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Abstract

Next generation core networks will raise the performance bar for processing modules to at

least 100 Gbps throughput on a single port. Currently Network Processor (NP) vendors

are dealing with higher throughput demands, by increasing the number of processing cores

in their design. The NPU100 is a novel network processor architecture aimed at satisfying

the packet processing requirements of 100 Gbps Carrier Grade Ethernet (CGE) networks,

while reducing power consumption in comparison to available architecture paradigms. To

accomplish this, a multi-layered, deeply pipelined and programmable architecture was

proposed and implemented as an FPGA prototype. The NPU 100 architecture can be

extended and tailored to the demands of various layer 2.5 network architectures.

Conventional programmable approaches, either based on massively parallel general pur-

pose CPUs or multiple lower rate NPs, do not scale towards high speed carrier networks

from a cost, performance (packet throughput) and power dissipation perspective. Archi-

tecture design and development of an integrated, programmable component that satisfies

these requirements is a scientific and technical challenge.

The NPU100 architecture is based on a pipelined approach because of its inherently pre-

dictable behavior and scalable performance. In order to achieve modularity and extendibil-

ity, NPU100 processing modules can be rearranged within each configuration. The NPU100

design is divided in different levels of hierarchy, which can be replicated or arranged as

required. Multiple pipeline stages were grouped into entities called mini pipelines, which

were then placed in parallel to one another. A mini pipeline includes the processing mod-

ules required to complete the quintessential network processing tasks, like address look

ups, packet header field extractions and insertions, and logical and arithmetic operations.

In order to provide necessary degrees of flexibility in case of changing network protocols

or networking applications, the NPU100 pipeline modules are utilizing so called Weakly

Programmable Processing Engines (WPPEs). A WPPE is less flexible than, for example,

a RISC core. It has a reduced networking-specific instruction set (a total of 8 microcom-

mands per module) which is, however, sufficiently flexible to adapt its functionality to layer

2.5 networking requirements. WPPEs are programmed in a high level, C-like, programming

language. A compiler is provided to translate the high level code into the microcommand

machine language and to assign the respective microcommands to the appropriate process-

ing modules. WPPE microprograms can be modified during runtime via a PCI Express

interface without disrupting NPU100 processing. This easy-to-use programming scheme

is one of the core contributions of this work and allows the user to easily leverage the

NPU100’s processing resources without requiring in-depth architectural knowledge or the

writing of low-level code.

The folded, parallel arrangement of NPU100 minipipelines offers significant improve-

ment in power consumption in comparison to a conventional stretched pipelined architec-

ture where all minipipelines are arranged in series. This is due to a combination of two

factors: In case of multiple, stacked MPLS labels or generally, tunneled packet headers,

a minipipeline takes care for the processing of a single label or header. The number of

parallel minipipelines determines the maximum depth of packet header stacking. In case of

packets where fewer (than the maximum number of) headers have to be processed, packet

headers can skip the unused minipipelines which can then be dynamically clock or power

gated. Second, only one label or header must be transported through each minipipeline.
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This leads to a narrower data path in comparison to the stretched pipeline where all

headers traverse all pipeline stages. XPower analysis revealed that the reduction in data

path width resulted in a power consumption improvement of 25%, while the reduction

of traversed pipeline stages can bring this figure up to 78% in the most favorable traffic

scenario. The implemented FPGA prototype runs at a system clock of 66 MHz, accepting

a new 192 bit packet header with every clock cycle and obtaining a throughput of up to

46 Gbps. Synthesis runs with a TSMC 65nm CMOS technology library showed that an

ASIC realization of the design exceeded the 100 Gbps requirements.

Zusammenfassung

Kernnetzwerke der nächsten Generation werden das von Paketverarbeitungsmodulen

verlangte Leistungsniveau auf mindestens einen 100 Gbit/s Durchsatz pro Port erhöhen.

Aktuelle Netzwerkprozessoranbieter bewältigen den höheren Durchsatzbedarf durch eine

Steigerung der Anzahl der Bearbeitungsmodule in deren Entwürfe. Der NPU100 ist ein

neuartiger Netzwerkprozessor (NP), der danach strebt, den Paketverarbeitungbedarf der

100 Gbit/s Carrier Grade Ehernet (CGE) Netzwerke zu erfüllen. Um das zu erzielen, eine

mehr-schichtige, tief gepipelined und programmierbare Architektur wurde eingeführt und

als FPGA Prototyp implementiert. Die NPU100 Architektur kann leicht erweitert und an

die Anforderungen der verschiedenen Schicht 2.5 Protokolle angepasst werden.

Konventionelle programmierbare Ansätze werden entweder auf eine massive Anzahl von

CPUs oder auf mehreren NPs die einen niedrigen Durchsatz erreichen, basiert. Diese

Ansätze skalieren sich nicht von einer Kosten-, Leistungsfähigkeit- (Paket Durchsatz) sowie

auch Verlustleistungsgesichtspunkt. Der Entwurf und die Entwicklung einer Architektur für

einen integrierten, programmierbaren Baustein, der alle diese Anforderungen gleichzeitig

anspricht ist eine wissenschaftliche und technische Herausforderung.

Die NPU100 Architektur wird auf einer Pipeline Ansatz basiert, um deren inhärent vor-

hersehbares Verhalten und skalierbare Leistungsfähigkeit auszunutzen. Um die Ziele der

Modularität und der Erweiterbarkeit zu erreichen, können NPU100 Module beliebig umge-

ordnet werden. Der NPU100 Entwurf wird in verschiedene Hierarchieebenen unterteilt, die

abhängig von den jeweiligen Anforderungen redupliziert oder umgestaltet werden können.

Mehrere Pipeline Stufen werden in Einheiten, die Minipipelines getauft wurden, groupiert.

Die werden dann parallel zu einander geordnet. Eine Minipipeline beinhaltet alle Module,

die für die Verarbeitung der wesentlichen Netzwerkaufgaben erforderlich sind, wie zum Bei-

spiel Address Look Ups, Paketheader Feldextrahierungen und logische und arithmetische

Operationen.

Um die von verschiedenen Netzwerkprotokole beziehungsweise Netzwerkanwendungen

benötigte Funktionalität zu erzielen, wurden beim Entwurf der NPU100 Pipelinemodulen

so genannte Weakly Programmable Processing Engines (WPPEs) eingesetzt. Eine WPPE

ist nicht so flexibel wie, zum Beispiel, ein RISC Prozessorkern. Die verfügt über einen einge-

schränkten netzwerk-spezifischen Befehlsatz (insgesamt 8 Microcommands pro Modul), der

sich aber als ausreichend erweist, um die Schicht 2.5 Netzwerkanforderungen abzudecken.

WPPEs werden durch eine high-level, C-ähnliche Programmiersprache programmiert. Ein

Compiler wird zur Verfügung gestellt, der den high level Code in Microcommand Maschi-

nensprache umwandelt und die Microcommands den entsprechenden, passenden Modulen
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zuweist. WPPE Microprogramme können während der Laufzeit über eine PCI Express

Schnittstelle geändert werden, ohne dass die Bearbeitung des NPU100 unterbrochen oder

beeinflusst wird. Dieses einfach zu benutzen Schema ist einer der Kernbeiträge dieser Ar-

beit und erlaubt dem Benutzer den problemlosen Einsatz der vom NPU100 angeboten

Ressourcen ohne tiefreichende Kenntnisse der Architektur und ohne low-level Code zu

schreiben.

Die gefaltete, parallele Organisierung der NPU100 Minipipelines bietet eine erhebliche

Verbesserung der Verlustleistung im Vergleich zu einem konventionellen, gestreckten Pipe-

linearchitektur, in der alle Minipipelines nacheinander geordnet sind. Dies passiert wegen

zwei Faktoren: Wenn mehrere, gestapelte MPLS Label, oder allgemeiner getunnelter Pa-

ketheader, sich im Labelstapel befinden, dann ist jeweils eine Minipipeline für die Verar-

beitung eines Labels beziehungsweise Paketheaders zuständig. Die Anzahl der parallelen

Minipipelines legt die maximale Tiefe des Labelstapels fest. Falls Pakete, von der weni-

gere (als die maximale erlaubte Anzahl) Headers bearbeitet werden müssen, ankommen,

dann können Paketheader die unbenötigte Minipipelines überspringen. Diese Minipipel-

ins können dann clock oder power gated werden. Ferner, nur ein Label beziehungsweise

Paketheader muss durch jede Minipipeline mitgeführt werden. Infolgedessen, ergibt sich

ein schmällerer Datenpfad daraus im Vergleich zu der gestreckten Pipeline, in der alle Pa-

ketheader alle Minipipelines durchlaufen müssen. Eine XPower Analyse zeigte, dass die

Verringerung des Datenpfadbreites zu einem Verlustleistungersparniss von 25% geführt

hat. Durch die reduzierte Anzahl der Minipipelinedurchläufe kann im optimalsten Szena-

rio diese Zahl bis auf 78% steigern. Der FPGA Prototyp läuft bei einer 60MHz Frequenz

und verarsbeitet einen neuen 192 Bit Paketheader in jedem Takt. So wird ein Durchsatz

von 46 Gbit/s erreicht. Eine Synthese mit einer TSMC 65nm CMOS Bibliothek zeigte

allerdings, dass eine ASIC Realisierung des Entwurfes den 100 Gbit/s Zieldurchsatz weit

überschreiten wird.
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1 Introduction

1.1 Motivation

The semiconductor industry has gone from a nascent to a multi-billion dollar industry

within the last 40 years. One of the main reasons behind this transformation was the

constant reduction in the feature size of transistors, which has led silicon chips to become

one of the most ubiquitous items on the planet. The reason for this is that reducing

transistor size was a win-win solution. It allowed for shrinking an integrated circuit and its

operating voltage, without any obvious drawbacks, despite the considerable, ever-increasing

effort that has to be put in accomplishing these die shrinks. As equation 1.1, which is

used to calculate the dynamic power consumption of a CMOS circuit, shows, reducing

the voltage supply (V) in particular but also the capacitance (C) severely limits dynamic

power dissipation. From the remaining variables f is the operating frequency of the circuit

and a is the switching factor, a design dependent constant which is used to indicate how

often do bits toggle on average in a given circuit.

P = aCV 2f (1.1)

Based on this principle, ICs continued to grow and become more complex, provide all

sorts of functionality and permeate almost every aspect of modern life. The wake up call

came in 2004, when Intel’s ultra deeply pipelined Prescott Pentium 4 core, proved to be

extremely power hungry (to say nothing of under performing). This was the first time

that a process shrink (in this case from 130nm in the previous Northwood core Pentium

4 family to the 90nm Prescott) failed to deliver where power consumption reduction is

concerned. Figure 1.1a clearly demonstrates this trend for Intel CPUs (used here just as

a reference). Power consumption clearly increases more or less linearly within CPUs of

the same architecture, however when a process change occurs there is almost always an

impressive drop in power consumption. This trend was broken with the Pentium 4C, as

mentioned above. From this point on, the process gains from a die shrink are reduced

considerably. In fact, power consumption remains more or less steady, which means any

gains are offset by the increase in circuit complexity.

Further exacerbating the issue are the mounting development costs for each new process.

Figure 1.1b clearly illustrates this exponential rise. Combining these two facts, one is led

to the conclusion that an always increasing amount of money has to be spent to realize

new processes, which however fail to deliver the enormous benefits of the past.

A direct consequence of these facts is that it is now up to the engineers to devise

new architectural solutions in order to reign in power consumption, while maintaining a

constant performance increase. This inevitable fact has to be weighed in together with

two other contemporary trends.
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(a) Power Consumption for Various Intel CPU Models
Spawning Several Generations

(b) IC Development Costs for Various Processes [56]

Fig. 1.1: Drivers for a Reduced Reliance on Scaling as a Pillar for Power Reduction in Modern
ICs

The first is that the constantly expansive scope of Internet services leads to companies

putting together massive data and storage centers, which in turn require unprecedented

power levels to operate and cool. Given that these data centers are based on huge numbers

of various components operating in parallel (e.g. CPUs for data centers or hard disk drives

for storage ones), even a modest reduction in the power consumption of any one component

(which is however used hundreds or even thousands of times in the center) results in a

considerable power gain for the user.

This is indeed the case for high-end core network routers. Take for example the Cisco

CRS-1 ([51]) chassis, boasting a maximum throughput of 1.28 Tbit/s (this depends on

the linecards used of course, the maximum possible value is provided here), which in that

case would consume a whopping 13.6kW! Taking into account that in a typical backbone

system the linecards consume about 50% of the power and 45% thereof is dissipated in the

various linecard ICs ([53]), meaning predominantly the NPs (but also additional ICs, like

signal processors, A/D converters, etc.), that leaves us with 191W consumed just by the

NPs on a single linecard. Given that there are thousand of core routers with multiple line

cards each, which have to support ever increasing throughput, it is evident that there is

every reason to believe that their impact on power consumption will only grow over time.

Indeed, predictions [20] verify that the power dissipation and the carbon footprint of core

networks will grow considerably over time. Power consumption has become a major hassle

for everyone in the business, from vendors (who have a hard time selling equipment which

is difficult to accommodate due to its power guzzling) to governments which have to deal

with the increased environmental awareness of their constituencies.

Indeed, ecological factors have, at this juncture in time, asserted a relative preeminence

and the corollaries of this diffuse into all areas of human activity. With climate change

signs evident around the world, pressure is put on all stake holders to act on this. And this
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in turn affects all aspects of science and engineering, whether it is governments shifting

funds to environmentally beneficial projects or companies looking to adopt a greener profile

by reducing their carbon footprint.

The message is thus clear: in the foreseeable future the world needs to see a tangible

reduction in power consumption and to bring this about, circuit designers have no choice

but to innovate on an architectural level. The networking space is no different, since in-

creased link throughput drives the need for more performance from packet processing ICs.

Higher performance typically means higher power consumption unless clever architectural

innovations are employed. This thesis tries to address this by delivering an innovative ar-

chitecture for next generation network processing at 100 Gbit/s, which provides significant

reduction in power consumption while offering high throughput and sufficient programming

flexibility for its target space.

1.2 Goals of the thesis

The goal of this thesis was the definition of a high performance, low power, modular

carrier grade Ethernet Network Processor (NP) architecture and its implementation into

an FPGA-based prototype in order to verify its functionality. More specifically, the aim

was proving the feasibility of designing an NP, which could provide all the functionality

required by contemporary and future Carrier Grade Ethernet (CGE) protocols, while at the

same time reducing power consumption and remaining user friendly and easy to program.

This would in turn significantly sink power dissipation in CGE routers, first by reducing

the number of components per router (by requiring only one NP per 100 Gbit/s port) and

at the same time making sure that this NP consumes significantly less power than network

processors based on current architectural paradigms.

Reducing power consumption can be done in a multitude of not mutually exclusive

ways in modern circuits as equation 1.1 shows. Lower operating voltage yields the highest

benefits, this however is process dependent. Reducing the frequency is another, which was

put to use in this design, but the key factor which we utilize in our approach is limiting

the switching factor of the circuit through various techniques. The approach followed

was two-fold, meaning an attempt was made to reduce both the number of bits that flow

through the processing core and the frequency at which these bits toggle, thus reducing

the switching activity in the network processor and bringing power consumption down.

In summary, the goal of this dissertation is to define a network processor architecture

which exhibits the following characteristics:

• Allows for at least 100 Gbit/s of throughput for typical CGE protocols on an ASIC

implementation.

• Significantly reduces power consumption in comparison to existing architectures.

• Provides for an extensible, flexible and modular design, which can be easily modified

to tailor it to new demands.

• Incorporates programmable modules, which satisfy the required functionality, while

enabling the adaptability of the NP to new protocols.
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• Implements an interface to write programming information to the NP processing

modules and its forwarding and QoS lookup tables.

• Provides clear and comprehensive means to generate the programming data for the

processing modules.

Finally, the resulting design, which encompasses all of the above elements, must be

implemented into a functional test bed using an FPGA device, in order to verify its func-

tionality, measure its performance parameters and evaluate the results.

1.3 Structure of the thesis

The next chapter of this thesis recapitulates already available knowledge about the core

areas of this work. This includes on the one hand fundamental information which is

required in order to understand the challenges and limitations of the design decisions made

further along in this thesis, as well as research in areas congruent with this work, upon

which it is based and in which it provides improvements in specific areas. These include

an introduction into Carrier Grade Ethernet and the protocols used therein, followed by

a description of the typical architecture of a 100 Gbit/s CGE node. An extensive look

into various architectures for packet processing, as well as into the different programming

concepts used to get these architectures working is provided. Furthermore, an overview

into hashing, which finds widespread use in network processor lookups and an overview of

two interconnection technologies, the PCI Express link and the Interlaken are given.

Chapter 3 builds upon the NP architecture introduction done in chapter 2 and describes

the NPU100 concept along with the proposed system architecture. At first, an overview

of the NPU100’s outer layer is given, including the Header-Payload split concept and the

modules that enable the information exchange between the NPU100 and the neighbor-

ing line card components. Subsequently, the two main advantages of the NPU100 are

presented, that is, its low power architecture and how this was achieved through an in-

vestigation of possible improvements points and the implementation and comparison of

various solutions and the programming concept used to write programming information

into the NP, which provides an easy to use, programmer-friendly tool chain to leverage the

processing capabilities of the design.

Chapter 4 then describes the implementation of all the NPU100 modules. It starts by

describing the implementation of the outer layer of the NP, and then the focus shifts to the

pipeline core modules. The requirements for each of them are provided first and then an

overview of the implementation is given. The level of detail depends on the importance of

the module and the challenges encountered during its implementation. After fully covering

the NP modules, the programming subsystem is described, starting with the hardware side,

which includes the Xilinx PCI Express endpoint block and custom modules which receive

the data from it and forward it to the needed NPU100 modules. The software is then

explained in detail. Here the process of reading the user defined configuration files for the

NPU100 is described together with the compiler software which converts them into the

programming words that are then fed to the NPU100 over the PCI Express link.
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Upon completion of the NPU100 description, chapter 5 provides a detailed look on the

results of this thesis. Initially, detailed results from the implementation itself, focusing on

resource and power consumption, performance and scalability followed by a description of

the FPGA-based test bed realized to verify the functionality of the design.

Finally, chapter 6 concludes this work by providing a summary of the key points, findings

and scientific contributions, as well as providing pointers to future improvements that could

be done to further enhance it.
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2 Fundamentals and Related Work

The work presented herein draws on a multitude of disjoint scientific areas and touches

upon several sub fields of electrical engineering in varying degrees. This chapter attempts

to extricate the relevant parts of each domain and present them in a homogeneous manner,

thus laying the groundwork for the comprehension of the work that follows.

Any successful design is always the result of the harmonious confluence of the state of

the art with a sound understanding of the requirements that it must satisfy. As a result

of this it is necessary to correctly understand the functionality of Carrier Grade Ethernet

networks and of the protocols that operate in them. Sections 2.1 and 2.2 sheds light on

this.

Network protocols aside, an important element that plays a part in defining a network

processor is the environment in which it must operate, meaning the node of which it is a

part and with which it exchanges data in order to accomplish its task. This environment

consists of various modules typically included in the NP IC itself (e.g. MAC interfaces),

additional circuitry found on the linecard, on which the NP is typically located and finally

the complete node itself. Thus, section 2.3 positions the NPU100 in the node and on the

linecard and describes which other components are at play and how the NPU100 interacts

with them.

Apart from the CGE protocols requirements and the node structure, understanding the

current state of the art in packet processing architectures must be the starting point of

an investigation to improve upon their performance. The design of network processors is

inherently interdisciplinary, since it involves intimate understanding of systems architecture

and design, tightly coupled with extensive knowledge of networking on various levels. This

chapter attempts to provide an introduction to network processor architectures in section

2.4 by presenting an overview of the architecture of several commercial NPs in order to

gain insight into the real world products that are available on the market. The overview

does not limit itself strictly to architectures tried and tested in the NP domain, but also

considers other possibilities, which have not succeeded in making inroads in this field. As

such, a summary of various works on the performance evaluation of alternative concepts,

such as graphics processor use for packet processing is given.

Another, often overlooked component in NP design is the programming. Typically only

relegated to an afterthought, the methods used in it so far, their deficiencies and the

potential for improvement, are analyzed in section 2.5.

Hashing, which finds application in NP lookups is a vast scientific area the surface of

which is only scratched in section 2.6.

Last but not least, section 2.7 provides a brief overview of PCI Express (2.7.1) and

Interlaken (2.7.2), two communication protocols used to connect the design described in

this work with external components.
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2.1 Carrier Grade Ethernet Networks

Telecom networks are typically subdivided into two categories, the core and the access

network. The latter refers to the part to which the end users connect and which acts as

the middleman between them and the core which then takes care of long-haul transport.

The term backbone network is also used, usually to identify a core network in an enterprise

setting. The core is essentially a mesh of switches, which enable the transmission of very

high throughput aggregated traffic from one end to the other. The core itself is divided

into two parts, the edge devices and the core ones, with the former being burdened with

the classifying and aggregating packet flows as they arrive in the network, and the latter

having to forward the aggregated flows through it. The work presented here only concerns

the core devices. Core networks differentiate from edge networks by using a distinct set of

protocols and technologies, such as SONET, DWDM and ATM, with Ethernet starting to

slowly drift into the picture.

Ethernet is without a doubt the indispensable network technology, having triumphed

over all contesters and prevailed in the local and metro networks. Notwithstanding the

significance of this event, complete dominance is now in sight, as Carrier Grade Ethernet

(CGE) standardization is moving along rapidly. CGE is an umbrella term under which

a number of initiatives attempting to endow Ethernet with the carrier-grade features it

lacks, are housed. As a result of their work, Ethernet has been slowly moving into position

to infiltrate the core network domain for the past ten years or so. Key to this were

the introduction of higher data rates and the additional of features which enabled the

interoperability with carrier-grade transmission systems (e.g. SONET/SDH).

The question that begs itself then, is what does Ethernet lack in order to become a

carrier-grade protocol. The short answer is the features that ensure the reliability and

robustness required to deliver the QoS and security levels required by typical Service Level

Agreements (SLAs) between providers. To elaborate upon this, the core deficiencies which

are being addressed in current 100 Gbit/s CGE standardization are [31]:

• Wide area scalability. Ethernet provides for a very big (at least 248) addressing space,

which does not allow for separation between customer and provider domains, leading

to the overflowing of provider routers with customer addresses.

• Resilience and fast network failure recovery. The currently used mechanism requires

the exchange of the spanning tree with a new one and thus falls short of the required

protection speeds required by WANs.

• Advanced traffic engineering. Only rudimentary capabilities have been introduced

with the passage of time (e.g. 802.1P [1]), however Ethernet still lacks the fine tuning

of traffic that is an indispensable feature of core networks.

• Operation, Administration and Maintenance (OAM) capabilities, which allow the

exploitation of traffic engineering to deliver services as specified by the SLAs.

The final unknown variable that remains is motivation. Why is CGE such an enticing

concept? The answer is unoriginal and straightforward: reduced costs through simplicity.
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Ethernet dominates the LANs, which means that almost all traffic is generated on Ethernet

platforms and all content is delivered to Ethernet platforms. Hence any intermediate

protocols that are used along the way are naturally seen as necessary complications that

increase complexity. Currently these include the SONET dominated WANs, MPLS, to a

lesser degree ATM and of course IP. Eliminating the just named protocols could lead to

considerable savings, which the authors of [38] calculate to reach 40% in port-count and

20-80% in CAPital EXpenditure (CAPEX) in comparison to non-Ethernet alternatives.

2.2 Carrier Grade Ethernet Protocols

The next section provides a relatively short overview of the two protocols poised to be used

in future CGEs, MPLS-TP [48] and PBB-TE [2]. Every attempt was made to keep the

descriptions short and concise and as a result a lot of parts have been omitted for brevity’s

sake. The focus was kept on the areas that constitute the points of interest for a hardware

implementation. The reader is encouraged to read the detailed protocol standards and

accompanying, rich literature if a deeper look into the two protocols is called for.

This section describes the main functions of the protocols, which, being the dominant

CGE protocols, dictate the requirements for the NP architecture. Any NPU must be able

to provide layer 2.5 functionality, allowing for the forwarding of both MPLS packets and

PBB frames. Layer 2.5 is an unofficial term, which is however widely used to categorize

protocols that provide functionality that lies between traditional switching (Layer 2) and

routing (Layer 3). MPLS-TP and PBB-TE will form the basis of the functionality that will

be then expanded to encompass a wider functional palette, so as to support the processing

of future protocols, which share the basic functional principles of the two afore mentioned

ones.

2.2.1 Multiple Protocol Label Switching - Transport Profile

(MPLS-TP)

MPLS (Multi Protocol Label Switching) is a protocol, which allows the transmission of

packet- and circuit-based protocols, including IP, ATM and Ethernet, through a single

encapsulation layer.

MPLS is in principle a further evolution of the concepts, which were already in use in the

Frame Relay and ATM protocols, sidestepping functions which are not relevant today (e.g.

cells of a fixed length) and reducing control overhead. However, useful ATM functionality

like traffic shaping and out-of-band control signaling was preserved. MPLS-TP [18] is

a currently under standardization transport profile for the MPLS protocol, which adds

improvements and additions focused in the OAM area.

MPLS-TP considerably simplifies the forwarding mechanism of the original MPLS pro-

tocol by eliminating Penultimate Hop Popping (PHP) [48], LSP Merge [29] or Equal Cost

MultiPath treatment (ECMP) [55]. These were stripped from the protocol in order to

streamline is functionality and increase performance. It directly inherits the pseudo wire

architecture [22], but most importantly, it introduces considerable enhancements to areas

critical for core networks. These features are:
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Fig. 2.1: MPLS Label Field Structure

• The major addition of OAM characteristics, necessary for performance monitoring

and traffic management.

• A Generic Associated Channel (G-ACh) through which all management related mes-

sages are transmitted in-band with the data packets.

• Data plane fault protection schemes similar to those available in traditional transport

networks.

• Network synchronization, a feature important for various carrier grade application

such as mobile backhaul ([27]) and TDM circuit emulation.

At the core of MPLS processing lies the label stack. The label stack consists of 32 bit

labels with the payload following after the end of the stack as shown on figure 2.1 for a

two label stack. Each label is made up of four fields. The Label field (not to be confused

with the label, which encompasses all four fields), consumes the top 20 bits of the label

and uniquely identifies the Label Switched Path (LSP) path to which this packet flow

belongs. The LSP is simply the MPLS term for the route the packet needs to follow inside

the MPLS network. The 3 bit Class of Service (CoS) defines the QoS parameters for this

packet, in MPLS jargon the Per Hop Behavior (PHB) from which the Forwarding Class for

this packet is derived. The S bit demarcates the end of the label stack. The label, whose S

bit has the value of one is the last one and after this label, the upper layer packet header

or the payload follows. Finally the 8 bit Time To Live (TTL) field prevents loops from

forming by setting an upper limit to the number of hops that this packet can go through.

Figure 2.2 illustrates the MPLS standard’s guide to how MPLS processing should be

performed [48], whence the prospective designer must derive the functionality of an MPLS

node.

Forwarding an MPLS packet consists of two initially parallel strands which are inter-

woven at a later stage of the processing. The separation here is purely logical and is not

meant to imply any level of compulsory parallelism in the implementation. The same is

valid for the order in which the processing steps are performed.
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Fig. 2.2: Overview of the MPLS Forwarding Process

The top strand corresponds to the Label processing, which determines the operation

that will be performed and the output ports for this packet. This realizes the “Label

Forwarding”functionality as shown on the figure. The bottom strand involves the deter-

mination of the QoS parameters for this packet. These are divided into two sets, the

Incoming PHB and the Outgoing PHB. The former refers to the parameters for the input

queuing system and the latter to the parameters for the output queuing system. These

are determined by using the CoS and the Label field. MPLS allows for different so called

CoS to PHB mappings per LSP, which in practice is translated to different correspondence

between CoS and PHB values for every label. This means that for label X, CoS value

Y maps to a specific QoS policy, say Z, whereas for a label X’, the same CoS value Y

can (but does not have to) map to QoS policy Z’. Thus, the label and the CoS are used

to determine the two PHBs values which essentially define the treatment the packet will

receive from the queuing system. The optional nature of this step allows a packet to have

matching input and output PHB values. Finally, the label and outgoing PHB fields are

used in determining the CoS field value for the outgoing packet.

The theoretical forwarding model described thus far makes a poor job in explaining

how packets actually flow in an MPLS network. MPLS-TP functionality is in reality

straightforward when simple forwarding is done. When a packet is received in a node, the

label is looked up in the routing table. This lookup might return multiple suitable entries,

each of which indicates a different next hop and/or QoS parameters. The protocol does

not specify which criteria are to be used to select one of these entries, thus leaving it up

to each implementation. The label is swapped, the new QoS parameters are encoded in

to the outgoing label and the packet is forwarded. QoS is required when MPLS is used in

conjunction with DiffServ [17]. This represents a common scenario, where a packet enters

the core network, is assigned to an LSP at the networks edge and then follows this path

until exiting the core network and being stripped of the MPLS header.

This however describes only one side of the coin, since the prime MPLS-TP characteristic

which has a significant impact on the processing architecture is that labels can be stacked

on top of each other to create tunnels and thus any node may possibly need to process more

than one label to forward a packet, something that is only determined by examining the

previous label in the stack. Figure 2.3 illustrates a conventional MPLS-TP Label Switching

Path, in which packets reach node 5 and are then redirected in to a tunnel through node 7 to

their final destination node (node 10), instead of taking the path through node 8. Creating

tunnels provides the network engineers with an easy method to redirect packets belonging

to specific flow to alternative routes, which can be used to facilitate load balancing in case
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Fig. 2.3: Example of an MPLS-TP LSP with one Tunneling Layer

of congestion or fast redirection in case of a link failure. The tunnel can be set up without

any change to the remainder of the LSP. In the example cited above, only the nodes 5,7

and 10 need to be updated when the tunnel is set up. Nodes 1, 3 and 8 remain oblivious

to the change.

Notice that some nodes have to process two labels now. When the packet arrives at node

5, the label is looked up in the routing table. The result of the lookup determines that the

current label must be swapped and that a subsequent operation needs to be performed.

The nature of this future operation is not known at the time and can only be determined by

performing an additional lookup using the new label. The subsequent lookup determines

that a new label has to be pushed on to the stack. Similarly when the packet arrives at

node 10, the label 10 is looked up. The result of the lookup is the removal of the label, and

then the lower layer label 8 is looked up and removed as well (in this case both tunnels

end in node 10. If this was not the case and only the one tunnel ended there, label 8 would

have been swapped).

Hence in both cases, two operations are needed here, something that cannot be antici-

pated before processing the first label. This issue is further exacerbated by the fact, that

theoretically any number of labels may be added to or removed from the stack. Figure 2.4

provides an example, which extends the previous one, by adding an additional tunneling

layer at node seven. Thus now node 10 would have to pop all three labels (and process the

payload -which in this context will most probably be the upper layer header- after that, to

determine what to do next with the packet). The unpredictable processing coupled with

an unlimited stack depth introduces a level of non-determinism, since it is impossible to

anticipate the number of processing steps that each packet requires.

Of equal significance in the confines of this work is the processing done on each label

by each node. MPLS supports three operations: Swap - the exchange of the current top

label in the stack for a new one, Push - the addition of a label at the top of the stack and

Pop - the removal of the top label. Each of these operations corresponds to an action that

produces some meaningful sense within the given network architecture, hence:
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Fig. 2.4: Example of an MPLS-TP LSP with two Tunneling Layers

• swap denotes a simple forwarding action. The old label is replaced by a new one.

• push marks the beginning of an LSP. This could be either the LSP, which the node

enters when arriving at the edge of the MPLS network, or could simply be an MPLS

tunnel. In the former case the label pushed is the first and only MPLS label on the

stack, while in the latter there are more labels beneath it.

• pop is the opposite operation from the push and designates the end of a tunnel or

the exit from the MPLS network as a whole.

Although these three operations may be arbitrarily combined according to the MPLS

standards, it makes little sense to do so in a practical environment. For example pushing a

label and then removing it immediately produces no effect and thus only wastes processing

resources. Respectively a swap must typically come before a push. The example on figure

2.3 illustrates this. Node five is the tunnel entrance and in that node the second label

was swapped from 5 to 10 so that it points to the end of the tunnel and then label with

the value 7 -the next hop- was pushed on top of it. Had this not happened the packet

would have arrived at node 10, the top label would have been popped and the node would

have encounter a label which was either unknown to him or even worse, corresponded to

some other node. This is possible since labels in MPLS have node-local significance, which

means that a label with a value X will be part of a different LSP in each node. This is

in stark contrast to protocols like PBB-TE, where the addresses have global significance

and thus a route is identified by a single address in all the nodes it traverses. Table 2.1

provides a listing of sequences of MPLS operations that make sense. Up to four operations

are considered, the limit for the implementation performed in this work as will be explained

in the subsequent chapters.

In all but the most uncommon MPLS scenarios one swap and push, pop and swap or a

simple swap operation will be the typical tasks of an NP processing MPLS packet, however

it would would sanguinely naive to assume that the most obscure cases will never occur.

Thus any aspiring MPLS NP must be able to cope with all these scenarios.
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Operations Explanation
Swap Simple packet forwarding in an MPLS LSP
Swap and Push Tunnel entrance in an MPLS LSP
Swap and Push x 2 Entrance into two tunnels at the same node
Swap and Push x 3 Entrance intro three tunnels at the same node
Pop and Swap Exit from a tunnel in an MPLS LSP
Pop x2 and Swap Same as above but for two tunnels
Pop x3 and Swap Same as above but for three tunnels
Pop, Swap and Push Exit from a tunnel and at the same time entrance

in a new one at the same node
Pop x2, Swap and Push Exit from two tunnels and at the same time en-

trance in a new one at the same node
Pop, Swap and Push x 2 Exit from a tunnel and at the same time entrance

into two new ones at the same node

Tab. 2.1: Meaningful MPLS-TP Operation Sequences

Fig. 2.5: Overview of the MPLS Generic ACH Message

Efficiently communicating management information between the data and the manage-

ment planes is a cornerstone requirement of carrier grade networks. MPLS-TP implements

an in-band communications channel for all sorts of OAM, Automatic Protection Switching

(APS) and Fault, Configuration, Accounting, Performance and Security (FCAPS) mes-

sages. This is done through the Generic Associate Channel (G-ACh) and the Generic

Associated Channel Header Label (GAL), which are described in detail in [19]. The struc-

ture of such a message is shown in figure 2.5. The initial part is a typical CGE MPLS

packet, with the Ethernet header and underneath it one MPLS label. The destination

node for this OAM packet strips the header to reveal the GAL, which indicates that this is

a packet for the management plane. This wraps up the data plane’s side of the processing.

The rest of the message consists of the G-ACh, ACH Type Length Values (TLVs) and the

OAM message itself. The G-ACh essentially identifies the protocol that is encapsulated

in the OAM channel, the TLVs provide the means to recognize extended the information

provided by the G-ACh, while the OAM message provides the payload for the message.

Any NP design supporting MPLS-TP must be able to identify the GAL and sent this

packet automatically to the port corresponding to the management plane. This compli-

cates processing because it demands that the prospective NP supports one additional label

stack layer in order to be able to process the GAL label.

To summarize, the key aspects of MPLS-TP for core network forwarding are:
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• potentially infinite number of labels to process, with no possibility to snoop ahead

in order to determine this number beforehand.

• multiple lookup entries per label.

• different CoS-to-PHB mappings per label.

• possibly different input and output QoS treatment.

• OAM message passing through the G-ACh scheme.

These requirements formed the basis of the NPU100 design, along with those of the

PBB-TE protocol described in the next section.

2.2.2 Provider Backbone Bridging - Traffic Engineering (PBB-TE)

PBB-TE is a further development of the Ethernet Protocol, a full history of which can

be found in [30]. Ethernet started out as a shared medium protocol with limited LAN

applications and has now come full circle to almost monopolize practically every network

type apart from the core networks, in which it has been slowly but steadily making inroads

in the past years, something that the standardization of CGE Ethernet protocols and the

coming into view of 100 Gbit/s link speeds should only help precipitate.

Figure 2.6 attempts to tell Ethernet’s tale through the evolution of the Ethernet frame

over the past 40 years. The simplicity of the initial Ethernet frame header shown on the far

left attests to the frugal beginnings of the protocol itself. Only the source and destination

address (SA and DA respectively, each 48 bits) and the Ethertype fields, which designates

the protocol encapsulated in the Ethernet header, are present. With each successive version

of the protocol additional features were added to cope with the demand for more services

and more complex capabilities.

The first major update came in the mid-1990s with the introduction of VLANs, char-

acterized by the customer VID (or C-VID) field and officially known as IEEE 820.1Q [9].

This field is 12 bits long and thus allows up to 4096 VLANs. VLANs have several uses,

some of them being to multiplex services by allowing differentiation of channels over the

same physical path or the creation of interest groups by assigning output ports to a specific

VLAN. The other new addition is the Q-Tag, which addressed the need to specify different

QoS parameters for each packet.

The next evolution were the Provider Bridges or IEEE 802.1AD, which stemmed from

the need to separate customer and provider address space. This was due to the explosion

in Ethernet deployment, caused by the development of optic fiber interfaces for Ethernet

switches. The solution given was to provide one more VLAN and Q-TAG pair, dedicated

to the service provider (the S-VID and S-TAG on the figure) and relegate the original pair,

now known as C-VID and C-TAG to customer use. Though this allowed for the decoupling

of services and more importantly of their administration, the problem that loomed on the

horizon was that the S-VID field only allowed for 4096 provider services, which promptly

ran out.
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Fig. 2.6: Overview of the PBB-TE Frame Development over the Years

In an effort to provide a decisive solution to this problem Provider Backbone Bridging

(IEEE 802.1AH) was promulgated. It completely encapsulates the customer header in a

provider header an thus mitigates the above issue. The provider header added is an 802.1Q

header with a service identifier field (I-SID) added. This decouples the services from the

topology, which the B-VID now exclusively signifies. This allows for efficient demarcation

of the consumer and provider networks. PBB was designed to avoid overflowing core

network nodes with a multiple of edge node addresses (and thus demanding huge lookup

tables) by encapsulating the edge network Ethernet frame in a core network header. Thus,

only the addresses assigned to core routers need to be known throughout the core network.

