∫
ΦL

ϕV ϕ
s− ΛS(ds,dϕ)

)
d
=

(∫ t2+h

t1+h

∫
ΦL

ϕV ϕ
s− ΛS(ds,dϕ), . . . ,

∫ tn+1+h

tn+h

∫
ΦL

ϕV ϕ
s− ΛS(ds, dϕ)

)
= (At2+h −At1+h, . . . , Atn+1+h −Atn+h).

Proof of Theorem 3.17. Since e−ηt
∫
(0,t] e

ηs ds → η−1 as t → ∞ the process (V
(3)
t )t≥0 converges

in distribution to a finite random variable as t→ ∞ if and only if

e−ηt

∫
(0,t]

eηs dAs =

∫
(0,t]

eη(s−t) dAs =

∫
(−t,0]

eηs dAs+t
d
=

∫
(−t,0]

eηs dAs
d
=

∫
(0,t]

e−ηs dAs

converges to a finite random variable in distribution as t → ∞, where we used Lemma 6.4 for

the distributional equalities. By monotonicity this is equivalent to the existence of∫
R+

e−ηs dAs =

∫
R+

∫
ΦL

e−ηsϕV ϕ
s− ΛS(ds,dϕ)

in probability. As shown in [12, Thm. 3.1] and the following remark, this holds if and only if

(3.28) is valid.

Hence in case that (3.28) is violated, no stationary distribution can exist. On the other hand,

given (3.28), following the above computations, the process (V
(3)
t )t≥0 converges in distribution

to V̄
(3)
∞ := β

η +
∫∞
0 e−ηs dAs, which is thus the unique possible stationary distribution.

To show that (V
(3)
t )t≥0 is actually strictly stationary when started in a random variable

V
(3)
0

d
= V̄

(3)
∞ which is independent of ΛL on R+ × ΦL, we set V̄

(3)
0 := β

η +
∫
(−∞,0] e

ηs dAs. Then

using Lemma 6.4 we obtain for all 0 ≤ t1 < . . . < tn and h > 0

(V̄
(3)
t1
, . . . , V̄

(3)
tn )

d
=

(∫
(−∞,t1]

e−η(t1−s) dAs + β

∫
(−∞,t1]

e−η(t1−s) ds, . . . ,

∫
(−∞,tn]

e−η(tn−s) dAs + β

∫
(−∞,tn]

e−η(tn−s) ds

)

=

(∫
(−∞,0]

eηs dAs+t1 + β

∫
R+

e−ηs ds, . . . ,

∫
(−∞,0]

eηs dAs+tn + β

∫
R+

e−ηs ds

)
d
=

(∫
(−∞,0]

eηs dAs+t1+h + β

∫
R+

e−ηs ds, . . . ,

∫
(−∞,0]

eηs dAs+tn+h + β

∫
R+

e−ηs ds

)
d
= (V̄

(3)
t1+h, . . . , V̄

(3)
tn+h)

and hence the process (V
(3)
t )t≥0 is strictly stationary.

It remains to show that (a) and (b) imply (3.28). First observe from (2.16) and (2.17) that

for fix s the function ϕ 7→ V ϕ
s is increasing in ϕ. So if (a) holds, we have∫

R+

∫
ΦL

∫
R+

1 ∧ (yϕV ϕ
s e−ηs) ds π(dϕ) νS(dy) ≤

∫
R+

∫
R+

1 ∧ (yϕ0V
ϕ0
s e−ηs) ds νS(dy) <∞

because (3.28) holds for π = δϕ0 (in this case V̄ (3) is just the COGARCH process V ϕ0).

Finally, (b) follows from (a) together with the fact that ϕ
(κ)
max < ϕmax.

28



For the proof of Proposition 3.18 we need the following Lemma.

Lemma 6.5. Let (At)t∈R, V
ϕ and V̄ (3) be defined as in (6.6), (2.17) and (3.29), respectively.

Then, under the assumptions of Proposition 3.18, we have for t ≥ 0

[A,A]t =

∫
(0,t]

∫
ΦL

∫
R+

ϕ2(V ϕ
s−)

2y2 µΛ
S
(ds,dϕ, dy) and

[V̄ (3), V ϕ]t = [A, V ϕ]t = ϕ

∫
(0,t]

∫
ΦL

∫
R+

ϕ̃V ϕ
s−V

ϕ̃
s−y

2 µΛ
S
(ds,dϕ̃,dy),

with µΛ
S
as defined in (2.18). For t < 0, let the expressions on the left-hand side denote the

respective quadratic (co-)variation on (t, 0]. Then the integrals have to be computed on (−t, 0]
instead of (0, t].

Proof. Obviously it suffices to consider t ≥ 0. Since A is an increasing pure-jump process,

[A,A]t =
∑

0<s≤t

(∆As)
2 =

∑
0<s≤t

(
∆(ϕV ϕ

·−y ∗ µΛ
S
)s
)2

=
∑

0<s≤t

∑
ϕ∈ΦL

ϕV ϕ
s−Λ

S({s} × {ϕ})

2

Noting that for almost every ω there is at most one ϕ ∈ ΦL at time s with ΛS({s}×{ϕ})(ω) 6= 0,

we obtain

[A,A]t =
∑

0<s≤t

∑
ϕ∈ΦL

ϕ2(V ϕ
s−)

2ΛS({s} × {ϕ})2,

as desired. Similarly,

[A, V ϕ]t =
∑

0<s≤t

∆As∆V
ϕ
s =

∑
0<s≤t

∑
ϕ̃∈ΦL

ϕ̃V ϕ̃
s−Λ

S({s} × {ϕ̃})

ϕV ϕ
s−∆Ss

according to (2.6). Now observe that for all s ∈ R, ∆Ss = ΛS({s}×R+) =
∑

ϕ∈ΦL
ΛS({s}×{ϕ})

where again for almost every ω there is at most one ϕ ∈ ΦL at time s with ΛS({s}×{ϕ})(ω) 6= 0.