PBB-TE is a considerable simplification in comparison to the PBB protocol from which

it was derived. Its goal is the complete separation of the control and data planes, something

that is achievable through the elimination of the flooding, learning and active topology

functionalities. The absence of the learning functionality means that all lookup tables are

programmed through the management plane. The frame header and forwarding mechanism

however are identical to the PBB protocol. PBB packet forwarding requires only a subset

of the functionality of MPLS, since there is no header stacking and no label swapping.

However, the length of the combined B-DA and B-VID fields allows for a huge pool of

addresses something that translates into large routing table size and lookup complexity.

Figure 2.7 illustrates the processing steps for a PBB-TE frame. The area crossed out

with the red dashed line refers to queuing and metering functionality, which is outside the

scope of this thesis. PBB frame processing consists thus of a sequence of four steps.

1. Active Topology Enforcement refers to the assignment of a frame to a Spanning
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Fig. 2.7: Processing Steps Required by a PBB-TE Frame

Tree. A Spanning Tree tracks paths to other reachable Ethernet bridges and ensures

a loop free topology. Since there is a special Spanning Tree reserved specifically for

PBB-TE, this step is trivial when only this protocol is being processed (the standard

here presupposes that PBB-TE coexists with normal PBB functionality in a switch,

hence the requirements for this step).

2. Ingress Filtering rejects frames whose input port is not a member of the frame’s VID.

A lookup is required to read this information. The MAC address and VID is used

as input for this lookup. It must be possible to disable this functionality through a

configuration parameter.

3. Frame Forwarding demands another lookup, this time in search of the appropriate

Filtering Entry. In this lookup the destination MAC Address and the VID fields

are used to identify the entry, which contains a port map, identifying the possible

output ports for the frame. Additionally Group Entries can exist, which correspond

to group MAC addresses. There is no interdependence between steps 2 and 3 so they

could be executed in any order (with the reservation that if step 2 rejects the frame

then frame 3 is pointless to execute).

4. The Egress filtering filters all the output ports, which where included in the Filtering

Entry but are not in the member set of this VID.

Again similarly to the MPLS forwarding concept, the description here is purely logical

and it is expected that the transition to an actual hardware implementation will mean the

reshuffling of the order of the operations (as far as this does not impact the forwarding

results of course) in order to make processing more efficient.

2.3 Carrier Grade Ethernet Node Architecture

NPs are, like all processor types not stand alone components, but part of a system with

which they interact. This section describes the environment in which the NPU100 is to

reside. This is necessary to gain the appropriate insight into some fundamental require-

ments of the NPU100 functionality (e.g. how the node architecture dictates the need for an

internal header in the NPU100). Section 2.1 provided an overview of a CG network, and

thus here we will delve deeper into what makes up a typical 100 Gbit/s CGE node, how
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its components communicate with each other and how all of this influences the NPU100.

As the NPU100 was designed as part of the 100GET-E3 NPU100 project, decisions taken

within the project permeate many aspects of the design, which are elucidated in further

on in this section, as well as in the subsequent chapters.

Fig. 2.8: Overview of an Example 100 Gbit/s CGE Node Architecture

The architecture of a 100 Gbit/s CGE node is illustrated in figure 2.8. It consists

of several line cards interconnected with each other with a crossbar as found in most

modern switches. Each line card communicates with the other line cards over this crossbar.

Furthermore, each line card includes only one bi-directional 100 Gbit/s physical interface.

Current line cards usually house more than one physical interface, however one of the

development goals for 100 Gbit/s Ethernet is to reduce the component count needed on

each line card by providing for a faster interface, and thus reducing the amount of ports

is in line with that goal. Several NPs reside on this line card, depending on how much

traffic each NP can service. Again following the same line of thought, the goal is to reduce

this number as much as possible. Thus, each physical interface is in turn served by two

NPU100 NPs, each of which handles one direction. Although as will be shown in section

5.1.4 the design is scalable enough to allow for one NPU100 to be used, dimensioning the

NPU100 and implementation of the prototype was done with one NP per direction as a

guideline and hence this is taken as the basis for its description. Apart from the NPs,

each line card has a MAC interface with the respective PHY and LLC circuitry. These are

not part of the NPU100 design but are assumed to be able to receive valid frames from

the network and transmit them to the NPU100 and are shown on the figure as separate

components on the linecard, although in commercial implementations they are typically

integrated into the IC together with the NP.

The total number of ports in the node plays an important role in properly dimensioning

the NPU100, as it influences the number of output ports that must be addressable and

reachable by each NPU via the crossbar. In core networks typical values are a few tens of

output ports, since the number of neighboring nodes is relatively small. This is in contrast
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to access routers where values up to several hundred ports are not uncommon. In case

scaling issues regarding the number of supported ports arise in the future, a hierarchical

scheme, which encodes output ports in a group ID, that would be looked up in the switching

interface to determine the required output ports, could be utilized.

Each line card is also equipped with a switch interface, which handles communication

with the crossbar. Queuing is done in the switch interface for both ingress and egress paths,

which means that consequently flow control will be implemented in the switching interface

and is not part of the NPU100, which must however provide the appropriate parameters

to it, in order for queuing to be performed successfully. The queuing itself is done in two

phases, an ingress queuing performed at the input line card’s switching interface and egress

queuing done at the switching interface of the respective egress line card. These phases

correspond to the enforcement of the incoming and outgoing PHB functionality found in

MPLS. Thus the NPU100 must not provide any frame buffering functionality apart from

any temporary storage, while the frames are being processed.

The control plane is handled by a separate processor (not an NPU100), which is attached

to the crossbar and can send and receive control packets to and from the NPs over each

line card’s switch interface. The control plane line card should have its own dedicated port

number for this purpose. Apart from control packets, the control plane processor frequently

needs to update various tables in the NPs (e.g. the tables containing forwarding and QoS

information). This data can, depending on the occasion, be quite voluminous and thus

sending it over the crossbar might disrupt the regular flow of traffic. Thus a distinct

interface is used to sent information, which in the case of the NPU100 was selected to be a

PCI express interface, which offers abundant bandwidth and has found fairly widespread

use in current switches. Sections 3.3 and 4.3.3 provide more information on how the PCI

Express link is used to sent configuration information to the NPU100.

2.4 Processing Architectures Overview

Network processor architectures have traditionally followed two main paradigms: the par-

allel and pipelined [46], as the the various devices presented in the previous section attest

to. The former typically includes many RISC like processing elements, which process pack-

ets in parallel. A scheduler assigns the packets to a PE, recollects them when processing

is done and dispatches them to the output. This model is known as a run-to-completion

model [?] since a single PE is in charge of completing the processing of an entire packet.

Alternative models, like the pool-of-threads, are available to allow for more flexible task

allocation to the PEs. The PEs share the routing table memory, any co-processors avail-

able in the system as well as the packet buffer memory and the interconnect which binds

all the system elements together.

The alternative is a pipelined architecture, which divides the processing into multiple

steps, each assigned to a PE. The PEs are not necessarily identical. When each PE is

done, the packet is sent to the next one, until the processing is completed. Here the

PEs are typically fine tuned to handle their specific tasks (though implementations with

more generic PEs do exist), which allows for more efficiency. Furthermore, the memory is

no longer shared between the PEs which eliminates unpredictable delays due to resource
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contention. Both architectures may include special purpose accelerators depending on the

application they target.

The first part of this section focuses on commercially available network processors and

after providing a short historical overview goes on to discuss the various architectures on

offer, which all neatly fall into the two categories described above. Subsequently, other

possibly applicable data processing architectures are considered in order to determine their

relevance and possible suitability for packet processing.

2.4.1 Network Processors

When the first network processors started coming onto the market at the end of the 1990s,

exuberant predictions were foreseeing their unprecedented expansion into a multi-billion

dollar market within a span of a few years. Expectations fell short however, since the

bursting of the dot com bubble in the US saw the industry enter an extended slump,

which respectively curbed demand for new network services. The initial hyper-optimism

however was enough get every major player (and some new ones) to join in a stampede in

order to grab a piece of what was predicated to be an increasingly bigger pie.

This led to an impressive amount of designs coming into a market quickly becoming

saturated with products on the one side and stagnating of demand on the other. No good

could come out of this and thus, the market landscape today looks wildly different. Pretty

much every big company has withdrawn from the market and sold its NP division or spun

it off to some new venture and many of the smaller start-ups went belly up. And this

despite strong, double-digit growth every year in the past decade.

Extracting information about the architectures of commercial NPs has and still is a

challenging task. Since this data is judged as sensitive, it is kept under lock and key, and

thus the little trickle of information that is publicly released is insufficient to lift the fog of

war that covers the design details. This lack of data proves to be a serious impediment is

asserting the efficiency of a design, which has important ramifications on this work, since it

makes comparing the design propounded herein in with commercial alternative impossible.

Since this work focuses on Carrier Grade Networks, this section also limits its scope

to processing architectures designed to cater to these demands. Thus many vendors of

network processing designed for various networking applications ranging from security to

compression (e.g. Cavium) are not considered here for brevity’s sake.

Shortly before the submission of this thesis several vendors announced next-generation

NPs, that will come into the market in the coming years (most likely sometime in 2014).

These are recited here for completeness, although as with their already on the market

counterparts, the available information is sketchy at best.

Intel IXP family and Netronome

Intel’s IXP family is a most curious beast, an adjective it earns mostly not due to any

architectural traits but due to the fact that although Intel has sold off its NPU business

to Netronome since 2006 its NPs remained quite popular for a significant time after that.

That being said, the attention will be turned to Netronome’s latest offering the NFP-

32xx [13], while providing some information on the last Intel NPU the IXP-28xx [25], its
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Fig. 2.9: Netronome NFP-32xx Overview [13]

evolutionary precursor. The two share a lot of architectural features, with the Netronome

offering updated technologies on almost every front. Hence, the XScale CPU cores have

now been replaced by more modern ARM ones and the processing engines have had both

their numbers (from 16 to 40) and their properties bumped up (mostly translating to more

instruction and data memory). Memory and media interfaces have been updated with

DDR3 SDRAM and QDRII SRAM now being used on the memory front and XAUI [8],

SGMII [52] and Interlaken [10] serving as media interfaces. A PCI Express [4] interface

connects the Netronome with other system elements.

Figure 2.9 illustrates the architecture of the Netronome NFP-32xx NPU. It consists of

5 clusters of 8 micro-engines. Each cluster has its own bus, over which it gains access to

a common memory. All the clusters share eight 64 bit data buses and four 100 bit com-

mand buses, over which all communication with the remaining modules takes place. These

include a pool of various accelerators connected onto the bus. As such the architecture

remains vulnerable to typical bus congestion/contention issues, encountered in similar ar-

chitectures. The NFP-32xx uses either a run-to-completion or a thread-pool programming

model, thus it is quite flexible in micro-engine utilization issues.

In the fall of 2012 Netronome announced its new architecture on which the NFP-6xxx

NPUs [44] are to be based. In contrast to the NFP-32xx one, the new design contains one

cluster of 120 flow processors and one of 96 packet processors. The former are designed

for layer 2 to layer 7 tasks, whereas the latter are aimed at layer 2 and 3 processing.

It also contains 100 dedicated accelerators which offload crypto and hash functionality

(among others). Another deviation from the NFP-32xxx design is an additional level of

memory hierarchy called the proximity memory. The NFP-6xxx is aimed at 200 Gbit/s

networks and can cater to a variety of applications ranging from Carrier Ethernet routing

and switching to intrusion prevention.
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Fig. 2.10: Block Diagram of the New Generation IBM NPU [37]

IBM Network Processors

IBM has been out of the network processor business for a while now. Its last foray in the

NP world was with the PowerNP architecture [14], a powerful NP, which followed a typical

run-to-completion processing model. A recent paper [37] though shows the company is

determined to get back in the game with what it calls a wire-speed processor.

The new chip is shown on figure 2.10 and consists of four throughput nodes, each with

four cores. In an architecture not dissimilar to the one described in the previous section, as

each throughput node has a memory shared between the cores. Accelerators, memories and

external interfaces are accessible over a common bus. According to IBM, this approach can

easily scale to 64 cores and 100 Gbit/s and achieves considerable power savings by using

lightweight, simple cores, which are highly threaded but do not fare as well in complex,

single-threaded tasks.

Freescale Semiconductor

Freescale is an offspring of Motorola, which created the company in 2004. It provides

multiple solutions for the automotive and communications market. It offers a variety of

NPs, which it dubs communication processors, covering all segments from the access to

the core. Of these the higher end models ([49]) present the greatest relevance to this work.

All processors of this series consist of several e500 cores interconnected to the typical NP

peripheral set (memory interfaces, external interfaces, specialized modules, such as lookup

engines) through a common bus. The important difference with other solutions presented

in this chapter, is that here we have a small number of cores, which however offer higher

single threaded performance then the RISC cores found in other designs. This makes the

Freescale line more suitable for applications, which require more complex processing of a

smaller number of packets, which is however the opposite of what one encounters in a core
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Fig. 2.11: Block Diagram of the Freescale QorIQ AMP Series T2080 Communications Pro-
cessor

network.

Shortly before the submission of this work, Freescale refreshed its communication pro-

cessor line with the QorIQ line [32]. The new design is a continuation of the previous phi-

losophy and thus still uses processing cores based on the power ISA from IBM. Four e6500

processors are available, although this time, to offset poor performance at multi-threaded

applications because of the complex cores used, Freescale incorporates functionality similar

to Intel’s Hyperthreading, which allows two threads to share the resources of one physical

processor. Release details on the QorIQ series are unclear, though early 2014 sounds a

reasonable target launch date.

Cisco QuantumFlow Architecture

Cisco is the networking industry’s seemingly perennial juggernaut, dominating most of its

aspects one way or the other and as such could not be absent from the NP market, which

it entered relatively late in 2004. The fruit of Cisco’s extended efforts were the Cisco

Quantum Flow architecture [24], on which then several products, such as the ASR1000

Processor shown on figure 2.12, are based. Cisco’s peculiarity lies in the fact that in

does not sell its NPUs to other vendors but uses them exclusively in its own products.

Nevertheless, this detracts nothing from the interest that they pose from an architectural

perspective.

There are three principal features, which characterize a QuantumFlow processors. The

first is a pool of 40 packet processing cores, which reside on chip and perform all the process-

ing. The second is a flexible queuing system allowing for 5+ levels of queuing hierarchy

and more than 100.000 queues. Finally the third component is a software architecture

based on C, which allegedly takes most of the burden away from the programmer.

From an architectural perspective, which is of interest for this work, the Cisco NPUs

are parallel processing, non-pipelined designs, which use a common shared memory. The

Processing Elements (PEs) process packets, which they then forward to the traffic manager,

which queues the packets accordingly before sending them to the output. The PEs are 32-

bit RISC cores, each of which can handle up to four threads in parallel. Thread assignment

is done automatically at packet reception and the PE to which the packet is assigned
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Fig. 2.12: Architectural Overview of the Cisco ASR 1000 Embedded Services Processor [24]

is responsible for it until the end of its lifetime in the NPU. Hence the QuantumFlow

is a typical run to completion model, and as such it is susceptible to bottlenecks and

unpredictable behaviors plaguing them. Cisco attempts to mitigate this by allowing a

second thread to be spawned and assigned to a different PE for complex packets.

All Cisco NPUs have high bandwidth interfaces for connecting with external interfaces

and use power hungry TCAMs and SRAMs for state information and packet buffering.

LSI

LSI is a California-based company that produces various ASICs for storage systems and

network applications. It was founded in 1981 and entered the network processor market

in 2007 when it merged with NP vendor Agere Systems and acquired its product line as a

result.

LSI offers a wide range of products, catering to all aspects of network processing. As

is the case with most NP vendors there is a basic architecture, which is then tweaked to

suit the individual demands. Since this work occupies itself with carrier networks, the

respective LSI model, the APP3300 [26] is the most relevant one to this work.

The chip, shown on figure 2.13, is essentially broken down into two parts, the Fast path

Packet Processing Engine, which handles the data, and the Services and Control Processor,

which realizes the control plane. The former, which is the most interesting for this work is

unfortunately very vaguely described, with the only concrete information available being

that its modules like the classifier are multi threaded and support up to 128 threads.
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Fig. 2.13: Block Diagram of the LSI APP3300 NP Family [26]

EZChip

EZ Chip has been around since the dawn of NPs in 1999. Although it is a fabless company

without backing from a major partner, it has managed in the elapsed decade to make a

reputable name for itself in the market as one of the most consistent vendors. It’s line-up

consists of access and core networks NPUs, which share the same basic design philosophy,

with the access ones being scaled down appropriately as needed. As this work targets core

networks only, the core NPU line-up is described here as more pertinent.

EZ Chip’s NPUs have always been based on the notion of a Task Optimized Processor

(TOP). These TOPs have been refined with each successive generation so as to deliver

ever higher performance. They are divided into four categories, parse, search, resolve and

modify and perform the bulk of the packet processing. There are multiple instances of each

TOP, operating in parallel in a super-scalar fashion. Apart from the TOPs, lookup engines

are used to perform either switching/routing or Deep Packet Inspection (DPI) lookups. A

run to completion model is used to guarantee that even the most complex scenarios can be

processed, although the organization of the processing is sufficiently flexible so as to allow

pipelines to be created out of the TOPs with each TOP handling part of the processing.

The latest incarnation of this technology, the NP4 uses the TOPs as the basic building

block for a 100 Gbit/s (or 50 Gbit/s in full duplex mode) NPU, capable of processing L2

switching traffic, like PBB and PBB-TE (described in section 2.2.2), MPLS (section 2.2.1)

or typical IPv4/IPv6 routing. The NP4 uses a multitude of memory interfaces, like DDR
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Fig. 2.14: Overview of the DataFlow Architecture used in the Xelerated NPs [62]

SDRAM, RLDRAM and a TCAM and connects to the external world via a multitude of

interfaces, e.g. 10 XAUI [8], 3 Interlaken [10] and 1 PCI Express [4] link.

EZ Chip’s 200 Gbit/s solution is called NP-5 [23]. However despite having being an-

nounced in 2011 and expecting to sample at the end of 2012, details about the NP-5 are

virtually non-existent, although the fact that EZ Chip is touting the NP to be a natural

evolution of its predecessor, offering 100% backwards compatibility is indicative that an

architectural continuity should be expected.

Xelerated and Marvell

Xelerated was another player who has been in the NP market since almost the beginning.

Starting out in 2000 in Sweden, it has focused mostly on core networks, but also caters

to the metro and access ones. Xelerated was acquired in January of 2012 by the Marvell

Technology Group, a leading fabless semiconductor company.

Xelerated processors are based on the so called data flow architecture [62], which is

illustrated in figure 2.14. It aims to optimize the flow of packets through the NP and

not the flow of instructions. The result is a pipeline of processing elements, the so called

Packet Instruction Set Computers (PISCs). An Xelerated NP consists of a multitude of

these PEs (e.g. the HX330 NP uses 512), each of which executes one operation in one

64-byte word per clock cycle. The main advantage of this architecture is its predictability,

since the time it takes a packet to complete processing is known before hand, which is

in stark contrast with run to completion model NPUs, where there is no inherent upper

bound to the latency of a packet. As pipelined designs, Xelerated processors exhibit the

greatest kinship with the design proposed in this work, which is also based on a pipeline

concept.

Apart from the PISCs, the latest Xelerated NPUs utilize internal TCAMs for their

lookups and DDR SDRAM memories for packet buffer and traffic management. External

interfaces include XAUI, SGMII and Interlaken for the MAC and switch interfaces and

PCI Express for communicating with the control plane. The top models are rated for a

throughput of up to 100 Gbit/s.
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2.4.2 Other Processing Concepts

The various NPs discussed thus far exhibit a significant architecture pluralism. They do

not however exhaust the available concepts, which could be used for packet processing and

thus should be taken into consideration in this work.

One concept, which has been gaining traction in the academic community and has even

seen a product released not too long ago [54] is the use of Graphics Processing Units

(GPUs) for packet processing in the data path. GPUs are nowadays essentially arrays of

SIMD processing engines using shared memories of various hierarchy levels. Hence this

trend should be viewed in the broader scope of attempting to use SIMD architectures for

packet processing.

Like NPUs, GPUs are commercial products and thus their architectural details are typ-

ically not disclosed. However since traditionally programming a GPU required intimate

knowledge of it’s architecture and GPUs are much more widely available than NPUs (al-

most everyone has one at home and can start programming applications for it, whereas

almost nobody has an NPU available), information has been that much more forthcoming.

The GPU market is dominated by two players, nVIDIA and AMD (who bought off

ATI’s business several years ago). Their long standing feud has resulted in very short

product cycles and monstrous chips (with transistor counts reaching the 3 billion!), which

however pack some impressive processing power. It is not the goal of this thesis to get into

the architectural details of each chip (which changes with each generation). More details

can be found in [45] for nVidia and in [15] for AMD designs. Instead a short overview of

the results found in the academic literature is provided.

Mu et al. [42] investigated IP routing performance with graphics processors. The paper

performs IP lookup and pattern matching, as well as DPI operations on the packets. While

the results are impressive when compared to a pure software implementation on a CPU

(IP lookups are sped up by a factor of 6, while regular expression and Bloom filter-based

string matching exhibit a 5x increase in performance), no NPU comparisons are made,

which detracts from their value. Comparison of a DPI Bloom Filter based algorithm with

an FPGA implementation shows a 50% speed up in the GPU implementation.

Han et al. [33] perform a similar study but offer a comprehensive packet processing

framework on a GPU, complete with adaptations on the software level to optimize the

packet flow in the system. The tested applications include IPv4 and IPv6 forwarding, op-

eration as an OpenFlow switch and as an IPSec gateway. The results show again significant

gains in throughput, particularly in the OpenFlow switch and IPSec gateway applications.

In both IP forwarding application a maximum throughput of 40 Gbit/s is reached and held

steady independent of packet size and protocol. The perseverance of this ceiling indicates

that some other bottleneck exists within the system, which does not allow performance to

scale as needed.

While the results show promise for GPUs in network processing, they do not in any way

vindicate GPU proponents claiming that GPUs could replace NPs. This is mainly because

even if GPUs can in some future generation and with some architectural adaptations

offer the performance leap expected of them, one still has to weigh in their considerable

power dissipation, which is far higher than any current NP (the EZ Chip NP-4 is rated

at 35W, whereas a top-of-the-line GPU can peak out at over 200W). Furthermore, while
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programming GPUs is not inherently more difficult than programming NPs, it follows

completely different programming paradigms and uses different tools and libraries, which

means that a large investment is required to retrain personnel and port existing software.

2.4.3 Useful Conclusions

Section 2.4.1 introduced the Network processor architectures which can currently be found

on the markets. Most of these architectures have tried to cope with higher throughput

by increasing the number of processing cores available. However multi-processor systems

always run into scalability issues, since several resources, like the communication infras-

tructure and common memory, are shared among the processing elements. In [60] Weng et

al. illustrate this point by providing simulation results of the memory access latency in a

multiprocessor NP. A linear increase in access latency is observed, which can only be mit-

igated by increasing the number of memory channels, something that is of course limited

by the complexity of the memory controller and the high pin requirements of memory in-

terfaces. In contrast pipelining the NP allows for an increase in operating frequency, which

in the optimal case is proportional to the number of stages (this being subject to proper

balancing between the pipeline stages), and subsequently an increase in throughput, while

alleviating the memory access problem.

Furthermore, multi-core architectures use a Load/Store model to access instructions

and data, then perform some operation on it and write the results back to a memory. This

approach is effective for instruction intensive application (e.g. higher layer processing)

but less so for the layer 2-3 processing typically done in core networks processor. These

applications are data intensive, meaning there is a large load of data at any given time to be

processed but the processing itself does not require that very complex work is done. This

is offered by a pipeline architecture, which allows the packet data to flow through it, while

being processed. In summary, pipeline architectures exhibit the following advantages:

• Deterministic performance since the processing path and involved latencies are pre-

dictable.

• No complex, power hungry cross bar or interconnect is needed.

• No memory stalls due to data being fetched from memory.

• Instruction and context data are in the immediate proximity of the processing ele-

ments.

• No branching delays or perplexing thread synchronization schemes

Due to these factors, pipeline architectures are able to offer more performance for sig-

nificantly reduced power consumption, die area and pin count. Therefore, pipelined archi-

tectures are gaining traction in high-speed packet processing. This work proposes such a

pipelined approach, which attempts to take the basic pipeline concept and spin it around

in order to optimize its performance for core networks. The resulting architecture improves

the flexibility of the basic pipeline approach and reduces the amount of information that

needs to flow through the pipeline core, thus significantly reducing the number of bits that
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have to toggle with each clock cycle and as a consequence thereof the power consumption

of the pipeline.

2.5 Programming Network Processors

NPs have been been plagued by complicated programming concepts during their existence,

which reduce the usability of the devices by requiring that the user has intimate knowledge

of their architecture and thus make programming them a challenging task. Why this

has been the case is complex question, whose answer requires that we initially define

what exactly programming an NPU means. This a multi-faceted process, which entails

everything from the programming language used, to the compiler and its capabilities and

to how and where the data is stored in the NPU. This section examines some of the NPUs,

whose architectures have already been described in section 2.4.1 from a programming

perspective and tries to answer the above questions. As with their architecture, details on

the programming interface of each NPU are scarce and mostly concern the highest level,

that is the development environment with which the prospective programmer comes into

contact with.

Programming network processors has always been compounded by the need for process-

ing efficiency, the partially custom designs and lack of a homogeneous architecture even at

a high level. This has led to a very fragmented market which consist of various solutions

for architectures ranging from typical multiprocessor systems with co-processors to more

exotic pipeline structures and in turn to very divergent programming concepts, which this

section will attempt to sum up.

Many of the NPUs described in section 2.4.1 are based on a multi-core approach, inte-

grating multiple PEs, usually RISC processors but on occasion more custom design (e.g.

the EZChip NPUs). Thus from a programming perspective they are Load/Store architec-

ture, which share much in common with typical CPUs. Several architectures fall into this

category, such as the Intel and successive Netronome ones, the afore mentioned EZ Chip,

and the LSI and IBM offerings. How each of these NPs is programmed varies between

a mixture of high- or low-level languages and automatic or manual partitioning. Some

also provide software libraries which can be used to speed up the development of low-level

code. The common denominator is that they all leave a lot to be desired, since none offers

a comprehensive, automated programming flow.

The Xelerated network processors [12], being a pipeline design differ considerably from

previous solutions from a programming perspective. Programming these NPs is consider-

ably easier due to the fact that they view the array of resources as one processor and write

code which is then automatically assigned to the various PISCs and whose performance is

guaranteed. Each instruction takes up one processing core in the pipeline. The downside

is that the software has to be written in assembly language, which can be cumbersome,

despite giving the programmer full control over the hardware resources. According to the

company this approach reduces the code development time dramatically, by shaving off

the need for excessive performance optimizations, required in multi-core architectures due

to thread contentions. A further advantage of the Xelerated architecture is the proximity

of the code to each PISC. Each processing elements stores its own code and thus avoids
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costly and unpredictable accesses to for away instruction memories.

The most promising development in the NP programming space was announced by EZ

Chip shortly before this thesis was submitted. The EZ Chip NPS [28] is a new series

of network processors aimed at core networks and set to debut in 2014. What makes

them unique is that despite the fact that they are slated to share the same TOP-based

architecture with the NP series, the NPS is going to be programmable using C. The fact

that commercial vendors are slowly adopting this approach shows the importance of higher

level programmability for NPUs. Unfortunately, at the time of completion of this work

there were no further details available on the programming paradigm that the NPS series

will follow.

The above examples provide a glimpse into the incoherent landscape of NP program-

ming. As a logical consequence thereof, a lot of effort has been put into improving pro-

grammability, focusing on various areas. The three core aspects that a programmer-friendly

NPU must posses are: use of a high level programming language, automated task alloca-

tion to processing elements and predictable behavior. None of the products explained

previously offers all three, though some come close. The scientific community has pro-

vided useful insights into each aspect and has come up with interesting concepts for each

of them.

Wagner and Leupers investigate in [59] the design of a compiler for an application

specific architecture, such as a network processor. The paper provides useful ideas on how

to map high level programming constructs to low level functions, such as bit-level access

to data registers, as well as how to exploit specific features such as accelerators, without

resorting to low level programming or sacrificing code efficiency.

Looking into the problem of task mapping from a different angle, Yu et. al attempt in

[36] to improve task partitioning and allocation of tasks into processing modules by using

a task graph and applying a divide and conquer approach to it.

A further interesting idea is the use of meta-programming to extract additional efficiency

out of a C++ code [39]). Meta-programming is a technique applied to a piece of code,

which transforms the code before compilation (doing e.g. loop transformations). This

concept can be useful in the NPU setting in order to take the programmer’s code and

respin it accordingly in order to optimize resource use in the processor.

The NPU100 design presented in this work takes a step back from current approaches

and attempts to integrate the programming paradigm into the design phase. Thus how

the NPU100 is programmed, and the way the program is stored in the processor is deeply

ingrained in the system. This works in tandem with a software side, which simplifies the

work of the programmer by allowing him to write high level code which is then auto-

matically assigned to the appropriate NPU100 processing modules and translated into the

appropriate programming commands for them. Thus a complete high level programming

flow is provided, something missing from current NPs found on the market.

2.6 Hashing

Hashing is such a wide topic, that it readily defies attempts to limit it to an area of

electrical engineering. It is ubiquitous to anything from cryptography, image compression,
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error detection and of course network processing. Since these fairly incongruous areas

present different requirements and thus have given birth to diverse hash approaches, this

section does in no way attempt to provide an overview of the topic at hand, but rather

attempts to incise and extricate only the elements required for this thesis. First however

an overview of the concept of hashing is called for.

Hashing on its highest level involves mapping one set of values to a different set. With

how many elements each set is populated is immaterial though typically the destination set

is smaller than the original set. Figure 2.15 illustrates the difference between a simple 1:1

mapping scheme (shown on the left side), where each element of the original set corresponds

to one element of the destination set and an M:1 scheme (shown on the right), where the

number of elements in the destination set is smaller than the ones in the originating set

and thus more than one elements of the latter are mapped to the same element of the

former.

Fig. 2.15: 1:1 and M:1 Hash Mapping Schemes

This phenomenon, termed a collision, is the pariah of all hash approaches. Collisions

are a direct consequence of mapping more than one elements of the original set to each

element of the destination set. Given that this is usually the case in hashing applications,

collisions have been well studied due to the extended applications of hashing in a variety of

scenarios. Extensive investigations have, as was to be expected, yielded a variety of results

regarding the so called collision resolution. These results again depend on the application

and the implementation platform (since e.g. software implementations tend to prefer serial

algorithms, while hardware ones are adept at sorting out collisions in parallel).

The mapping is done through a function called the hash function. An input key which

identifies the object is fed to the function, which returns then the element of the destination

set, which matches that key. The trick is then in finding an appropriate hash function,

which minimizes collisions, while correctly mapping elements from the one set to the other.

This has consistently been something of a black art, since there are no guidelines to follow

and finding a suitable function depends completely on the application that in which it will

be used [50].

There is a multitude of reasons to employ hashing depending on application. From

a purely algorithmic perspective, it is superior to all search algorithms where speed is

concerned and loses out only to the binary search on space use. A good general introduction

into hashing, which outlines its attributes and characteristics, is provided by Knuth’s

seminal work on computer algorithms [40].
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Hashing in the NPU100 is used in the Forwarding lookup module (section 4.2.4) to

reduce the number of bits of the input key to a number that can then be used to access

the forwarding lookup memory and retrieve the required entry. The specific requirements

that arise from this application environment as well as specific algorithms that were tested

are being discussed in that section.

2.7 Interfaces

This section provides an overview of two standardized interfaces used in the design of the

NPU100. The first, PCI Express, is a point-to-point lane based interconnect, which is

used for connecting the network processor with the control plane, as well as to transfer

the program which is executed on the NPU100, to it. The second interface is Interlaken,

a chip-to-chip solution designed mainly with networking in mind, which is used as the

NPU100’s interconnect with an external MAC/LLC chip as well as with the switch fabric

of a hypothetical NPU100 line card, as described in section 2.3. A short overview is

provided for both protocols, with references pointing to detailed information.

2.7.1 PCI Express

PCI Express (PCIe) [4] is a high performance interconnect, most typically known for its

use in computer peripherals, but one that has found widespread adoption in several other

areas. PCI Express was launched in 2004 as a replacement for a host of other interconnect

technologies such as PCI and AGP. PCIe’s greatest advantage is perhaps it’s versatility.

Being based on a lane concept, it is scalable and thus can be used to implement any

link independent of the bandwidth requirements. Further advantages are a low pin count,

as one differential Tx-Rx pair is used per lane and low operating voltage which ensures

reduced power consumption. The improvements over the previous PCI technology are

immense since a single PCIe lane can transfer 2.5-10 Gbit/s (depending on the PCIe

standard version implemented), almost double the maximum PCI bandwidth, while using

only one tenth of the pins (Standard PCI used a 32 bit interface). This translates into

savings across the board, since the technology requires smaller connectors, which occupy

less valuable PCB real estate and the fewer signals that need to be routed result in simpler

board designs.

PCI Express’s scalability is underpinned by two important features: the lane concept

and the exclusivity of each link. The lane concept allows the aggregation of multiple lanes

in one link in order to satisfy the given requirements. The standard defines connectors with

up to 32 links (termed x32 in PCIe jargon) but does not preclude other configurations.

Link exclusivity means that each PCIe channel is a point to point link and not a bus as

used to be the case with older technologies. This was a necessary move since connecting

many devices on a wide buses presented electrical issues, not to speak of performance

suffering due to saturation of the bus’ bandwidth.

PCI Express however is more than a physical interface, despite that being an indis-

pensable part of it. It consists of the 5 layers [61] illustrated in figure 2.16, which work

harmoniously to ensure efficient data transfer. The two top most layers implement the in-
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terface with the Operating System (OS). Here, PCIe inherits the PCI programming model,

which it extends accordingly, in order to enable backwards compatibility. It maintains the

PCI flat addressing model, which uses loads and stores from that addressing space to write

and read information to and from the device and provides additional addressing space

(known as the PCIe extended configuration space) to facilitate further functionality not

supported by PCI. The industry standard Plug and Play (PnP) model is used to configure

a PCIe device on power up without the need for user intervention.

Fig. 2.16: PCI Express Layer Stack

The load and store commands from the software layer are transformed by the the trans-

action layer into the so called Transaction Level Packets (TLPs). Each TLP is at most 4096

bytes, while typical implementations support only a fraction of that (128 or 256 bytes).

Thus, the user data are broken up into several TLPs. TLPs also implement the “virtual

wires ”functionality, which enables PCIe to transfer all sorts of information (e.g. interrupt

handling, power management) through virtual links, over the same physical interface. This

enables PCIe to minimize the number of signals used. All this requires a header which is

prepended to the user data.

Then the data link layer adds a sequence number and CRC to these packets to create

a reliable data transfer channel. It implements flow control between the receiver and

the transmitter nodes to avoid overflowing the receiver with data. Erroneous packets are

automatically retransmitted without higher layer intervention. Finally, the physical layer

consists of a Tx and Rx differential pair per lane. The physical layer also encodes the

clock into the signal using an 8b/10b encoding and the TLP overhead consumes some

throughput, which brings the bandwidth available to the application to 2-8 Gbit/s per

lane. Data is stripped across the available lanes, although the dis- and reassembly process

is transparent to the upper layers.

PCIe is used within the confines of this work to transfer data between external devices

and the NPU100. Under external devices three are commonly meant: The control plane

CPU, which must be able to update to lookup tables of an NP in order to set up or to

erase a connection and sets the priorities for packets flows, the management plane which

monitors the device operation and its performance and other related OAM tasks, and

finally the NPU100 compiler, which generates the programming words for the NPU100.

These are then send by a PCIe driver over the PCIe link to the FPGA in order to program
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the NPU100. PCIe was chosen because it has been making great strides at becoming an

industry workhorse, since it offers a very high throughput point-to-point architecture with

a very low pin count, which is advantageous in typical switches, where data has to be sent

out to NPs residing on multiple line cards. Line cards and NP platforms from almost all

vendors (almost the entire product line of Netronome [43] and Advantech [13] just to name

a few), as well as most of the NPUs described in section 2.4.1. utilize PCIe for various

purposes, most commonly for communicating with the control plane. Hence it was deemed

beneficial to design the NPU100 using an industry standard interface.

2.7.2 Interlaken

Interlaken [10] is a serial multi-lane interface developed by Cortina Systems and Cisco,

which is optimized for high bandwidth packet transfers. It is based on SPI4.2 [3] from

which it borrows several features. Interlaken was developed to bridge the gap between the

two previous dominant protocols in chip-to-chip data transfer, XAUI [8] and SPI4.2 . XAUI

offers a narrow 4-lane interface and long range but lacks channelization and flow control,

while SPI4.2 offers these, but has a wide interface with limited scalability. Interlaken

bridges the gap, by providing a narrow, extensible, channelized packet interface, which is

in principle, not dissimilar to the PCI Express described in 2.7.1.

Interlaken is based on a lane concept, with multiple lanes being grouped together to

achieve higher throughputs. The user data are segmented into bursts, with each burst

being delineated by a control word at the beginning and one at its end. The control words

carry information like error detection, etc. Data is striped in 8 byte words to all lanes to

achieve high efficiency and scalability. All data, even the control words are 8 byte long.

Striping is done sequentially starting from the first lane. It provides up to 256 logical,

prioritizable channels over the same interface, which can be used either for data or for

other functionalities like in-band control flow signaling, etc.

Its target applications are almost exclusively network oriented, with line card to switch

fabric and framer/MAC to NPU interfaces standing out. This is exactly the role it plays

in the NPU100.
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This chapter introduces the architecture of the NPU100 network processor. Pivotal to this

chapter is not simply a blunt description thereof, but a comprehensive narrative, which

highlights its advantages and how they were realized by methodically pursuing the goals set

in section 1.2, which were to provide a power-efficient, modular, programmer friendly, high-

throughput CGE network processing architecture. Devising such an architecture, which

fulfills these requirements is, however, far from a trivial issue. The first consideration

is that any network processor is not a stand-alone component, but lives as part of an

environment, which was described in section 2.3. Section 3.1 introduces the outer layer

of the NPU100 architecture, which interfaces with that environment, namely the network

node.

After describing the NPU100 operating environment, the focus shifts to the NPU100

processing core architecture itself, which is the task of sections 3.2 and 3.3. These seek to

explain the way the NPU100 architecture realizes the purported advantages, the former

dealing with the power consumption aspects, while the latter expounding the programma-

bility and modularity facets.

Section 3.2 starts with an introduction of starting point of the architectural exploration,

which formed the basis for the architecture proposed further down the road. The conclu-

sions drawn from this account flow into a pool of ideas, which form the clay from which

one of the two main contributions of this thesis, the folded architecture is molded. This

architecture puts the specific traits of CGE protocols to use in order to improve upon

the power consumption of a typical pipeline architecture. The main operational concepts

of data buffering in order to minimize data path width and an early exit strategy in or-

der to limit the number of stages each packet header traverses and the methods which

enable them are explained. The folded architecture is then compared against two other

alternatives. The first is a standard pipeline structure and the second is a design which

attempts to minimize power consumption by storing the data to be processed in registers

and sending only the part to be processed to the appropriate module, thus eliminating the

continuous toggling of pipeline registers. The comparison verifies that the folded pipeline

architecture is the most suitable one for CGE networks.

Finally, section 3.3 briefly introduces the programming concept of the NPU100. It is

divided into a hardware and a software part, which work together in a harmoniously to

enable the prospective user to leverage the processing capabilities offered by the NPU100,

while avoiding resorting to cumbersome techniques which would hinder this goal. The

direct high level language-to-hardware approach is unique in the NP world, since no design

has thus far offered a similar programming concept. Modularity is preserved by abstracting

the task-to-module assignment from the programmer. Thus the NPU100 is endowed with

a complete programming tool-chain satisfying both the programmability and modularity

requirement.
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3.1 NPU100 Outer Layer

This section introduces the architecture of the NPU100 network processor. It moves down

into the first level of detail of the NPU100 design to describe the functionality of the

NPU100, excluding its pipeline core and programming concept, which are the subject of

subsequent sections. This architecture includes elements that support an efficient, power

conserving processing core, along with an intuitive programming mechanism, thus provid-

ing a complete solution for processing CGE traffic at 100 Gbit/s. Figure 3.1 provides a

high level block diagram of the NPU100 system. It consists of a software and a hardware

part.

The software part ensures the easy programming of the network processor by automat-

ically generating the necessary commands from a high level C like code and XML files,

which define the operating environment. This programming information is then sent to

the NPU100 over a PCI Express interface which ensures the efficient transmission of the

programming data to the network processor. There the data is being distributed to the

appropriate modules. The complete concept is described in more detail in section 3.3.

The hardware side consists of the actual processing core along with any modules required

to facilitate the processing. This includes, apart from the already mentioned configuration

interface, an interface to the Ethernet MAC which is responsible from transmitting and

receiving packets (though the MAC themselves are not part of the NPU100 design) and link

to exchange data with the switch interface. The exact nature of these two links depends on

the implementation and in this section Interlaken interfaces (introduced in section 2.7.2)

are considered. This serial interface is widespread among implementations where high

speed data throughput is required.

Fig. 3.1: High-level Block Diagram of the NPU100 System

The remainder of this section focuses on describing the functionality of the hardware

part of the NPU100 and explaining in detail how it can achieve significant power savings

in comparison to other solutions. The description of the NPU100 proceeds in an onion-like

fashion, where each layer is peeled to reveal the next one. This process begins with the

outer layer described in the subsequent two sections, of which 3.1.1, explains the rationale

behind the Header Payload Split concept and how this benefits power saving in the design
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by avoiding the sending of entire packets down the pipeline and temporarily buffering them

in a memory.

3.1.1 Header-Payload Split Concept

A basic hypothesis which underlies both investigated CGE protocols, is that only the

header needs to be processed and thus the payload does not need to be carried through

the pipeline. This is the case, since no complex deep packet inspection (DPI) processing

is required in core networks. Thus detaching the header from the payload and sending

only the former through the processing core will minimize the amount of information that

needs to be processed. The data volume to be saved depends on the size of packets that

arrive and is in any case limited between a maximum value, encountered when packets

of the maximum possible size are used and a minimum which occurs when packets of the

minimum possible size arrive at the NP. If we assume the header to be 128 bits wide

(something that would correspond to 4 MPLS labels and would also be sufficient for a

PBB-TE header), the amount of data saved is calculated using the following equation:

DataSaved = (PktSize−HeaderSize)× PacketsPerSecond (3.1)

where number of packets per second can be calculated by considering the minimum

(64 Bytes) or maximum (1522 Bytes) Ethernet frame size plus the inter frame gap and

preamble:

MinPacketsPerSecond =
LinkThroughput

Preamble + InterframeGap + MaxPktSize
= 8.1Mpps

MaxPacketsPerSecond =
LinkThroughput

Preamble + InterframeGap + MinPktSize
= 148.8Mpps

(3.2)

Substituting these values into equation 3.1, the values 57.13 Gbit/s for the minimum

and 97.32 Gbit/s for the maximum value of the data to be stored in the memory and avoid

being sent down the pipeline aimlessly are calculated. Thus separating the header from

the payload makes absolute sense under any circumstances.

The maximum number of packets that can arrive at the NPU100 can additionally be

used to determine the required operating frequency of the pipeline core. Since a pipeline

is a deterministic structure that can complete its processing within one clock cycle, our

system can be viewed as a black box with a given latency (dependent on the number of

pipeline stages), in which a packet comes in in every clock cycle and exits after a predictable

amount of cycles, thus guaranteeing the completion of processing for one packet per clock

cycle. Hence, if one packet can arrive every clock cycle and the maximum number of

packets that may arrive on a 100 Gbit/s Ethernet link is 148.8 million, a frequency of 149

37



3 NPU100 Architecture

MHz will be required.

The Header-Payload separation, called henceforth simply Header-Payload Split is im-

plemented by two modules, the Header-Payload Split and the Packet Reassembly, as figure

3.2 illustrates. The former receives 100 Gbit/s data from the Interlaken interface (labeled

as MAC/Switch I/F on the picture since it depends on if the NP is used as an egress or

ingress NPU) and copies the part of the data, which was designated as the one contain-

ing the header. The entire packet data is then written to the packet memory, which is

organized as a simple FIFO, in order to take advantage of the predictable nature of the

pipeline’s operation. Packets in a pipeline, exit the pipeline in the same order in which

they enter it thus a simple FIFO is enough to store them during processing. Packets are

written into the FIFO in 128 byte increments and are read out in identical fashion.

After the NPU100 pipeline core is done with the packet header, it arrives at the Packet

Reassembly module, where it is being put back together, before transmission. Putting the

packet back together the packet reassembly module must consider that some labels (in

case of a label based protocol) might be redundant or that new labels have been added,

and thus discard any labels erased during processing and add any pushed ones in the right

location of the packet.

Between these two units the main processing core of the NP performs the necessary

functions to forward the packet. A detailed description of the functionality of the Header

Payload Split subsystem and the modules from which it comprises can be found in section

4.1

An important decision in the design of the Header-Payload Split subsystem is whether

to make the memory inclusive or exclusive, that is, if the memory should mirror the data in

the pipeline and thus contain a complete copy of the packet, including the header, or if it

should store only the packet data without the header. The decision to design the memory

as an inclusive one was taken for two reasons: The first is that it allows us to simplify the

design of the processing core considerably. As will be explained in a subsequent section

(3.2.1), the processing core data path is minimized, by only sending the relevant part

of each packet header in the pipeline each time. This however could result in data loss

since new data generated during processing would need to overwrite existing ones. Thus

either a copy of this data must be maintained somewhere for later use or the data path

must be widened to provide extra space. Data path width minimization is however one

of the pillars on which the NPU100 pipeline core architecture is based and as such must

be adhered to. Thus a copy of the data that might be overwritten has to be maintained

somewhere else, from where it can be read out and recombined with the processing results.

The second, complementary reason for this decision is the limited size of the required

additional storage. In section 4.1.4 the size of the buffer memory is calculated to be 94116

bytes used to accommodate 62 packets (62 is the maximum number of packets that can be

in the NPU100 in any given time as will be explained in the implementation description

in chapter 4). Using the previously made assumption of a 16 byte header the overhead

from storing the header in the memory is 1KB, approximately 1% of the total memory

utilized. Hence the name Header-Payload Split is not completely justified as the header is

not actually separated from the payload, but is simply copied to the pipeline core.
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3.1 NPU100 Outer Layer

Fig. 3.2: Block Diagram of the NPU100 Outer Layer, which Shows how the Header is Copied
and Sent to the Pipeline core while the Complete Packet is Stored in the Packet
Memory.

3.1.2 NPU100 Internal Header

As the NPU100 is aimed at linecards, which are to be interconnected into a larger switch-

ing system, a method is required to transmit information between the NPUs residing on

different linecards (e.g. from the ingress NPU to both the ingress and egress switch in-

terfaces and the egress NP). This information includes the packet length, the input and

output ports for this packet, as well as QoS parameters for the ingress and egress queuing

systems. To accommodate for this, a switch internal header is used, which the ingress

NPU100 creates and fills with the required information during processing and which is

removed by the egress NPU100. The format of the internal header is shown in 3.3. It

is defined in accordance with the requirements of the MPLS-TP and PBB-TE protocols,

however since future protocols may require different structures, the NPU100 must be able

to support any changes that may need to be made to it.

Fig. 3.3: Structure of the NPU100 Internal Header

The currently defined internal header format includes the following fields:

• 5 bits to identify the input port, which by using binary coding allows for up to 32

input ports. Since a packet may have only one input port, binary coding may be

used in this case. This number of port is sufficient for a core router, where the total

number of ports per node is relatively small in comparison to an access router.

• 32 bits used to designate the output ports for this packet. These are used as a

bitmap, since it must be possible to send a packet to more than one output port at

the same time.

• 14 bits for specifying the QoS parameters for the packets, further subdivided into 2

sections, one for the input QoS parameters in the ingress path and one for the output

QoS parameters in the egress path. Each section contains the following fields:
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– the forwarding class, which defines the throughput and the queuing priority for

this packet flow.

– the drop precedence, which sets the priority of a packet in terms of it being

discarded due to network congestion.

– the drop behavior for this packet, meaning how should a packet drop be handled

(e.g. if it should be simply ignored or if the management plane should be

notified).

• 11 bits for the packet length. These are sufficient for Ethernet packets, which are

the focus of the NPU100. In order to support jumbo packets this field has to be

expanded to 14 bits.

The total size of the above fields is 62 bits, which are rounded to a 64 bit internal

header. The remaining bits are reserved for future use. It should also be noted that for

the currently standardized traffic classes [34], [58], the bits set aside in the internal header

suffice, despite the fact that the some protocols (e.g. MPLS) allow for more traffic classes

to be used.

The internal header also facilitates the transmission of multicast packets. Such a packet

has to be replicated once for every output port and each copy has to be processed separately.

This means that if this was to be performed in the ingress NPU, it would have to create

copies of the packet equal to the number of output ports to which the packet has to be

sent and then process each copy individually. This would put an enormous strain on both

the NPU and the switch interface by multiplying the traffic load to be forwarded, since

they would then have to queue and transmit all the copies to the egress line cards. To

avoid this, an alternative method is used, according to which only a preliminary processing

is done in the ingress path. This determines the output ports and the single copy of the

packet is then sent to all egress NPUs which complete the processing by performing any

label swapping or other required operations.

3.2 A Folded Pipeline Architecture for Low Power

Consumption in High Speed Carrier Grade Network

Processors

When designing a network processor architecture, three criteria must be typically kept in

mind. The first is performance, typically measured in Gigabits of throughput data per sec-

ond, which the NP can process. Performance in NPs always defines a hard lower bound.

Reaching it is critical, but there is no reason to strive for any additional gains in this

area after the requirement has been met. Performance evaluation during the architectural

exploration phase is tricky, since precise information about the critical paths in a design

cannot be known before a prototype implementation has been coded. Nevertheless, esti-

mations based on the organization and functionality of an architecture’s functional blocks

can provide preliminary insight into the performance that can be attained.
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Apart from the performance goal an architecture must minimize the remaining two

parameters, namely power consumption and chip area. The two parameters are of course

highly interwoven since any reduction in chip area typically means less devices to consume

power. The design and implementation of a low power NP architecture was one of the major

goals of this work. Determining a suitable method to accomplish this goal is however not a

trivial issue, since power consumption is the confluence of different design and technology

aspects. In section 1.1 a rough sketch of those was outlined. According to this, static

power dissipation lays out of the purview of this work, since it is completely dependent

on the process technology used and its characteristics. Thus any improvement must come

from focusing on the dynamic power dissipation. This depends on the factors outlined in

equation (1.1), from which capacitance (C) and and the operating voltage (V) are also

determined by the used fabrication process. The operating frequency (f) was addressed

previously in section 3.1.1 through the Header-Payload Split, which allows the use of a low

150 MHz frequency for the pipeline core, which will perform the bulk of the processing.

As a result of this, there is little room for improvement on the frequency front and thus

the switching factor will play the pivotal role in our strategy.

The switching factor is however an impalpable concept with many constituents and

hence it is difficult to determine whence benefits may stem. Our approach was based on

attempting to identify if a circuit characteristic exists, which plays a fundamental role in

the dynamic power consumption of the circuit. In a scalar, in-order, pipelined NP design

this is the pipeline width. Reducing the pipeline width can have a profound impact on

the power consumption since it affects the size of each pipeline register. This is a valid

assumption only for designs that consist of a large number of pipeline stages and thus

employ many such registers. This is clearly the case in a core network NP, in which MPLS

protocol requirement make evident that multiple stages have to be used to complete the

processing of multiple labels in a single node. This assumption is in line with the Xelerated

pipelined design (2.4.1), which uses no less than 512 pipeline stages.

A second facet of the switching factor upon which this work touches and which is

particularly evident in long pipelines, is limiting the amount of idle stages a packet has to

go through. This typically happens because a pipeline is dimensioned to handle some worst

case scenario, which most packets do not adhere to and thus have to go through several

pipeline stages without having any processing done to them. This is terribly wasteful of

energy since a huge amount of transistors toggle for nothing.

This creative process gave birth to the folded pipeline architecture, which is one of

the two main contributions of this work. The remainder of this section explains the key

concepts behind this architecture and compares it with a typical conventional pipeline

alternative, as well as a second possible architecture called the registered architecture, to

determine if it merits the use as the slate upon which the NPU100 implementation is to be

based. In light of this, section 3.2.1 elaborates upon the three aforementioned architectures

and explains their operating principles and claimed advantages. The last part of this section

details the precise pipeline stages that will be used in order to help clarify the comparative

analysis that follows in section 3.2.2. There, the three architectures are evaluated, first

qualitatively and then quantitatively, with each method revealing different aspects of the

each concept.
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Fig. 3.4: Overview of a Conventional Pipeline Architecture

3.2.1 Architectures Considered

The standard against which the suitability of the proposed folded pipeline, as well as the

registered architecture are measured is a conventional pipeline architecture, consisting of

multiple stages, set in sequence to one another. Data flows down the stages in each clock

cycle until it exits the pipeline after a number of cycles equal to the number of stages. This

allows for higher clock frequencies to be reached, since the work that has to be performed

in each clock cycle is reduced and also enables deterministic performance since in each

clock cycle the data move one stage down the pipeline.

The conventional pipeline structure used for the comparison continues along these lines,

as depicted in Figure 3.4. It consists of processing elements connected in series through

which packets flow. To allow for parallels to be drawn among the three alternatives, an

attempt is made to describe them in similar terms. Thus the basic processing required

by any current and most probably future CGE protocol was determined and a basic pro-

cessing element which can perform these operations was defined. This element is called

a mini-pipeline (MP). Each mini-pipeline includes the necessary modules to complete the

processing of a single packet header. These modules coincide with the ones required by

more or less all current and past core network protocols (e.g. a lookup to fetch next hop

data, arithmetic and logic operations on packet header fields, etc). The operations included

in the NPU100 pipeline are further elaborated upon in this section. The pipeline is then

assumed to be made up of these MPs, which are then connected in series with each other.

The MPs are just a logical division here and in no way reflect back to real changes in the

design of the MPs. All MPs, as well as the modules that make them up were designed to

be identical. The division serves to allow the comparison between the three architectures.

A packet is first processed by the first mini-pipeline, then by the second one and then by

the subsequent ones. Hence, a packet has to go through all the MPs independently of how

much processing it requires. As a result of this, the first stage is always more (or at least

equally) as loaded as the following stages, which means that for traffic patterns that have

a high share of packets that need to have only one label processed, only the first stage will

be used and thus considerable resources remain idle, although the packets still have to flow

through the entire pipeline, something which leads to high power consumption, while in

addition incurring unneeded latency on these packets. What is more, an overloaded first

MP means that power dissipation will be concentrated on that spot, which will overheat.

Furthermore, such a structure can only process up to a maximum predetermined number

of labels per packet, bounded by the number of mini-pipelines.
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Fig. 3.5: Block Diagram of the Registered Architecture

Registered Architecture

The first of the two architectures proposed in this work is the registered architecture,

shown in figure 3.5, which is an innovative approach that attempts achieve a low power

consumption by reducing the amount of register toggling that takes place in an NP. In the

registered architecture newly arrived packet headers are received by the Store module on

the left, which then writes them to the appropriate register using a round robin algorithm.

The registers form a register matrix in which the packet headers are stored and are con-

nected to a pool of processing elements (the figure only shows a few for clarity, more will

be required in a complete implementation) through an interconnect matrix, which ensures

the proper data transfer between them. Then in each clock cycle a part of the data is read

out from the register and sent over the interconnect to a PE. This process is controlled by

the Interconnect Control module, which is responsible for determining which part of each

register is to be sent to which processing engine and where the results should be written

back to. Respectively an output module performs the opposite task of the store module

and reads out any completely processed packet headers and sends them to the output.

The goal of reducing the amount of bits that toggle in every clock cycle ia accomplished

by using the register matrix as a packet header storehouse, from which the necessary part

is read out and written back into in each clock cycle.

The registered architecture represents a significant departure from a pipelined design,

given that packet headers are not flowing down the pipeline stages, but staying put in one

register from the duration of the processing. However, the architecture still maintains all

the traits of a pipelined design, since the processing is divided into a predictable number

stages, which are executed in sequence and thus it maintains all the advantages of a

pipeline. One more thing to note is that while at a first glance the architecture is very

different from the MP-based concept described previously in this section, this is, however,

a mere deception, since the exact number of registers and PEs are required to process the

same number of packets, granted though that the organization of these registers and PEs

is quite different than the conventional approach.

43



3 NPU100 Architecture

The major advantage of the registered architecture is that the static storage of the head-

ers in the registers reduces the dynamic power consumption caused by data trickling down

a pipeline. Furthermore the design is very flexible, since the order in which the PEs are

traversed can be reprogrammed into the Interconnect Control according to each protocols

demands. On the down side, connecting several tens of registers with a similar number of

PEs over an interconnect consisting of wide buses, is bound to present impediments when

implementing the architecture in actual hardware.

Folded Pipeline Architecture

The previous section described the registered architecture, which attempts to reduce power

consumption by limiting the amount of data flowing through the circuit. The folded

pipeline architecture attempts to do the same, but using a different approach. Here a

more traditional pipeline concept is realized, which is however tweaked in order to minimize

power dissipation by reducing the width of the pipeline data path. Since in a pipeline data

flows to the next stage with each clock cycle, even a moderate decrease in the number of

bits can have a significant impact on the resulting power consumption. The second goal was

to avoid having data redundantly run through pipeline stages and thus minimize register

toggling by not having data words trickle down the pipeline when this is not necessary.

To accomplish this, advantage of the MPLS trait to process more than one labels per

node is taken. Assuming that one MP clocked at 150 MHz is able to process one MPLS

label per packet in each clock cycle, if more labels have to be processed for each packet

header, more MPs have to be made available. Additional passes through successive MPs

will then complete the processing of any extra labels. Thus the challenge was how to

position these MPs, keeping in the back of one’s head, the goal of minimizing the pipeline

data path and the in-flight time of the packet headers in the pipelines.

The conventional pipeline concept placed the MPs in sequence, resulting in lower utiliza-

tion of the subsequent stages and the need to carry all the required processing information

down the entire pipeline (meaning, information that would only be required e.g. in the

third MP has to be carried needlessly through the first and second MPs). The solution

proposed in this section places these MPs in parallel, binds them together through two

specialized modules, called the Dispatcher and the Label Reassembly and creates a loop

path from the latter to the former. This concept was named the folded pipeline architec-

ture, since it essentially takes a straightforward pipeline, where the MPs would be placed in

succession and folds it onto itself to produce the result illustrated in figure 3.6. The folding

of the MPs in and of itself however does not endow the architecture with any benefits. The

real enablers are the two modules that join the MPs together. These ensure that the data

path is kept as narrow as possible and provide an early exit option for packet headers who

do not require further processing.

This is done by employing two independent label buffers, one connected to the Dis-

patcher and one to the Label Reassembly module. These buffers serve as temporary

scratch pad memories and allow the two modules to store unneeded header parts, as well

as results in them in order to avoid sending them down the MPs.

The Dispatcher and Label Reassembly modules can be programmed to operate in two

modes, the label based and the direct forwarding mode. The label based mode is more
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Fig. 3.6: Block Diagram of the Folded Pipeline Architecture

complex and is used for MPLS like protocols, which employ stacks from which labels are

popped or to which labels are pushed. The direct forwarding mode simply selects some

fields from the packet header for processing. The following description will focus mostly

on the label aspects, which leverage the full advantages of the folded architecture, with

the occasional digression to highlight how the direct forwarding mode works.

In label based mode the Dispatcher receives a chunk of the packet header, which contains

the label stack. It then detaches the top label, which is the first to be processed and stores

the remaining three into its label buffer. The first label is then sent to the first MP

for processing and after a number of clock cycles equal to the number of MP stages, it

comes out at the other side, at the Label Reassembly. There the module checks if the

packet header requires additional processing. If it does not, it can be sent to the output,

if it does, then the Label Reassembly checks if the packet header needs to store some

intermediate results in its label buffer. This is useful in case the space in the pipeline will

need to be claimed by some other data. Thus instead of simply making the pipeline wider

to accommodate for these data, we simply store the ones who are no longer needed for

immediate processing in one of the label buffers. The Label Reassembly determines if data

needs to be buffered in its label buffer depending on the operation that was performed on

the packet header. If new data have been produced, they have to be stored, lest they be

overwritten by the next MP. In MPLS this occurs after a swap or a push operation, where

a new label value replaces the existing one. If a pop was performed the label in the packet

header is no longer valid and will have to be erased from the stack, thus there is no need

to store it.

After any data has been stored the packet header is looped back to the Dispatcher, which

has to determine if this packet header needs to have data fetched from the Dispatcher label

buffer or if its current data are sufficient for the next MP run. This again depends on the

operation that was performed in the previous loop. If the operation erased a label then

the next label from the stack must be processed. This next label however, was stored in

the Dispatcher Label Buffer when the packet arrived in the pipeline core. Thus it has to

be read out and placed in the packet header before it is sent down the MPs again. Push

and swap operations do not require new labels to be fetched, as the relevant labels for the
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next MP run are the ones already in the pipeline.

This process repeats itself until the processing is complete. In this case the Label

Reassembly fetches any data that it has stored in its label buffer, combines them with

the latest results from the MPs and sends the processed packet header to the Packet

Reassembly, which then reconstructs the complete packet.

While the looping functionality appears at first glance to be MPLS specific, this need

not be the case. Other protocols, even non-label based ones, can make use of the loop

in order to utilize more MPs if the processing resources offered by a single MP are not

sufficient and additional operations need to be performed.

On the surface the folded architecture might seem similar to a ring architecture or a

pipeline with an early exit option, in which packets circulate through the ring, passing

through the same processing modules on each loop, while the early exit option pertains to

the possibility of a packet leaving the ring at specific points. Closer inspection reveals that

there is an important difference between these solutions and the one proposed here, since

the use of two label buffers, one in front and one after the mini-pipelines, by the folded

architecture allows it to reduce the data path width significantly in comparison to these

architectures and thus reduce power consumption.

This reduction of the data path width achieves one of the two main benefits of the folded

architecture. Since only the data that are needed are sent down the MP and temporary

results are stored in the Reassembly Label Buffer, this means that the data path can be

made considerably narrower (since this depends on various implementation parameters,

the next section (3.2.2) will elaborate on this and provide concrete numbers). The second

advantage of the folded architecture is that packet headers can exit the pipeline core when

processing is complete and do not have to traverse any unneeded stages. As a consequence

we achieve both our goals of reducing the number of transistors that toggle and how often

they have to toggle.

Mini-Pipeline Architecture

This section provides a brief introduction into the stages that make-up an MP in order to

facilitate the understanding of the architecture comparison that follows. The implementa-

tion details for each stage are provided in section 4.2.4. The number of stages in particular

plays a crucial role in walking the thin line between required functionality and resource

minimization, as it affects the time a packet spends in the system and thus the dimension-

ing of various system components. These stages have been derived from a detailed study

of the MPLS-TP and PBB-TE functional requirements and the discussion conducted here

serves to provide an overview of these requirements and how the MP structure was deter-

mined from them. It is important to keep in mind that the goal is to make an MP self

sufficient in performing basic processing required by typical CGE protocols.

Core network protocols typically call for much simpler processing than their edge net-

work counterparts. This is because a core network node has to be able to handle huge

amounts of aggregated traffic at a very high data rate and thus complex processing would

be impossible. On the other hand OAM functionality is extremely important for ensuring

adherence to SLAs. Hence a core network node is expected upon reception of a packet

to determine the output ports for this packet, enforce any traffic management mechanism
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(through QoS) that is used, make any changes to the packet header (if any are necessary)

and forward the packet. As protocols designed to implement the functionality of a core

network node, required MPLS-TP and PPB-TE operations both follow this pattern, with

PBB-TE exhibiting exceptional parsimony in the operations it requires.

Operation MPLS-TP PBB-TE Parameters
Field Extraction Separate the fields requiring pro-

cessing from the header
Location and width of the
extraction

Forwarding
lookup

Fetch the data for the next hop lookup key as input

QoS lookup lookup the QoS parameters for
this flow

lookup Key as input

Delete Delete a label Not required Position and length of the
data to delete

Replace Insert new label Not required Position to place the new
data and the data itself

Modify Decrement TTL,
set S Bit, modify
packet length ac-
cordingly

Not required Fields to be modified, oper-
ation to be performed and
operands

Tab. 3.1: Required Processing Stages for CGE Protocol Processing

Table 3.1 summarizes the operations called for by the two protocols, as well as in

which processing steps they are needed. MPLS-TP is by far the more complex of the

two protocols since apart from the forwarding and QoS lookup, which is similar to what

PBB-TE requires, it also demands that the packet header is modified in order to add,

swap or remove a label. This entails either expanding or contracting the label stack by

one label (32 bits) or simply exchanging the current label for a new one. Respectively, if

labels are added or removed from the stack the packet length must be adjusted accordingly

and in the former case, the S bit has to be set. Finally the TTL field must be processed,

which means its value must be checked and if it is not 0 it must be set to it’s proper value

by either decrementing it in case of a swap or pop or inserting a new value in case of a

push. Apart from these operations the in network processors ubiquitous lookups are also

required. The forwarding lookup provides information regarding the route the packet is

to follow (most commonly the output ports) and the QoS lookup provides the parameter

which are used by the queuing algorithm to prioritize the packet according to its traffic

class.

The second step in identifying the operations that need to be included in an MP is to

allocate these to specific processing stages. Figure 3.7 shows the result of this process,

which also mirrors the structure of an NPU100 MP. Some of these stages are further

pipelined internally (as e.g. the Forwarding lookup module is divided into three sub-

stages), in order to achieve the required performance. These operations were derived from

the list in table 3.1, with some minor aberrations to allow for greater adaptability to future

protocol needs.
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Fig. 3.7: NPU100 Mini-Pipeline Stages Derived from CGE Protocol Requirements

The first module is the Forwarding Lookup module, which produces the necessary in-

formation in order to forward the packet. This includes the operation to be performed,

a new address value if necessary and so on. It is further subdivided into a hash stage,

which transforms the input lookup key appropriately in order to allow for a large pool of

entries to be mapped to a smaller one with efficacy, a lookup stage, which performs the

actual memory search and access and a selection stage, which picks the most appropriate

among many possible results and enforces port filtering policies. Then three processing

modules perform various operations on the packet headers. The Replace module can insert

a chunk of data in the pipeline word, overwriting the existing data in the process, while

the Insert module shifts existing data and then inserts new ones. The latter is again sub-

divided into two sub stages. The Modify module performs arithmetic and logic operations

on the pipeline word. Two Modify modules are included in each mini pipeline ensure the

existence of sufficient processing resources for all required processing mandated by the

protocols considered. Finally, the QoS Lookup module locates and fetches QoS relevant

information, which is then placed in the internal header in order to be used by the switch

interface. This module is also divided into two sub stages, one that performs the lookup

and a second one, which reads the data from the memory and passes it on.

The sequence of the operations is not rigid, since apart from the forwarding lookup, upon

the results of which all other operations are based, the order of the remaining operations

is flexible according to MPLS-TP and PBB-TE specifications.

The functionality of each module, as well as the fields on which it operates, is pro-

grammable through a microcommand table and can be changed on the fly while the system

is operating. Furthermore the architectural concept need not be limited to the number

of stages used here, but can readily be adapted as needed since all the pipeline modules

share a common I/O interface. For more information on each module and on the complete

functional set which it implements refer to section 4.2.4, wherein their implementation is

described.

In total the number of stages is 6, however counting the internal pipeline stages of the

Forwarding Lookup, the QoS Lookup and the Insert modules, this number climbs to 10.

This means that a maximmum of 10 packet headers can be found in each mini-pipeline

at any given time. The number of pipeline registers required cumulatively in all the MPs

is NxM, where N is the number of mini-pipelines and M the number of stages in a mini-
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pipeline. Thus, an issue that still has to be clarified is the number of MPs that need

to be supported. As described in section 4.1.1, support for 4 MPLS tunnel layers was

deemed sufficient for current and future CGE requirements. Considering that each MP

can essentially process one label, which corresponds to one tunnel layer, it follows that 4

MPs are needed to provide the required throughput. As a consequence of this and taking

into account the mini-pipeline structure discussed above, up to 40 packet headers will

be in the pipelines at any given time. This has direct implications for the sizing of the

architectures (e.g. the label buffers, which the folded architecture requires or the switch

matrix of the registered architecture).

One final detail to be clarrified is the data that are stored in each of the aforementioned

pipeline registers. Each packet that flows into the NPU100 is represented in the processing

core by one pipeline word. This pipeline word contains all the information necessary to

process the packet and is toggled from one pipeline stage to the other and processed in all

pipeline stages as needed. Thus all the necessary information for performing the required

operation as well as the space for storing the result must be available in this data word.

The actual information contained in the data structure is of course dynamic and depends

on the results of the processing stages, as well as on data fetched from the Dispatcher Label

Buffer. Figure 3.8 shows the data structure to be used in the pipeline. This structure is

compatible with both MPLS-TP and PBB-TE protocols, however the NPU100 is flexible

enough so as to be able to use any pipeline word structure that may be defined in the future

in order to accommodate other protocols. To this end, the separation of the pipeline word

into the three parts described below is purely logical. The length of each of the three

parts and the fields that make up each part can be reassigned as needed by the user. The

pipeline word consists of the following three areas:

1. the internal header, which carries information needed by the switch interface and the

egress NPU. 64 bits are used, as has been described in section 3.1.2.

2. the labels/header. Depending on the protocol it could be either labels (in the case

of MPLS-TP), a header, or some fields of the header as needed (as in the case of

PBB-TE). Taking into account the required field length of PBB-TE (60 bits for the

combined B-VID and B-DA fields) and the length of an MPLS-TP label (32 bits),

the length of this structure part is set to 64 bit.

3. the processing context, which is used to transfer data used for intra-pipeline commu-

nication. Information which results from one stage and needs to be used by subse-

quent stages is stored in the processing context. The context is preserved throughout

the pipeline core, which means that all temporary results, required by future stages

must be placed there. To determine the required length for this field, we have to

investigate the functionality of the two candidate protocols. In both cases the major

use of such temporary storage will be to accommodate the results from the ad-

dress/label lookups. These results are used by subsequent stages to determine the

packet’s destination and treatment. Again MPLS-TP needs more space since a new

label field value might have to be stored, accompanied by a new TTL value, QoS

parameters and the operation to be performed consuming 42 bits in total. In com-

parison, PBB-TE requires 32 bits for a port filtering bitmap used to determine the
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output ports. In addition to these bits, the NPU100 also requires 9 more bits to

keep track of pipeline operations. Thus a total of 52 bits are used in accordance with

the processing requirements of MPLS-TP and PBB-TE. A size of 64 was selected for

the processing context to allow for a small headroom to be used in possible future

functionality.

Fig. 3.8: General NPU100 Pipeline Word Structure, along with MPLS-TP and PBB-TE Vari-
ants

A common denominator across all pipeline stages and all architectures are the so-called

Input and Output Selection modules (ISU and OSU respectively). These provide a common

interface to all pipeline modules making them thus easily interchangeable. Each processing

stage has one ISU and one OSU. The ISU performs field extraction from the pipeline word

and forwards the results to the processing element, which then processes them. Its output

is then taken by the OSU and reintegrated into the pipeline word when being written into

the next stage register.

3.2.2 Architecture Evaluation

Evaluating the NPU100 architecture was a multi-stage process, conducted with various

methods each time in order to get the optimal result. Thus in some cases a qualitative,

analytical approach was followed, whereas in others an RTL implementation of key com-

ponents was preferred. High-level simulations (e.g. using SystemC) on the other hand

were neglected, since they would fall short of producing useful results. This is because

high level simulations cannot yield precise insight into the power and area requirements of

a circuit. Thus in order to get the required information, one has to go the extra mile and

delve deeper into lower level simulations, the overhead of which however starts to become

comparable to implementing the modules in RTL. Hence the decision was made to omit a

simulative analysis from the evaluation of the NPU100 architecture.

This work is centered around the two architectures presented in the previous section,

which propound innovative solutions to reign in the challenges of power consumption and

complexity in carrier grade network processors. In section 3.2.1 the merits of the two

architectures were described and the main tributaries to them were identified. The goal of

this section is to elaborate upon these advantages and quantify them in comparison to a

conventional pipeline architecture.
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The section goes on to first provide a qualitative, analytical evaluation of the three

contestants and then moves on to prove that the registered architecture is unfeasible from

a technical perspective and finally to compare the folded with the conventional architecture,

both analytically and quantitatively in order to prove the former ones supremacy.

Qualitative Results

This section argues the merits of each of the three architectures considered in this work

in detail and provides more concrete evidence about the superiority of the folded pipeline

architecture as a solution for next generation CGE networks. It functions in a comple-

mentary fashion to the next section (3.2.2), which provides quantitative results from the

implementation of the three architectures. This implementation does not make the qual-

itative analysis redundant, since it can help investigate certain architectural traits which

are not quantifiable or which the implementation with its broader scope, fails to catch.

In order to provide a better overview, each parameter is discussed in each own subsection

and all maintain the same approach of providing an introductory explanation into each

parameter discussed and then going on to elaborate upon the specific characteristics of

each of the three architectures with regards to this parameter.

It is important to note that the evaluation here corresponds to just the processing core

architectures and thus disregards other limitations imposed on them by other modules.

Thus, the fact that in the prototype implementation of the NPU100, the main packet buffer

is operated in a FIFO queue fashion and thus packets have to exit the processing core in

the order in which they came into it, is ignored for the purposes of this comparison. The

consequence of this limitation is that the early-exit feature of the folded and registered

architectures can’t be used to reduce the total packet latency for this packet. Since,

however, this is not an inherent drawback of the processing architecture itself, but is

imposed on the architecture by design choices made in other components, it is not taken

into account when comparing the architectures in this section. This limitation could have

been resolved by the use of a more elaborate packet buffering scheme, such as the ones

referenced in section 4.1.4.

Datapath Width The data path width refers to how wide the flow of information through

the pipeline is, in practical terms, how much information is stored in each pipeline register.

This has an impact on both resource use and power consumption and as such it is desired

from an implementation perspective to implement as narrow a data path as possible.

Thus, an architecture which allows to send fewer information down the pipeline has a

clear advantage. When discussing specific numbers in this section we exclude any bits

that will be required for the internal header, as well as for the processing context, as they

are assumed to be common to all architectures. Thus any numbers given refer to register

width required purely to accommodate the packet header data.

In the conventional pipeline architecture, all data that might need to be processed at

some point in the pipeline have to available in the pipeline registers from the very beginning.

The registers must thus be wide enough to accommodate them. In the concrete case being

studied here, the need to fit 4 MPLS-TP labels into the pipeline would require a register
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width of 128 bits, all of which would be overwritten with new data in every clock cycle as

packet headers flow down the pipeline.

The registered architecture also requires that data that might be necessary for processing

are available in the processing core, thus the needed register width remains the same,

although the data will mostly remain in that register during the duration of the processing.

In the folded architecture, the possibility to store labels in the Dispatcher and Label

Reassembly buffers before and after processing, allows it to send only the part of the

data that actually needs processing down the pipeline (one label for MPLS). This permits

the use of a considerably narrower data path and is much more scalable, since the data

path width will remain fixed independently of the number of mini-pipelines, whereas in the

conventional and registered architectures it would grow linearly. In the scenarios considered

in this work (namely an MPLS stack depth of 4) this means a shrinking of up to 75% (since

only one of those 4 labels will have to be sent down the pipeline each time) in the datapath

used for the packet header/labels. As the labels still have to be stored in the label buffer

there is no area or resource saving. However power consumption is shrunk since there is

no need to constantly transfer these bits from register to register.

Register Power Consumption The differences in the required pipeline width between

the architectures have been described previously. This section provides an in depth look

into one of the parameters affected by register width, the register power consumption. This

depends on how wide the registers are and how often they toggle. The smaller data path

and capability to save on the number of processing elements a packet must traverse, allow

for extended savings in dynamic power consumption.

To calculate the register power consumption of each architecture we use that of the

conventional pipeline architecture as a reference point, and plot the savings offered by the

other two architectures for a set of operational scenarios we define. The straightforward

architecture is used as a reference as it uses the widest data path and has the highest

toggling rate since packet headers must traverse it entirely before exiting.

Several traffic scenarios with different processing requirements in terms of the number

of labels to be processed have been used, which are shown in Table 3.2. The scenarios are

synthetic workloads, which have been chosen to encompass a wide selection of alternatives,

from a more or less balanced number of labels to be processed per packet (scenarios I and

II), to more realistic scenarios, where most of the packets will have to have a single label

swapped and a minority of labels entering or exiting a tunnel (scenarios III and IV), to

the extreme scenarios, where all packet have to be looped one, two, three or four times (in

scenario V, VI, VII and VIII respectively).