As a result,

[A, V ϕ]t =
∑

0<s≤t

ϕV ϕ
s−
∑
ϕ̃∈ΦL

ϕ̃V ϕ̃
s−Λ

S({s} × {ϕ̃})2 = ϕ(ϕ̃V ϕ
·−V

ϕ̃
·−y

2 ∗ µΛS

t ).

Finally, we have [V̄ (3), V ϕ] = [A, V ϕ] by (3.24).

Proof of Proposition 3.18. First observe that Theorem 3.17(c) ensures the existence of the given

stationary version of V̄ (3) under the assumptions of the present theorem.

We setm1 :=
∫
R+
y νS(dy) = E[S1],m2 :=

∫
R+
y2 νS(dy) = Var[S1] and assume w.l.o.g. π({0}) =

0. For the mean we use (2.11) and obtain

E[V̄ (3)
t ] = E[V̄ (3)

0 ] =
β

η
+ E

[∫
(−∞,0]

eηs dAs

]
=
β

η
+m1

∫
(−∞,0]

eηs ds

∫
ΦL

ϕE[V ϕ
0 ]π(dϕ)

=
β

η
− β

η

∫
ΦL

(
1 +

η

m1ϕ− η

)
π(dϕ) = −

∫
ΦL

β

m1ϕ− η
π(dϕ) =

∫
ΦL

E[V ϕ
0 ]π(dϕ).
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To compute the autocovariance function of V̄ (3) observe that for t ≥ 0, h ≥ 0 we have from

(3.29)

Cov[V̄
(3)
t , V̄

(3)
t+h] = e−2ηte−ηhE

[∫
(−∞,t]

eηs dAs

∫
(−∞,t+h]

eηs dAs

]

− E

[∫
(−∞,t]

e−η(t−s) dAs

]
E

[∫
(−∞,t+h]

e−η(t+h−s) dAs

]

=e−2ηte−ηh

E

(∫
(−∞,t]

eηs dAs

)2
+ E

[∫
(−∞,t]

eηs dAs

∫ t+h

t
eηs dAs

]
− m2

1

η2

(∫
ΦL

ϕE[V ϕ
0 ]π(dϕ)

)2

=: e−2ηte−ηh(E1 + E2)−
m2

1

η2

(∫
ΦL

ϕE[V ϕ
0 ]π(dϕ)

)2

. (6.8)

For E1 we can use integration by parts (see [20, Eq. I.4.45]) together with [26, Thms. II.19 and

VI.29] and Lemma 6.5 to obtain

E1 = 2E

[∫
(−∞,t]

(∫
(−∞,s)

eηr dAr

)
eηs dAs

]
+ E

[∫
(−∞,t]

e2ηs d[A,A]s

]

= 2m1

∫
ΦL

∫
(−∞,t]

E

[(∫
(−∞,s]

eηr dAr

)
V ϕ
s

]
eηsϕds π(dϕ)

+m2

∫
ΦL

∫
(−∞,t]

e2ηsϕ2E[(V ϕ
s )2] ds π(dϕ)

= 2m1

∫
ΦL

∫
(−∞,t]

g(s, ϕ)eηsϕds π(dϕ) +
m2

2η
e2ηt

∫
ΦL

ϕ2E[(V ϕ
0 )2]π(dϕ), (6.9)

where g(s, ϕ) := E
[
V ϕ
s

∫
(−∞,s] e

ηr dAr

]
. Then again using integration by parts, Lemmas 6.3 and

6.5 and Eqs. (2.4), (2.6), (2.20) and (2.11), we obtain

g(s, ϕ) = E

[∫
(−∞,s]

∫
(−∞,r)

eηu dAu dV
ϕ
r

]
+ E

[∫
(−∞,s]

V ϕ
r−e

ηr dAr

]
+ E

[∫
(−∞,s]

eηr d[A, V ϕ]r

]

= E

[∫
(−∞,s]

(∫
(−∞,r]

eηu dAu

)
(β − ηV ϕ

r ) dr

]
+ E

[∫
(−∞,s]

(∫
(−∞,r)

eηu dAu

)
ϕV ϕ

r− dSr

]

+ E

[∫
(−∞,s]

V ϕ
r−e

ηr dAr

]
+ E

[∫
(−∞,s]

eηr d[A, V ϕ]r

]

= βm1

∫
(−∞,s]

∫
(−∞,r]

eηu du dr

∫
ΦL

ϕ̃E[V ϕ̃
0 ]π(dϕ̃) + (m1ϕ− η)

∫
(−∞,s]

g(r, ϕ) dr

+m1

∫
(−∞,s]

eηr dr

∫
ΦL

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃) +m2ϕ

∫
(−∞,s]

eηr dr

∫
ΦL

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃)

=
eηs

η

(
m1β

η

∫
ΦL

ϕ̃E[V ϕ̃
0 ]π(dϕ̃) + (m1 +m2ϕ)

∫
ΦL

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃)

)
+Ψ(1, ϕ)

∫
(−∞,s]

g(r, ϕ) dr
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=
eηs

η
C(ϕ) + Ψ(1, ϕ)

∫
(−∞,s]

g(r, ϕ) dr,

with

C(ϕ) :=

∫
ΦL

C(ϕ, ϕ̃)π(dϕ̃), C(ϕ, ϕ̃) := −m1

η
Ψ(1, ϕ)ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ] + (m1 +m2ϕ)ϕ̃E[V ϕ

0 V
ϕ̃
0 ].

Solving this integral equation yields g(s, ϕ) = C(ϕ)eηs

η−Ψ(1,ϕ) . Inserting this result in (6.9) gives

E1 =
m1

η
e2ηt

∫
ΦL

ϕC(ϕ)

η −Ψ(1, ϕ)
π(dϕ) +

m2

2η
e2ηt

∫
ΦL

ϕ2E[(V ϕ
0 )2]π(dϕ).

Let us turn to E2 and denote the augmented natural filtration of ΛL by G(3) = (G(3)
t )t∈R.