Figure 3.9 plots the relative savings of the folded architecture in dynamic power con-

sumption, in relation to a traditional pipeline with 4 mini-pipelines. It clearly shows that

in even in the worst case scenario for the folded architecture, where all headers have to

flow through all the mini-pipelines, a saving of 37,5% can be observed, due to the smaller

pipeline width. More impressively the switching power can be reduced by almost 90%

when all headers need to traverse the NPU100 only once. This investigation only con-

siders the pipeline register power consumption. Thus, it excludes power consumption in

the processing modules themselves as well any modules which are necessary in the one
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Tab. 3.2: Percentage of Labels to be Processed for Different Traffic Scenarios

No. of mini-
pipeline loops

I
(%)

II
(%)

III
(%)

IV
(%)

V
(%)

VI
(%)

VII
(%)

VIII
(%)

1 40 25 80 65 100 0 0 0
2 20 25 15 20 0 100 0 0
3 20 25 5 10 0 0 100 0
4 20 25 0 5 0 0 0 100

Fig. 3.9: Folded Architecture Dynamic Register Power Consumption Reduction Relative to the
Conventional Pipeline

architecture but not in the others. Regarding the former, a narrower datapath will cer-

tainly mean lower power consumption in the processing modules as well. This is due to the

reduced resource used and complexity, which the reduced datapath width enables. This

advantage is however very difficult to quantify with analytical methods. The latter refers

to additional modules present in the folder architecture, which make the feedback loop

and thus the narrower datapath possible. These modules are the the Dispatcher und Label

Reassembly modules and their buffers. Since these modules do not have an equivalent in

the traditional pipeline architecture, their power consumption will have an adverse effect

on the gains calculated here.

Figure 3.10 provides the same data but for the registered architecture. Explanation of

the results here requires some additional information regarding the assumptions made:

• It was assumed that 48 bits toggle in every clock cycle. This number is sufficient

to cover CGE protocol requirements and is in line with the more detailed analysis

found in section 4.2.4.

• Each packet header can exit the processing core when its processing is done with no

further delays.

• Stages which are not required incur no power consumption, since in this case the

packet header would simply be kept in the register during these clock cycles in order to

maintain synchronization with other packet headers, which might require processing
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Fig. 3.10: Registered Architecture Dynamic Register Power Consumption Reduction Relative
to the Conventional Pipeline

at this stage. An example of this is the QoS lookup in MPLS, which is required only

for the first and last labels of a packet.

Since some of the above data is protocol dependent, we use MPLS-TP for this compar-

ison as a reference point.

The results for the registered architecture are even more impressive than the ones for

the folded. The minimum gains are more than 88% and in typical scenarios more than

92% registered power consumption is saved. Granted this is only one aspect of how power

is dissipated in an NPU, this does not detract from the conclusion, which hints strongly

that both the registered has a clear power dissipation advantage over both competing

solution and that the folded one offers clear benefits in the same area in comparison to the

straightforward pipeline architecture.

Resource Consumption Evaluating resource consumption of the various NPU100 archi-

tectures requires us considering some basic architectural characteristics of the design. The

first of these is that the processing modules are common in all architectures and thus can

be abstracted from the investigation. The same cannot be said for the pipeline registers,

which are, as explained in the previous sections, narrower in the folded architecture, some-

thing which influences resource use. In order to determine how many registers are saved

in a concrete example, the expected difference is calculated analytically in the following

equation:

NoOfMPs× StagesPerMP × (RegWidthConventional −RegWidthFolded) = 2560

(3.3)

This calculates the register save between a conventional architecture with a pipeline

width of 256 (in order to accommodate all four MPLS labels plus the internal header and

the processing context) compared to that of the folded architecture with a width of 192
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bits. This is equal to the the difference in pipeline width times the overall number of

pipeline stages, which is equal to the number of MPs times the number of MP stages.

The reduced data path width, also has an influence on the complexity of the field

extraction and recombination, which is performed in every processing element (the detailed

mechanism is described in section 4.2.4). A narrower data path means that there are less

bits to choose from and thus the folded architecture should also require simpler ISU and

OSU modules in comparison with the other two architectures. The advantage however is

difficult to quantify without implementing the modules themselves.

The final resource use element that must be captured are the additional components re-

quired by either the folded or the registered architecture in comparison to the conventional

one. These are in the former’s case the Dispatcher and the Label Reassembly and their

respective Label Buffers and in the latter’s the switch matrix with it’s respective control

modules. From these modules, the only ones, whose size can be calculated analytically

with any measure of accuracy are the two label buffers. This is given from the following

two equations:

(NoOfMPs− 1)× StagesPerMP ×DispCellWidth = 2880 (3.4)

NoOfMPs× StagesPerMP × LRCellWidth = 8000 (3.5)

These multiply the number of cells in each matrix with the cell width. The results

show that the two label buffers combined require 10880 slice registers, more than what

the reduction of the pipeline width saves. This is because cell capacity in the two buffers

is more than double what is saved in the MPs. More specifically each buffer needs to

hold up to three labels (which is exactly what is shaved of the pipeline word) plus the

internal header and part of the processing context for the Label Reassembly Buffer, thus

far exceeding the number of bits saved by the narrower data path. It makes up for that

deficiency by enabling the use of narrower pipeline as described in the previous section and

thus leading to significant power savings.

Packet Latency Packet Latency is the number of clock cycles a packet needs until it is

completely processed and has been sent to the output. It is identical for all packets in

the conventional pipeline architecture as all packets have to go through all stages of all

mini-pipelines. In this concrete implementation this would be 40 clock cycles (4 MPs time

10 stages per MP).

The registered architecture does not suffer from this handicap and it could output a

packet directly after its processing was completed, granted the output module has the

intelligence to monitor the processing progress of each packet and congestion due to con-

currently completed packets is resolved. Furthermore, it could be programmed so, as to

skip some stages if they were not required by the current protocol, thus further reducing

the latency. Assuming a 7 stage pipeline like the one used in the NPU100 (as introduced

in section 3.2.1) and MPLS packet whose label has to be popped, we can determine that

in this case the label would only need to pass through the forwarding and QoS lookup

modules, as no additional operations need to be performed. This means that this label can
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exit the registered pipeline architecture after passing through these two pipeline stages,

with a total latency of 5 clock cycles, which is a reduction of 5 clock cycles over the total

latency of going through all pipeline stages as is mandatory in the traditional pipeline

architecture. If a label needs to be swapped, then the packet needs to go through both

lookup modules as well as through the replace and one of the modify ones, which would

increase the latency to 7 cycles and reduce the savings to 3.

The folded architecture falls somewhere between the two other architectures, as it has

a latency quantized to that of a mini-pipeline. This is so, because a packet can exit the

NPU when the processing in the current mini-pipeline is done. In contrast to the registered

architecture, however, in the folded one an MP always has to be traversed in its entirety.

Thus, an MPLS packet that only needs to have its top label swapped, as described in

the previous paragraph, will have a latency of 10 cycles in the folded architecture, in

comparison to 7 cycles in the registered one. The packet will then be able to leave the

pipeline however, whereas in the traditional architecture it would have to go through all 4

MPs for a total latency of 40 clock cycles.

Flexibility Flexibility is also an important parameter to be considered, which however is

difficult to quantify. It refers to the capability of an architecture to adapt itself to future

requirements. In this respect, the conventional pipeline is the most rigid one. The number

of MPs and stages are fixed, as well as the sequence in which they are traversed. Hence

the architecture’s adaptability is relatively small, as it can process at most as many labels

as the number of mini-pipelines it includes.

The folded architecture on the other hand would be able to process any number of

labels in a packet, while being limited by the availability of processing resources and of

memory to store the labels in the label buffers. However, even if more space was available

in the buffers, the finite number of processing resources available might lead to performance

degradation, since packets would have to be queued in the dispatcher until a mini-pipeline

becomes available. Furthermore, the order of the processing stages is still fixed, although

now there is an early exit option after each MP.

The registered architecture is the clear winner in this category since the stages to be

used for processing, the order in which this is to take place and how many times each will be

used, can all be changed by programming the switch matrix control appropriately. There

are, however, still the limitations found in the folded architecture, regarding availability of

register storage space for packet headers and processing elements for performing operations

on them, which have to be taken into account in any such design.

Summary To summarize the findings of the previous section, table 3.3 provides an

overview of the results of the qualitative investigation. This helps identify some trends

regarding a possible winner among the three contestants and provides some pointers about

the issues that need to be investigated further during the course of the quantitative com-

parison and the implementation of the system.

The qualitative analysis provides clear indications on the benefits of both the folded and

the registered architectures, but also leaves several areas with a lot of unresolved questions.

These mostly focus in obtaining more data about the additional modules required by the

56



3.2 A Folded Pipeline Architecture for Low Power Consumption in High Speed Carrier

Grade Network Processors

Tab. 3.3: Summary of the Qualitative Analysis’s Findings

Conventional Registered Folded

Datapath Width 256 bits 256 bits 192 bits

Register Power
Consumption

X 3-11% of X 17-62% of X

Resource Con-
sumption

Wide pipeline regis-
ters, no additional
requirements

Wide pipeline reg-
isters, additional
modules of unknown
sizes required

Narrow pipeline reg-
ister, Considerable
additional modules
required

Packet Latency
Fixed at 4 x no. of
MPs

Minimal
Quantized to the no.
of MPs

Flexibility None Extensive Good

registered and folded architectures and of determining if these modules induce a very high

implementation penalty, high enough to render the respective architecture impossible to

implement with contemporary IC technologies. In this regard, the registered architecture

switch matrix remains an unknown factor, as no evaluation of its resource requirements

and power consumption can be made without implementing it. This can negate the clear

advantages that the registered architecture exhibits in all areas. These questions can only

be answered unequivocally by a comparison of the implementation of the three architec-

tures, which will provide additional data regarding the power consumption and complexity

of the each concept.

Quantitative Results

The quantitative analysis attempts to rectify some of the deficiencies of the qualitative

analysis that preceded it. There, the clear edge for the registered architecture in most

investigated parameters was shown. Caution was however dictated for two reasons: The

complexity of a switch matrix of the order required by the number of PEs in the design

could very well prove impossible to implement with contemporary IC technology and even

if this was not the case, the power consumption of the switch matrix might negate any

advantages.

To determine the validity of this suspicion, an implementation of the registered archi-

tecture for different numbers of PEs was performed in an effort to disprove both of these

possibilities. Unfortunately, this was to no avail, as the suspicions were confirmed and

the registered architecture proved overly complex to implement. Thus the remaining two

architectures, the conventional and the folded one, were implemented and compared in

order to test the hinted superiority of the folded pipeline concept.

Registered Architecture The registered architecture held great promise on reducing

power consumption, since it aspired to minimize the number of bits that are sent to the

processing modules and back, thus reducing the number of bits that toggle in every clock

cycle. It was however identified from the very beginning that the complicated interconnect

matrix required to interconnect the PEs with the registers holding the packet headers could
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very well be the Achilles’ heel of this concept. To this end we implemented an interim ver-

sion of this concept as a stopgap approach to evaluate its feasibility. Figure 3.11 shows how

it was implemented. The PEs shown are indicative and were multiplied according to the

needs of each test implementation. It uses the same modules as the implementation of the

folded and conventional pipelines described subsequently in this section, but rearranged so

as to form the new architecture. Hence, the registers normally found in between the MP

stages are now located in a register file, in which a new header is written in each clock cycle.

From this register file data is selected by a module called the Input Selection Unit (ISU)

and sent over the interconnect matrix to the required PE. The ISU is a programmable

module which ensures that the processing modules have access to the appropriate packet

header register bits. A similar module, the Output Selection Unit (OSU) performs the

opposite task, and merges the results of each PE back with the original packet header

data. Each ISU and OSU is programmed using a microcommand table, which directs the

bit selection process. After processing the results are sent back to the register where they

are placed in the right location by an OSU. A multiplexer between each OSU and register

selects between the output of the OSU and a new packet header coming from the input.

The interconnect control module is the brain, which directs the flow of packet header data

to each PE and back. The approach used here is one of configurable assignment, which

means that the user can configure the order in which packet header data are sent to the

PEs and this can be changed over the configuration interface of the NPU. The assignment

is, however, identical for all packets.

One deviation in the functionality between the registered architecture implementation

on the one hand and those of the conventional and folded architecture implementations

on the other is in the programming flexibility provided by the microcommand tables. In

the folded and conventional architectures, each stage has it own microcommand table,

whereas here each register has its own microcommand table. This means that in the

former case, each stage can have up to a specific number of operations that are performed

(this number is eight in our implementation, since there are eight entries in the table), and

that this specific number of operations is common to all packets (since all packets flowing

through this stage use this microcommand table), whereas in the latter case each packet

header has a number of specific operations equal to the number of entries in the ISU/OSU

microcommand table for its entire lifetime in the NPU. Thus all operations to be performed

on this packet have to be controlled by the entries contained in that microcommand table

and this could lead to the need for a table containing more entries to accommodate for

all possible processing combinations. The up side in this case however is that each packet

header can have a completely different set of operations performed on it. In praxis, the

benefit of this is questionable since in core network large number of packets belonging to

one protocol are processed, thus this kind of additional flexibility would be of no avail.

In order to determine if the concept has merit, we implemented the architecture for an

ever increasing number of stages. A generic-based VHDL implementation was used for

this purpose, so as to allow for a change in stage number, with minimal alterations in the

code itself. Figures 3.12a and 3.12b show the results of the implementation with regards to

device resource utilization and achieved synthesis frequency. While the latter experiences

a respectable but tolerable drop, the real show stopper is the resource consumption, which
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Fig. 3.11: Implementation of a Registered Architecture Prototype

skyrockets as the number of PEs increases. Keeping in mind that the Virtex 5 LX330T

(the largest in the Virtex 5 families), for which these results where synthesized, offers

207360 slice registers and an equal number of LUTs, we can see that a variant with up

to 8 stages is the maximum that could be accommodated in this device, and this at a

significant resource cost. Since the complete NPU100 with all four MPs consists of in

excess of 40 pipeline stages, it is easy to see that this architecture is not a realistic choice

for a 100 Gbit/s CGE design. This is not meant to invalidate the whole concept, as

an implementation using a small number of processing stages and registers is feasible,

but makes clear that it is precocious at best, given the current state of semiconductor

technology. An alternative use of this concept, that was not further examined within the

confines of this thesis, would be to utilize this architecture for only a small part of each

MP (say, for the four processing modules - insert, replace and the two modify modules),

so as to provide some extra flexibility, as in this case it would be possible to change the

order in which these operations are performed.

Conventional and Folded Architectures Comparison This section compares the im-

plementations of the folded and conventional architectures in order to verify the advan-

tages bestowed upon the former in the qualitative analysis. It compares the three main

performance characteristics of any circuit, resource consumption, performance and power

dissipation, starting with the latter as it has been touted to be the area where the folded ar-
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(a) Resource consumption of registered architecture
for various PE numbers

(b) Frequency of the registered architecture for vari-
ous PE numbers

Fig. 3.12: Registered Architecture Resource Consumption and Frequency for Various PE Num-
bers

chitecture exhibits the greater advantage. This section only compares the processing cores

of the two architectures, meaning modules like the Header-Payload Split and the Packet

Reassembly are excluded, as the focus here is in comparing the architectures, which consist

of the two processing cores and not entire systems based on these architectures.

Power Consumption Estimation Evaluating the power consumption of a circuit before

actually implementing it is a difficult problem. To this end, the Xilinx XPower tool [?],

which allows the estimation of power consumption on a FPGA, was used. Its results are

directly applicable only to FPGA-based systems, but they are also applicable to digital

circuits in general, as the basic building blocks are to some extent common. It uses place

and route data of the implemented design as well as design constraints and considers

various parameters such as the switching activity in the circuit. The tool can be fed with

specific operational scenarios in order to extract accurate results.

In order to get a fairly accurate estimation of the power consumption of the two ar-

chitectures, information regarding the activity of each module had to first be provided to

the tool. This data was determined by classifying the modules into 4 levels of switching

activity with each level having it’s own switching factor. In order to set the proper value

for each module, the resources used by each was analyzed. An overview of these for the

entire NPU100 testbed is provided in table 5.1, which also includes the modules relevant

in this part of the study. Then a qualitative estimation of the activity of each module was

performed. This was based on the work performed by each module.

Table 3.4 provides detailed data about this classification, as well as about the number of

flip flops (FFs) contained in each module of the NP, which also influences the switch factor.

Figure 3.13 provides an overview of the folded architecture pipeline modeled to facilitate

comprehension of the modules listed in the table. Internal module pipeline register and

configuration LUTs are not shown on the figure. Modules not listed in the table include no

FFs. The ones deemed to have minimal switching activity have the switching factor set to

0. These are FFs which hold configuration information which are expected to change value
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Fig. 3.13: Folded Pipeline Architecture Modelled in xPower

only when the NP gets reprogrammed, something should only happen rarely. Thus for all

intents and purposes this toggling rate is considered to be infinitesimal and is ignored.

Small switching activity (factor 0.03 on the table) is attributed to those FFs which are

rewritten every several tens of cycles, like the ones in the dispatcher and label reassembly

buffer, which are rewritten once NxM clock cycles. Medium switching (factor 0.25 on the

table) activity is assigned to FFs which toggle every small number of cycles. These can be

internal registers of the dispatcher and label reassembly modules which buffer data coming

to and from the mini-pipelines, the buffers and the input or output. Finally FFs which

toggle with every clock cycle are classified as high switching activity ones. We assume that

in every clock cycle in which a FF is rewritten there is a 50% probability that its value is

going to change. Using this assumption we calculate the number of FFs which toggle per

module and cycle, which we then use to derive the switching factor for the scenarios listed

in table 3.5. The table also includes the values used in the XPower tool in each scenario

and provides the results for the power consumption for the two architectures, plus the

isolated power consumption for a single mini pipeline in both architectures,are presented.

Comparing the results from the XPower tool with our theoretical analysis in section

3.2.2 we can see that for a single pipeline the folded architecture shows an 12% reduction

in dynamic power consumption. In scenario VIII of section 3.2.2, which considers all the

minipipelines stressed to the maximum and thus it is directly comparable with the results

derived here from the tool, the total calculated savings were 37.5% for all minipipelines,

thus approximately 9.4% for each minipipeline, which is quite close to the XPower value,

if one considers that our analysis only took into account the registers, while the XPower

considers all the modules, including the wider ISUs and OSUs in the conventional archi-

tecture. Thus, the reduced power consumption of the folded architecture is verified. Both

the single mini pipeline and the complete folded architecture demonstrate significantly re-

duced power consumption in comparison to their conventional counterparts. One has to

note, that the advantage of the complete folded pipeline is dimished in comparison to that

of a single MP. This is reasonable since the complete folded pipeline core also include the

Dispatcher and Label Reassembly modules which contribute to the power consumption

respectively.
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Tab. 3.4: Estimation of the Activity Factor for the NPU100 Modules

Module No. of
modules

No. of FFs
per module

Activity
Estimation

Toggles per
cycle

Forwarding Lookup Memory
Write Control

1 20075 0 0

Forwarding Lookup Module 4 1983 0.25 496
QoS Lookup Memory Write Con-
trol

4 651 0 0

QoS Lookup Module 4 690 0 0
Modify Module 8 1376 0 0
Replace Module 4 552 0 0
Dispatcher 1 4649 0.25 1193
Dispatcher Label Buffer 1 2058 0.02 187
Label Reassembly 1 1320 0.25 336
Label Reassembly Label Buffer 1 5740 0.02 346
Configuration LUT 28 640 0 0
Conventional Architecture
Pipeline Registers

40 256 0.5 5120

Folded Architecture Pipeline
Registers

40 192 0.5 3840

Tab. 3.5: Power Consumption Data for Conventional and Folded Pipeline Architectures

Switching
Factor

Static
Power (W)

Dynamic
Power (W)

Total
Power (W)

Conventional Architecture 0.10 9.32 17.67 26.99
Folded Architecture 0.08 8.98 14.63 23.61
Conventional Mini Pipeline 0.08 4.98 5.36 10.34
Folded Mini Pipeline 0.07 3.76 4.13 7.89

Resource Consumption Comparing the resource usage of the two architectures is in-

teresting, since a deeper investigation reveals additional information which is not evident

during a superficial first look. To this end, table 3.6 provides synthesis results for the

conventional and folded architecture and MPs respectively. Furthermore, the Dispatcher

and Label Reassembly modules are shown separately from their respective buffers so as to

be able to decouple the impact of each on the total circuit size. For the synthesis of the

design the Xilinx ISE v13.1 XST [?] synthesizer and the Virtex 5 LX330T were used. This

FPGA offers 207360 slice LUTs and an equal number of registers.

On a high level, the folded architecture shows somewhat higher slice register consump-

tion (by approximately 14000 registers), but at the same time reduces slice LUT usage by

about 34000. Both of these variations are explainable. The increase in slice registers is a

result of the extra modules demanded by the folded architectures and most importantly

of the two label buffers. Because of the high number of required concurrent inputs and

outputs, these buffers were implemented as register matrices and thus they consume slice
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Tab. 3.6: Resource Consumption for Conventional and Folded Pipeline Architectures

No. of Slice Registers No. of Slice LUTs
Conventional Architecture 40312 174119
Conventional Mini Pipeline 10104 43991
Folded Architecture 54800 140018
Folded Architecture Mini
Pipeline

7732 31983

Dispatcher/Label Reassembly
(w/o Buffer)

5969 4366

Dispatcher/Label Reassembly
Buffers

16298 4291

registers. Instantiating and using Block RAMs (BRAMs) was not advisable as they are

also in short supply, due to them being used as lookup memories. Furthermore, instanti-

ating BRAMs appropriately to fulfill the requirements would lead to a very complicated

design, and very probably one that would waste precious BRAM capacity (due to BRAM

aggregation in order to get the appropriate cell width and matrix organization right). In an

ASIC implementation a custom memory with the appropriate characteristics would solve

this problem. Even so, one might have expected the number of registers to be roughly

equal, based on the notion, that the folded architecture reduces the register width in the

pipeline and thus saves on registers there, but uses up these registers in the label buffers.

This explanation does not take into account the fact that the Label Reassembly Buffer

contains the necessary space not only for the labels, but also for the internal header and

part of the processing context, as described in 4.2.3. This more than compensates the

registers saved in the pipeline. The exact number of registers required in the two buffers is

calculated by equations (3.6) and (3.7), which are essentially identical with the equations

provided in the qualitative evaluation ((3.4) and (3.5) respectively), with the addition of

extra stages for the Dispatcher and Label Reassembly modules (marked DispStages and

LRStages in the equations respectively.

(NoOfMPs− 1)× (StagesPerMP +DispStages+LRStages)×DispCellWidth = 4320

(3.6)

NoOfMPs×(StagesPerMP +DispStages+LRStages)×LRCellWidth = 12000 (3.7)

Despite the increased slice register usage, slice LUT consumption in the folded architec-

ture is significantly reduced, as a result of the simpler ISUs and OSUs needed to cope with

the narrower pipeline. It must be stressed here that the difference is not just in numbers.

It might be that significantly more slice LUTs are saved than slice registers are consumed,

but one must keep in mind that a LUT table is a much more complex structure than a

simple register. In fact, the Virtex 5 FPGA architecture uses 6-input LUTs, whose imple-

mentation, although not publicly, available is bound to be more resource consuming than

63



3 NPU100 Architecture

a single register. This further accentuates the resources saved in the folded architecture.

The number of registers consumed by the Dispatcher and Label Reassembly buffers

confirm the calculations performed in equations 3.4 and 3.5. Furthermore it shows that

both modules together with their label buffers consume less than 8% of the resources of a

modern FPGA device. In general, the total resource consumption of the folded architecture

equals the sum of four folded architecture minipipelines plus the Dispatcher and Label

Reassembly modules and their buffers. Similarly, the total resource consumption of the

conventional architecture equals that of four single mini pipelines.

Circuit Performance Higher performance was never one of the claimed benefits of the

folded pipeline architecture. Quite the opposite, one of the most important concerns,

during the design of the the system was whether some module would pose insurmountable

problems in the form of a performance bottleneck. This was refuted, since the additional

modules of the folded architecture easily overcame the set target frequencies.

The upper bound of the frequency limitation in both the folded and the conventional

pipeline designs stems from the long critical path in the Modify module, which is formed

from the ISU, PE and OSU module chain. Section 5.1.3 provides more details on this, as

the current section’s main goal is to compare the two architectures. Despite the fact that

the critical path is identical, the folded architecture exhibits slightly higher performance

in comparison to the conventional one (approximately 112 to 97 MHz respectively).

Tab. 3.7: Impact of the Pipeline Width on the ISU/OSU Latency

192 bits 256 bits
ISU 2.151 ns 2.661 ns
OSU 5.477 ns 5.945 ns

The underlying cause is the simplification of the ISU and OSU modules due to the

smaller pipeline word width. To prove the validity of this assumption, latency data for

both modules is provided with a pipeline word width of 192 and 256. The results, shown

on table 3.7 make evident, that increasing the width has an adverse effect on the latency

of the system. Thus the folded pipeline architecture provides a small and secondary, albeit

tangible, benefit in the performance area as well.

3.3 A Distributed Programming Paradigm for Pipelined

Network Processors

One of the more important pitfalls, which had to be avoided in the NPU100 design was end-

ing up with a powerful but difficult to use processor, a calamity which has been constantly

present in the NP space. To this end, the development of the programming paradigm

for the NPU100 was integrated into the design process from the very start and was not

squeezed into it belatedly after the bulk of the design work had already been accomplished.

This section introduces this programming paradigm and the advantages it offers.
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The objective of the NPU100 programming concept was simple: Provide a comprehen-

sive, easy-to-use programming procedure in order to allow the user to program the NPU100

with minimum overhead. Overhead in this case consists of two distinct areas. First of all

the user must not need to know about the internal workings of the device and the program-

ming interface and second he must not need to learn new complex programming languages

in order to write the required code. Thus, the aspiration was to create a system that can

be programmed with a high-level language by writing simple code using familiar syntax

and furthermore one that then takes this code and writes it into the NPU100 without the

need for further programmer intervention.

Accomplishing the above stated goals clearly meant that the system would have to

comprise a hardware and a software side, which will have to work harmoniously to en-

sure the programmability of the processor. Figure 3.14 illustrates the concept behind the

programming mechanism.

Fig. 3.14: Block Diagram of the NPU100 Configuration Architecture

The hardware side consists of the NPU100 itself, in which programming is implemented

through microcommand tables located in each pipeline stage as shown in the excerpt on the

right. In each processing module an Input Selection Unit (ISU) and an Output Selection

Unit (OSU) are used to extract fields from the pipeline word (done by the ISU) and weave

the results back into the pipeline word before the next stage pipeline register (the job of

the OSU). There is one common microcommand table for the ISU/OSU modules, which

determines which fields are extracted and send to the pipeline word and which not, as well

as where the results are placed in the pipeline word. Depending on the processing module

(not all processing modules require one), a separate microcommand table may be found

in it. This table directs the processing performed in the PE and contains the operations
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Fig. 3.15: Forwarding and QoS Table Entry Generation Process

Fig. 3.16: Microcommand Programming Information Generation Process

to be performed and the operands to be used in them. This keeps the commands to be

executed in close proximity to the modules, which execute them. This reduces the path that

the commands have to traverse each time, with the accompanying advantages in circuit

complexity and power dissipation reduction. Furthermore, it eliminates any congestions

caused by multiple processing cores accessing a common instruction memory at once, a

problem common in multi-core designs.

The software side consists of a compiler and a lookup entry generator, which read sev-

eral input data files and produce the necessary programming files. Figures 3.15 and 3.16

illustrate how this is performed. There are two separate strands. The first shown on figure

3.15 generates the data for the forwarding and QoS lookup tables of the NPU100. A lookup

entry generator creates a binary file which specifies which entries have to added to or erased

from the two lookup memories. The second (figure 3.16) generates the programming file

that is to be sent to the NPU100 over the PCIe and which determines the functionality of

each processing module. This file is produced by the compiler, which interprets a file con-

taining the program to be executed on the NPU100 described in a high level language and

automatically identifies the required processing modules, as well as performs the necessary

task assignment, before creating the binary file containing the microcomands.

In order to accomplish these tasks, the compiler and the lookup entry generator use

four different files as input. Three of those are XML files:

• Architecture Configuration File (ACF): Provides information about the current

NPU100 implementation (number of available MPs and modules in each MP). The

compiler uses this information to perform the resource allocation.

• Protocol Information File (PIF): Defines the various protocol fields (e.g. label, TTL,

Cos in MPLS-TP) and their location in the pipeline word and their length.

66



3.3 A Distributed Programming Paradigm for Pipelined Network Processors

• lookup Information File (LIF): Specifies the entry data for the forwarding and QoS

lookup tables.

The fourth and final file used is the Configuration Program File (CPF), which contains a

mix of compiler directives and C-like language constructs used to define the functionality

of the NPU100 modules in an easy-to-understand, algorithmic manner. How the two

programs parse the input file and distill from them the information to sent to the NPU100

is explained in detail in section 4.3.3.

The programming language used by the NPU100 uses a C-like syntax, with which

most engineers are already familiar. Developing a program for the NPU100 consists of

defining values for a set of constants, which are then used to set various parameters of the

design. Two examples of this are shown below, one setting the value for the label size to

be processed in the NPU and the other for the number of header bits that the Header-

Payload Split module must then copy and forward to the pipeline core. The keyword

#parameters tells the compiler that the following definitions refer to NPU100 programming

parameters. The names the user has to use (labelSize and headerSize in the example below)

when defining the values are fixed and the values are constrained between values that the

architecture supports (16-64 bit label size and up to 256 bits header size in the example).

The compiler reads the values of all parameters and generates the appropriate programming

words. Some configuration words are only relevant for one module (e.g. headerSize only

refers to the Header-Payload Split), whereas others (e.g. labelSize) are used by multiple

modules within the NPU100.

#parameters

#d e f i n e l a b e l S i z e 32

#d e f i n e headerS i ze 192

The main program then follows demarcated by the #program directive. The command

set allowed is fairly restricted. This is because the NPU100 is not a complete software-

programmable CPU, but a network processor with weakly programmable processing ele-

ments. Thus the functionality and the flexibility of those elements is limited in comparison

to a general-purpose CPU, but is still sufficient to process packets within a core network.

Thus the NPU100 compiler supports variable assignment statements, where the vari-

ables are aliases which must have previously been defined in the PIF. The signal assignment

statements can be placed in conditional statements (either if-else or switch statements)

or for loops. The compiler allows for one level of nesting, granted that heterogeneous

statements are nested. This means that a for loop nested in an if-else or switch state-

ment and an if-else or switch statement in a for loop are both permissible, but not a loop

statement nested within another loop statement or any two conditional statements nested

in each other. The compiler reads through the statements and tries to optimally match

the statements in the file to the resources specified in the ACF. This is a complicated

process, which depends on the conditions and iterations, which influence the execution of

each statement as well as the availability of the PEs in the NPU100 implementation for

which the CPF is being compiled. This process, the result of which is a programming file

with all the necessary commands, is described in detail in section 4.3.3.

Binding the software and hardware sides together is a PCI Express link. The binary
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files resulting from the compiler and the lookup table entry generator are forwarded over

this link to the NPU100. The software side utilizes a PCI Express driver to interface with

the the PCI Express link. The link on the hardware side includes a Xilinx PCI Express

Endpoint block core which receives the programming data and stores them temporarily

into a buffer and a programming controller which then forwards the programming words

to the appropriate modules. The communication between the programming controller and

the various NPU100 modules is performed through an address and a data bus. When the

correct address is put on the former, the respective module stores the data in the latter in

the appropriate location.

Summarizing the above, the NPU100 programming paradigm improves current know

how by combining a streamlined approach on the hardware side and thus minimizing

complexity, power dissipation and congestions, while simplifying code writing by allowing

the programmer to input high level code, which is then automatically partitioned and

assigned to the processing modules, thus making life for the prospective NPU100 user that

much easier.

68



4 NPU100 System Implementation

This chapter provides a detailed description of the implementation of the various NPU100

modules. This includes the entire NPU100, with its outer layer, the pipeline core and the

programming subsystem. Implementation results are generally provided in chapter 5.1,

except in cases where a specific design decision has to be undergirded by them.

The first section (4.1) introduces the outer layer modules, namely the Header-Payload

Split and the Packet Reassembly. Then the focus moves into to the processing core (section

4.2) and first to the Dispatcher and Label Reassembly Modules and their buffers. The

principle behind the efficient operation of these two modules is revealed and the way the

looping functionality is realized in order to minimize the data path width and the number

of loops each packet header has to perform is explained. Following this description, the

implementation of each MP module is provided. Last but not least the software and

hardware sides of the programming interface are described in section 4.3.

4.1 Outer Layer Implementation

This section provides an overview of the NPU100’s outer layer. This includes the Header-

Payload Split (4.1.2), which stores the packet in the buffer memory, while copying the

header to the pipeline core, the buffer memory itself (4.1.4), which holds packets in tem-

porary storage during processing, and the packet reassembly module (4.1.3), which rejoins

the packet data from the buffer with the processing results and forwards the packet to the

output.

4.1.1 Outer Layer Module overview

The dimensioning of the NPU100 and all the included modules was done according to

assumptions met with Nokia Siemens Networks (NSN). This allowed the perspective of an

equipment vendor to be brought in. Furthermore in the course of the NPU100 project

discussions with other partners (e.g. Deutsche Telekom) also provided the point of view of

a service provider. Consequently, the NPU100 was designed with the requirements of key

players in the core network in mind.

One of the key parameters that needed to be set early in the design phase of the project

was the number of MPLS tunnels that must be supported by an NPU100. As discussed

in section 2.2.1, the MPLS stack can theoretically extend to an infinite number of levels,

which means that if theoretically all tunnels ended at the same node, that node would

have to process a infinite number of labels before being able to forward the packet. Since

processing resources however are not and can never become infinite a middle ground has to

be found, which bridges the gap between theoretical possibility and practical application.
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To answer this question, one has to consider the possible MPLS scenarios, that can

take place in a core network. The standard case is when a packet enters the network and

is assigned to an LSP, which represents one tunneling layer. Two additional tunneling

layers are required to provide backup paths in case the primary or the secondary path

fail or encounters congestion. These act as safeguards, allowing the packets to be swiftly

rerouted over the alternate path with minimal delay. Finally, a fourth tunneling layer is

required to cater to the management packets, which in the worst case will be at the bottom

of the stack. The aforementioned limitation extends to any other label based protocol.

This means for such protocols the design of the NPU100 can guarantee fault-free 100

Gbit/s performance, when up to 4 labels per packet must be processed. As will be shown,

the architecture of the NPU100 is flexible enough so as to allow the processing of higher

throughput when processing a smaller number of labels or of a larger number of labels at

lower throughput.

Apart from its core functionality of processing packets in the pipeline core, the NPU100

has to receive information from an outside source (MAC module or switch I/F, depending

on if the NPU is used as an ingress or egress NPU), to process the data and to make them

available to the NPU100 pipeline core, where the packet processing takes place. Respec-

tively, additional operations have to be performed on the data after the pipeline processing

in order to send a packet to the switch I/F or the MAC module. These operations are

handled by the outer layer of the NPU100 and are described in this section. Figure 4.1

illustrates the structure of the NPU100’s outer layer. It consists of Interlaken interfaces for

data input and output and serial to parallel and parallel to serial converters, which convert

the data from the Interlaken format to the NPU100 one and vice versa. A Header-Payload

Split module, which reads the parallelized data, separates the header section from the rest

of the packet, forwards the former to the pipeline and stores the entire packet to the main

memory, and a Packet Reassembly module, which reads the processed headers from the

pipeline, fetches the payload from the main memory and recombines them before sending

them to the output. The preceding section 3.1.1 provided a detailed explanation on the

advantages this method offers.

Fig. 4.1: Overview of the Architecture of the NPU100 Outer Layer with Bus Widths and
Operating Frequencies
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Data input and output is assumed to be done through Interlaken interfaces. These

consist of 8 bit wide lanes which are used to transfer data at a high rate as described

in section 2.7.2. To achieve the needed throughput of 100 Gbit/s with this 8 bit lane

technology and given Interlaken working frequencies, 12 lanes working at 1.6525 GHz are

required. The overprovisioning here is done to accommodate for the Interlaken protocol

overhead. As described in section 2.7.2, the Interlaken protocols works in bursts, delimited

by a control word. A maximum and minimum burst parameter determines the permissible

length of each burst, with 32 bytes being a minimum and no inherent maximum. Assuming

a worst case scenario of continuous 64 byte packets and that each packet uses an own burst,

16 bytes or 25% of overhead will be incurred for each packet. In the previous section we

calculated the number of 64 byte packets possible to be transmitted through a 100 Gbit/s

Ethernet link to 148.8 million, which means that excluding Ethernet protocol overhead

(such as the interframe gap) but including the overhead incurred by Interlaken itself, the

interlaken interface will need to transfer a total 95.2 Gbit/s, which requires 12 interlaken

lanes to send through.

An additional Interlaken lane is used to transfer the internal header, which is used for

intra-switch communication (and is described in section 3.1.2). Since this lane is required

at either the NPU100 input (when the NPU is used in the egress path) or at the NPU100

output (when the NPU is used in the ingress path), it must be possible to deactivate the

unneeded lane as appropriate. The data is then converted into a parallel form, which is

better suited for processing in a contemporary integrated circuit. There are to be separate

units which parallelize the 12 data lanes and the internal header lane (and vice versa for

the output).

The buses that are used to transfer data between the various modules must be sized

accordingly in order to accommodate for the high throughput required. The most straight-

forward solution for this would be to utilize a 512 bit wide bus at 200 MHz. However, an

important issue arises in the handling of large streams of packets with a size marginally

larger than an integer multiple of the 512 bit signal width (e.g. 65 byte packets, 129 byte

packets and so on). In the 65 byte packet size case (which is the most extreme of all) two

clock cycles would be needed to completely transfer the packet, but in the second cycle

almost all of the signal transfer capacity would be wasted, and thus the NPU would not

be able to achieve the targeted throughput. At 200 MHz, a 512 bit signal would be able to

transfer a maximum of 102.4 Gbit/s in the optimal case of full, consecutive link utilization,

however assuming a constant stream of 65 byte packets, the effective throughput would be

52 Gbit/s. To overcome this obstacle the frequency of the outer layer has to be increased

to 295 MHz respectively. Calculating this is less than trivial, since we have to take into

account the actual amount of bits that are received over the 100Gbit/s link. The maxi-

mum amount of utilized bits of the 100Gbit/s Ethernet link per packet size, as calculated

using the equations of section 3.1.1, are illustrated in figure 4.2a. Important however is

how many data words have to be transferred on a 512 bit bus in each case, taking into

account the not fully utilized cycles per packet size. This is shown on figure 4.2b, whence

we can extract that the maximum required frequency for the bus, in order to cover the

worst case traffic load scenario, is 295 MHz. While this frequency is difficult to reach by

modern FPGAs when implementing relatively complex circuits, ASICs can handle it with
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ease. In the prototype described in chapter 5 the outer layer modules run at a frequency

of 200 MHz, thus allowing the processing to attain its maximum processing throughput

(performance is then limited by other modules in the design).

(a) Effective 100Gbit/s link utilization per packet size (b) Required frequency of the 512 bit bus in order to
transfer the received effective bps rate per packet
size

Fig. 4.2: Utilized Link Throughput and Required NPU100 Internal Bus Frequency per Packet
Size

Thus, the Header Payload split receives data from the serial to parallel converters using

a 512 bit bus operating at 295 MHz. At the same time a separate 64 bit signal transfers

the internal header as needed. The internal header is transfered in the same cycle as the

first packet word. The interface with the main memory has a width of 1024 bits and

operates at a frequency of 295 MHz. The doubled bus width here is used to facilitate

the packet reconstruction process at the packet reassembly. The exact reasoning behind

this will be explained together with the implementation of this module in section 4.1.3.

The data structure sent to the NPU pipeline is 192 bits wide and operates at a frequency

of 150 MHz, the operating frequency of the pipeline core. The clock domain crossing is

implemented by a FIFO queue inside the Header Payload Split (see section 4.1.2). The

Packet Reassembly receives the processed header data from a 200 bit wide 150 MHz bus,

performs the reverse clock domain crossing (again using a FIFO queue) and creates the

processed packet by fetching the packet data from the buffer memory using another 1024

bit wide bus at 295 MHz and combining with the processed packet header as required. The

output data along with the internal header is then sent to the parallel to serial converter,

which interfaces with the Interlaken transceiver. Again packet data is sent via a 512 bit

bus operating at 295 MHz and the internal header over a 64 bit bus in the first data

transmission cycle. The converters output an identical number of lanes as the input ones

to the Interlaken interface.

4.1.2 Header-Payload Split

The Header Payload Split is responsible for receiving packet data from the input interfaces,

storing them in a temporary buffer memory for the duration of processing and copying a
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part of the packet header, which it then forwards to the processing core. As figure 4.3 shows,

it consists of the Header-Payload Split core modules, which is an FSM, that performs the

previously described tasks, as well as an additional FIFO queue, the HP Split Buffer, which

serves as a bridge between the outer layer and the pipeline core of the NPU100. The task

of this FIFO queue is the synchronization between the two clock domains (295 MHz for

the Outer Layer and 150 MHz for the processing core).

In order to determine the size of the queue we have to consider the worst case scenario,

that is when the Header Payload Split feeds the FIFO queue with the maximum amount

of packets. This is when only 64 byte packets arrive on the link, however, important in

this case is not only the total number of usable bits arriving at the Header and Payload

Split, but also the inter-arrival times between new packets. In order to calculate this, one

has to take into account that every Ethernet packet has 20 additional bytes used for the

interframe gap and the preamble. Practically this means that every 6.72 ns a new packet

arrives and thus using a 295MHz bus, the Header-Payload Split data input will be empty

every other cycle. Since the pipeline core operates at half the frequency of the outer layer,

this means that the pipeline core will read the split packet header every other Header-

Payload Split cycle. Thus, the FIFO queue only needs to be one entry in size in order to

allow for the crossing between the two clock domains (from the outer layer to the pipeline

core).

Fig. 4.3: Overview of the Header Payload Split Submodule

The Header-Payload Split must accomplish the following series of tasks:

• Read data from the Serial-to-Parallel Converters at every cycle in which new valid

data is present. This is to be marked by a strobe signal, which is asserted one cycle

before the first word of the packet data is available at the input.

• When the first word of a data packet is received, a part of this is replicated. The

length of this part can be different per protocol and thus must be programmable.

Values up to 256 bits are sufficient for current protocols. For both MPLS-TP and

PBB-TE this value is to be set 128 Bits, enough to include 4 MPLS labels or the

B-DA and B-VID fields of the PBB-TE header. This value does not affect the width

of the pipeline, which is fixed at 192 bits as described in section 3.2.1, although how
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many of those 192 bits are used to accommodate the packet header is up to user.

The Dispatcher receives the replicated packet header data and then processes them

accordingly, storing parts in the pipeline word and buffering others in the Dispatcher

Label Buffer according to how it was programmed.

• If the NPU is an ingress NPU it must create the internal header and write the packet

length and input port number fields. If it is an egress NPU the internal header will

be received from the appropriate Converter as shown on figure 4.1. Since any NPU

must be able to function as either this functionality must be configurable.

• When both packet header and internal header are ready, they are forwarded to the

pipeline. A strobe signal is used to synchronize the process.

• Simultaneously the packet is being written to the main memory. If the NPU is an

ingress NPU, the length field of the internal header must be filled, which means the

entire packet must be received first in order for the packet length to be calculated.

In this case, the H-P Split module can proceed with the storage of the packet data

words in the main memory as they arrive in the module, to avoid having to buffer

the entire packet in the H-P Split module.

To perform these operations, the module requires the following interfaces:

• Input from Data Serial to Parallel Converter. One 512 bit signal is needed, plus new

packet indication signal (1 bit).

• Input from Internal Header Serial to Parallel Converter. One 64 bit signal plus any

required control signals.

• Output to the Main Memory interface. One 1024 bit signal, plus any additional

signals needed for addressing or controlling the memory (e.g. FIFO Full, etc signals

since the main packet memory is implemented as a FIFO in this design).

• Output to the NPU100 Pipeline (Dispatcher). One 192 bit signal which includes the

internal header (64 higher bits) and the packet header (128 bits), plus a strobe to

notify the dispatcher that new data is available.

The Header Payload Split Module has been implemented in VHDL as an FSM. The

challenge in the implementation of the modules was ensuring that no clock cycles are

wasted during the process. This complicates the state transitions considerably since there

are several alternative paths that need to be considered at once, in order to ensure the

seamless reading and forwarding of information. In a typical case, a state has to check if

the memory is full, then if this is the last word in the packet and if so if there will be a

new packet available at the next cycle, conditions which all trigger different transitions.

How this is reflected on the state machine implementing the Header-Payload Split module

is shown on figure 4.4.
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The module starts in Idle state and remains in it, as long as no new packets are to

arrive. A new packet strobe signal is received notifying the FSM that a packet will arrive

in the next clock cycle. This moves the state machine to state init, during which it buffers

the first 512 bit data word of the packet along with other control information such as the

packet length. It also stores or creates the internal header depending on the configuration

of the NPU100 as egress or ingress NPU100 respectively. Subsequently, depending on if

there are other data words for this packet pending, the system either goes to the Write

Data state or back to the Idle or Init states. The latter choice depends on if there is a

new packet arriving back to back with the current one in the next clock cycle. The new

packet strobe signal is used to determined this. If it is set, the system moves to the Init

state and starts reading a new packet if not it goes back to the Idle state and resumes its

wait. In the Write Data state the FSM reads the next 512 bit data word from the input.

Here it packs the two data words (the one read during the Init state) and the one read in

this state together into one 1024 bit data word and writes it into the main memory. Then

it either moves to the Write Data 2 state or to the Idle or to the Init state depending on

the criteria described previously. From that point on the FSM enters a loop and changes

from the Write Data 2 to the Write Data state as long as there are still packet data to

read. In this loop a 1024 bit data word to be written to the memory is build using one

512 bit data word read during the Write Data 2 state and one read during the Write Data

state, during which the 1024 bit word is written into the memory. Whenever the packet

is finished the FSM moves to either the Idle or the Init states depending on if a packet is

to be received in the next clock cycle, as described previously. If this happens during the

Write Data 2 state, where only one 512 bit data word is available, then only this is written

to the memory and the rest of the 1024 bits is padded with zeros.

4.1.3 Packet Reassembly

The Packet Reassembly module recombines the input packet data with the processing

results forwarded to it by the Label Reassembly module. This seemingly simple task is in

reality considerably more complex than the reverse procedure performed by the Header-

Payload Split. The Packet Reassembly must be able to perform the following actions:

• Receive processed packet headers from the Label Reassembly module. The Label

Reassembly unit produces a strobe when a packet data structure is available.

• When the data structure is fetched, the packet header must be reassembled. To this

end the original packet data from the main memory must be available to the Packet

Reassembly module.

• Reassembling the packet header is a completely different process in the MPLS-TP

and PBB-TE protocols (and respective similar protocols).

– MPLS-TP: The 8 least significant bits of the Label Reassembly output must

be used to decode the sequence of operations done in the pipeline. Table 4.1

in the Label Ressembly description section (4.2.2) provides an explanation for

these bits. By using these bits the module must determine which labels must
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Fig. 4.4: State Diagram of the Header-Payload Split Module. Solid Lines Show Transitions
During Data Input, Dashed Lines Transitions when a Packet is Finished and no New
Packet is to Start in the Following Clock Cycle and Dotted Lines transitions when a
Packet is Finished and is Trailed by a New Packet in the Next Clock Cycle.

be retained from the ones in the main memory copy of the packet and which

should be replaced by the ones in the pipeline word.

– PBB-TE: Since nothing in the packet header needs to be changed, only the

internal header needs to be prepended to the packet data from the main memory

if this NPU is an ingress NPU or the internal header needs to be removed in

the opposite case.

• Then the module can begin transmission to the output. The internal header and the

data are sent over different signals.

• The internal header is only transmitted to the output for ingress NPUs. In egress

NPUs the Packet Reassembly only sends the packet data onwards and strips off the

internal header.

• When the last word of a packet is transmitted to the output, any gap at the end of

this word must be filled with zeros.

To accomplish the above tasks the module requires a multitude of interfaces to receive

and send information:
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• A 200 bit interface with the Label Reassembly unit from which the completely pro-

cessed packet data words are received. Appropriate control signaling must be used,

so that the Packet Reassembly can detect in which clock cycle a valid packet header

is available.

• a 1024 bit interface with the main memory from which packet data are read. Any

additional signals for addressing and control (e.g. a FIFO empty signal, etc) are to

implemented as needed.

• 64 bit output for the internal header.

• 512 bit output for the packet data. Must be accompanied by a 6 bit signal denoting

the bits holding valid data, as well as by a signal marking the start of a new packet.

The system designed to meet these requirements is shown in figure 4.5. It consists of

three submodules. The Packet Reassembly Buffer is a FIFO queue, whose main function is

to perform the bridging between the two frequency domains. Thus the Label Reassembly

writes to the FIFO using the pipeline core frequency and the Packet Reassembly reads

from it using the outer layer frequency. As in the Header-Payload Split, the FIFO does

not have to buffer multiple packet headers and thus its size is the minimum possible. This

is because, adherence to the Main Memory FIFO (described in section 4.1.4) principle

means that packet headers arrive from the Label Reassembly in the order the arrive at the

Dispatcher. This allows for any packet bursts to be smoothed out in the Label Reassembly

Buffer.

Fig. 4.5: Packet Reassembly Submodule Block Diagram

In between the Packet Reassembly buffer and the Packet Reassembly module, an align-

ment multiplexer is used to eliminate any gaps in the data word, before it is passed on to

the Packet Reassembly. This is necessary because the data word, which the Label Reassem-

bly outputs, consists of placeholders for a specified (albeit configurable through generics)

maximum label size. The NP however allows for processing labels of different sizes, with

a simple reprogramming of the processing modules. As a result of this it is possible and

likely, that the maximum label size and the actual label size will differ (e.g. up to 64 bit

labels will be supported, but 32 bit labels will currently be processed by the NPU100).

Consequently, the pipeline data path will be sized for the maximum label size, which will
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result in gaps in the pipeline word, from which they have to be stripped before the Packet

Reassembly can rejoin the original packet data and the processing results. Figure 4.6 il-

lustrates how this is performed on an example using the label sizes previously mentioned.

The data word coming from the Label Reassembly consists of the internal header, one 64

bit placeholders for each label (64 bits is the maximum supported label size) and 8 bits (2

for each operation conducted in each MP) from the processing context, which are necessary

for packet reconstruction (marked PC on the figure). The alignment process removes any

gaps that are present due to the use of smaller size labels than the maximum that the

architecture can support. This allows for the simplification of the processing in the FSM.

Fig. 4.6: Header Alignment Process Example in the Packet Reassembly Module

The core of the work is done by the Packet Reassembly module, which is a state machine,

that takes the aligned header and reconstructs the packet using the packet data fetched

from the buffer memory. To do this, it must determine which labels from the original packet

need to be maintained and which overwritten (if any in both cases). This is accomplished by

parsing the 8 processing context bits and determining the operations that were performed

on the labels. From this, the module can extract how many labels in the original packet

need to be replaced and how many and which of the labels in the new packet header need

to be inserted into the original packet data.

Figure 4.7 describes the reasoning behind the reassembly process. Two parameters are

fundamental to it:

• The number of pipeline labels to insert in the reassembled packet

• The insertion offset, that is, the location in which these labels are to be inserted.

It should be kept in mind, that the packet version which is fetched from the main

memory contains all labels, including the ones that were sent down the pipeline and as

a result of that, might have been changed. Thus what these two parameters essentially

accomplish, is to help determine how many labels are to be replaced and from which label

in the label stack this replacement is to start. Figure 4.7 illustrates these parameters for

each of operation combination, which makes operational sense in a label based protocol,

as explained in section 2.2.1.

• Each pop increases the insertion offset by 1. This means that the new labels will be

inserted one label to the right, practically overwriting one preexisting label. This is

reasonable, since this label has been popped thus no longer exists in the stack.
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Fig. 4.7: Process Determining the Label Composition of the Reassembled Packet Header De-
pending on the Sequence of Operations Performed in the Pipeline Core

• Each Swap or Push Increases the Number of Pipeline Labels to Overwrite by 1 (Since

a New Label Has Been Added which Was not in the Initial Packet).

Applying this algorithm to any MPLS scenario yields the correct parameter values,

which allow the insertion of any labels at the correct location in the label stack. To

exemplify, in a scenario where a packet enters two tunnels, the top label is swapped and

then two labels are added on top of that. All three of these labels were the results of the

processing in the NPU100 pipeline core and are not included in the original packet fetched

from the data. As figure 4.9 illustrates (assuming an original packet with a stack depth of

2), the label which was swapped -the top label in the original stack- must be replaced by

the label produced by the first pipeline loop (shown in red on the figure). An LSP in which

this scenario is applicable is shown on figure 4.8, where packets flow from node 1 to node

11 and have to enter two tunnels at node 5. This means that in node 5 the existing label

has to be swapped, followed by two labels which have to be pushed on top of the swapped

label. The packet reassembly module thus must place three labels right after the top label

in the original packet’s label stack. This is in line with the calculated parameters, which

would be zero for the insertion offset and 3 for the number of labels to be added. As a

result of this the label stack grows to 4 labels.

A further example is show in figure 4.10 where a more complex scenario involving an

exit from two consecutive tunnels and an entry into another one at the same node is shown.

This means that in a packet which arrives at the node with a three label stack, the top two

labels have to be discarded, the third label from the top of the stack has to be replaced

with the result of the swap and the pushed label has been added on top of that. This

means that after two pops, a swap and a push, the insertion offset is 2 and the number of

labels to add is also two, leading to the depicted reassembled packet.
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Fig. 4.8: Example of an LSP in which the packets enter a double tunnel at node 5

After determining the number of labels to add and the location in which to add them,

the state machine must forward the packet to the output. This presents considerable

difficulties, since the packet size changes in the pipeline and thus the data words read from

the memory need to be realigned accordingly. Figure 4.11 provides examples for the two

possible alternatives that might occur and how these are handled:

• The size of the packet is now bigger than the initial packet (illustrated by the top

case in figure 4.11). This means that a part of the first data word read from the

memory must be shifted to the next data word, and that all following ones must be

subjected to the same process. This occurs when:

(NoOfLabelsAdded−NoOfLabelsRemoved) > 0 (4.1)

• The size of the packet is now smaller than the initial packet (illustrated by the bottom

case in figure 4.11). This means that the initial data word must be filled with data

from the second data word and all following ones have to be treated accordingly.

Respectively for this to happen:

(NoOfLabelsAdded−NoOfLabelsRemoved) ≤ 0 (4.2)

Equations (4.1) and (4.2) are used to calculate the number of bytes to be added or

removed to the packet, a parameter useful in the data word realignment process.

80



4.1 Outer Layer Implementation

Fig. 4.9: Example Packet Reassembly in a Pop, Pop, Swap and Push Scenario

Fig. 4.10: Example Packet Reassembly in a Swap, Push, Push Scenario

These requirements pose considerable challenges to the design of the state machine.

Given the high throughput demands, the luxury of sparing several clock cycles to fetch

data from the main memory, then recombine the packet and provide the data at the output

is simply not there. It must be possible to perform all of these tasks seamlessly and provide

one valid data word to the output in every clock cycle. Accomplishing this requires actively

prefetching data words from the packet data memory. Thus when a packet header arrives

from the Label Reassembly the first data word will already have been buffered in the

Packet Reassembly. To ensure the absence of gaps when packets are transmitted back to

back, this must be done in parallel to the transmission of the last word of the previous

packet. Further complicating the process is that when the packet is actually shortened,

the FSM needs more data to fill the resulting void. This is the reason for having a 1024

bit wide buffer memory interface. Thus a 1K data word is prefetched from the memory,

from which 512 bit words are then produced as needed, by shifting the necessary parts

around while eliminating what is not needed. If a 512 bit interface had been used, the

FSM would have to prefetch two data words before being able to reassemble the packet,

something that would lead to more complex logic.
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How both of these factor are weighted in the implementation of the state machine is

shown in the figure 4.11 for both scenarios. It shows the packet header which results from

the processing in the NPU100 pipeline, as well as the two 1024 bit data words, which the

Packet Reassembly FSM internally buffers so as to reassemble the packet. Each of these

words is made up of two 512 bits parts which are used to rebuild the output. These 512

bit parts are each marked using a different pattern to differentiate between them.

In the top scenario, the first case, in which the final packet size is bigger than the initial

packet size is illustrated. Here the packet grows by two labels, as the packet included one

label upon arrival at the NPU100, but has three labels when it is being forwarded to the

next node. Since the packet grew in size the first 512 part of the first 1024 data word

cannot fit into the first 512 bit data output word at cycle 0 and it spills thus over to the

next output data word cycle 1. There, this left over part is joined with the appropriate

part from the second 512 part of the first data word. Meanwhile the FSM must fetch a

second data word from the packet buffer memory, since in the next cycle (number 2) it will

need to output the remainder of the second part of the first 1024 data word and fill the

rest of the space with data from the next packet buffer memory data word. The process

then continues until the packet length is exhausted.

The bottom scenario pertains to the possibility of a packet shrinking during processing,

as is the case when a packet exits subsequent tunnels at the same node. Here the first 512

bit section of the first 1024 bit data word is not enough to fill the output word and thus it

must be padded with part from the second 512 bit part. This padding promulgates through

the output process for the entire packet, while the remaining data words are fetched from

the packet buffer memory and sent to the output.

Finally, when processing protocols like PBB-TE, where there is no change to the header

and thus the packet copy from the buffer memory must be forwarded as is, are processed,

the processing context bits indicate just that, meaning that no change is to be done to the

packet data read from the memory.

4.1.4 Main Memory

The Main Memory temporarily buffers packets that are in flight in the processing pipeline

of the NPU100. Thus it needs to be sufficiently large to hold the appropriate number of

packets, which lies at 62 (4 mini pipelines times 10 stages per mini pipelines, plus 12 packets

in the dispatcher, 8 in the label reassembly module, 1 being written to the memory from the

H-P split unit and one being read from the memory from the packet reassembly module).

Taking into account the maximum Ethernet frame size of 1518 bytes for normal packets

(Jumbo frames are excluded) 94116 bytes of memory must be available in the NPU100

for packet buffering (for comparison the largest Virtex 5 TXT FPGA offers approximately

1.458.000 MB of Block RAM memory). It will be operated like a normal FIFO, written to

and read from in 1024 bit words. Thus two input words are packed into one memory word

with any required padding performed by the HP Split module. Respectively the Packet

Reassembly module reads each 1024 bit word and converts it into two 512 bit words before

sending them to the output.

The packet data FIFO consists of 1500 1Kb entries and offers a total of 192 KB of

memory. The over provisioning is done to counter the 65 byte problem described in section
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4.1.1. According to this, if the NP had to process only 65 byte packets, the 1K bus to

the main memory would be 50.78% utilized, which practically means that in this case we

would need twice the memory, to accomodate for both the packet data and the considerable

padding that would have been performed by the Header-Payload Split. This storage space

waste can be avoided by implementing a more complex smart segmentation scheme, such

as the one described in previous work performed at the Institute for Integrated Systems

(see [67], [66], [68] and [64]), which however remains outside the scope of this thesis.

4.2 NPU100 Processing Pipeline

The NPU100 folded pipeline architecture forms the core and main contribution of this

work, since it provides the basis for the significant advantages provided by the NPU100.

The architecture it self was described in detail in section 3.2.1. This section describes the

implementation of the modules, which make up the architecture and realize the required

functionality. They are essentially broken down into the Dispatcher and Label Reassembly

modules, each with its own Label Buffer (sections 4.2.1, 4.2.2 and 4.2.3 respectively) and

the modules that make up each MP (4.2.4).

4.2.1 Dispatcher

The Dispatcher implements the first half of the loop functionality of the folded architecture,

by buffering and fetching labels as required from its buffer before the packet headers are

sent to the MPs for processing. Its functionality consists of several tasks that must be

completed in parallel:

1. New packets must be fetched from the Header-Payload Split module. Since the clock

domain crossing between the two modules is implemented using a FIFO queue the

Dispatcher must read from this FIFO queue, whenever data are available.

2. This data consists of a packet header and the internal header. The processing to be

done on the packet header depends on the protocol which is currently being executed:

a) MPLS-TP headers consist of multiple labels. The number of labels that are sent

to the pipeline core is programmed in the Header Payload Split. From these,

the Dispatcher extracts the top label and assigns it to an MP, while storing the

rest in the Dispatcher Label Buffer.

b) In PBB-TE the B-DA and B-VID fields need to be forwarded to the MPs. These

fields are not found in contiguous locations in the packet header and thus the

Dispatcher must locate and fetch them. The Label Buffer is not used at all in

this case.

3. The processing context has to be added to the new packet header. The context is

initialized at this point (all bits are set to zero except bit 8, which denotes that the

current pipeline word is valid).
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4. Up to three packets may come through the loop for additional processing in one clock

cycle. It must be examined if any of these packets requires the fetching of new labels

from the label buffer. If so the labels must be fetched.

5. All the packet headers must be assigned to a new MP.

The Dispatcher module must be sufficiently flexible to implement various protocols. This

is supported through different configurations on two levels. First of all, the design includes

several generics in the VHDL code, which can be set to adapt various design parameters

at design time and on a second level, several design features can also be reprogrammed

dynamically at run-time through the PCI Express interface. A change in the generics

means of course that the system has to be reimplemented. The generics available for

configuration are:

• Number of MPs - Designates how many MPs will be instantiated in the design.

Affects the buses coming to and leaving from the Dispatcher, as well as the number

of packet headers the module has to process in parallel.

• Number of stages per MPs - Specifies how many stages are to be found in each MP.

It impacts the structure of the Dispatcher Label Buffer (described in the next section

4.2.3) and thus the synchronization between the two modules.

• Maximum label size - Defines the maximum label size that the Dispatcher can sup-

port. This can be different than the label size actually being processed at any given

time. This affects the size of the buses and the memory cells of the Dispatcher

Label Buffer. Labels of a smaller size can still be processed and this is specified

programatically through the PCI Express link.

A whole different set of options, operating in a complementary fashion to the generics

described previously, sets the behavior of the NPU100 at run time:

• Direct forwarding - Defines if the protocol used is a label based protocol or not. If not

the Dispatcher Label Buffer is not used and the label storage process is deactivated.

Instead two fields from the header are extracted according to the parameters defined

below.

• Position and length of the first and second fields - Start locations in the packet

header and length of the fields to be sent to the MP, when the Dispatcher is in direct

forwarding mode.

• Label size - Size of the label, which the NPU100 currently processes. Must be smaller

than the maximum label size specified in the corresponding generic.

The Dispatcher includes several interfaces, whose width depends on the configuration

of the generics described previously:

1. Packet header input from the Header-Payload split module, whose width must be

compatible with the respective value set in the Header-Payload Split module.
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Fig. 4.12: Overview of the Dispatcher Design, Showing the Three Parallel Pipelines which
Make up the Module

2. Looped packets input from the Reassembly module. N-1 interfaces are needed, each

192 bits wide in order to fit one pipeline word each.

3. Output to the Dispatcher Label Buffer, whose width depends on the maximum label

size generic and the number of MPs in the system. Since all but the first labels have

to be stored, the length is calculated by the formula MaximumLabelSize x (NoOfMPs

- 1).

4. Output to the mini-pipelines in order to send the Dispatcher output to the MPs for

processing. One entry per MP is needed, each one pipeline word wide.

The Dispatcher has been implemented as three parallel executing pipelines, which are

shown in figure 4.12. Each pipeline is color coded. The complete processing in the Dis-
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patcher stretches over four clock cycles. This is necessary, since there are several process-

ing steps to be completed in sequence and in order to reach the required throughput it

is mandatory to spread them over more than one processing stages. Each clock cycle is

separated by a vertical dashed line and named appropriately.

Fig. 4.13: Dispatcher Label Buffer Input Vector for Various Values of the Maximum Label Size
Generic and the Actual Label Size Currently Being Processed in the Pipeline

The top domain in the Dispatcher (marked with red on the figure) handles the recep-

tion of data from the Header Payload Split. From there it branches off to the second,

blue colored domain, where the write to the label buffer is executed. Finally, the third

independent part receives the packets from the Label Reassembly via the loop, fetches any

labels as needed and reassigns the packets to the MPs.

After being notified of new data by the Header Payload Split module through the appro-

priate strobe signal, the top domain latches the data and depending on the configuration

mode, either splits the first label and sends it to its next stage, while forwarding the rest to

the middle domain or extracts the two fields specified in the configuration parameters and

passes them on to the next top domain stage. Before forwarding, the data are properly

aligned into the domain’s internal 128 bit wide bus. This means that the label or the

extracted fields (which might be smaller than the bus) are properly placed on it and the

rest of the bus is filled with zeroes. The 64 MSBs are occupied by the internal header.

The two subsequent clock cycles simply serve the synchronization of the three pipeline

domains, while in the final clock cycle the processing context is added and so that the final

192 bit pipeline word is created.

The middle domain is only used in label mode. It receives the detached labels from top

domain and writes them into the label buffer. In order to accomplish that a series of tasks

have to be completed. The first stage of this pipeline (in T=2) counts the labels, which

is necessary for knowing how many will be written to the Label Buffer. This is in turn

required so as to correctly signal the Label Buffer and write entries only in the needed

locations. In parallel to the label count, the input data is brought to the format, in which

it is to be stored in the Label Buffer. This is necessitated by the possible discrepancy

between the maximum and the currently used label size. If the latter is smaller than the
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former there will be gaps in the entry, as shown in figure 4.13, where several scenarios with

maximum label size of 64 and 32 bits and a label size of 64, 32, and 8 bits are illustrated.

Pipeline stage T=3 receives then the data and generates the appropriate signaling to

write the required label buffer entry. This entails maintaining a write pointer that tracks

the packets, which are in-flight in the pipeline and access their respective data when they

arrive at the Dispatcher. The use of the pointer to write the required Label Buffer entries is

explained in section 4.2.3, where the exact process is described in the respective Dispatcher

Label Buffer subsection.

The final, bottom Dispatcher pipeline domain (green on the figure) is the one which

receives looped packet headers and replaces redundant labels with new ones from the

Label Buffer. A strobe signal for each packet header notifies the Dispatcher if a packet

header is incoming from that MP. In the first clock cycle T=1 the data is fetched from

the Label Buffer by using a read pointer, which the Dispatcher maintains. This pointer is

incremented along similar lines to the respective write pointer. In cycle T=2, the erased

labels in each looped packet header are counted, to determine if new ones from the Label

Buffer are required. Notice that the read from the Buffer has already been proactively

performed and the required labels are sorted out belatedly. Thus the internal organization

of the Dispatcher Label Buffer (as described in 4.2.3) is taken advantage of, to shave off

cycles from the processing. In parallel to the erased label count, the labels fetched from

the Label Buffer are also counted. In the third clock cycle this information is used to

reorder the labels according to the loop in which the packet header is in. The Label Buffer

entry which corresponds to a packet header remains fixed, independently of the MP run

in which the packet header is in. Thus the results of the buffer read have to be reshuffled

accordingly. Finally in cycle T=4 the sorted labels are assigned to the correct packet

headers, overwriting the old contents.

4.2.2 Label Reassembly

The second indispensable ingredient of the folded architecture, which makes up the second

knot, that binds the mini pipelines together, is the Label Reassembly module. The Label

Reassembly module has to perform several tasks, which involve the management of the

pipeline data words that arrive from the mini-pipelines. These are as follows:

1. Check if the incoming packet headers require further processing. A maximum number

of packet headers equal to the number of mini pipelines may arrive in each clock cycle.

In this case, at least one will be a fully processed packet header and the remaining

ones may be either completely processed or require further processing.

2. Incompletely processed packet headers are sent through the loop to the Dispatcher.

Before this is done, the operation that was performed in this MP run must be marked

in the processing context.

3. Temporary results (e.g. labels newly added to the stack) must be saved in the

Reassembly Label Buffer, lest they are overwritten in the next MP run. In this

case, only the label data must be written, which does not correspond to an entire

Reassembly Label Buffer entry (see section 4.2.3 for more details on this).
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4. Completed packet headers may have to be temporarily buffered in the Label Re-

assembly Buffer before being sent to the output. This is because of two reasons:

• Multiple packet headers from different MPs might arrive at the module at the

same time. Only one will be sent to the output in that clock cycle and the rest

will have to be stored in buffer in order to compensate for this burst.

• The main packet memory is a FIFO, which means that packets are read on a

first come, first serve basis. Hence, packet headers completing fewer MP loops

and thus overtaking other packet headers, which need to run a longer course,

have to have their transmission postponed in order to avoid violating the FIFO

principle.

5. When a packet is to be transmitted, the data word consisting of the internal header,

all labels resulting from the processing plus the 8 processing context bits must be put

together by reading the needed data from the Label Buffer and sent to the output.

As with the Dispatcher, the Label Reassembly is also configurable through generics at

design time and programmable over the PCI Express interface at run time. The generics

used are identical to the ones in the Dispatcher, as are the programming parameters,

without the starting location and length of the fields to be extracted in case of a non label

based protocol.

The interfaces of the Label Reassembly enable its connectivity with the neighboring

modules. Their exact length depends on the configuration of it’s generics:

• A number of 192 bit pipeline word inputs coming from the MPs. The number is

equal to the number of MPs.

• Number of MPs - 1 pipeline word signals looped back to the Dispatcher plus a strobe

signal for each of these signals.

• Interface with the Label Reassembly Buffer. For the structure of the entry to be

written and the control signals used, refer to the buffer’s description in section 4.2.3.

• Output to the Packet Reassembly. Its width must be equal to the length of the

internal header plus four times the maximum label size plus the eight processing

context bits used for packet reassembly.

In realizing the Label Reassembly module, a parallel pipelined approach similar to that

of the Dispatcher was used. Again it consists of three pipeline domains, as illustrated by

figure 4.14, however here only two pipeline stages are used. All domains use the packet

headers output by the MPs as inputs. The top domain, marked in red, checks if packet

headers have to be send back to the Dispatcher for further processing and forwards them

appropriately. The blue colored middle domain reads the MP output, determines which

data, if any, are to be saved to the Label Reassembly Buffer and performs the writing

accordingly. The green, bottom pipeline checks which packet header must be sent to the

output, reads the appropriate data out of the Label Buffer and sends them to the output.
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Fig. 4.14: Overview of the Label Reassembly Design with the Three Parallel Pipelines Demar-
cated

The top domain task involves checking each packet header except the one on its last loop

for the operation performed on it in the previous run. This is marked by three processing

context bits, whose significance is explained in table 4.1. The first column of the table

denotes the stack operation that was performed. Three alternatives, swap, push and pop

are available, with two sub categories each: one which indicates the packet header requires

further processing and is termed ”‘̈loopänd one which marks the processing as complete,

called forward. The operation code for each one is given in column four. In each case, the

LSB differentiates the loop from the forward variant, whereas the remaining two MSBs

denote the operation. The module checks the afore mentioned LSB and determines if the

packet header should be looped back to the Dispatcher or not and marks the operation per-

formed (which essentially means copying the two operation code MSBs) in the processing

context to enable the Packet Reassembly to rebuild the packet after processing completes.

Strobe signals to the Dispatcher are produced for looped packet headers. Since looping is

only required for label based protocols, enabling the direct forwarding parameter sidesteps

this domain.

The middle domain is tasked with writing needed data into the Label Reassembly buffer.

In the first clock cycle the packet headers are investigated and the part (if any) of each
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Operation When Further
processing
required

Op
ID

Erase label & forward Previous to last node in a tunnel with
PHP enabled

No 000

Erase & loop Exit from two tunnels in the same node Yes 001
Swap & forward Typical forwarding No 010
Swap & loop Tunnel Entry Yes 011
Push & forward Tunnel Entry (last tunnel in the stack) No 100
Push & loop Tunnel Entry (more tunnels follow) Yes 101

Tab. 4.1: Supported MPLS-TP Operations and Required Label Reassembly Action

packet header which should be written into the Label Buffer is determined. Immediately

afterwards but still in the same clock cycle the data to be written is extracted from the

packet header and formatted according to the Label Buffer inputs. In the next clock cycle

the signaling required to write only the appropriate parts in the needed area of the correct

buffer entries is generated and in the next clock cycle the data is written into the Buffer.

A pointer maintained in the Label Reassembly assures that the correct packet header data

ends up in the entry where it belongs. The signaling required and the pointer concept are

described in section 4.2.3. As with the top domain, this one also works only for label based

protocols and is deactivated if the direct forwarding parameter is enabled.

The final bottom domain outputs the data to the Packet Reassembly. The process is

different depending on whether a label based protocol is being processed or not. In the

latter case the incoming packet exiting its first loop is forwarded directly to the output.

The 8 processing context bits are set to 0. For a label based protocol, a read pointer is

kept and incremented with every clock cycle, which ensures that the sequence in which the

packets are read out is the same as the one the came into the NPU100 processing core.

This allows the Label Reassembly to adhere to the FIFO principle used in the memory.

This way the module reads and forwards the appropriate Label Buffer entry or if the Buffer

is empty forwards the MP output on its highest run directly.

4.2.3 Label Buffers

The Label Buffers of the Dispatcher and the Label Reassembly modules are two funda-

mental pieces in realizing the NPU100 folded pipeline architecture. They serve as scratch

pad memories for labels not currently required for processing (in the case of the Dispatcher

Label Buffer) or for results that need to be saved to avoid being overwritten (as in the

Reassembly Label Buffer).

The delicate point in the design of the two label buffers is that they need to be kept as

simple as possible, while at the same time adhering to strict requirements regarding the

accesses they support. The optimal solution was deemed to be to design the label buffers

as register files. This is due to the large number of concurrent inputs and outputs that

need to access them and which would make it very difficult to implement with a memory
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device.

Furthermore, the predictable nature in which packets flow through the MPs invalidates

the need for random access to any memory location in the Label Buffers, since the location

of each packet in the buffer in relation to its position in the pipeline word is known at

any given time. Since the Dispatcher and the Label Reassembly modules need to access

their buffers to store data only for packets, which are in that clock cycle in each respective

module, pointers in each of them can be used to track the relevant memory cells.

The resulting design is a register array, which uses a time slot scheme to manage the

data stored in it. Figure 4.15 illustrates the basic concepts behind the operation of both

buffers. Though differences in the implementation details (which will be highlighted in the

subsequent sections, dedicated to each of them) do exist between the two modules, the

core functionality remains almost identical. The assumption here (met for clarity’s sake)

is that we have a system with four MPs and 5 stages per MP. This is illustrated in the

middle column with a matrix consisting of 4 rows (one for each MP) and 5 columns (one for

each MP stage). On the left hand side the Dispatcher Label Buffer consists of three rows

and 5 columns. Each of the 5 columns corresponds to one MP processing stage whereas

there is one row less than the number of MPs. This is because a packet header which is

in its last loop (that is in the fourth MP in this case) cannot have any more data stored

in the Dispatcher Label Buffer, since it will inevitably exit the pipeline core at the end of

this run. On the right hand side the Label Reassembly Buffer is shown. It consists of a

register matrix with 4 rows and 5 columns (that is, equal to the number of MPs and the

number of stages per MP). Here, one row per MP is required in order to conform with the

FIFO nature of the main packet memory (section 4.1.4). The corollary of this is that the

first packet to enter the pipeline must also be the first packet to leave the pipeline, which

means that it is possible that the Reassembly Label buffer will have to store multiple other

packet headers, before being able to sent the first one to the output.

The figure attempts to highlight all of this with a thorough example, showing the status

of the label buffer in several clock cycles denoted by T. In each Label Buffer the red box

denotes the location of the write pointer and the green box the location of the read pointer.

One thing to notice is that when reading from the Dispatcher Label Buffer or when writing

to the Reassembly Label Buffer the pointer points to an entire column instead of a single

cell. This is because we proactively read or write data for all packet headers that come

into the module in a given clock cycle. The respective module takes care of sorting out the

required part and discards the rest. This is done to reduce the complexity of the Label

Buffer cells. Extracting the required packet header from each Label Buffer cell would result

in a much more complicated circuit, which would have had difficulty meeting the stringent

timing requirements.

The example starts with packet header P1 coming into the pipeline at which point the

Dispatcher stores its redundant labels in the aptly marked position of the Dispatcher Label

Buffer and sends the packet to the first MP. In the next clock cycle a new packet header

P2 arrives and receives the same treatment. Now all the pointers in both buffers have

moved one location to the right. Thus the pointers follow the progress of the packets down

the pipeline. When a pointer reaches the end of a row (clock T=5) it folds back to the

beginning. If it points to a single cell (as the write pointer in the Dispatcher Label Buffer
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Fig. 4.15: Overview of the Label Buffer Time Slot Concept
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and the read pointer in the Reassembly Label Buffer, then it also proceeds to the next

row.