Now taking conditional expectation w.r.t. G(3)
t and observing that V ϕ, V̄ (3) as well as A are all

adapted to G(3), we obtain

E2 = E

[(∫
(−∞,t]

eηs dAs

)
E
[∫ t+h

t

∫
ΦL

eηsϕV ϕ
s− ΛS(ds,dϕ)

∣∣∣∣G(3)
t

]]
.

Observing that the restriction of ΛS on (t, t+ h] is independent of Ft, we have

E2 = E

[(∫
(−∞,t]

eηs dAs

)
m1

∫
ΦL

∫
(t,t+h]

eηsϕE[V ϕ
s−|G

(3)
t ] ds π(dϕ)

]
.

According to [23, Eq. (4.5)] we have E[V ϕ
s−|G

(3)
t ] = (V ϕ

t − E[V ϕ
0 ])e(s−t)Ψ(1,ϕ) + E[V ϕ

0 ] for s > t.

So we get

E2 = m1E

[(∫
(−∞,t]

eηs dAs

)∫
ΦL

∫
(t,t+h]

eηsϕ
(
(V ϕ

t − E[V ϕ
0 ])e(s−t)Ψ(1,ϕ) + E[V ϕ

0 ]
)
ds π(dϕ)

]

= m1

∫
ΦL

ϕE

[
V ϕ
t

∫
(−∞,t]

eηs dAs

]∫
(t,t+h]

eηse(s−t)Ψ(1,ϕ) ds π(dϕ)

+m1E

[∫
(−∞,t]

eηs dAs

]∫
ΦL

ϕE[V ϕ
0 ]

∫
(t,t+h]

eηs(1− e(s−t)Ψ(1,ϕ)) ds π(dϕ)

=

∫
ΦL

g(t, ϕ)eηt(em1ϕh − 1)π(dϕ)

+m2
1

∫
(−∞,t]

eηs ds

∫
ΦL

ϕE[V ϕ
0 ]π(dϕ)

∫
ΦL

ϕE[V ϕ
0 ]eηt

(
eηh − 1

η
− em1ϕh − 1

m1ϕ

)
π(dϕ)

= e2ηt

(∫
ΦL

C(ϕ)

η −Ψ(1, ϕ)
(em1ϕh − 1)π(dϕ) +

m2
1

η2
(eηh − 1)

(∫
ΦL

ϕE[V ϕ
0 ]π(dϕ)

)2

−m1

η

∫
ΦL

ϕE[V ϕ
0 ]π(dϕ)

∫
ΦL

E[V ϕ
0 ](em1ϕh − 1)π(dϕ)

)
.

Now inserting the results for E1 and E2 in (6.8), we obtain

Cov[V̄
(3)
t , V̄

(3)
t+h] = e−ηh

(
m1

η

∫
ΦL

ϕC(ϕ)

η −Ψ(1, ϕ)
π(dϕ) +

m2

2η

∫
ΦL

ϕ2E[(V ϕ
0 )2]π(dϕ)

)
+

∫
ΦL

C(ϕ)

η −Ψ(1, ϕ)
(eΨ(1,ϕ)h − e−ηh)π(dϕ)− m2

1

η2
e−ηh

(∫
ΦL

ϕE[V ϕ
0 ]π(dϕ)

)2
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− m1

η

∫
ΦL

ϕ̃E[V ϕ̃
0 ]π(dϕ̃)

∫
ΦL

E[V ϕ
0 ](eΨ(1,ϕ)h − e−ηh)π(dϕ)

=

∫
ΦL

∫
ΦL

(
C(ϕ, ϕ̃)

η −Ψ(1, ϕ)
− m1

η
ϕ̃E[V ϕ̃

0 ]E[V ϕ
0 ]

)
eΨ(1,ϕ)h π(dϕ)π(dϕ̃)

+ e−ηh

∫
ΦL

∫
ΦL

(
m1ϕC(ϕ, ϕ̃)

η(η −Ψ(1, ϕ))
+
m2ϕ

2E[(V ϕ
0 )2]

2η
− C(ϕ, ϕ̃)

η −Ψ(1, ϕ)

−m
2
1

η2
ϕϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ] +

m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

)
π(dϕ)π(dϕ̃), (6.10)

where using Proposition 3.11 together with Eqs. (2.4) and (6.1) gives

C(ϕ, ϕ̃)

η −Ψ(1, ϕ)
− m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

= − m1Ψ(1, ϕ)ϕ̃E[V ϕ
0 ]E[V ϕ̃

0 ]

η(η −Ψ(1, ϕ))
+

(m1 +m2ϕ)ϕ̃E[V ϕ
0 V

ϕ̃
0 ]

η −Ψ(1, ϕ)
− m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

=
(m1 +m2ϕ)ϕ̃

η −Ψ(1, ϕ)
E[V ϕ

0 V
ϕ̃
0 ]− m1ϕ̃

η(η −Ψ(1, ϕ))
E[V ϕ

0 ]E[V ϕ̃
0 ](Ψ(1, ϕ) + η −Ψ(1, ϕ))

=
η +Ψ(1, ϕ̃) + h(ϕ, ϕ̃)−Ψ(1, ϕ)−Ψ(1, ϕ̃)

η −Ψ(1, ϕ)
E[V ϕ

0 V
ϕ̃
0 ]− η +Ψ(1, ϕ̃)

η −Ψ(1, ϕ)
E[V ϕ

0 ]E[V ϕ̃
0 ]

=

(
1 +

h(ϕ, ϕ̃)

η −Ψ(1, ϕ)

)
E[V ϕ

0 V
ϕ̃
0 ]−

(
1 +

Ψ(1, ϕ) + Ψ(1, ϕ̃)

η −Ψ(1, ϕ)

)
E[V ϕ

0 ]E[V ϕ̃
0 ]

= Cov[V ϕ
0 , V

ϕ̃
0 ], (6.11)

while for the second part of (6.10) by Eqs. (2.4), (2.11) and (2.13)

m1ϕC(ϕ, ϕ̃)