In clock cycle T=5 the Dispatcher Label Buffer read pointer has folded back to the

beginning, so as to be able to read the stored labels, which would then be available in the

next clock cycle, in which the packet header P1 will be sent into the next MP, as is shown

it T=6. In that same clock cycle the intermediate results from packet P1 have been stored

into the Reassembly Label Buffer memory cell, to which the respective write pointer was

pointing. As the pointer points to an entire column, the Label Reassembly generates the

appropriate signaling to write only to the required cells. On a side note, it must be stressed

that in real operation, it will be impossible to encounter a scenario in which all packets

require constant use of both buffers. This is because (using MPLS parlance for simplicity’s

sake) swaps and pushes require use of the Reassembly Label Buffer, while pops require

use of the Dispatcher Label Buffer. The assumption is made here simply to illustrate the

functionality of the modules.

This process repeats itself, with the pointers being incremented with each clock cycle

to track the packets in the MPs. When a pointer has run through the entire buffer it

starts over again from the beginning, thus overwriting the data in these entries. Hence the

need to properly size the buffers so that the data that are overwritten are now redundant,

since they belong to packet header which no longer has any use for them. Clock cycles

T=20 and T=25 demonstrate this. In the former, the first row of the Dispatcher Label

Buffer has been overwritten, since the pointer exhausted the available memory locations

and folded to the beginning, while in T=25 the second row has also being overwritten. In

T=25 the Reassembly Label Buffer read pointer has completed one run through all the

memory cells and now coincides with the P1 packet header, which will be read out and

sent to the output.

The example described above deviates slightly from the actual implementation in that

it does not take into account the extra clock cycles that are required in the Dispatcher and

Label Reassembly modules. These are incorporated as additional columns for all rows.

Furthermore some MP stages are internally pipelined, which means that the amount of

columns for that MP stage is equal to the number of internal pipeline stages it has. The

following section describes the specific details for the Dispatcher Label Buffer and the

Reassembly Label Buffer.

Dispatcher Label Buffer

The previous section described the operating concept behind the two label buffers. The

current section builds upon that knowledge and adds details necessary for understanding

the exact structure and implementation of the Dispatcher Label Buffer. The tasks, that

the Dispatcher Label Buffer is called upon to fulfill, are as follows:

1. It provides memory cells for storing the currently redundant labels of each packet.

M times N-1 cells are required, where M is the number of stages per MP and N the

number of MPs.

2. Each cell must provide storage space for N-1 labels. The maximum label size that the

Label Buffer can store is determined through a generic, while the label size currently

94



4.2 NPU100 Processing Pipeline

processed is programmable at run time.

3. The module must be able to read one entry per row in the same clock cycle, thus

with the current working assumption of four MPs, 3 reads per cycle are needed.

4. Labels from the newly arrived packet header must be able to be written to the buffer

in each clock cycle.

A key part of the design is that the input and output operations must be completely

independent of each other. Thus the Dispatcher must be able to write an entry X, while

it reads the entries belonging to a column Y. Although, as the previous section explained

X and Y are predictable, the design of the Dispatcher Label Buffer does not preclude the

writing to and reading from arbitrary cells or columns. This is because the pointers used to

select the appropriate cells are maintained in the Dispatcher and not in the Label Buffer,

thus if the Dispatcher wanted to access different cells, it would only need to address the

Label Buffer accordingly.

With every read, an entire entry is returned by the Label Buffer and thus it is up to

the Dispatcher to determine which labels are necessary to use when packets are looped

and the respective entries are read from the Label Buffer. As such, it must posses some

means which indicate this. Thus, each entry is made up of two parts, the one storing the

label data and the other storing 2 valid bits, which are used to denote if the label data

is empty, and if not, how many labels it contains. The Dispatcher counts the number of

labels in the label stack of a newly arrived packet header. In MPLS-TP the last label is

demarcated by the S bit, which is set to 1 for the last label in the stack. Then it sets the

valid bits accordingly when storing labels into the buffer and evaluates them when reading

labels from it.

The internal structure of the Label Buffer is shown in figure 4.16. It provides an overview

of the buffer with multiple columns and rows. Three rows are shown, with the third row

also providing a glimpse of its internal structure, in which each column comprises of the

entry which holds the labels and the valid bits (marked with a V). A common data input

signal is fed to all entries and the decoder shown on the top right side of the figure is used

to determine exactly which entry will be written to. A common signal is used for both

the data and the valid bits as they are written at the same time, upon arrival of a new

packet. Furthermore, a write strobe signal is used to enable the write process, since there

will be clock cycles in which no new packet will be present at the input and thus nothing

will have to be written to the buffer.

Accessing the buffer involves selecting the appropriate value from two multiplexers, one

for the data and one for the valid bits. Both multiplexers are driven by the same signal, as

the data and valid bits for an entry are always accessed together. Since the same column

is read from all rows, all multiplexers are in the buffer are driven by the same signal. The

multiplexers allow the label buffers to provide data on the output with minimal delay as the

access procedure is purely combinatorial. This saves clock cycles, which would otherwise

be needed to access the required cell.
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Fig. 4.16: Overview of the Buffer Design for Three Mini Pipelines and Thirteen Mini Pipeline
Stages

Reassembly Label Buffer

The Reassembly Label Buffer shares the basic time slot functional concept with the Dis-

patcher Label Buffer. A corollary of this is that it is based on the same register matrix

architecture, as described earlier. The similarities end there however and thus the require-

ments for the Reassembly Label Buffer are quite different than those of the Dispatcher

Label Buffer. These can be summed up as follows:

1. More than one labels must be written per cycle (instead of read, which was the case

in the Dispatcher).

2. The write operations need to be able to write only a specific part of an entry. In the

Dispatcher Label Buffer only entire entries were written.

3. One read operation per cycle is required to fetch the packet header to be sent to the

Packet Reassembly.

4. The entire entry is read and the Label Reassembly then discards any invalid data.

5. More entries are present, since one entry for each MP stage times the number of MPs

is used.
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6. Entries are larger, due to the demand to store all the labels plus the internal header

and a small part of the processing context temporarily until they can be sent to the

output.

As in the Dispatcher Label Buffer, an entry can store data belonging to one packet

header. Writing into the buffer must be done once every time a swapped or pushed label

will be overwritten in the next MP loop. This means that one single label will have to be

written in the entry separately in the required location without affecting any data already

present in the entry. Hence each Reassembly buffer cell is subdivided into five parts, as

shown in figure 4.17:

1. IH + PC - a 72 bit part which holds the 64 bit internal header and the 8 bits of

the processing context, which the Packet Reassembly uses to put the packet back

together. These have to be buffered, since it is possible that in some cases the output

will not be readily available to sent a new packet (e.g. when packet headers, whose

processing has been completed, come out from more than one MP in the same clock

cycle).

2. Labels 1 to 4 - These are four placeholders, one for each label that might need to

be buffered. The fields are populated sequentially, which means that in case loop 1

does not write a label into the buffer but loop 2 does, that label will be written into

the Label 1 placeholder.

3. Valid - The valid bits show which parts of the entry are currently occupied. They

are written to by the Label Reassembly accordingly.

Fig. 4.17: Reassembly Buffer Cell Block Diagram

The complex writing requirements are translated into intricate signaling needed to fulfill

them. Essentially it must be possible to write any field independent of the other, as it

is be possible that when writing a label after a loop, the IH+PC fields will also have to

be filled, since processing would have been completed. Thus each field has its own write

enable, which is driven independently of those of the other fields. The same applies to the

valid bits, which means that each valid bit is written separately from the others, without

affecting their values.
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Similarly to the Dispatcher Label Buffer, the cells to which it is written to must be

completely independent of the cell from which it is read from. Thus in similar fashion the

process is directed by the Label Reassembly, which implements the pointers and controls

the Label Buffer accordingly.

Configuring the implementation of the Reassembly Label Buffer also resembles that of

the Dispatcher one, with the only difference being the existence of a configurable Internal

Header length, which affects the width of the IH+PC field. Apart from that, the number

of MPs and stages per MP can be set to dimension the register matrix appropriately, as

well as the maximum label size, which defines the space provided in the label placeholders.

Apart from any differences in the organization of each entry cell, the Reassembly Label

Buffer is in essence an inverted Dispatcher Label Buffer. This is illustrated in figure

4.18. For clarity’s sake only two rows (corresponding thus to two MPs) are shown, with 5

columns per row (thus a 5 stage MP is assumed). Writing into a buffer cell is done through

a decoder, which sets the write enable signal for the appropriate cell when strobed. This

implicitly includes selecting the appropriate entry fields as described previously. The Data

on the Data in and Valid in buses are then transferred into the selected matrix entry.

Reading from the buffer is again performed through multiplexers which select one entry

per row. The same entry is selected for all rows, thus one entire column is read out. The

difference in comparison to the Dispatcher Label Buffer is that here, only one entry needs

to be read, since only one can be sent to the output at any given time. Thus a second

multiplexer stage is used (the one shown on the right hand side of the figure). This stage

receives the entries from the column and outputs only the one needed. As in the Dispatcher

Label Buffer, the output path is purely combinatorial and thus no precious clock cycles

are lost, while reading out the data from the buffer.

4.2.4 Pipeline Modules

This section elaborates on the implementation of the modules that make up each MP of

the NPU100. These operations and the requirements from which they stem were described

in detail in section 3.2.1.

This section starts by describing the ISU and the OSU, which provide programmable

access to specific fields of the pipeline word. In this sense, they are not processing engines

themselves, but are enablers, residing in each processing engine and endowing it with a

common interface from and to the pipeline word. This realizes the goal of making the

NPU100 modular and contributes significantly to its programmability concept.

The remainder of the section, follows the sequence in which the PEs are found in an

MP, with the forwarding lookup at the very beginning, followed by the QoS parameter

lookup and finally the insert, replace and modify modules.

Processing Module Input/Output

One of the main design goals for the NPU100 was modularity. This translates to having a

circuit that consists of building blocks which can be easily exchanged for other ones and to

which components can be added or removed with minimum effort. One major step in this

direction is endowing all modules with a common interface. This allows for predictable
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Fig. 4.18: Overview of the Reassembly Buffer Structure for Two Minipipelines and Five Stages
per Mini Pipeline

and modular behavior, since in case of a redesign any module can be taken in or out of an

MP at will.

A further design goal was to have a programmable, flexible design, which can be adapted

dynamically to future protocols. This means that the data in the pipeline registers, which

contain the pipeline word (which in turn consists of the packet header, the processing

context and the internal header), should provide the execution units with access to the bits

necessary for processing and allow them to store their results back to the next stage register.

With this in mind, the Input and Output Selection Units (ISU and OSU respectively) for

the NPU100’s MPs were designed.

Figure 4.19 illustrates the concept behind the pipeline word accesses. A part of the

register bits of pipeline stage i-1 are used to index a table, which contains the microcom-

mands, that direct the operation performed by the ISU and OSU. This microcommand
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table is found in each ISU/OSU. This keeps the code in close proximity to its PE, thus

avoiding lengthy decode circuits and complex paths to distant instruction memories. The

bits that are used for the indexing are user programmable via the PCI express interface.

At the same time, the bits of register i-1 are sent to the Input Selection unit, which

extracts the bits to be used in the processing module and forwards them to it. The input

from the microcommand table determines which bits are to be extracted. The PE then

performs the required operations on the data. The same index bits used in the ISU/OSU

microcommand table are used here to determine the command to be executed from a similar

table found inside the PE (though this is not the case for every PE). The results are then

sent to the Output Selection Unit which recombines them appropriately with the data

from the previous pipeline word, so as to allow for their storage. If the processing module

is further pipelined internally, then there must be additional registers in the processing

module to maintain synchronization of the pipeline word with the results delivered by the

PE. These internal registers do not require input and output selection modules and only

buffer the pipeline word temporarily.

As described in section 3.2.1, it has been established that a sensible length for the entire

pipeline word is 192 bits. It would however be unnecessary, as well as detrimental to the

design of the unit, to forward all 192 bits to it. The PE itself would then be left to decode

a wide data word, which would contain different fields in each PE. This would complicate

development of the PEs and reduce the modularity of the design. In spite of this, it must

be ensured that the PEs can potentially have access to any part of the pipeline word and

that this can be easily reprogrammed by the end user.

Fig. 4.19: ISU bit Selection and Field Extraction, Followed by the Processing of Data in the
PE and Recombination of Processing Results and Original Register Data in the OSU

To this end, there are two critical parameters which determine the complexity of the

ISU and OSU:
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• the number of separate fields to be read from or written to the pipeline word. Separate

is the operative word here, since a contiguous piece of data read to or written from the

data structure is counted as one field, even if it can typically consist of more than one

protocol field (e.g. the label and CoS fields in an MPLS label can be treated as one

field from the ISU/OSU point of view). This shifts some of work to the programmer

since he has to define the pipeline word fields in such a way, so as to fulfill this

requirement (see section 4.3.3). How this works, is illustrated in figure 4.20, where

the writing of the results of the forwarding lookup (see subsequent section) to the

pipeline word by the OSU is shown. There are two input fields coming into the OSU

from the PE, the first of which includes one 32 bit field (the output ports) and the

second which includes several contiguous fields of a total length of 39 bits. In each

input there is a part which is unused. The OSU trims this part and writes the two

fields in the required location, handling the 39 bit field aggregate in input number 2

as a single field.

• granularity of a write/read. This refers to how fine-grained the definition of the size

of the read/write, as well as its location within the pipeline word are when accessing

them. In practical terms a granularity of one bit means that each location can be

addressed separately, whereas a granularity of two bits would mean that every other

bit can be addressed and a granularity of three bits that every fourth location would

be addresable. Thus the smaller the value, the better the precision of each access.

Fig. 4.20: Example of the Processing Results Being Reinserted into the Pipeline Word by the
OSU

To size these two parameters appropriately, we need to investigate the requirements

of the MPLS-TP and PBB-TE protocols and then perform any necessary generalizations,

while at the same time balancing this with the need to maintain adequate circuit perfor-

mance.

The widest data used as input in any MPLS-TP operation are the 20 bits that make up

the label field, which is used as an input to the forwarding lookup, whereas in PBB-TE it
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is 64-bit long (the 32 bit output port field and the 32 bit port map field resulting from the

filtering entry lookup), while the 48 bit destination MAC field is the longest single field

that has to be accessed. Thus 64 bits must be able to be read from the register and send

to the processing module.

The output must be wider since a lot of information is stored into the pipeline word as

a result of the various lookups. The longest MPLS-TP chunk of data that must be written

is the result of the forwarding lookup, which is 71 bits long and contains the fields shown

in the example of figure 4.20. The longest PBB-TE data segment is the 64 bits result of

the forwarding lookup, which consists of the output port map and a filtering map, both of

which are 32 bits wide.

The most fragmented writes and reads for both MPLS-TP and PBB-TE protocols con-

sist of two data chunks. Thus no more than two contiguous pieces of data, along the lines

described in the preceding example, need to be accessed when writing to or reading from

a register.

Sizing the ISU, OSU and microcommand table represents a critical design decision which

must balance between resource consumption and flexibility. Providing for excessively large

microcommand tables for example will provide more functional alternatives but will require

more memory to store, as well as more power and more complex wiring. Respectively, the

number and width of different fields to be extracted from and reintegrated into the pipeline

word have an influence on the complexity of the ISU and OSU as described previously.

To this end, various combinations regarding the number of inputs or outputs (for ISU and

OSU respectively), their width and the granularity of the operation were implemented

and compared against the protocols requirements specified previously in order to carefully

balance between the requirements on the one hand and the need for flexibility on the other.

In the implementation a Virtex 5 LX330T FPGA was used as a synthesis target. This was

done to derive numbers as a basis for a quantitative comparison, without detracting from

the feasibility to implement the NPU100 architecture both as an FPGA and an ASIC.

Table 4.2 provides the resource consumption and path latency implementation results

for various ISU combinations. Granularity values of 2 and 8 bits were also tested but are

omitted from the tables for brevity. Their values demonstrate a more or less linear behavior

with both FPGA LUT number and the length of the combinatorial path decreasing as the

granularity increases. A first observation is that the maximum combinatorial path does

not vary significantly, as the biggest deviation between any two implementations is 1.4

ns. It is actually somewhat reduced as the size of the input fields increases, which is

reasonable since the result of the synthesis is one multiplexer per input and the width of

this multiplexer is inversely proportional to the size of the input. This is because the more

bits have to be selected, the less possible combinations are there to select from (e.g. when

3 bits have to be selected from a 6 bit signal, there are 4 possible alternatives, whereas

when 2 bits have to be selected there are 5).

Hence resource consumption proves to be the deciding factor here. One must take into

account that an ISU and an OSU module will be found in any pipeline stage, which means

that even a small difference can have a significant impact in the big picture. We settled

on a two 48 bit input with a granularity of one for ISU, since this satisfies MPLS-TP and

PBB-TE requirements, while keeping resource consumption near the minimum possible (in

102



4.2 NPU100 Processing Pipeline

No. Of Inputs Input Width Granularity No. of LUTs Combinatorial Path(ns)
1 48 1 484 2.067
1 48 4 300 1.850
1 64 1 581 2.150
1 64 4 420 1.962
1 96 1 627 2.024
1 96 4 427 1.625
2 48 1 689 2.151
2 48 4 597 1.650
2 64 1 1152 2.150
2 64 4 840 1.937
2 96 1 1252 1.849
2 96 4 796 1.623
3 48 1 1330 3.053
3 48 4 912 1.950
3 64 1 1738 2.103
3 64 4 1260 1.862
3 96 1 1883 1.949
3 96 4 1223 1.623
4 48 1 1754 2.141
4 48 4 1224 1.930
4 64 1 2310 2.286
4 64 4 1680 2.062
4 96 1 2512 2.024
4 96 4 1650 1.623

Tab. 4.2: LUT Use and Combinatorial Path for Various number of Inputs, Input Width and
Granularity Combinations in the ISU
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No. Of Inputs Input Width Granularity No. of LUTs Combinatorial Path(ns)
1 48 1 1868 4.026
1 64 1 1966 4.261
1 96 1 2022 4.334
2 48 1 2783 5.155
2 64 1 2977 5.085
2 96 1 3083 5.425
3 48 1 3706 7.793
3 64 1 3986 7.899
3 96 1 4155 8.301
4 48 1 4641 11.558
4 64 1 5012 13.012
4 96 1 5240 13.492

Tab. 4.3: LUT Use and Combinatorial Path for Various Number of Inputs, Input Width and
Granularity Combinations in the OSU

implementations with three or more inputs, it tends to grow out of control) and allowing

for enough flexibility by keeping the single bit granularity. This essentially allows the

module to probe any 48 bit part of the pipeline word.

A similar investigation was performed for the OSU, the results of which are summarized

in table 4.3. Granularity was here always set to one due to protocol limitations (e.g. the

need to set or reset the S bit in the MPLS-TP label accordingly requires that every bit

location is accessible separately and masking this into the PE itself would complicate the

PE and its programming respectively). Here, we can see that both LUT consumption

and the path length are highly dependent on the number of inputs, whereas the length of

the inputs has little effect on both. Taking into account the protocol requirements, which

dictate that at least two different 48 bit inputs need to be available as described previously

and the need to minimize resource consumption and latency, this is the number of choice

for the OSU.

The table, which holds the microcommands, must also be considered. An 8 entry table

is used, with 44 bits per entry, which are used to control both the ISU and the OSU

operations. Eight entries are used since they are enough to support all possible MPLS-TP

operations (as described in table 4.1). PBB-TE requires no operation differentiation, as

the same sequence of processing steps is performed for each frame. Figure 4.21 shows the

structure of a single entry, in which 16 bits are used for identifying the start locations of

the two 48 bit fields extracted by the ISU and the remaining 28 bits are used for identifying

where the OSU places the processing results, by specifying the location in which each field

is inserted in the pipeline data word, as well as the number of bits that are to be inserted.

Each microcommand table, along with the circuitry for writing into it and selecting the

appropriate entry consumes 296 slice LUTs and 360 slice registers.
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Fig. 4.21: Microcommand Table Entry Structure for the ISU and OSU

Forwarding Lookup Module

The forwarding lookup is without a doubt the cornerstone operation in a core network.

In its simplest form it performs an access to a memory from which it fetches data corre-

sponding to the network address of each incoming packet. This data contains most of the

information that is necessary for further processing and forwarding of this packet. There

is however more to the design of an efficient lookup module for network processors than

meets the eye.

The first step in designing the Forwarding lookup module for the NPU100 was to have

a detailed look on the requirements that it must satisfy. Indeed the yield from such an

investigation, provides some interesting conclusions.

Perhaps the CGE protocol characteristic with the greatest impact on the forwarding

lookup is the flat addressing space. This is in strong contrast to IP addressing (see [7],

[5] and [57] for IPv4 and [47] for IPv6 Addressing), which is hierarchical and thus creates

the need to perform longest prefix matching, that is to find the address in the memory

with the most matching bits (and respectively the one with the least don’t care bits). The

complexity of the problem is made evident by the literature it has spawned. The literally

thousands of solutions that have been proposed will not be recited here, as their relevance

to the NPU100 is minimal.

The flat address space combined with its large size (up to 260 entries for PBB-TE)

creates an ideal environment for applying hash algorithms to map the complete address

pool to the ones available in memory. Again the literature is rife with very complex

hashing schemes, designed to squeeze maximum efficiency from the memory used. In this

design such complex contraptions are eschewed and the focus falls on designing a simple,

streamlined hashing scheme, which is proven to be more than enough for the system’s

requirements.

Directly coupled with the above issue, is the small required routing table size. This

is a core concept of CGE protocols, which were especially designed with simplifying the

address structure in mind, in order to reduce the number of addresses each node has to be

aware of. Different protocols go about this with varying mechanisms. MPLS-TP uses label

values of local significance. Thus a node only needs to know the label values of the LSPs

belonging to its own neighbors. Since especially in core networks the number of neighbor

nodes is relatively small, this number will typically be in the order of some hundreds of

labels. PBB-TE on the other hand encapsulates the client header in a core network one,

thus reducing the number of addresses the core network nodes need to keep track off.

One final feature that needs to be realized in the NPU100 is support for multiple entries
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per packet network address. All of the matching entries should be returned by the lookup

module, and a decision is to be made depending on various parameters. This enables fast

redirection, by allowing the administrators to preemptively provision alternative paths for

a packet flow, which is then called upon when the standard path fails without the need for

management plane intervention. This allows for almost seamless path restoration.

For the NPU100 we designed a lookup architecture which tries to satisfy all these re-

quirements. The resulting lookup module is illustrated in figure 4.22. It is based on the

FlashLook system presented by Bando et al. in [16], with some important modifications to

adapt the rather more complex implementation described therein to the CGE environment

for which the NPU100 is targeted. Given that the Flashlook architecture was designed for

IP lookups, which are considerably more demanding due to the hierarchical nature of IP

addressing and the longest prefix matching employed therein, our approach simplifies the

Flashlook concept by using one hash function and discarding IP specific functionality like

the Verify Bit Aggregation.

Fig. 4.22: Block Diagram of the Forwarding Lookup Module

It consists of two memories, the Bin Memory and the Black Sheep Memory (BSM), which

operate in a complementary fashion to maximize efficiency. The Bin Memory contains all

the bins in which lookup entries are written depending the bin to which they hash. The

BSM is a CAM, which is used to store any entries which can’t fit in the CAM memory

due to hash collisions. Both memories contain 156 bit wide entries, whose structure is

user defined through a configuration file (described in section 4.3.3). The only limitation

is that the 60 MSBs make up the network address to which this entry corresponds. The

remaining 96 bits can be used to store the forwarding data.

The forwarding lookup process is performed as follows:

• The lookup key is sent in parallel to the hash module and to the BSM.

• The hash module reduces the lookup key according to its hash algorithm. Hash as a

concept was detailed in 2.6, while the specific NPU100 implementation is explained

further along in this section.
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• The result of the hash points to the bin to be accessed. The matching entries from

that bin are sent to the collision resolution module.

• This module then sorts out the entries, which belong the input lookup key (since

MPLS-TP supports having multiple entries for the same network address) from the

ones which were the result of hash collisions.

• Concurrently to this process, the BSM is looked up and returns one entry matching

the input key provided at the Forwarding lookup module’s input.

• The Bin and BSM memory lookup results are aggregated and send to the Selection

block which then uses a variety of parameters to pick out one entry and present it

to the output.

The Forwarding lookup module is internally pipelined for performance reasons. As

shown in figure 3.7, it is divided into three stages. The first includes the hash module (and

ISU at the modules input of course), the second the memory accesses for the bin and BSM

memories respectively, and the last, the selection stage and the OSU to write the data into

the pipeline register.

Hashing Hashing was introduced in section 2.6. This paragraph elaborates upon the

specific circumstances found in the design of the NPU100 and accentuates aspects of hash-

ing, which are especially pertinent to it. What this translates to in practical terms is the

selection of an appropriate algorithm for the NPU100’s Forwarding lookup Module and

subsequently the determination of an appropriate memory organization for it. All of these

parameters are tightly interlocked, since the performance of one hash algorithm affects the

number of bins and the number of entries per bin that optimize performance as well as

the size of the BSM. At an even more fundamental level, more complex schemes could

come into play, using for example multiple hash functions in parallel to optimize memory

efficiency (see [21] for an example of this method).

At this point, it is necessary to define what is to be understood under performance of the

hashing algorithm. There is no golden rule here, since the extreme diversity of applications

in which hashing is used, has given birth to an almost equal number of metrics that are

used to judge its performance. Complexity is always a factor and the function selected

must be able to be implemented in such a way, that it can produce a new hash result

in every clock cycle. One other key parameter that must be weighted in is the memory

efficiency of the algorithm, meaning how many collisions it generates for a given data set.

This is important since resolving collisions is costly either in time or in resources depending

on the collision resolution algorithm used.

When studying hash algorithms it is important to identify any intrinsic properties of the

data one has to work with. The data in our case are the network addresses, which form the

input of the hash algorithm. Network addresses typically have a large range (e.g. 4 billion

in IPv4 or 1 million in MPLS) but only a much smaller number of these addresses is being

ever used in parallel at any given time. In core networks in particular this number is even

smaller, since one of the core design goals of these types of networks is the minimization

of the number of addresses used in each node through various techniques, as described in
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section 2.2. Furthermore, memory is limited and usually much smaller than the available

pool of network addresses. Hence an M:1 mapping must be used in this environment.

Given the diverse fields where hashing is applied it is no wonder that the are literally

thousands (and this is perhaps a gross understatement) of hash functions. The vast major-

ity of those is not of interest for our investigation since they cannot be applied to the data

sets used in networks processing (e.g. cryptographic hash functions, which are optimized

for variable length inputs and perfect hash functions, which are best suited to static data

sets). Furthermore, a hash algorithm’s performance is unequivocally tied to the architec-

ture in which it is used. To investigate these intricacies, a C++ program was developed,

which simulated the assignment of entries to a bin via various hash algorithms. The inves-

tigated case was simple: random addresses within a specific range were generated and then

written into the memory, the memory assigned the entry to a location either in the bin

memory or in the BSM, imitating the write process used by the Forwarding Memory Write

Control module described later on in this section. Using random addresses as the input

stimuli imitates the behavior in a realistic manner since network addresses in networks are

distributed randomly. This was repeated until the memory overflowed, that means until a

write attempt was done and both the required bin and the BSM were full. The occupancy

percentage of the memory at this point was the parameter of interest. Both the size of the

bin memory and the BSM were taken into consideration when calculating this. To mitigate

the effect of the random address selection, each variation and hash algorithm was run 256

times and the results were then averaged in order to smooth out any one-time effects that

might present themselves.

Three typical hash algorithms were simulated:

• Modulo hashing, the simplest but still widely used algorithm, which simply performs

a modulo operation, with the remainder as the result.

• ELF algorithm, a 32-bit variant of the well know JPW algorithm described in [11].

• Jenkins one-at-a-time algorithm [35], which exhibits good, avalanche behavior for

random, variable size input keys.

The most interesting from the results shown on figure 4.23 is that there is a common

trend in the behavior of the hash algorithms, which is not affected by the memory organi-

zation selected. The memory organization itself will be discussed in the next section. This

trend shows that there are marginal if any differences in memory efficiency between the

modulo and ELF algorithms, while the Jenkins algorithms always trails somewhat behind.

As a result of this the most simple function, the modulo one, is selected and implemented

in the NPU100. This functions practically truncates the lowest part of the input key so

that it matches the width of the output key. In NPU100 this means that the 48 lowest

bits of the 60 bit wide PBB-TE key are be discarded and the 12 highest bits are used as

the network address. Similarly for MPLS-TP, the 12 highest of 20 bits of the label field

are used.

Memory Organization Apart from determining hash algorithm performance, the sim-

ulations performed offer valuable clues pertaining to the optimal memory organization,
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Fig. 4.23: Performance of Three Prominent Hash Algorithms for Various Bin and CAM Sizes

which should be used in our implementation, that is, the number of bins, as well as the

number of entries per bin. It should be noted that the starting point were combinations of

the previously mentioned parameters, which were feasible to implement in a contemporary

FPGA. The trends shown however should have wider applicability. In the tests performed

three configurations were investigated. All of them are able to accommodate a total of

4096 entries in the bin memory, plus an additional number of entries in the BSM. 4096

entries were selected, since this number was judged to be sufficient for a core network

router (see chapter 2 on a discussion on why this makes sense in CGE protocols). The bin

memory was distributed in three different configurations, namely 4096 bins with one entry

per bin, 1024 bins with 4 entries per bin and finally 512 bins with 8 entries per bin. This

nomenclature is depicted as a combination of three numbers on the X axis of figure 4.23.

The first number shows the number of bins, the second number the entries per bin and the

final, third number the number of entries that can be stored in the BSM.

The foremost conclusion from figure 4.23 is that the number of entries per bin plays a

pivotal role in the number of entries that can be accommodated. This is independent of

the other parameters, though the difference between the 4096-1 and 1024-4 combinations

is much bigger than that of the 1024-4 and 512-8 ones. Thus more entries per bin allow for

better bin memory utilization. The only thing that can act detrimentally to an 8 entry bin

memory is the required increase in the complexity of the collision resolution block in order
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to process the extra entries. Synthesizing the two variants, one can see that the increase

is less than 350 slice LUTs in a Virtex 5 FPGA (368 for the 4 entry collision resolution

block against 704 for the 8 entry one). Thus the 512 bin and 8 entries per bin scheme is

selected as the most appropriate one for the NPU100

Despite the memory being configured in a specific way following the rationale described

in this section, generics allow this configuration to be changed. Thus both the number of

bins and the entries per bin are configurable, and thus the size and organization of the

memory can be adapted accordingly to each design’s needs. How the memory is distributed

affects the number of entries that will be able to be accommodated into it. More bins with

less entries per bin allow for accommodating more entries when these entries all hash to

different values, wheres the opposite organization allows to store more colliding entries.

This can only depend on each specific use-case however. This investigation considered a

general case, which might not apply to all scenarios, thus the capability to fine-tune the

design is provided. Furthermore, implementing the design for different technology types

(e.g. ASIC libraries or different FPGAs offering more/less on-chip memory) might require

that a different bin/entry per bin mixture is selected to optimize performance.

Black Sheep Memory The Black Sheep Memory is a small Content Addressable Memory

(CAM), whose purpose is to store entries which belong to overflown bins, thus mitigating

the effect of hash collisions. Though it is evident from the hash algorithm comparison,

whose results were shown on figure 4.23, that a larger BSM will increase performance,

other characteristics, like the resources that the Black Sheep Memory consumes come into

play and force us to investigate where the optimal trade off between these two parameters

lies.

The BSM block consists of two submodules, the Address Mapping Module and the

Entry Memory, as shown on figure 4.24. Both modules consist of two generated Xilinx IP

Cores, however configuring this core correctly to balance between performance, optimal

memory size and resource consumption was tricky, as CAMs come in several different sorts

with different feature sets, which has an impact on all these factors. Keeping the CAM

memory size and power consumption under control was critical, since CAMs have been

known to be extremely power hungry and exhibit a low bit to area density.

The most important characteristic, which sets CAMs apart, is whether they are ternary

or binary CAMs. The former can take up three possible values (0, 1, and X called a don’t

care value), while the latter can only use the typical 0 and 1 values. To accommodate for

the extra value, ternary CAMs use two memory cells for each bit, thus the memory area

occupied by them is significantly higher than binary CAMs. Ternary CAMs are commonly

used in IP lookup applications, where don’t care bits are used to match specific address

ranges and thus enable functions like longest prefix matching. In CGE networks, address

mapping does not require such functionality and hence a simply binary CAM is used. A

further feature that has to be defined is how to react to multiple matches. CAMs offer

several different alternatives, of which the Xilinx IP core used in this implementation only

supports selecting the lowest or the highest address that matches. The lowest variant is

used here.

Thus one of the salient issues to be clarified in the implementation of the Forwarding
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Fig. 4.24: Block Diagramm of the Black Sheep Memory Block

Lookup module is how big of a CAM can be accommodated in an FPGA and ASIC

respectively and how many NPU100 forwarding lookup entries can fit in such a CAM.

Figures 4.25a and 4.25b provide information on the resource consumption and performance

of various CAM sizes. The CAM block implemented in the NPU100 includes a CAM with

a 60 bit lookup key (derived by the combination of destination MAC and VID as found in

the PBB-TE header), which leads to a memory, each entry of which is 96 bit wide (wide

enough to accommodate all the data that need to be retrieved from the lookup table. More

details on the structure of this entry are provided in section 4.3.3. This stems from MPLS

requirements and includes a new MPLS label, a new TTL value, a pointer to the PHB

table, as well as a port map showing the output ports to which this packet must be sent)

. The number of entries varies in each scenario.

(a) Slice Register and Slice LUT Resources Con-
sumption for Various CAM Sizes

(b) Block RAM Resource Consumption for various
CAM Sizes

Fig. 4.25: FPGA Resource Consumption for Various CAM Sizes

While, as was to expected, the values of FPGA resources increase with the size of the
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CAM, it is clear that the critical parameter is the number of Block RAMs consumed.

Considering that the largest Virtex 5 FPGA, the LX330T, which is the one used for the

NPU100 prototype, contains 207360 slice registers and slice LUTs and 324 Block RAMs,

one can see that the bottleneck in accommodating multiple CAM modules in the device

is the number of available of Block RAMs. In an ASIC design there is not hard limit on

the number of available resources however similar limitation exist, since cheap real estate

is in practical scenarios limited by cost. More specifically only a CAM block of up to 256

entries can successfully fit four times (as many as the MPs) into the device and even in

this case 200 Block RAMs (61.7% of the total in the device) would be used leaving 124

empty for other uses. The performance achieved by each CAM is also dependant on it’s

size, although the impact is marginal. Hence the smallest CAM (128 entries) achieves a

frequency 128.8 Mhz while for the largest one (1024 entries) this drops to 103 MHz., both

satisfactory for an FPGA implementation.

Next, it is important to determine the impact of the size of the CAM block on the

number of entries that can be accommodated in the forwarding lookup module. To do this

we use the data from hash algorithm investigation in the previous section. In figure 4.23,

one can clearly identify the impact of the size of the CAM block to the number of entries

that can be stored in the memory. This trend is quite independent from the algorithm

used, as well as the structure of the main memory in regard to the number of bins and

entries per bin. What the figure also illustrates, is that 256 entry CAM blocks provide

tangible benefits in comparison to 128 ones, but as is made obvious from the resource usage

requirements it is impossible to fit into a contemporary FPGA (taking into account that

there are other modules requiring significant amount of Block RAMs). Thus a 128 entry

CAM block was used for the NPU100 test bed implementation. Of course a future ASIC

implementation may well increase this number according to the available resources. The

NPU100 can be easily adapted to this, as the size of the BSM is configurable at design-time

through a generic. Since however larger CAMs sizes gobble up resources, this feature should

be increased with caution. If an ASIC is to be used for the implementation than many

more entries can be accommodated, as ASICs typically exhibit 20-40 times higher density

than FPGAs [41]. Even in this case the resource requirements for a 4096 times would

exceed anything that can be fabricated economically with contemporary technologies.

Selection Stage Path Protection, among other OAM functionality is a cornerstone func-

tionality of carrier grade protocols. Path protection means that in case of a link failure

in the path, the protocol must provide a mechanism to swiftly redirect packets over an

alternative path. This requirement, coupled with several additional ones, such as man-

agement plane output filtering (allowing the management to disable and enable specific

output ports through the management interface), creates the need for a selection stage,

which allows the realization of this functionality based on a variety of criteria. It receives

the forwarding lookup results, which may consist of more than one entry, which matches

the packet’s address, from the memory and selects the appropriate one according to a set

of parameters. Each of the different entries represents an alternate path for packets be-

longing to this aggregate flow. The parameters used during the selection process fall into

a set of 6 configurable criteria, which are broadly classified into two types:
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• Availability-based criteria, which are only meant to show if a port is a viable output

alternative for this packet. This can be used for port filtering as done in PBB-TE or

to demonstrate port availability. This is achieved by providing a port map with the

valid output ports for this packet and comparing it with the output ports read from

the lookup memory in a previous step in this module. Two different types of sets are

provided against which to compare the output ports, a pair of sets which are meant to

be programmed by the management plane and another pair of sets which are sampled

from external pins of the device. The former can be used by the management plane

to route a packet flow to specific ports and to avoid a specific routing path, while the

latter can be used as input from the lower layers to indicate port availability, so as to

automatically avoid severed routing paths which may temporarily be out of service.

• Priority-based criteria, which can be used to determine the relative importance of

the paths in comparison to each other and use this information to decide which path

to sent the packet down to. There are two different types of priority-based criteria:

– Entry-based path weighting. Each forwarding lookup entry returned in the

lookup step, includes a priority indicator. These are compared with each other

and the entry with the largest one is selected.

– Port-based weighting. The selection submodule includes a table which holds

the current relative priority weights of each port. This is programmed by the

management plane over the PCIe interface. The weights for the destination

ports in each lookup entry are summed up and compared with those of the

other entries. The entry with the largest total value is selected.

Each of the sets can be activated or deactivated independently of the other, either on an

NPU or on an entry basis. Thus the sub module itself contains a table, which determines

which criteria are active and each lookup entry includes a similar table which is only

relevant for this entry. The former supersedes the latter and furthermore for a criteria to

be taken into account in a specific selection process all entries pertaining to that process

must have this criteria marked as active.

All criteria are evaluated in parallel and then these results are evaluated again in order

for an entry to be selected. This is done in a complex series, which mirrors the purpose

of criteria. The availability based criteria are evaluated first, starting with the ones based

on external stimuli. In this case, entries in which all output ports are available are kept

in the race. If none such entry exists, all entries are maintained and considered for the

management plane defined criteria. The first stage operates in a similar fashion as the

external stimuli based ones. Entries who have all ports qualified by the comparison are

kept, unless none does, in which case all are maintained. The second stage is used as a

filtering one, thus essentially a logical and operation is performed between the two port

maps, so that the output ports that remain active after the operation are the ones desired

by the management plane.

The priority based criteria are considered only for packets which survive the previous

four steps. This is logical since the previous stages are based either on physical layer

limitations or on explicit commands from the management plane. The two priority based

stages are used to whittle down the remaining entries and select one according to the
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scheme defined previously. If both priority based criteria are active then the entry-based

weighting is preferred over the port-based one.

Forwarding Lookup Write Control The forwarding lookup functionality is indispensable

in any NP and the system described thus far in this section fulfills the requirements of CGE

protocols in this area. The last, missing piece of the puzzle is providing the means to write

and delete entries from this memory. The required software part of this process, which

allows the user to create the entries and send them to the NPU100 is described in section

4.3.3. This section describes the hardware module that complements this procedure on

the FPGA side. It receives a request to write or delete an entry and performs the task

accordingly.

Writing and deleting entries entails keeping track of the memory’s contents and accessing

them appropriately. The whole process must be abstracted from the control plane, which

only supplies the network address to which this data belongs, without knowing how the

forwarding memory is internally organized. Thus it is up to the write control module to

determine if the bin memory or the BSM is to be used and in any case, where exactly the

entry must be written to. The tasks that must be performed are:

• Check if the required bin has a free entry, and if so, write the new data into the bin

and internally note that this entry is now occupied.

• If the required bin is full then write the data into the BSM and record this internally.

• If the BSM is full as well, return an exception.

Deleting an entry involves a similar process:

• Determine the location in the memory, in which the entry to be deleted resides. This

can be either in the bin memory or in the BSM.

• Internally mark this entry as empty, and thus as available for reuse.

• Erase the data from the entry in the memory.

• Return an exception if the entry does not exist in the forwarding lookup memory.

It is obvious from the above description that the write control module needs to maintain

state information regarding the occupancy of the memory, lest it queries the memory itself

for the required information. This would however reduce the availability of the forwarding

lookup memory for serving packet header queries and thus could result in performance

loss. Thus the write control module needs to internally maintain the following information

regarding the current status of the forwarding lookup memory:

• A table in which the status of all bins is contained. Detailed information is not

required, just which entries in each bin are occupied and their addresses.

• A table which tracks if the BSM has free entries and can return the next available

entry.
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Fig. 4.26: Block Diagram of the Forwarding Lookup Write Control Architecture

Both above mentioned tables do not contain the entire entry, but simply the correspond-

ing network address, which is used to match the entry with the query input and determine

in which location in the memory this network address has been stored. The bin memory

table is two dimensional, with each row corresponding to a bin and the number of columns

to the number of entries in each bin.

Apart from the bitmap the write control submodule must also be equipped with a hash

input in order to determine to which bin an entry belongs. Since this must be done in

parallel to any normal hash operation taking place in order to process packets, a dedicated

hash module, identical to the one used for processing is used.

The structure of the Forwarding lookup Write Control module is shown in figure

4.26. It consists of several blocks, whose interplay ensures the correct functionality. The

Write/Delete Control block receives the programming data from the PCIe interface and

directs the write or delete process.

In order to write an entry into the forwarding lookup memory a complex series of steps

has to be performed:

1. First of all, the data must be written through the programming data signal to the

Write/Delete Control module. This takes 5 cycles in total. In the first two the

network address of the entry is written and in the next three the entry data.

2. After the network address is received, two parallel queries are launched, one to the

BSM Search in order to check for a free space in the BSM and one to the Bin Memory

search via the Hash module. This returns possible entries in the bin memory.
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3. The Hash module produces the address of the bin to which the entry has to be

written to. This hash value is the fed to the bitmap, which tracks the occupancy of

the bins and their entries. A four entry per bin memory is shown on figure 4.26 for

clarity’s sake. The results bypass the Collision Resolution block and are sent to the

Bin Memory Search, which checks how many entries are there in the bin and thus

deduces if there are any available ones.

4. At the same time the BSM Search block checks if there are free entries in the CAM

Status table.

5. Both results, along with any required control information (e.g. the available bin

address) are sent to the Write/Delete Control.

6. The Write/Delete Control evaluates these results and determines where the entry

must be written to. Preference is given to the bin memory if available space is found.

If not the entry is to be write into the BSM. Finally if the BSM is also full, the Error

signal is asserted, to denote that the request cannot be served at this time.

7. The Write/Delete Control block then asserts the necessary signals to write the data

to the appropriate entry in the bin memory or the BSM and concurrently marks

that entry as occupied in the respective internal table. The process for writing these

tables is identical to the forwarding lookup memory write process, the data are simply

ignored.

Deleting an entry from the memory is done in the following manner:

1. The first task, as in writing an entry, reading the necessary data from the configura-

tion interface. The process simply takes for 2 cycles, as only the address to be erased

has to be transmitted.

2. Both BSM and Bin Memory Search modules are then queried at the same time to

determine if the entry is stored in any of these memories and if so into which.

3. Again the address is hashed and the hash value used as input to the bin lookup as

in the write process. Divergent however from that process is the fact that now the

Collision Resolution block is used to return the exact entry that was looked up.

4. In parallel the BSM Status Table is checked and a possible entry is returned.

5. The results are returned to the Write/Delete Control, which then proceeds to remove

the entry from the memory. Only one entry corresponding to the address is removed.

If more of them are present in the memory, one delete operation for each has to take

place.

6. Entries in the BSM are deleted first in a LIFO fashion. If no entry is found in the

BSM, the last found in a bin is deleted.

7. If no entry is found at all, the Error signal is asserted.
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8. Actually deleting the entry, requires removing the address from the BSM or bin

memory and the doing the same for the internal tables. The Write/Delete Control

block orchestrates this process accordingly.

The NPU100 implements one Forwarding lookup Write Control module per lookup

module, which means that every forwarding lookup memory in each of the four MPs can

contain a different set of entries. This is necessary to support the appropriate number of

forwarding lookup entries (4096). The reason for this is not intuitively clear. Assume a

packet belongs to an LSP which requires it to swap the top label and push a new one on

the stack at this node. In this case, the forwarding lookup table of the first MP will contain

the label to be swapped and that of the second label the label that is to be pushed onto

the stack. Thus one entry each of those two table is needed for accommodating one LSP.

Extrapolating for the worst-case scenario where all MPs have to be used all the time, it

is evident that in order to store all the labels for all possible LSPs, one entry per lookup

table is necessary.

QoS lookup Module

Lookup Module The QoS lookup module is aimed at implementing the memory accesses

related to the QoS parameters of each packet in the NPU100. The architecture of this

module has been influenced to a great extent by the respective MPLS-TP requirements for

incoming and outgoing PHB lookup. According to the MPLS-TP protocol standard, each

forwarding lookup entry might have a different CoS to PHB mapping. This means that

a CoS field value which for one label corresponds to the PHB class X might for another

label correspond to the PHB class Z. In order to support this functionality, the memory

of each QoS lookup module is divided into subtables. Each of these subtables contains

one specific CoS to PHB mapping. In order to determine which subtable has to be used

for each packet a pointer is used. This pointer is part of the forwarding lookup entry,

which has been read out of the memory in the first stage of each MP. It is 8 bits wide

and contains the address of the CoS to PHB subtable, which must be used for this label

value. Essentially it represents an offset to the QoS lookup memory. Using this offset, the

appropriate subtable is read from the lookup memory as shown in figure 4.27 and then the

appropriate field from the pipeline word (designated incoming CoS on the figure) is used

as an index to extract the appropriate entry. The figure shows an eight entry subtable for

illustrative purposes though sixteen entries are used in the actual implementation.

It should be noted that while the above description reflects the MPLS-TP process, the

module is built with generality in mind. Thus in the real system, any part of the input

register may be used as a memory offset, which returns a chunk of memory, which can

then be accessed using a four bit vector from the input register. In order to implement

PBB-TE’s QoS lookup for example one has to take into account that PBB-TE uses the B-

VID, a 12 bit field of the header, as the key for the lookup, but does not share MPLS-TP’s

separate mapping per address (or label) requirement. This means that the entire table

can be viewed as one entry. Thus from the 12 bits available, eight can be used to select

the subtable and then the remaining four to index the subtable and read out the required

entry. ,
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Fig. 4.27: Overview of the QoS Parameter Lookup Operation

The table sizes of 256 CoS to PHB subtables with 16 entries per table can be configured

at design time if different requirements call for their expansion (or shrinking respectively).

The tables are dynamically programmable as described in the following section.

QoS lookup Write Control The QoS Lookup Memory Write Control module takes care

of the writing of the lookup information to the table. The information is transmitted to

the module over the PCI express interface. As in the Forwarding Lookup Write Control,

there is one module per table. The module is a state machine which buffers the received

information when the control address matches that of the module and then writes it to the

memory in one stroke. An entire subtable is the minimum amount of information, which

can be written, and each subtable consists of eighth 19 bit entries, thus a total of 152 bits

must be written over the 32 bit programming bus. The data transfer takes for five cycles

in order to transfer the data and one additional cycle in order for the subtable address

to be send. The appropriate programming address must remain set at the programming

address bus during the entire process.
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Replace

The replace operation writes data already available in the pipeline word in an already

existing field. This field might be occupied by existing data or be empty. In any case

the specific area is overwritten with the new data. In this respect, replace operations are

very simple in nature. The input data is simply placed at a different part of the data

structure. Thus, upon closer inspection of the tasks for this module it is clear that no

further functionality is required apart from configuring the input and output selection

units appropriately in order to move data from the one part of the data word to the other.

In the implemented module two fields can be moved in one stroke, since the ISU and OSU

can process up to two different fields independently of one another in one clock cycle.

Required MPLS-TP functionality is limited to replacing a label field during a swap

operation. The new label, which was read out of the forwarding lookup memory and

stored temporarily in the processing context, must take the place of the original label in

the packer header. PBB-TE requires no such functionality.

Insert

While conceptually similar to the replace operation, the insert operation involves the shift-

ing of the data previously occupying the target area in the data structure as shown in

figure 4.28. The data to be inserted are to be provided at the input and the location and

width of the data to insert need to be specified as configuration parameters. This data

must already be stored in the pipeline data word. Additional required configuration pa-

rameters include the location and width of the data to shift, the length of the shift, as well

as its direction. To realize this, the operation will be done in two stages, which essentially

breaks the insert operation down into two consecutive replace operations, which should be

implemented as described in the previous section, using two register selection modules in

sequence. The first set of ISU/OSU performs the shift operation and the second inserts the

target data into the specified location. Thus the data which the last operation overwrites

have previously been moved to another part of the data structure. Practically the two sets

of ISU/OSU’s can be programmed to perform two consecutive replace operations. There

is no inherent limitation in the way the unit can be used.

Modify

The Modify module performs arithmetic and logical operations in order to manipulate

the various fields of the pipeline word. A whole array of operations is available, making

the Modify module practically an Arithmetic Logic Unit(ALU). Logical operations include

AND, NAND, OR, NOR and XOR, and arithmetic operations addition and subtraction.

There are two modes of operation supported by the module:

• Operations between the two input fields.

• Operations between the two input fields and fixed operands. In this case the fixed

operands are stored in the module’s microcommand table.
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Fig. 4.28: Overview of the Insert Operation

In MPLS-TP the only required processing is the decrement of the TTL field, the re-

calculation of the packet length when a header is added or removed and the setting or

unsetting of the S bit in case the current label becomes/ceizes to be the last in the stack.

Both operations involve a pipeline word field and a fixed operand. In PBB-TE the only

modify operation is the comparison between the Filtering Map and the Output Ports in

order to determine the output ports, which is a simple bitwise AND operation between

two pipeline word fields. We decided to allow for two operations to be executed in parallel.

This provides significant additional flexibility, while sacrificing little additional resources.

Logically since there are only two input fields to the PE, the user can select either

to execute one operation between the two input fields and one between one of the two

and a fixed operand, or perform one operation between each of the input fields and fixed

operands. There is no limitation on the combination of operation that can be executed in

either mode.

4.3 NPU100 Programming Concept

One of the main contributions of this work was in programming the resulting architecture.

Special attention was given to this task in order to avoid one of the typical pitfalls of NP

design, that is ending up with a very potent but extremely programmer unfriendly piece

of hardware. This commonly happens because most attention is devoted to the hardware

side, while neglecting the software one and relying on serendipity to avoid ending up

with a complex, user-unfriendly programming scheme. The approach followed was based

on tightly integrating the hardware design with the development of the programming

concept, meaning that the modules, their functionality and the way they were going to be

programmed proceeded hand in hand from the very beginning of the design of the NPU100.

A great part of the hardware side of the programming concept behind the NPU100,

resides with the ISU and OSU modules described in section 4.2.4. These modules use

custom programming words, stored into microcommand tables in order to direct the pro-
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cessing. The missing link is thus the means to generate the required programming words,

to transfer them to the NP and to write each of them into the appropriate microcommand

table.

Furthermore, the NPU100 includes Forwarding and QoS lookup tables which are used

to forward the incoming packets. These tables include entries which are defined by the

user of the NP (typically an administrator with an ISP or core network firm) and contain

all the relevant information. Since connections are constantly being set up and torn down

again all the time during the lifetime of an NP, it must be possible to write and delete

entries into these tables. An appropriate interface must provided to enable the transfer of

this information to the NPU.

This section provides a detailed description of the programming architecture of the

NPU100, first introduced in section 3.3, which aims at providing a solution to allow for

the easy programming of both the NP microcommands, as well as the Forwarding and

QoS lookup tables, all while using a user friendly software, an efficient, industry standard

interface to get the data to the NPU100 and finally an comprehensive system to internally

distribute the data to the appropriate modules.

4.3.1 Addressing Scheme and Programming Table Access

With the one end of the programming concept (the microcommand tables) having been

already introduced, the remainder of it is explained here. The first element is the address-

ing scheme used in the NPU100. Configuring the NPU100 involves writing programming

information over the PCI Express bus to the microcommand tables which hold the pro-

gram and guide the operations performed by each module. To ensure the correct flow

of programming data to the appropriate unit each time, an addressing scheme has to be

defined. Figure 4.29 illustrates the address structure devised to accomplish this.

Fig. 4.29: NPU100 Configuration Addressing

The address length is 16 bits, which allows for sufficient addresses to accommodate all

of the NPU100 modules and leave plenty of room for expansion (e.g. addition of pipeline

stages). The MSB identifies if the module belongs to an MP or is a non MP module.

Examples of non-MP modules are the Dispatcher or the Packet Reassembly module, while

the Modify or Insert modules are examples of MP modules. The following three bits select
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4 NPU100 System Implementation

the MP whose module is to be addressed and should be set to 0 for non-MP modules. The

next bit identifies if the data are to be written to the microcommand table of an ISU/OSU

as described in section 4.2.4 or to that of a processing engine. The following 5 bits identify

the module itself (thus 32 modules per MP and 32 non MP modules can be addressed)

and the LSBs are used to identify the internal structure of the tables as described in 4.2.4

for the both ISU/OSU microcommand tables and the modify module.

This template is used to derive the addresses for each NPU100 module, as shown in

Table 4.4. The table also provides the name of the generic in the VHDL code, which

sets the address for each respective module. Some addresses contain Xs where a mini

pipeline identifier is to be placed. In the instantiation these Xs will be replaced with a

corresponding number of bits, identifying the mini pipeline to which this unit belongs.

Where only 10 bits are given the remainder are used to assign values to module internal

parameters.
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4 NPU100 System Implementation

Fig. 4.30: Block Diagram of Hardware Modules Making Up the PCI Express Interface

4.3.2 Hardware Modules

The hardware side of the NPU100 programming interface consists of the Xilinx Endpoint

Block Plus for PCI Express which realizes the functionality required to receive and send

information over the PCI Express link and several accompanying modules which receive

this data and interface with the NP modules, as shown in figure 4.30. This is accomplished

by receiving the data from the PCI Express core with a state machine which then writes

the data into two separate FIFO queues. The FIFO queues have a different write and read

clocks, which allows us to change clock domains from the one driven by the PCI Express

core clock to the clock domains used in the NPU100. As the NP uses two different clocks,

one at 150 MHz and one at 295 MHz, two FIFO queues are used, one for each clock domain.

Another state machine then reads the data from each of the FIFOs and forwards them to

the programming buses.

The PCIe interface state machines feeds a pair of 32-bit buses, which are used to transfer

the data from the PCIe block to the processing modules with each bus being connected

to all the modules that belong to that particular clock domain. Each bus transfers the

maximum amount of configuration data it can, without however breaking a configuration

parameter into two transfers, unless the transfered parameter is longer and must spawn

multiple 32-bit words. To exemplify the above, assume a scenario where all in all 55 Bits

must be written, nine 6 bit fields and one 1 bit field. This should be done in two data

transfers, the first of which includes five 6 bit fields and the second one the remaining four,

along with the 1 bit field. The module must then internally handle the data write to the

appropriate locations. The NPU100 software described in 4.3.3 takes care of this task for

the programmer automatically.

Apart from the data buses, the modules of each clock domain are connected to an

address bus which contains the address (as described in section 4.3.1) of the module to
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which the data word on the data bus has to be written to in each clock cycle.

The PCI Express block does not offer the capability to read from the module micro-

command tables or the forwarding and QoS lookup tables. This was deemed unnecessary

since the information are written into the NPU by the user in the first place and thus he

can keep track of them at his end. The Tx part of the PCI Express interface is still im-

plemented however, since it is necessary to sent confirmation messages (called Transaction

Level Packets - TLPs in PCI Express slang) to the PCI Bridge upon data transmission.

4.3.3 Programming the NPU100

The compiler and the lookup entry generator comprise the heart of the software side of

the NPU100. Their goal is to ensure that the user is able to leverage the resources made

available to him in the NP. As described in section 2.5, NPs have a long tradition of

providing the prospective programmer with difficult to use programming paradigms. The

NPU100 could very well have shared this deficiency, since the programming information

that are required for it to perform its task, would have been very difficult to generate

by hand. This is exactly the problem addressed by the NPU100 compiler, which offers a

straightforward method to generate the required programming information before they are

transferred to the NPU. In summary the compiler fulfills the following tasks:

• Reads the configuration program, which is written in high level code.

• Maps the functionality described in the code automatically to mini pipelines and

pipeline stages.

• Converts the high level code into the microcommand format to be fed into the

NPU100.

The lookup entry generator’s sole task is to create the forwarding and/or QoS lookup

table entries found in each MP.

Configuration Files

The first step in utilizing the compiler and the lookup table entry generator to create

the NPU100 configuration information is to provide it with the data that facilitates this

task. The format in which this information is to be provided is important, since it must

balance between providing sufficient flexibility so as to put the NPU100s capabilities to the

best possible use and simplicity so as not to confuse the potential user with a convoluted

interface.

In the NPU100 this is accomplished by the use of the four configuration files which

were introduced in section 3.3, each of which fulfills a different task. This section provides

details on how the files are structured and how they cumulatively enable the programming

of the NPU100. Three of the files are XML files and the fourth uses a custom but very

C like, high level code format. XML (eXtensible Markup Language) has been selected,

because it allows for the structuring of the information in a meaningful way, through an

easy to understand, tag-based format, which can then be easily accessed programatically
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through off-the-shelf libraries in almost any programming language. The following four

sections each provide an overview of each file and how it factors into the programming

process.

Architecture Configuration File (ACF) The ACF is the lowest level file, which defines

the architectural parameters, which the compiler will use to perform the task mapping from

the code to the NPU PEs. As such, this file will need to be changed only when a different

NPU100 design is targeted (that is, an NPU100 with different processing modules or a

different number of MPs). Thus, for each NPU100 design there is only one corresponding

ACF file. The file provides information about the number of mini pipelines and the order

of the PEs in the mini pipelines. Without this information the compiler cannot proceed

with the task assignment as it cannot determine the resources, which it has available to

assign tasks to. An ACF file always begins with an ACF tag, which identifies the type of

the file. Then the number of MPs in the NPU100 for which the code is to be generated

is given, followed by an enumeration of the number of stages in the order in which they

appear in the MP. The following code provides a sample of the ACF file created for the

NPU100 version used throughout this thesis. As can be deducted from the code, the

structure supports only identical MP structures, although this could be easily extended in

the future, to include less homogeneous ones.

<ACF>

<number o f min ip ipe l ine>4</ number o f min ip ipe l ine>

<s tage>ForwardingLookup</ s tage>

<s tage>I n s e r t</ s tage>

<s tage>Replace</ s tage>

<s tage>Modify</ s tage>

<s tage>Modify</ s tage>

<s tage>QoSLookup</ s tage>

</ACF>

Protocol Information File (PIF) The Protocol Information File defines aliases for areas

of the data words used throughout the NPU100. Its goal is to ease the software development

for the NP by hiding the internal complexity of the NP’s inner workings. As was explained

in section 4.2.4, the PE I/O modules identify which fields to extract from the pipeline

data word by a start location-length tuple found in the microcommand table. To avoid

demanding from the user to specify each data field using this tuple, the PIF is used to

provide a moniker for the fields that are to be used when writing the actual code.

There are three different data words used within the NPU, whose fields can be aliased

in the PIF file:

• The pipeline word, described in section 3.2.1.

• The forwarding lookup table entry.

• The QoS lookup table entry.
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Fig. 4.31: Example of the Definition of a Field in the PIF

The respective sections define the structures that are used when programming the

NPU100 for MPLS-TP and PBB-TE use. Any other format is acceptable as well, as

the PIF is very flexible in defining field names and locations. One area can have multiple

aliases and various aliases can overlap. This will generate an informational message from

the compiler, but is permitted if done intentionally.

Figure 4.31 provides an example of how the PIF is used in order to assign an alias to a

specific portion of the pipeline data word. The upper right corner of the figure shows a code

snippet from the file, which defines several fields. At the top of the snippet the keyword

PipelineWord denotes that the entries that follow specify fields that belong to the pipeline

word. Respectively the user must define similar areas for the forwarding and QoS lookup

tables by using similar XML identifier tags. The lower part of the image is dominated

by the pipeline word with all the various fields used during processing. The arrows then

demonstrate how an alias for one field, in this case the packet length is specified. First

the name, to which this pipeline word area is to be mapped, is being provided, followed

by the bit at which this area starts and finally by the length of this area, all enclosed in

the appropriate tags. The compiler uses these the determine the location of each data and

thus how to program the NPU100 PEs to access the required data and perform the needed

operations on them each time. Other fields are similarly defined.

lookup Information File (LIF) The LIF facilitates the creation of QoS and forwarding

lookup table entries as well as their deletion. Creating and deleting entries is a quintessen-

tial process in an NP, as every entry corresponds to a connection in the network. What

the LIF does, is to use the aliases defined in the PIF and assign values to these fields.
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The fields correspond each time to one entry in one of the lookup memories. Which entry

is being currently specified must also be provided. Any alias used in the LIF must cor-

respond to one defined previously in the PIF, otherwise an error occurs. LIF processing

occurs independently of the configuration program compilation. This is necessary since

adding and removing connections and thus lookup table entries is commonly done during

run time in NPs and without having to reprogram the device.

The file can contain up to two separate areas, one specifying forwarding lookup table

entries (marked with a Forwarding tag) and one containing QoS table entries (denoted

by a QoS tag). The following code provides an example of the former for the MPLS-

TP protocol. The Entry tag delineates the beginning of a specific entry, whose fields are

then specified in succession. If a field is omitted a warning is given out by the lookup

generator and its value is automatically set to 0. The Action tag specifies if the entry is

to be added or deleted. When deleting an entry, there is no need to provide values for

any fields apart from the address and any provided are ignored. The entry generation

software does not maintain status information regarding the memory and thus does not

and cannot check if the entry that the user attempts to delete exists in memory. Hence

a deletion configuration word would be generated and sent to the NPU100 in any case,

without however any negative consequence on the functionality of the NP.

<Forwarding>

<Entry>

<Action>Add</ Action>

<NetworkAddress>0</NetworkAddress>

<OutputPorts>5</OutputPorts>

<Operation>0</ Operation>

<Label2>192</ Label2>

<TTL2>45</TTL2>

<PHBTblPtr>32</PHBTblPtr>

<OPHB>71</OPHB>

</Entry>

</Forwarding>

Figure 4.32 illustrates the most complex of the two cases encountered in the LIF, namely

the one where an entry of the QoS lookup table is specified. This is because this memory is

divided in subtables, which must be specified separately. The Subtable tag, thus, demar-

cates exactly such a subtable, whose entries are then described one by one as in the case

of the forwarding lookup table. In this case however the entries are written to the table

in the order they are present in the LIF (the first entry to the first address, etc). Entries

for which values are not specified are automatically filled with zeroes. Before the entries

and right after the Subtable tag, the address for this subtable is specified. The address

value within the tag is user specified and must be provided in order for the subtable to be

addressable.

Configuration Program File (CPF) The CPF is by far the most complex file of the

four. This section will provide an overview of the syntax it uses, however the bulk of the

file’s features will be explained along with the compiler itself in the following section, since
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Fig. 4.32: Example of a QoS Lookup Table Entry Definition in the LIF
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the structure of the code it self and the mapping of the functionalities to the NP PEs are

closely intertwined.

In essence the CPF file, as with any source code file, is a plain text file, which con-

tains the code to be compiled. It consists of two sections. The first section starts with

the “#parameters”directive and contains compiler directives and functions, which write

programming information to the non-processing modules of the NPU100 (e.g. the Header

Payload Split). The second section is denoted by a “#program”directive and includes the

program to be compiled and loaded into the MPs. This is the most complex section as it

defines all the functionality that is to be mapped to the processing modules.

How code is written in this second section of the CPF depends to a great extend on the

programming architecture of the NPU100. The microcommand tables described in section

4.2.4 and the way they are indexed through a programmable part of the pipeline word,

dictate a specific code structure that results in a meaningful description of the program’s

functionality and which is described in the next section.

NPU100 Programming Software

As was hinted at in the programming file’s description, the NPU100 programming software

performs two distinct tasks. The first task involves reading the ACF, PIF and CPF and

creating the programming data words for the microcommand tables in the NP’s processing

modules. This is performed by the NPU100 compiler. The second task takes the PIF and

the LIF and generates the appropriate forwarding and QoS lookup table entries. This is

done by the lookup entry generator software. The three following subsections shed light

onto how these processes are executed, with the first section providing a short introduction

into how the files are parsed.

Parsing the XML Files Independently of which process is executed, the initial, indis-

pensable part is the parsing of the XML configuration files. Since there are several C++

libraries that perform this task, this is fairly easy to accomplish. We use TinyXML [6] in

our software.

If the forwarding and QoS memory is to be programmed, then the PIF is parsed first

and then the LIF. If the microcommands for the PEs are to be generated then the LIF is

omitted and the ACF is compiled first, followed by the PIF and finally the CPF.

Parsing each file begins by matching the appropriate tag at the beginning of the file.

The PIF file, identified by the PIF tag, begins by designating which of the three sections is

to be defined. Then the name, start location and length for each alias are provided, each

with their appropriate tags. Each alias is stored in an entry in a vector, which holds the

respective fields. Furthermore the parser checks whether there is any overlap between the

various fields defined in the PIF and throws an informational message in this case.

ACF parsing is similar, identified at the beginning by the ACF tag. Then the number

of MPs are stored in a separate variable, as well as the MP stages defined in the file in a

vector in the order in which they appear in the file.

Parsing the LIF is more complex, since it involves cross referencing the read data with

those found in the vector in which the PIF results were stored to verify that values in the

LIF are assigned to valid fields. An inconsistency between the two leads to an error message.
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Upon parsing the file two vectors, the LIFforwardingEntry and the LIFQoSEntry vectors

are populated. The structure of each vector is different and mirrors the requirements of

each entry type, ergo the LISforwardingEntry includes an action variable, denoting if this

is an entry add or remove operation and the LISQoSEntry includes an sub table address

variable and a sub vector assigning values to each sub table entry. The parser returns a

warning for fields to which no value has been assigned and sets their values to zero.

Compiling the CPF The basis for compiling the NPU100 microcommands is the CPF,

which was briefly introduced previously in this section. Here, however, we delve deeper

into its structure, and how this translates into meaningful code for the NPU100.

Figure 4.33 attempts to elucidate the process of parsing the CPF file, compiling it and

generating the microcommands for each module in an NPU100 implementation. The first

step the compiler performs is to strip the code of any comments. Then the remaining

commands are checked for syntax errors, unknown aliases and out of place statements

(#program statements in the #parameters section and vice versa). Any violation results

in an error. Whitespace trimming is also performed at this point. The final check is

ensuring that only appropriate nesting structures are included in the code. The compiler

allows only one level of nesting and that only in case of a conditional statement nested

in a loop statement or the other way around. Nesting more than one conditional or loop

statements is not allowed, as it would not correspond to a valid operation allocation in

the NPU100 pipeline. The conditional and loop statements are also checked for including

any impermissible aliases or values. Finally, loop statements are checked for bound upper

limits, which fall within the resources of the NPU100 implementation for which the file is

compiled. Possible violations also result in errors being thrown by the compiler.

The next step is the parsing of the #parameters section. This is fairly straightforward

and follows the process described in section 3.3. After this step is completed, the compiler

uses the data from the ACF file to generate a resource vector. This data structure contains

an entry for each module of each MP, including information to identify its position in the

NPU100 (meaning in which MP it belongs and where in this MP it is placed) as well as the

microcommand entries which have been assigned to that module. The compilation process

then essentially parses the commands in the CPF’s #program section and assigns each

command to a module. When parsing the program section the compiler creates another

data structure, the command vector, and populates this with all the commands found in

the CPF file. The command vector is the result of successfully parsing the CPF file. Each

vector entry has several fields, which detail everything the compiler needs to know about

the command, from which module it requires to be executed to the operands it will use.

The compilation is thus the result of the correlation of two vectors, the command and the

resource one.

The compiler then goes through the command vector sequentially and for each command

checks the resource vector to determine if the resource required for the command exists

(that is, if one or more appropriate modules have been instantiated in this NPU100 version)

, if it is available (meaning determining which module can be used for this command and if

the microcommand table of at least one appropriate module has space to accommodate this

command) and if all the parameters for the operation are provided in the correct form as
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Fig. 4.33: Flow Diagram of the CPF Compilation Process

demanded by the module (this entails the verification of all the parameters against the PIF

file in order to check that they have all been defined and that their lengths are compatible
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with what the module expects). This seemingly innocuous endeavor is rather complex,

since conditional statements and loops can have a profound effect on how statements are

assigned to processing modules.

This process is illustrated in the lower part of figure 4.33. When the compiler parses

a new statement it is encountered with a multitude of alternatives. A statement in the

NPU100 programming language can be either a conditional one, a loop one or an as-

signment one. Each of those is handled different by the compiler. A conditional or loop

statement causes the compiler to mark an internal state for all subsequent commands until

the loop/conditional branch is exited. Thus in this example:

for ( int i =0; i <2; i++) {
S = 0 ;

}

the compiler reads the for statement and notes that all subsequent commands (in this

example the statement setting the S field to zero) until the loop is exited have to executed

twice. Similarly a branch statement causes the compiler to mark the condition which apply

to all subsequent statements until the branch is exited. When this state determination is

complete the compiler proceeds to the next statement in the command vector. When an

assignment statement is encountered by the compiler, it checks the state to find out under

which conditions and how many times the statement is to be executed. Then it looks

up the necessary resources in the NPU100 pipeline. This entails looking up the required

number of modules and checking if the availabe ones have the appropriate microcommand

table entries free to accommodate the statement. If an appropriate number of modules

are found then the commands are generated and stored into the microcommand entries of

those modules in the resource vector.

To help clarify this process further, figure 4.34 shows a series of simple examples of

how the structure of the code can influence the allocation of tasks into the entries of a

microcommand table. All the code samples illustrate a decrement of a field called TTL.

Since this corresponds to a subtract operation, it will be assigned to the modify module

in all four cases. However, in the first case the decrement operation is not included in any

conditional statement and thus it occupies all 8 entries of the microcommand table of the

lookup table. This is done because the compiler interprets the code in such as way, as to

mean that the user wanted to have the operation described in this statement executed,

independently of any conditions. This type of statements should be limited as they occupy

an entire module.

The second scenario shows how the operation is allocated to the specific entry of the

modify module, which corresponds to the value with which the FieldName field is compared

to in the conditional statement. Thus the chunk of code is to be executed only if the

condition described holds, that is in this case only if the field named fieldName is equal

to value. Mapping this operation into the functionality of the ISU/OSU modules of the

pipeline cores (as described in section 4.2.4), means that the fieldName is used to index

the ISU/OSU microcommand table. The command read from the table is then used to

select the TTL field from the pipeline word and pass it on to the module. The same field

(fieldName) is used to index the processing element’s microcommand table and select the

command to be executed, which tells the PE to subtract the value 1 from the input field
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Fig. 4.34: Examples for Different Task Allocation to the PEs

(TTL in this case). The OSU then overwrites the old TTL value in the pipeline word with

the new one. It should be noted, that any one of the aliases defined in the pipeline word

section of the PIF could have been used on the left hand side of the conditional statement

but the right hand operand of the comparison must always be a fixed number, since an

alias would not be resolvable by the compiler at compile time and thus it would not be

able to determine to which entry to assign the operation.

The third example demonstrates the use of a logical or operator in the conditional

statement in order to assign the operations to more than one entries of the same module.

In this case the field used to index the ISU/OSU microcommand table must be the same

(since only one field can be used for that purpose in each clock cycle) in both statements.

The operands on the right hand side of the equal operation must differ between the two

conditional statements. This allows the compiler to assign the execution of this command
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Fig. 4.35: Further Examples of Different Task Allocation to the PEs

to one module. Each part of the logical or statement corresponds to one entry in the

microcommand table. Both entries contain the same data, since both commands perform

the same functionality, but the fact that they are implemented when the value of the field

fieldName is equal to either value1 or value2 forces the compiler to use two entries in the

table.

Using different operands at the left hand side of each condition would lead to the

scenario demonstrated in the fourth case, where both of the modify modules in an MP were

utilized to execute this operation, since the two different aliases (in this case fieldName and

fieldName2), cannot be used to address the same microcommand table. Other operations

could be assigned to these two modify modules by using the same alias, while comparing

it with a different operand as in the previous example.

Figure 4.35 provides further examples on how code is mapped to the various modules.

Again the modify module is used, but the procedure applies to any other modules just

as well. On the top scenario two lines of code, the TTL decrement and a logical and

operation are performed. As in the first scenario of figure 4.34, each statement is assigned

to all entries of the microcommand table. This means that since the TTL decrement

occupies the entire first modify module, the and operation must use up the entire second

modify module. A third statement requiring a modify module would then have to assigned

to the subsequent MP.

The second scenario illustrates the case where the two statements are part of the same

conditional branch. This means that they each have to be allocated to a different mod-

ify module, as the required entry which corresponds to that condition cannot be shared.

Thus the TTL decrement takes up the appropriate entry of the first modify module mi-

crocommand table and the and operation the same entry of the second modify module’s

microcommand table. Since the modify module is capable of executing two operations in

parallel, allocation to the same module could have been possible for a different set of oper-

ations. Here the problem lies in the three inputs that are required (TTL, OutputPorts and

Filtermap fields) and cannot be supported in the module’s ISU. The following statement:
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i f ( f ie ldName == value ){
TTL = TTL + 1 ;

PacketLength = PacketLength − 4 ;

}

would be allocated to one modify module, since only two ISU inputs are required.

The NPU100 compiler also provides limited support for loop statements, using a for

loop. This however should be used with caution, since what a loop essentially does is to

assign the same code to subsequent modules of the appropriate type. To exemplify, the

following code decrements the TTL field three times:

for ( int i =0; i <3; i++) {
TTL = TTL−1;

}

This code would be assigned to three consecutive modify modules and would occupy

all microcommand table entries of each module as discussed previously. Putting the TTL

decrement statement in an if conditional statement nested in the for loop, would enable us

to assign the statement to a single microcommand table entry as in the second code sample

of figure 4.34, while still occupying three consecutive modify modules. The variables used in

the for loop statement cannot be aliases, as this would inhibit the compiler in determining

the allocation of tasks to the PEs at compile time.

There are two more elements of NPU100 compilation that must be explained. The first

is the mapping of different statements to module in relation to each other. This depends

on the data dependencies between the various commands. The example below:

i f ( f ie ldName == value ) {
TTL = TTL−1;

lookUpRead ( Label ) ;

}

shows how the assignment between two statements which don’t share any data depen-

dencies is performed. In this case, the resulting assignment will be the one shown on the

first code example of figure 4.36. In this case the TTL decrement statement is assigned to

one microcommand entry of the first available modify module. The lookup read statement

which follows however can be assigned to the first pipeline, despite the fact that it is lo-

cated physically before the modify module to which the preceding command was assigned.

The compiler automatically checks data dependencies of both the input and output fields

of the operations and decides if this is feasible.

Code example 2 of figure 4.36 shows a case where the aforementioned assignment can-

not be performed. In this case the lookup read uses the TTL field as a pointer to the

appropriate memory address and thus it depends on the result of the previous operation.

Thus it must be assigned to a forwarding lookup module, that is located after the modify

module that performs the decrement operation, which in this example happens to be in

the next MP. This helps to illustrate the final key element of NPU100, namely how looping

is enabled to facilitate the use of the resources found in the remaining MPs. In order to

accomplish this a specific flag in the pipeline word needs to be set (as described in the

Label Reassembly module description in section 4.2.2). This operation must be performed

136



4.3 NPU100 Programming Concept

Fig. 4.36: Example of Statement Mapping to PEs with the MP Loop Being Used

by a modify module and since the appropriate entry in the first modify module is occupied

with the TTL decrement operation this must be assigned to the second modify module of

the first MP.

The examples provided here attempted to shed some light on how the NPU100 compiler

maps CPF statements to specific microcommand table entries of the PEs. The outcome

of this process is a vector called the fundamental vector, which is structured identically

as the pipeline core of the NP. It consists of MPs, which are divided into stages that

contain microcommand tables, which are in turn further subdivided into entries. The

entries are populated with the aliases and other operands and operations contained in the

code. This vector is parsed in the final step of the compilation process in order to create

the programming words. This entails determining to what each alias corresponds from the

PIF and writing the appropriate data into the programming word for accessing the field

to which the alias maps to.