η(η −Ψ(1, ϕ))
+
m2ϕ

2E[(V ϕ
0 )2]

2η
− C(ϕ, ϕ̃)

η −Ψ(1, ϕ)
− m2

1

η2
ϕϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ] +

m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

=
Ψ(1, ϕ)C(ϕ, ϕ̃)

η(η −Ψ(1, ϕ))
+

(
Ψ(2, ϕ)− 2Ψ(1, ϕ)

)
2η

E[(V ϕ
0 )2]− m1ϕ̃Ψ(1, ϕ)

η2
E[V ϕ

0 ]E[V ϕ̃
0 ]

=: F1 + F2 + F3. (6.12)

Now observe that by (2.12) and (2.11)

F2 =
Ψ(2, ϕ)

2η
E[(V ϕ

0 )2]− Ψ(1, ϕ)

η
E[(V ϕ

0 )2] = −β
η
E[V ϕ

0 ] +
β

η

E[(V ϕ
0 )2]

E[V ϕ
0 ]

,

while

F3 = − (Ψ(1, ϕ̃) + η)Ψ(1, ϕ)

η2
E[V ϕ

0 ]E[V ϕ̃
0 ] = −β

2

η2
+

Ψ(1, ϕ)

η
Cov[V ϕ

0 , V
ϕ̃
0 ]− Ψ(1, ϕ)

η
E[V ϕ

0 V
ϕ̃
0 ]

= − β2

η2
− β

η

Cov[V ϕ
0 , V

ϕ̃
0 ]

E[V ϕ
0 ]

+
β

η

E[V ϕ
0 V

ϕ̃
0 ]

E[V ϕ
0 ]

.

On the other hand we obtain by similar means

Ψ(1, ϕ)C(ϕ, ϕ̃) =
(m1 +m2ϕ)ϕ̃β

2(Ψ(1, ϕ) + Ψ(1, ϕ̃))

h(ϕ, ϕ̃)Ψ(1, ϕ̃)
− m1β

2ϕ̃Ψ(1, ϕ)

ηΨ(1, ϕ̃)

=
β2

ηΨ(1, ϕ̃)h(ϕ, ϕ̃)
(η(m1 +m2ϕ)ϕ̃(Ψ(1, ϕ) + Ψ(1, ϕ̃))−m1ϕ̃Ψ(1, ϕ)h(ϕ, ϕ̃))
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=
β2(η −Ψ(1, ϕ))

ηΨ(1, ϕ̃)h(ϕ, ϕ̃)

(
h(ϕ, ϕ̃)Ψ(1, ϕ̃) + η(Ψ(1, ϕ) + Ψ(1, ϕ̃))

)
such that by Proposition 3.11

F1 =
β2

η2
− β

η

E[V ϕ
0 V

ϕ̃
0 ]

E[V ϕ
0 ]

.

Finally inserting (6.11) and (6.12) with the obtained formulas for F1, F2 and F3 in (6.10) gives

Cov[V̄
(3)
t , V̄

(3)
t+h] =

∫
ΦL

∫
ΦL

(
Cov[V ϕ

0 , V
ϕ̃
0 ]eΨ(1,ϕ)h

+ e−ηh

(
−β
η
E[V ϕ

0 ] +
β

η

E[(V ϕ
0 )2]

E[V ϕ
0 ]

− β

η

Cov[V ϕ
0 , V

ϕ̃
0 ]

E[V ϕ
0 ]

))
π(dϕ)π(dϕ̃),

which yields the result.

Proof of Proposition 3.19. To show the assertion for κ < κ̄ we use P[V̄ (3)
0 > x] ≤ P[V ϕ̄

0 > x] and

proceed as in the proof of Proposition 3.5. For the other cases, observe that

V̄
(3)
0

d
=
β

η
+

∫
R+

∫
ΦL

e−ηtϕV ϕ
t− ΛS(dt,dϕ) =

∞∑
i=1

e−ηTiϕiV
ϕi

Ti−∆STi ,

where (Ti)i∈N are the jump times of S and (ϕi)i∈N is an i.i.d. sequence with common distribution

π which is also independent of S. We start by proving that, if I is a measurable subset of ΦL

with π(I) =: p > 0 and ϕ ∈ ΦL, then there are constants 0 < C∗(ϕ, p), C
∗(ϕ, p) < ∞, only

dependent on I via p, with

C∗(ϕ, p) = lim inf
x→∞

xκ(ϕ)P
[ ∑
ϕi∈I

e−ηTiϕV ϕ
Ti−∆STi > x

]
(6.13)

≤ lim sup
x→∞

xκ(ϕ)P
[ ∑
ϕi∈I

e−ηTiϕV ϕ
Ti−∆STi > x

]
= C∗(ϕ, p)

and moreover, if p→ 0, then C∗(ϕ, p), C
∗(ϕ, p) → 0.

We abbreviate the sum in (6.13) by V (ϕ, I) or V (I). Since the sequence (ϕi)i∈N is independent

of everything else, the distribution of V (I) only depends on p, which means that the constants

C∗(ϕ, p) =: C∗(p) and C
∗(ϕ, p) =: C∗(p) only depend on p. Also, they are obviously decreasing in

p. Hence, for the claimed convergence to 0, it suffices to show C∗(2−n) ≤ ((1+ 2−κ(ϕ))/2)nC(ϕ)

for all n ∈ N0, where C(ϕ) is the tail constant of V
ϕ
0 as in the proof of Proposition 3.5. The case

n = 0 corresponds to V (I)
d
= V ϕ

0 and the statement is clear. For n ≥ 1, find a set I ′ disjoint

with I such that π(I ′) = π(I) = 2−n and therefore π(J) = 2−(n−1) for J = I ∪ I ′. Since

P[V (J) > x] = P[V (I) + V (I ′) > x] ≥ 2P[V (I) > x]− P[V (I) > x, V (I ′) > x]