To facilitate the programming of protocols like MPLS-TP in which all MPs need to share

the same code, the NPU100 compiler includes the duplicate directive, which as the name

implies, ensures that the code is duplicated appropriately across all the available MPs.

The compiler automatically determines how many times to duplicate the code. Hence,
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Fig. 4.37: Allocation of QoS Subtable Entry Words to Programming Words

assuming one MP is used by the written code and four MPs are available the code is

duplicated four times, whereas if the code took up two MPs it would have been duplicated

two times.

After the duplication process, all the 32 bit programming words and the corresponding

16 bit addresses are created and written in a text file. The PCI Express driver reads the

text files and transmits them. Each programming word occupies one 32 bit PCIe TLP

(where addresses are concerned the 16 MSBs are set to 0) and are always transmitted in

pairs (address first, followed then by the data).

Forwarding and QoS Memory Programming One of the two tasks of the NPU100

programming software is to generate the programming words for writing and deleting

entries to and from the forwarding and QoS lookup tables of the NPU100. The initial

steps to this end were described previously in this section and included parsing the PIF

and the LIF and populating the vectors which hold the entry data. Now this data must

be converted into a format suitable for writing into the NPU100 memories.

This involves two steps: first the data have to correctly packed into 32 bit data words,

in the appropriate way, since the memory write control modules (section 4.2.4 for both the

forwarding and QoS lookup modules) of the NPU100 expect them to be served to them in

a very specific format in order for them to be written into the memory properly.

Thus each 164 bit forwarding lookup entry is broken down into a 5 cycle transfer, in

which the higher order bits are sent in the first cycle until the lowest 32 bits have been

transmitted. Whether the entry is to be written to or wiped from the memory is determined

by the address placed on the programming bus, which depends on the value of the Action

tag, to be found in each entry.

Programming the QoS lookup memory is similar. The memory is made up of 256 indi-

vidually programmable subtables, each of which must be programmed in its entirety each

time (that is one cannot change individual entries in a subtable without reprogramming

the entire subtable. The user specifies all 16 entries separately and then the lookup entry

generator reads the information and agreggates it into one 304 bit long entry (since each of

the sixteen entries is 19 bits wide). A subtable address must also be sent to the NPU100

138



4.3 NPU100 Programming Concept

(this is different than the programming address of the QoS lookup memory write control

module). This address is sent in the first configuration cycle and the memory data follows

in 10 consecutive cycles. Entries follow one after the other and their length of 19 bits

means that they are not aligned with each programming word, as figure 4.37 shows. The

lookup entry generator must take this into account and generate the programming words

appropriately. While this complicates the software, it saves resources in the QoS memory

write control, which, would in an opposite case, where each 32 bit programming contained

one subtable entry, have to receive all the programming words, strip them of the padding

that would have been necessary and then form one 304 bit word, which it would then write

to the memory. Since hardware resources are scarce and software execution time is not,

the obvious choice was to shift the load to the software side.

In both lookup table configurations, the software does not check for duplicate entries.

It is left up to the user to avoid such a fallacy. The software outputs a script file, which

contains the data which the PCI Express driver then reads and sends over the link.
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After meticulously explaining the architecture and implementation of the NPU100 hard-

ware and software side, the focus shifts to providing results about the implemented modules

and realizing an actual NPU100 testbed on an FPGA, that proves the viability of the de-

sign. The first part of this chapter provides results on the implementation on critical

points, such as power dissipation, resource consumption and throughput. The second part

describes the test bed developed to verify the functionality of the NPU100, including the

pipeline core and the programming interface. The test bed contains some additional mod-

ules for debugging the NPU100 as well as some compromises that had to be struck in order

to allow for the implementation of the NPU100 on the selected FPGA board. The NPU100

test bed is a complete test platform, offering everything from a software component to gen-

erate the NPU100’s programming, a connection with a Spirent traffic generator over which

complicated traffic patterns can be used to test the design, a link with a Tektronix logic

analyzer, which can be used to debug the internal signals of the circuit and finally the

NPU100 itself. This test bed has been used to verify the functionality of all aspects of the

NPU100 design. All results presented in this chapter were derived using a Xilinx Virtex-5

LX330T FPGA, the largest in the Virtex 5 family, where logic resources are concerned,

unless explicitly stated.

5.1 Implementation Results

This section provides a detailed look into the NPU100 design from four perspectives:

resource consumption, power dissipation, scalability and performance. Its goal is two-

fold: first to explain the characteristics of the entire NPU100 system, not just the folded

architecture from which its core consists and then to provide a more thorough analysis of

many design details in comparison to the discussion in section 3.2.2, whose main aim was

the comparison of the conventional architecture and the two proposed alternatives and the

selection of the most appropriate one.

5.1.1 Resource Consumption

This section includes detailed data regarding the resource consumption of the various

NPU100 modules, as well as the NP as a whole. Table 5.1 provides an thorough look

at the amount of resources that each module and the design in total consumes. It starts

by listing the total resource use of the system and then proceeds to break it down to its

constituent parts, the NPU100 and the PCIe core. It then delves deeper into the NPU100,

in order to provide detailed information on the resource use for each specific submodules

in the design.
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Tab. 5.1: Detailed Overview of the Resource Consumption for the Various NPU100 Modules

No. of
Slice Reg-
isters

% No. of
Slice LUTs

% No. of
BRAMs

%

System Total 89520 43 176698 85 271 84
PCIe Total 2985 1 2190 1 6 1
PCIe NPU100 430 0 318 0 0 0
NPU100 82563 39 171737 82 221 68
Header Payload Split 2259 1 2589 1 0 0
Packet Memory 126 0 104 0 16 324
Packet Reassembly 2513 1 18714 9 5 1
Forwarding lookup
Write Control

20075 9 13367 6 8 2

Pipeline Core 54800 26 140018 67 192 59
Dispatcher 4649 2 2993 1 0 0
Dispatcher Label
Buffer

2058 0 929 0 0 0

Label Reassembly 1320 0 1373 0 0 0
Label Reassembly La-
bel Buffer

5740 2 3362 1 0 0

Mini Pipeline 7732 3 31983 15 48 15
Forwarding lookup 1983 0 6521 3 68 20
Insert 1104 0 8194 3 0 0
Replace 552 0 4162 2 0 0
Modify 1376 0 4832 2 0 0
QoS lookup 1341 0 3926 1 5 1
ISU 0 0 816 0 0 0
OSU 0 0 2783 1 0 0

The data shows that the impact of the PCIe core on the resource consumption is minimal

in comparison to the total FPGA capacity as each module consumes at the very most 1%

of the FPGA resources and that the NPU100 specific additions to the core accounts for

only a very small part of that.

Table 5.1 provides a break down of the distribution of resources in the NPU100. On

all fronts these are all dominated by the pipeline core, however it is interesting to note

how the Forwarding Lookup Write Control module contributes a significant part to the

total resource use, particularly when it comes to registers, which are used for the tables

indicating the forwarding lookup memory occupancy. This should influence any decision to

either increase the size of the memory as this would also increase the size of the Forwarding

Lookup Write Control modules. In any of these cases and despite the fact that in abso-

lute number, there are significant unused FPGA register resources, exchanging distributed

RAM (and thus slice registers) for BRAMs should be considered to keep resource use un-

der control. An ASIC implementation would eliminate this problem by implementing the

memory state tables as a custom size memory block.
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(a) NPU100 Slice Register Con-
sumption

(b) NPU100 Slice LUT Con-
sumption

(c) NPU100 BRAM Consump-
tion

Fig. 5.1: Resource Use Break Down between the Various NPU100 Modules

From the remaining modules only the Packet Reassembly uses up a considerable number

of slice LUTs to realize the complex mechanism needed to rejoin packets with the processed

headers as described in section 4.1.3. Even so, the total resource use of the Header-Payload

Split modules (12% of slice LUTs and 6% of slice registers) is only a small fraciton of what

the LX330T FPGA offers. This verifies the merit of the Header Payload Split approach,

which eases demands on the processing core throughput, without requiring overwhelming

resources to realize.

A similar overview as the one given by figure 5.1 for the NPU100 is given for the pipeline

core and its constituent modules on figure 5.2. BRAM data are omitted since they are

evenly distributed among the four MPs and the Dispatcher and Label Reassembly, along

with their two buffers take up no BRAM resources, as they have been implemented using

the registers found in the FPGA’s CLBs.

(a) Pipeline Core Slice Register Consumption (b) Pipeline Core LUT Consumption

Fig. 5.2: Resource Use Break Down between the Various Pipeline Core Modules

In this case, the lion’s share in both slice register and LUTs is used up by the MPs. In

particular where slice LUTs are concerned the impact of the Dispatcher, Label Reassembly

and their buffers is minimal in comparison to what the MPs take up. Register use paints

a slightly different picture since the two Label Buffers do occupy a decent part of the total
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number of slice registers used. This is to be expected since these are essentially register

matrices. Furthermore the significant difference in size between the two buffers (with

the Dispatcher Label Buffer trailing considerable behind) is in line with our analytical

calculation in section 4.2.3. The Dispatcher and Label Reassembly also take up a non-

trivial number of registers, which are in all likelihood used for the internal pipelining of

these modules, with the Dispatcher having a considerably lead, something expected as it

consists of four pipeline stages instead of two.

Repeating the exercise for the modules making up an MP results in figure 5.3. Register

consumption is more or less evenly spread among the five modules, with some dominating

more than others. This depends on various factors: The Replace module is the simplest

case, where the only registers used are the microcommand table and the pipeline register,

whereas the insert module has two of both and thus uses twice as many registers. Register

use increases in the modify module since it also includes an internal microcommand table,

which contains the operands for the operations and additional information. The QoS

lookup and the Forwarding lookup modules are both internally pipelined and thus use up

more registers because of this. The former includes two pipeline stages, whereas the latter

four, which accounts for the difference in register use.

(a) Mini Pipeline Slice Register Consumption (b) Mini Pipeline LUT Consumption

Fig. 5.3: Resource Use Break Down between the Various Mini Pipeline Modules

In Slice LUT use on the other hand the ISU/OSU resource consumption sets the tone.

This is made obvious by the fact that the Replace module, which is essentially only an

ISU/OSU pair consumes 15% of the slice LUT resources in an MP. Multiplying that by six

(since the Insert module comprises tow ISU/OSU pairs in sequence), means that the 90%

of the slice LUT resources in an MP are used up by the ISU/OSU modules. This points

both to the importance of efficient register access and represents an area where tangible

improvements could be possible.

5.1.2 Power Consumption

A first glimpse into the power consumption advantages that the folded architecture pro-

vides, were outlined during the comparison of the three architectures in section 3.2.2. Here
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a thorough look into the performance of the folded pipeline architecture is provided. Since

a direct measurement of the FGPAs power consumption was impeded by the lack of a

shunt resistance on the used FPGA development board, the XPower analyzer was utilized

again, this time with more detailed data in order to extract a clear picture about the

power dissipation of the system. Delving deeper into an analysis of the power consump-

tion system presupposes a more detailed modeling of its switching behavior. Modelsim and

XPower support this through the generation of the SAIF files, which record the activitiy

of each circuit node in detail. Modelsim generates the file after each Post Place and Route

(PPR) simulation, which is then used as input for the XPower tool in order to generate

a very precise evaluation of the power consumption of the device. This methodology was

used to further investigate the power consumption of the NPU100, dependent on various

traffic scenarios and with different packet sizes. The breadth of scenarios tested includes

the ten scenarios described in table 2.1 for various packet sizes, as well as the first four

of the traffic mixes included in the qualitative architecture comparison of section 3.2. A

summary of these scenarios is provided in tables 5.2 and 5.3 respectively. Furthermore in

the remaining four scenarios of table 5.3, the kind of operations to be used in the mix must

also be defined. Saying that a packet requires two MP loops does not implicitly imply,

which operations will be performed on this packet, which in this case could be either a

swap and push or a pop and swap (here only the operation combinations determined to

be meaningful in table 2.1 are considered). Since the operations performed differ only

minimally between operations requiring the same number of packet header loops, an equal

mixture of all of them is used in all cases (e.g. in the example used previously 50% of swap

and push and 50% of pop and swap operations). The packet size spectrum used represents

ones typically encounterer in NPs.

Operations No. MP loops required
Swap 1
Swap and Push 2
Swap and Push x 2 3
Swap and Push x 3 4
Pop and Swap 2
Pop x2 and Swap 3
Pop x3 and Swap 4
Pop, Swap and Push 3
Pop x2, Swap and Push 4
Pop, Swap and Push x 2 4

Tab. 5.2: Meaningful MPLS-TP Operation Sequences for which Power Consumption was Cal-
culated

To maintain comparability with the results provided in 3.2.2, only the pipeline core was

taken into consideration in this phase. Further on in this section, results for the entire

NPU100 testbed design will be provided. In each scenario, the simulation starts with the

NPU100 receiving the programming data stream being written to the appropriate modules.

The complete NPU100 is programmed in all cases, independently of if it is required or not
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Tab. 5.3: Percentage of Labels to be Processed for Different Traffic Scenarios for which Power
Consumption was Calculated

No. of mini-
pipeline loops

I
(%)

II
(%)

III
(%)

IV
(%)

1 40 25 80 65
2 20 25 15 20
3 20 25 5 10
4 20 25 0 5

Fig. 5.4: Dynamic Power Consumption per Packet Size for Loop Run Scenarios One and Two

Fig. 5.5: Dynamic Power Consumption per Packet Size for Loop Run Scenarios Three and
Four

(e.g. if a simple MPLS-TP label push is being simulated, only one MP is used and thus

only this one has to be programmed) in order to maintain uniformity across all scenarios

and mitigate the effect of programming the NP. Subsequently, packet headers are being
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sent to the dispatcher at a rate emulating the appropriate packet size (when sending 64

byte packets, one header is sent every clock cycle, when sending 128 byte packet one every

other clock cycle and so on).

Figures 5.4 and 5.5 illustrate the results for the ten different label stack operation

sequences of table 5.2. These are grouped depending on the number of loop runs each

sequence of operations requires, in order to enable a direct comparison between them and

investigate how the operations performed impact power consumption. There are two trends

which are immediately discernible. The first is that packet size has a very big influence

on power consumption. This makes sense, since it affects toggling in the pipeline and thus

dynamic power consumption. Thus small packet sizes, which translate to more toggling,

consume a lot of power. In contrast, large packets only require that one packet header

is processed every tens of cycles (e.g. 24 for a 1536 byte packet) and thus the processing

modules remain idle for a significant amount of time.

The second trend is that label pops consume considerably less power than swaps and

pushes. Again this is reasonable since a pop typically only uses the Forwarding lookup

module and then simply flows down the pipeline. There is still, however, some power

dissipation there from the pipeline registers toggling. By looking at the numbers for the

various scenarios, we can reach the conclusion that a pop saves approximately 2W in

comparison to a push or a swap.

Fig. 5.6: Dynamic Power Consumption per Packet Size for Traffic Scenarios I through IV as
Detailed in Table 5.3

Comparing the folded architecture’s results of this investigation to the folded archi-

tecture results reached in the evaluation performed in section 3.2.2 reveals that they are

similar. Pitting those results against the most comparable scenarios from the current set

(that is, scenarios with 64 byte packets and 4 minipipeline loops) we can see that the

current, more precise results show an even lower power consumption. The difference lies
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Fig. 5.7: Dynamic Power Consumption per Packet Size for PBB-TE Processing

between 1.5 and 7 Watts, depending on the sequence of operations to be performed. This

reaffirms the validity of the evaluation performed during the quantitative comparison and

the low power benefits of the folded pipeline architecture.

Figure 5.6 plots the dynamic power consumption of the four scenarios listed in table 5.3.

Again the power consumption is inversely proportional to the packet size. Furthermore,

it depends directly on the proportion of packets which have to perform multiple loops

through the pipeline core. Thus scenarios 3 and 4, which have most packet being looped

once or twice exhibit lower power consumption in contrast to scenarios 1 and two.

Finally, figure 5.7 illustrates the power consumption for forwarding PBB-TE frames,

which require only one traversal of the pipeline core.Additionaly the power consumption

for MPLS-TP processing of a simple swap is also shown as measure of comparison. The

decreasing power consumption trend continues here as well. The take-away from this figure

is that PBB-TE requires somewhat lower power consumption than MPLS-TP, which is

reasonable since its functionality is significantly simpler (e.g. it doesn’t use the Dispatcher

and Label Reassembly Label Buffers at all).

Apart from the results described previously, worst case results for the entire test bed are

provided in table 5.4. This time the PCIe interface is included, as well as results for each

specific module. A worst case scenario in which all MPs are utilized in every clock cycle

is used. This requires that 64 byte packets arrive constantly at the Header-Payload Split

and that all packet headers require 4 MP loops. A pop, pop, swap and push operation was

selected to utilize the biggest possible variety of operations in all MPs.

The results yield no surprises in that the pipeline core consumes the bulk of the power

in the NPU100 as was expected. The outer layer modules add a considerable amount

on top of that (approximately 3.5W in total power consumption, a bit less then an entire

mini pipeline). This is reasonable since the modules included therein, and in particular the
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Tab. 5.4: Detailed Overview of the Power Dissipation for the Various NPU100 Modules

Static Power Dynamic Power Total Power
System Total 11.26 18.48 29.74
PCIe Total 0.11 0.1 0.22
PCIe NPU100 0.04 0.11 0.14
NPU100 10.9 17.17 28.11
Header Payload Split 0.23 0.38 0.6
Packet Memory 0.08 0.11 0.19
Packet Reassembly 0.53 0.97 1.21
Forwarding lookup
Write Control

1.49 0.14 1.61

Pipeline Core 8.19 15.58 23.67
Dispatcher 0.56 0.49 1.05
Dispatcher Label
Buffer

0.39 0.62 1.03

Label Reassembly 0.45 0.52 0.94
Label Reassembly La-
bel Buffer

1.06 1.19 2.31

Mini Pipeline 1.48 3.25 4.62
Forwarding lookup 0.43 1.2 1.61
Insert 0.22 0.04 0.25
Replace 0.12 0.46 0.56
Modify 0.32 0.73 1.03
QoS lookup 0.39 0.78 1.15
ISU 0.04 0.16 0.21
OSU 0.08 0.29 0.35

Packet Reassembly and Forwarding lookup Write Control modules are quite complex. From

these two, the Packet Reassembly only contributes considerably to the power dissipation,

something expected, since the Forwarding lookup Write Control is used only sparsely

during the initial configuration of the forwarding lookup tables, which explains its low

dynamic power consumption. In contrast to this, the Packet Reassembly also exhibits

continuous switching, due to its constant processing of packets in order to sent them to

the output. Finally the impact of the PCIe and Ethernet modules is minimal, since the

consume minimal resources and in the former’s case have a very low switching factor (as it

is to be expected, that information from the control plane or programming data are sent

only sporadically to the NPU100).

5.1.3 Performance

In section 3.1.1 it was determined that in order to reach the required throughput of 100

Gbit/s the NPU100 has to be able to output one processed packet per clock cycle at a

frequency of 150 MHz. If the design is synthesized, placed and routed using a Xilinx

Virtex-5 FPGA, it achieves a maximum frequency of 112 MHz, thus being 38 MHz shy of
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Fig. 5.8: Critical Path Constraining the Performance of the NPU100

the target frequency. Repeating the process with an 65nm ASIC library, however, results

into a more than 2x performance improvement as will be described in detail further on in

this section.

The NPU’s critical path is located in the modify module, starting from the results of the

microcommand table and flowing through the ISU, the processing module and the OSU

and ending up in the pipeline register as figure 5.8 shows.

Inserting a pipeline stage alleviates the issue at a cost of additional registers. The

pipeline stage can be inserted at the output of the processing element and before the

OSU. This requires two times a 48 bit register plus a 28 bit register for synchronizing the

microcommand table output to the OSU and finally a 192 bit register for the original data

from the previous pipeline stage, thus in total 296 register bits are required. In additional

to that, the Dispatcher an Label Reassembly buffers have to be expanded accordingly to

accommodate two new pipeline stages (since there are two modify modules per MP) for

every MP, thus 8 in total. This adds another 2368 register bits for in the label buffers.

Analyzing the critical path in the synthesis results, reveals that inserting a pipeline

register can save 2.62 ns by shortening the path considerably as shown in figure 5.9.

In the FPGA implementation this is acceptable from a resource perspective, since as

indicated in section 5.1.1, there is a significant number of registers unused, however it was

avoided since it exacerbates the difficulties the router encounters when placing the design.

This is an especially acute phenomenon in FPGA designs, where the fixed allocation of

resources in CLBs can result in complex routing if resources are unevenly distributed (that

is if in some CLBs only registers are consumed, whereas in others only slice LUTs are

used up). This mitigates any gains from the additional pipeline stage. Nevertheless, an

ASIC implementation will not be plagued by similar issues, since in that case the layout of

the various functional blocks can be performed optimally. Keeping the above in mind, it

was reasonable to expect that a subsequent implementation with an ASIC library is sure
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Fig. 5.9: Reduction of the Critical Path by Pipelining

to reach the required throughput, given that ASICs are typically at least 3-4 faster than

FPGAs [41]

In order to verify this claim, we implemented the bottleneck module using an ASIC

library using Synopsis’s Design Compiler and Cadence’s Encounter tools. The library used

was a TSMC 65nm one, thus allowing room for improvement using newer, finer processes.

However, it allows for a more direct comparison with the FPGA implementation, since

the Virtex 5 devices are fabricated on a 65nm process as well. Figure 5.10 provides a

screenshot of the fully routed modify module, which exhibits a critical path of 3.07ns and

thus achieves a frequency of approximately 325Mhz, more than outdoubling the 150Mhz

NPU100 requirement. Furthermore it should be stressed that there is significant room for

improvement, as the placement and routing process was performed using the Encounter

default settings and with very little optimization.

5.1.4 Scalability

While the current design is sufficient for 100 Gbit/s CGE Protocol processing, it is inter-

esting to investigate how scalable the architecture is. Scalability can be seen in light of

many different factors and design aspects. The mini-pipeline in itself has all the typical

attributes of such a design and thus additional stages can be added, simply increasing

the latency but having no impact on the throughput. The number of mini-pipelines itself

can be increased, being limited by the available resources and the power budget of course.

This depends heavily on integrated circuit fabrication technology, however with current

ones there is sufficient headroom for a significant increase in the number of pipelines, par-
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Fig. 5.10: Die Shot of a Fully Routed Modify Module

ticularly in an ASIC implementation. At 12W power consumption per MP for an FPGA

and taking into account that an ASIC implementation typically reduces power consump-

tion at least 4 times [41], it could very well be that even 20 MPs in a single ASIC is not

be an unrealistic expectation. Increasing the number of mini-pipelines would yield even

higher power consumption benefits in comparison to the traditional pipeline since in the

latter’s case the pipeline data width will grow linearly with the number of mini-pipelines.

The most probable soft spot in the folded architecture are the Dispatcher and Label

Reassembly and their respective buffers. Increasing the number of MPs means that the

Dispatcher and Label Reassembly and their buffers will have to be expanded accordingly in

order to accommodate for the increase in packet headers. Since the design of the modules

is modular increasing their size simply involves changing the value of a couple of generics

in the VHDL code. The implication of the extra circuitry on its performance should be

minimal, since the Dispatcher and Label Reassembly consist of parallel pipelines which

process the headers coming from the various NPs. Thus, increasing the number of parallel

modules should increase resource consumption without however impacting performance

adversely.

To test this, we have synthesized our system with 8 mini-pipelines and using the same

Virtex-5 LX330T FPGA as in the previous section. The results for the Dispatcher and

Label Reassembly modules as well as their two buffers are provided in figure 5.11, in order
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Fig. 5.11: Dispatcher and Label Reassembly Module Resource Consumption for 4 and 8 Mini-
Pipelines

to gain insight into the resource consumption, which as expected roughly doubles. The

achieved frequency (something important due to the significantly increased complexity of

the modules), is somewhat reduced from 300+ MHz for 4 mini-pipelines to approximately

280 for 8, but it still remains above the target frequency, confirming our hypothesis about

the scalability of our design.

5.2 NPU100 Test Bed

This section provides an overview of the NPU100 test bed, as well as the design flow that

is employed in order to verify the functionality of the NP. It describes of each component

and of the functionality it offers.

5.2.1 NPU100 Test Bed Description

The test bed is made up of four components:

1. The NPU100 processing core itself, which is the core of the design and includes the

entire NP with its processing engines and any accompanying modules (e.g. for the

storage of packet during processing), as described in the previous chapter.

2. The PCI Express interface, which comprises a software and a hardware part and

facilitates the generation and transfer of the programming information to the NP, as

described in section 4.3.

3. An Ethernet interface, along with a ”bucket” system, which makes the interconnec-

tion of the NPU100 with the Spirent traffic generator possible.

4. External components, namely an expansion board which allows for the connection

of the FPGA board containing the NPU100 to the logic analyzer for debugging

purposes, the logic analyzer himself and the Spirent traffic generator used to stimulate

the design.
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Figure 5.12 illustrates how these components are interconnected. Since the NPU100

architecture, module and programming subsystem implementation itself have been thor-

oughly described in chapters 3 and 4, thus the following sections will focus on the remaining

components.

The FPGA is the heart of the NPU100 test bed and thus a suitable evaluation board,

which combined a device offering sufficient capacity with the peripherals, which will be

required for the test bed, was necessary. The board ought to have Ethernet ports for

transmitting and receiving data to and from the NPU100, as well as a PCI Express link

to send the programming data to the device. Taking these into account, one High Tech

Global HTG-V5-PCIE-LX330T board (shown in the center of figure 5.12) was used. This

board includes one Virtex 5 LX330T FPGA device, which is the largest in the Virtex 5

family, and furthermore incorporates one PCI Express x8 port, two Gigabit Ethernet ports

and two Samtec QSE-060-01-F-D-A connectors, which provide the capability to monitor

up to 138 different FPGA pins.
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Fig. 5.13: Ethernet Interface Module Chain Block Diagram

The Samtec connectors are used to transfer data to the logic analyzer, which the captures

and displays them in order to verify the functionality of the NPU100. Since the Samtec

connectors were incompatible with the ones found on the logic analyzer probes, a special

expansion board was designed to convert between them. The FPGA board is connected

to the expansion board through two QSE-to-QSE cables.

Feeding packet stimuli into the NPU100 is done over a standard Ethernet interface,

which provides the means to sent data from the Spirent traffic generator to the NPU100

and vice versa. Since the Spirent traffic generator can produce traffic at rates of up to

1 Gbit/s, and the FPGA board used only support 1 Gbit/s ports, a bucket system is

employed to throttle the incoming traffic up to a 100 Gbit/s and respectively throttle

outgoing traffic down to 1 Gbit/s so it can be sent back to the traffic generator.

Figure 5.13 illustrates the modules used to achieve this. The basic building block is

the Virtex-5 Embedded Tri-Mode Ethernet MAC Wrapper, which connects to the Marvell

PHYs on the FPGA board to transmit and receive Ethernet frames.

The Xilinx MAC core provides a specific interface from which data are to be received

by the user logic. This interface, apart from being incompatible with the input interface

of the NPU100 at the Header Payload Split module, it is also incapable of transferring

data at a throughput of 100 Gbit/s. Thus a chain of modules is inserted at the input to

bridge this throughput gap and to render the interface between the MAC core and the

NP compatible by allowing the packets to be stored in a temporary memory and then to

be sent to the NPU100 at a higher throughput. A similar module chain at the output

performs the reverse functionality.

At the input the data are initially received by a state machine which fetches the data

from the MAC core and stores them into a Block RAM memory on the FPGA. This memory

provides enough space for a maximum of 1024 512 Bit words. This decision was dictated

by the limited amount of memory on the FPGA and the need to use this memory for other

purposes in the NPU100 design. For each packet written into the Block RAM an entry

stating its size is written into a parallel FIFO queue. This helps the subsequent module

delimit each packet correctly. A second FSM reads the data from the Block RAM and

interfaces with the NP in order to deliver the data to it. This FSM implements the receive

interface of the Header-Payload Split module and allows the transfer of the packets in the

Block RAM at a throughput of 100 Gbit/s. The FSM allows for two different functional

modes to be utilized, the toggling of which is performed through the DIP switches found

on the FPGA board. In the first the data is accumulated in the memory and released upon

triggering the state machine through an input signal. In this mode there are two variants.
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The first allows for purging the memory once and sending its content into the NPU100.

The second replays the memory contents continuously, thus creating an endless 100 Gbit/s

stream of packets, which can be used to test the NPU100 functionality over a long period

of time. Another DIP switch is used to select between the two variants. When in the latter

mode, the changing the position of the DIP switch stops the memory replay process. The

second operating mode reads the data out, immediately after they have been written to

the memory, thus essentially sending a 1 Gbit/s stream of packets to the NPU100. This

could be used for testing longer run times on the NPU100, albeit at a lower speed.

At the output, the reverse process is performed. An FSM receives processed packets

from the Packet Reassembly module of the NPU100 and stores them into a buffer memory.

The capture process is activated by a DIP switch. Until the DIP switch is activated the

FSM ignores any incoming packets. When the DIP switch is toggled it starts storing

packets into the memory, starting with the next complete one. Since the process is the

exact reverse of the input one, a space for up to 1024 512 bit data words is provided by this

memory as well, along with an extra FIFO that holds the packet length of each packet. A

second FSM reads the packets and sends them to the Xilinx Ethernet MAC core.

Table 5.5 provides an overview of the implementation results for the bucket system.

The entire Ethernet subsystem, as well as the NPU100 testbed specific modules require

only modest resources in comparison to what the LX330T FPGA offers.

Tab. 5.5: Resource Consumption of the NPU100 Testbed Ethernet Block

No. of
Slice Reg-
isters

% No. of
Slice LUTs

% No. of
BRAMs

%

Ethernet Total 3972 2 2871 1 44 13
Ethernet NPU100 1894 1 2834 1 44 13

The NPU100 testbed deviates slightly from the implementation developed and described

in the previous chapters. This was dictated by several factors, the first and foremost being

the unavailability of 100 Gbit/s equipment on which to implement a complete test chain.

At the time of implementation no FPGA board with 100 Gbit/s Ethernet PHYs was

available, let alone test equipment like traffic generators, which would have been necessary

for testing. Thus in order to verify the NPU extensively it had to be coupled to the Spirent

traffic generator available at LIS. Neither the traffic generator nor the board used for the

prototype support 100 Gbit/s Ethernet ports, thus a compromise was made to use 1 Gbit/s

traffic ports, together with the bucket system described in this section. This in turn means

that the Interlaken interconnection described in section 4.1.1 was replaced by the required

Ethernet MAC cores.

An additional compromise that was struck, was to reduce the number of MPs found

in the NPU100 test bed implementation to two instead of four. This reduces the FPGA

resource use of the NPU100 considerably and provides the tools with enough headroom

in order to satisfy the stringent timing requirements of the Ethernet and PCI Express

cores. Furthermore it allows the saving of precious BRAMs, which could then be used for

the bucket system described herein. This compromise refers only to the actual functional
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validation tests performed with the NPU100 test bed. This reduction detracts nothing

from the use of the test bed as a vehicle for the validation of the concepts introduced in

this work, since these remain identical regardless of the number of MPs that one chooses

to include in the design. In fact, one of the goals of the design was to allow it to operate

with a configurable number of MPs without need for additional VHDL code modifications.

5.2.2 NPU100 Verification and Test Bed Results

The NPU100 testbed was used to verify the functionality of the design using the scenarios

described throughput this work. Both the compiler and programming module chain, as well

as the functionality of the NPU100 modules had to be verified. To test the former MPLS-

TP and PBB-TE descriptions were written, including all four required configuration files

and were run through the compiler to generate the appropriate programming files. These

were then sent to the NPU100 over the PCIe interface and used to program the processing

modules. Special attention was paid to verifying the correct writing and deleting of entries

in the forwarding and QoS lookup tables. This was done by performing extensive tests, in

which series of entries were written to both memories and then some were deleted while

the NPU100 was processing. This tests proved that the NPU100 does not forward packets

when a suitable forwarding lookup entry is not found, that it starts doing so the moment a

suitable entry is written (while the system is in operation) and stops again when the entry

is deleted again. Similar tests were conducted for the QoS lookup module. A further test

necessary to completely cover additional test cases present only in the forwarding lookup

module are those related to the intricacies of the hash algorithm implemented therein as

well as the functionality of the entry selection module and the filtering module. Thus, tests

using consecutive writes to the same address were performed so as to determine if they

are written to the appropriate entry in each bin each time and if the Black Sheep Memory

is used after all entries have been exhausted. The logic analyzer was used to verify that

entries were correctly written to and read from the bins and that subsequently the correct

entries were chosen in the selection module, as well as filtered out in the filtering module

depending on their programming. In all of the above cases the programming data was

generated automatically by the compiler as described in section 4.3.

The processing functionality of the NPU100 was tested by using both MPLS-TP and

PBB-TE traffic. In the former case all scenarios listed in table 2.1 were tested first sep-

arately and then in mixed tests utilizing all operations in parallel. For each scenario 4

different classes of service per label were used. The factor limiting the breadth of different

packet behaviors that can be tested is the bucket system, that buffers packets from the

traffic generator before sending them to the NPU100 at a 100 Gbit/s line rate. Since the

packet buffer can fit a finite number of packets (depending on their size), which it then

loops endlessly, the number of scenarios that can be tested is limited by the number of

different label/Cos combinations that can fit into the bucket. Testing PBB-TE is less

complex , since PBB-TE does not requires frames to use more than one MP for process-

ing under any circumstances. The loopback functionality was thus not utilized in these

tests. In the PBB-TE tests 10 different flows were used with four different traffic behav-

iors per flow. The results verify the functionality of the NPU100 as an architecture that

can process different Carrier Grade Ethernet Protocols by testing all aspects of the design
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comprehensively.

From a performance perspective, the demonstrator exhibits a drop in frequency in com-

parison to the stand alone version of the NPU100. The drop in frequency is equal to 36

MHz, from 112, which the standalone version reaches, down to 66. The cause for this drop

in performance is the placement and routing difficulty with which the tool is confronted

due to instantiation of the Ethernet and PCI Express cores. These two cores consume

relatively few resources, however they display very strict timing requirements, which leads

to a need to place the cores very carefully in the device, in order for these constraints

to be met. This means that the place and route tool must work its way around these

constraints something that results in the afore mentioned drop in achievable frequency for

the remainder of the NPU. This limitations stems however mostly from the combination of

FPGA and demonstrator board used and its effect would be mitigated if a custom FPGA

board were to be designed.
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This thesis presented the NPU100 network processor, an NP architecture aiming at process-

ing packets in a Carrier Grade Ethernet network at an appropriate throughput (meaning

100 Gbit/s at the moment this is written) in a single chip solution, which must be flexible,

modular and power efficient, while remaining easy to program. With these stated goals in

mind, this work makes two main contributions to the state of the art:

• A novel pipeline architecture, called the folded pipeline, which reduces the pipeline

width and thus the number of bits that have to toggle in each clock cycle. This leads

to significantly lower power consumption in comparison to a conventional pipeline

structure.

• A easy-to-use programming paradigm, something conspicuously absent from current

NP designs. This paradigm allows the NPU100 user to only describe the functionality

he requires of the NP in a high-level language. A compiler then takes care of the

task assignment to the pipeline stages and the generation of the commands for each

of them.

The folded pipeline architecture is a pipelined approach, which breaks the workload

down into smaller increments in order to reach the necessary frequency, while ensuring

the determinism needed to achieve a constant flow of over 100 Gbit/s of traffic. This is

achieved by dividing the required functionality into elementary processing entities called

mini pipelines. Each mini pipeline is made up of various processing modules, which suffice

to achieve basic packet processing. The mini pipelines are then parallelized and joined

together through two modules, the Dispatcher and the Label Reassembly, thus forming

a loop. The two afore mentioned modules control the flow of packets through the loop,

making sure that those that need additional processing are sent back to go through an

additional mini-pipeline, while forwarding any completed packets to the output. The

processing modules that make up each mini pipeline all share a common I/O interface,

which means that if need be they can be exchanged for new ones swiftly and effortlessly.

This approach ensures that the design is adaptable to future needs as well as expandable.

Apart from providing a modular design, which can be changed to fit new requirements,

an NPU100 implementation must itself be flexible enough to process varying protocols

without the need to modify the hardware. This is accomplished by providing programmable

processing modules and a programmable I/O interface, whose functionality can be set by

the user dynamically at run time. Programmability is realized by employing microcom-

mands, which saves on decoding complexity and thus contributes to the NP processing

data at the required throughput. However this approach leads unavoidably to reduced

instruction density and thus only a small number of instructions per processing module

or I/O interface can be supported. These are however still sufficient to cover all needed
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network processing operations in a carrier network. The microcommands are generated

automatically by the NPU100 compiler, which was also developed as part of this work.

The compiler reads XML configuration files and a source file written in a C-like, high-level

language and converts the code to microcommands, while allocating the microcommands

to the available processing stages. The microcommands are then written into the NPU100

via an industry-standard PCI Express interface.

Due to the folded pipeline architecture, the NPU100 achieves impressive power con-

sumption savings, ranging from 25% to 78%, depending on the application scenario in

comparison to a traditional pipeline architecture. This result is reached by reducting the

number of bits that flow through the mini pipelines, achieved by storing redundant data

momentarily in two buffers found in the Dispatcher and the Label Reassembly modules and

an early exit strategy, which avoids sending packet headers on unneeded pipeline loops.

While this work represents a significant advancement in two key areas of NP design

in comparison to the state of the art, namely power consumption and programmability,

it is surely not the last word in what can be achieved within the confines of the folded

architecture proposed. More specifically, two improvements can be used to further har-

vest the advantages of this design. The first is to use dynamic partial reconfiguration

to exchange or even erase mini pipeline modules. This will increase the flexibility of the

design by allowing it to change is functionality considerably more than what the current

programmability scheme allows it to and will furthermore even contribute to the reduction

of static power dissipation by eliminating no longer needed modules from the system.

In parallel, a power gating scheme can be implemented to reduce or even shut down

power to specific mini pipelines. This would extend the savings to static power dissipation.

What should be noticed in the implementation of such a scheme is that multiple cycles will

be needed to restore power to a mini pipeline, which means that the mechanism devised

to perform this task must be able to respond timely to incoming packets and reactivate

the needed MPs.
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