≥ 2P[V (I) > x]− P[V (J) > 2x],

we have by induction

C∗(2−n) = lim sup
x→∞

xκ(ϕ)P[V (I) > x] ≤ 1 + 2−κ(ϕ)

2
C∗(2−(n−1)).

It remains to show that C∗(p) < ∞ and C∗(p) > 0 for all p > 0. Again by monotonicity, the

first inequality is obvious and in the second inequality we only need to consider p = 1/n. To this

end, partition ΦL into n disjoint sets (Ik)k=1,...,n, each with π(Ik) = 1/n. Then observe that

P[V ϕ
0 > x] ≤ P[V (I1) > x/n or . . . or V (In) > x/n] ≤ nP[V (I1) > x/n],
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which implies

C∗(1/n) = lim inf
x→∞

xκ(ϕ)P[V (I1) > x] ≥ Cn−(κ(ϕ)+1) > 0.

Let us come back to the main line of the proof of Proposition 3.19. If ϕ < ϕ̄, then we have

by the above

lim inf
x→∞

xκP[V̄ (3)
0 > x] ≥ lim inf

x→∞
xκP

[
V (ϕ, [ϕ, ϕ̄]) > x

]
→ ∞

for all κ > κ(ϕ) and therefore, by the same argument as in the proof of Proposition 3.5, for all

κ > κ̄.

Next, consider the case κ = κ̄ and p̄ = 0. Then, again by the above and the proof of [24,

Lemma 2]

lim sup
x→∞

xκ̄P[V̄ (3)
0 > x] ≤ lim sup

x→∞
xκ̄P

[
V (ϕ, (0, ϕ]) + V (ϕ̄, (ϕ, ϕ̄]) > x

]
= lim sup

x→∞
xκ̄P

[
V (ϕ̄, (ϕ, ϕ̄]) > x

]
= C∗(ϕ̄, π((ϕ, ϕ̄])),

which converges to 0 as ϕ→ ϕ̄. For the case p̄ > 0 first decompose

V̄
(3)
0 =

β

η
+
∑
ϕi 6=ϕ̄

e−TiϕiV
ϕi

Ti−∆STi + V (ϕ̄, {ϕ̄}) =:
β

η
+ Z + V (ϕ̄, {ϕ̄})

and observe that lim supx→∞ xκ̄P[Z > x] = 0 by the results so far. Reading along the lines of

the proof of [24, Lemma 2], we obtain

lim inf
x→∞

xκ̄P[V̄ (3)
0 > x] = lim inf

x→∞
xκ̄P[V (ϕ̄, {ϕ̄}) > x] = C∗(ϕ̄, p̄),

lim sup
x→∞

xκ̄P[V̄ (3)
0 > x] = lim sup

x→∞
xκ̄P[V (ϕ̄, {ϕ̄}) > x] = C∗(ϕ̄, p̄),

which finishes the proof.

6.4 Proofs for Section 4

Proof of Theorem 4.1. First observe that the assumption that π has support in Φ
(κ)
L implies

E
[
(V̄

(1)
t )κ

]
<∞. Therefore, E[Lϕ1

1 ] = 0 implies

E[∆rG
(1)
t ] = E

[∫
(t,t+r]

√
V̄

(1)
s dLϕ1

s

]
= 0.

Next assume E[L2
1] < ∞. Using integration by parts and the fact that G(1) has stationary

increments, we have

E[(∆rG
(1)
t )2] = E[(G(1)

r )2] = 2E

[∫
(0,r]

G
(1)
s−

√
V̄

(1)
s− dLϕ1

s

]
+ E

[∫
(0,r]

V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s

]
= 0 + Var[L1]E[V̄

(1)
0 ]r,

which, together with Proposition 3.12 and the relation between S and L in (2.1), gives the stated

formula. Furthermore, for h ≥ r > 0 we have, in view of the above computations and again using

integration by parts,

Cov[∆rG
(1)
t ,∆rG

(1)
t+h] = E

[
∆rG

(1)
t ∆rG

(1)
t+h

]
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= E

[∫
(0,t+h+r]

1(t,t+r](s)

√
V̄

(1)
s− dLϕ1

s

∫
(0,t+h+r]

1(t+h,t+h+r](u)

√
V̄

(1)
u− dLϕ1

u

]

= E

[∫
(0,t+h+r]

1(t,t+r](s)1(t+h,t+h+r](s)V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s

]

+ E

[∫
(0,t+h+r]

(∫
(0,u]

1(t,t+r](s)

√
V̄

(1)
s− dLϕ1

s

)
1(t+h,t+h+r](u)

√
V̄

(1)
u− dLϕ1

u

]

+ E

[∫
(0,t+h+r]

(∫
(0,u]

1(t+h,t+h+r](s)

√
V̄

(1)
s− dLϕ1

s

)
1(t,t+r](u)

√
V̄

(1)
u− dLϕ1

u

]
= 0.

To compute the covariance of the squared increments, let G(1) = (G(1)
t )t≥0 denote the augmented

natural filtration of (Lϕi)i∈N and observe that

E
[
(∆rG

(1)
0 )2(∆rG

(1)
h )2

]
= E

[
E
[
(∆rG

(1)
0 )2(∆rG

(1)
h )2|G(1)

r

]]
= E

[
(∆rG

(1)
0 )2E

[
(∆rG

(1)
h )2|G(1)

r

]]
,

where again by integration by parts

E
[
(∆rG

(1)
h )2)|G(1)

r

]
= E

(∫
(h,h+r]

√
V̄

(1)
s dLϕ1

s

)2
∣∣∣∣∣∣G(1)

r


= 2E

[∫
(h,h+r]

(∫
(0,s]

√
V̄

(1)
u− dLϕ1

u

)√
V̄

(1)
s− dLϕ1

s

∣∣∣∣∣G(1)
r

]
+ E

[∫
(h,h+r]

V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s

∣∣∣∣∣G(1)
r

]

= 0 + E[L2
1]

∫
(h,h+r]

E[V̄ (1)
s− |G(1)

r ] ds.

Next, for s > r we obtain, using the notation as in the proof of Proposition 3.11,

E
[
V̄ (1)
s |G(1)

r

]
=

∫
Φ

(1)
L

E
[
V ϕ
s |G(1)

r

]
π(dϕ) =

∫
Φ

(1)
L

E
[
(Aϕ

r,sV
ϕ
r +Bϕ

r,s)|G(1)
r

]
π(dϕ)

=

∫
Φ

(1)
L

(
E[Aϕ

r,s]V
ϕ
r + E[Bϕ

r,s]
)
π(dϕ)

=

∫
Φ

(1)
L

(
e(s−r)Ψ(1,ϕ)V ϕ

r + E[V ϕ
0 ]
(
1− e(s−r)Ψ(1,ϕ)

))
π(dϕ).

Together with the preceding computations, this yields

Cov[(∆rG
(1)
0 )2, (∆rG

(1)
h )2]

= E

[
(∆rG

(1)
0 )2E[L2

1]

∫
(h,h+r]

E[V̄ (1)
s− |G(1)

r ] ds

]
− E

[
(∆rG

(1)
0 )2

]
E
[
(∆rG

(1)
h )2)

]
= E[L2

1]E

[
(∆rG

(1)
0 )2

∫
(h,h+r]

∫
Φ

(1)
L

(
e(s−r)Ψ(1,ϕ)V ϕ

r + E[V ϕ
0 ]
(
1− e(s−r)Ψ(1,ϕ)

))
π(dϕ) ds

]
−
(
E
[
(∆rG

(1)
0 )2

])2
= E[L2

1]E

[
(∆rG

(1)
0 )2

∫
Φ

(1)
L

1

Ψ(1, ϕ)

(
ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

)
(V ϕ

r − E[V ϕ
0 ]) + rE[V ϕ

0 ]π(dϕ)

]
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−
(
E
[
(∆rG

(1)
0 )2

])2
= E[L2

1]

∫
Φ

(1)
L

1

Ψ(1, ϕ)

(
ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

)(
E[(∆rG

(1)
0 )2V ϕ

r ]− E[(∆rG
(1)
0 )2]E[V ϕ

r ]
)
π(dϕ)

+ E[(∆rG
(1)
0 )2]rE[L2

1]

∫
Φ

(1)
L

E[V ϕ
0 ]π(dϕ)−

(
E
[
(∆rG

(1)
0 )2

])2
= E[L2

1]

∫
Φ

(1)
L

1

Ψ(1, ϕ)

(
ehΨ(1,ϕ) − e(h−r)Ψ(1,ϕ)

)
Cov[(∆rG

(1)
0 )2, V ϕ

r ]π(dϕ).

It remains to prove Cov[(∆rG
(1)
0 )2, V ϕ

r ] ≥ 0 with strict inequality if π({ϕ}) > 0 in order to obtain

the claimed positivity of the covariance of the squared increments. Again using integration by

parts, we get

(∆rG
(1)
0 )2 =

(∫
(0,r]

√
V̄

(1)
s− dLϕ1

s

)2

= 2Mr +

∫
(0,r]

V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s,

where

Mr :=

∫
(0,r]

√
V̄

(1)
s−

(∫
(0,s)

√
V̄

(1)
u− dLϕ1

u

)
dLϕ1

s

satisfies E[Mr] = 0 due to E[L1] = 0 and

E[MrV
ϕ
r ] = E

[∫
(0,r]

Ms(β − ηV ϕ
s ) ds

]
+ E

[∫
(0,r]

Ms−ϕV
ϕ
s− dSϕ

s

]
+ E

[∫
(0,r]

V ϕ
s− dMs

]
+ E

[
[V ϕ,M ]r

]
= Ψ(1, ϕ)

∫
(0,r]

E[MsV
ϕ
s ] ds+ E

[
[V ϕ,M ]r

]
. (6.14)

Applying
∫
R y

3 νL(dy) = 0 and the independence of Lϕ and Lϕ1 , if ϕ 6= ϕ1, we have

E
[
[V ϕ,M ]r

]
= ϕE

[∫
(0,r]

V ϕ
s−

√
V̄

(1)
s−

(∫
(0,s)

√
V̄

(1)
u− dLϕ1

u

)
d[Lϕ1 , Sϕ]s

]
(6.15)

=


0 if ϕ 6= ϕ1,

ϕ

∫
R
y3 νL(dy)

∫
(0,r]

E

[
V ϕ
s−

√
V̄

(1)
s−

(∫
(0,s)

√
V̄

(1)
u− dLϕ1

u

)]
ds = 0 if ϕ = ϕ1.

Therefore, (6.14) together with the fact that E[M0V
ϕ
0 ] = 0 implies that E[MrV

ϕ
r ] = 0 for all

r ≥ 0. As a consequence, we have

Cov[(∆rG
(1)
0 )2, V ϕ

r ] = Cov

[
2Mr +

∫
(0,r]

V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s, V

ϕ
r

]

= E

[
V ϕ
r

∫
(0,r]

V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s

]
− E[V ϕ

1 ]E

[∫
(0,r]

V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s

]

= E

[
V ϕ
r

∫
(0,r]

V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s

]
− rE[L2

1]E[V̄
(1)
0 ]E[V ϕ

0 ],
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where an application of the integration by parts formula yields

f(r) := E

[
V ϕ
r

∫
(0,r]

V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s

]

= E[L2
1]

∫
(0,r]

E[V ϕ
s V̄

(1)
s ] ds+ β

∫
(0,r]

E

[∫
(0,s]

V̄
(1)
u− d[Lϕ1 , Lϕ1 ]u

]
ds

+Ψ(1, ϕ)

∫
(0,r]

E

[
V ϕ
s

∫
(0,s]

V̄
(1)
u− d[Lϕ1 , Lϕ1 ]u

]
ds+ E

[∫
(0,r]

V̄
(1)
s− d

[
Sϕ1 , V ϕ

]
s

]

= E[L2
1]E[V

ϕ
0 V̄

(1)
0 ]r + βE[L2

1]E[V̄
(1)
0 ]

r2

2
+ Ψ(1, ϕ)

∫
(0,r]

f(s) ds

+ 1{ϕ=ϕ1}ϕ

∫
R
y2 νS(dy)E[V ϕ

0 V̄
(1)
0 ]r,

f(0) = 0.

Solving this integral equation yields (m2 :=
∫
R y

2 νS(dy))

f(r) =
(E[L2

1] + 1{ϕ=ϕ1}ϕm2)E[V ϕ
0 V̄

(1)
0 ]Ψ(1, ϕ)(eΨ(1,ϕ)r − 1)

Ψ(1, ϕ)2

+
βE[L2

1]E[V̄
(1)
0 ](−Ψ(1, ϕ)r + eΨ(1,ϕ)r − 1)

Ψ(1, ϕ)2
,

which by (2.11) yields the claimed positive correlation, since

Cov[(∆rG
(1)
0 )2, V ϕ

r ] = f(r)− E[L2
1]E[V

ϕ
0 ]E[V̄ (1)

0 ]r (6.16)

=
(E[L2

1] + 1{ϕ=ϕ1}ϕm2)E[V ϕ
0 V̄

(1)
0 ]Ψ(1, ϕ)(eΨ(1,ϕ)r − 1) + βE[L2

1]E[V̄
(1)
0 ](eΨ(1,ϕ)r − 1)

Ψ(1, ϕ)2

=
eΨ(1,ϕ)r − 1

Ψ(1, ϕ)

(
E[L2

1]Cov[V
ϕ
0 , V̄

(1)
0 ] + 1{ϕ=ϕ1}ϕ

∫
R
y2 νS(dy)E[V ϕ

0 V̄
(1)
0 ]

)
≥ 0

with Cov[V ϕ
0 , V̄

(1)
0 ] = π({ϕ})Var[V ϕ

1 ].

Proof of Theorem 4.2. The proof works similarly to the proof of Theorem 4.1 with the obvi-

ous changes, when independence of the single COGARCH processes was used (e.g. (6.15)).

Also replace G(1) by G(2) = (G(2)
t )t∈R, the augmented natural filtration of L, and notice that

Cov[V ϕ
0 , V̄

(2)
0 ] =

∫
Φ

(2)
L

Cov[V ϕ
0 , V

ϕ̃
0 ]π(dϕ̃) > 0 by Proposition 3.18.

Proof of Theorem 4.3. Analogously to the proof of Theorem 4.1, one can show that (a) and (b)

hold and that for (c) we have

E
[
(∆rG

(3)
0 )2(∆rG

(3)
h )2

]
= E[L2

1]E

[
(∆rG

(3)
0 )2

∫
(h,h+r]

E[V̄ (3)
s− |G(3)

r ] ds

]
, (6.17)

where from (3.29) and [23, Eq. (4.5)] we have

E[V̄ (3)
s− |G(3)

r ] = e−η(s−r)V̄ (3)
r + βe−ηs

∫
(r,s)

eηudu+ E

[∫
(r,s)

∫
Φ

(2)
L

e−η(s−u)ϕV ϕ
u− ΛS(du,dϕ)

∣∣∣∣∣G(3)
r

]
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= e−η(s−r)V̄ (3)
r +

β

η
(1− e−η(s−r)) + E[S1]

∫
(r,s]

∫
Φ

(2)
L

e−η(s−u)ϕE[V ϕ
u−|G(3)

r ]π(dϕ) du

= e−η(s−r)V̄ (3)
r +

β

η
(1− e−η(s−r))

+ E[S1]
∫
(r,s]

∫
Φ

(2)
L

e−η(s−u)ϕ
(
(V ϕ

r − E[V ϕ
0 ])e(u−r)Ψ(1,ϕ) + E[V ϕ

0 ]
)
π(dϕ) du.

Applying (2.11) we obtain

E[S1]
∫
(r,s]

∫
Φ

(2)
L

e−η(s−u)ϕ
(
(V ϕ

r − E[V ϕ
0 ])e(u−r)Ψ(1,ϕ) + E[V ϕ

0 ]
)
π(dϕ) du

= E[S1]
∫
Φ

(2)
L

(
ϕ(V ϕ

r − E[V ϕ
0 ])

ϕE[S1]

(
eΨ(1,ϕ)(s−r) − e−η(s−r)

)
+
ϕE[V ϕ

0 ]

η

(
1− e−η(s−r)

))
π(dϕ)

=

∫
Φ

(2)
L

eΨ(1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ])π(dϕ)− e−η(s−r)

(∫
Φ

(2)
L

V ϕ
r π(dϕ)− E[V̄ (3)

0 ]

)

+
(
1− e−η(s−r)

)∫
Φ

(2)
L

E[S1]ϕ
η

−β
Ψ(1, ϕ)

π(dϕ)

=

∫
Φ

(2)
L

eΨ(1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ])π(dϕ)− e−η(s−r)

(∫
Φ

(2)
L

V ϕ
r π(dϕ)− E[V̄ (3)

0 ]

)

− β

η

(
1− e−η(s−r)

)∫
Φ

(2)
L

(
1 +

η

Ψ(1, ϕ)

)
π(dϕ)

=

∫
Φ

(2)
L

eΨ(1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ])π(dϕ)− e−η(s−r)

∫
Φ

(2)
L

V ϕ
r π(dϕ)− β

η

(
1− e−η(s−r)

)
+ E[V̄ (3)

0 ]

such that

E[V̄ (3)
s− |G(3)

r ] = e−η(s−r)

(
V̄ (3)
r −

∫
Φ

(2)
L

V ϕ
r π(dϕ)

)
+

∫
Φ

(2)
L

eΨ(1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ])π(dϕ) + E[V̄ (3)
0 ].

Inserting this into (6.17) yields

Cov[(∆rG
(3)
0 )2, (∆rG

(3)
h )2]

= E[L2
1]E

[
(∆rG

(3)
0 )2

∫
(h,h+r]

E[V̄ (3)
s− |G(3)

r ] ds

]
− E[(∆rG

(3)
0 )2]2

= E[L2
1]E

[
(∆rG

(3)
0 )2

(
e−ηh − e−η(h−r)

−η

(
V̄ (3)
r −

∫
Φ

(2)
L

V ϕ
r π(dϕ)

))

+

∫
Φ

(2)
L

eΨ(1,ϕ)h − eΨ(1,ϕ)(h−r)

Ψ(1, ϕ)
(V ϕ

r − E[V ϕ
0 ])π(dϕ)

]

= E[L2
1]

[
e−ηh − e−η(h−r)

−η
Cov[(∆rG

(3)
0 )2, V̄ (3)

r ]

+

∫
Φ

(2)
L

(
eΨ(1,ϕ)h − eΨ(1,ϕ)(h−r)

Ψ(1, ϕ)
− e−ηh − e−η(h−r)

−η

)
Cov[(∆rG

(3)
0 )2, V ϕ

r ]π(dϕ)

]
.

Since Ψ(1, ϕ) > −η and the function x 7→ (ehx−e(h−r)x)/x is increasing in x for x < 0, it remains

to prove Cov[(∆rG
(3)
0 )2, V̄

(3)
r ] > 0 and Cov[(∆rG

(3)
0 )2, V ϕ

r ] > 0. For the latter one, proceed as in
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the proof of Theorem 4.1 and note that Cov[V ϕ
0 , V̄

(3)
0 ] > 0. Indeed, using integration by parts,

V ϕ
r V̄

(3)
r = V ϕ

0 V̄
(3)
0 +

∫
(0,r]

V̄
(3)
s− dV ϕ

s +

∫
(0,r]

V ϕ
s− dV̄ (3)

s + [V ϕ, V̄ (3)]r

= V ϕ
0 V̄

(3)
0 +

∫
(0,r]

V̄ (3)
s (β − ηV ϕ

s ) ds+

∫
(0,r]

V̄
(3)
s− ϕV

ϕ
s− dSs +

∫
(0,r]

V ϕ
s−(β − ηV̄ (3)

s ) ds

+

∫
(0,r]

∫
Φ

(2)
L

V ϕ
s−ϕ̃V

ϕ̃
s− ΛS(ds,dϕ̃) + ϕ

∫
(0,r]

∫
Φ

(2)
L

∫
R+

V ϕ
s−ϕ̃V

ϕ̃
s−y

2 µΛ
S
(ds,dϕ̃,dy),

with [V ϕ, V̄ (3)]r as given in Lemma 6.5. Taking expectations, differentiating w.r.t. r and using the

stationarity of V ϕV̄ (3), which is a consequence of Lemma 6.3, we find that (m1 :=
∫
R+
y νS(dy)

and m2 :=
∫
R+
y2 νS(dy))

β(E[V̄ (3)
0 ] + E[V ϕ

0 ]) + (ϕm1 − 2η)E[V ϕ
0 V̄

(3)
0 ] + (m1 + ϕm2)

∫
Φ

(2)
L

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃) = 0,

which implies that

Cov[V̄
(3)
0 , V ϕ

0 ]

=
β(E[V̄ (3)

0 ] + E[V ϕ
0 ]) + (m1 + ϕm2)

∫
Φ

(2)
L

ϕ̃E[V ϕ
0 V

ϕ̃
0 ]π(dϕ̃)− (η −Ψ(1, ϕ))E[V̄ (3)

0 ]E[V ϕ
0 ]

η −Ψ(1, ϕ)
.

To show the positivity of this term, we only have to consider the numerator, which by (2.11),

(3.30) and (6.1) can be simplified to∫
Φ

(2)
L

(m1 + ϕm2)ϕ̃Cov[V
ϕ
0 , V

ϕ̃
0 ]π(dϕ̃) + β(E[V̄ (3)

0 ] + E[V ϕ
0 ]) + h(ϕ, ϕ̃)E[V ϕ

0 ]E[V̄ (3)
0 ]

=

∫
Φ

(2)
L

(m1 + ϕm2)ϕ̃Cov[V
ϕ
0 , V

ϕ̃
0 ]π(dϕ̃) + β2m2

∫
Φ

(2)
L

ϕϕ̃

Ψ(1, ϕ)Ψ(1, ϕ̃)
π(dϕ̃) > 0.

Finally, using the same methods as in the proof of Theorem 4.1, one can derive the following

analogue of Eq. (6.16):

Cov[(∆rG
(3)
0 )2, V̄

(3)
0 ] = g(r)− E[L2

1]E[V̄0]2r,

where

g(r) = e−ηr

(∫
(0,r]

eηs

(
a+ bs+

∫
Φ

(2)
L

m1ϕf(ϕ, s)π(dϕ)

)
ds

)
, r ≥ 0,

a = E[L2
1]E[(V̄

(3)
0 )2] +

∫
R+

y2 νS(dy)

∫
Φ

(2)
L

ϕE[V ϕ
0 V̄0]π(dϕ),

b = βE[L2
1]E[V̄

(3)
0 ] and f(ϕ, r) = E

[
V ϕ
r

∫
(0,r]

V̄
(3)
u− d[L,L]u

]
.

The positivity now follows from

Cov[(∆rG
(3)
0 )2, V̄

(3)
0 ] ≥ eηr

∫
(0,r]

e−ηs dsE[L2
1]E[(V̄

(3)
0 )2]− E[L2

1]E[V̄
(3)
0 ]2r

and the fact that eηr
∫
(0,r] e

−ηs ds = (eηr − 1)/η > r for all r > 0.
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editor, École d’Été de Probabilités de Saint Flour XIV - 1984, pages 265–439. Springer,

Berlin, 1986.

42


