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Abstract 

 
In contrast to the standard FEM, fictitious domain methods do not require a boundary-fitted mesh. 
Instead, they embed structures of arbitrarily complex geometry in a domain of simple shape. The 
Finite Cell Method (FCM) [1,2] is a high-order approximation scheme that follows the fictitious 
domain idea.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Finite Cell Method has been successfully applied to various problems from engineering and 
science in linear and non-linear analyses. Other fields like transient problems haven't yet gained 
much attention. This software lab project focus on the implementation of different time integration 
schemes including the Newmark algorithm [3] as an implicit approach and the Central Difference 
scheme as an explicit approach.  
 
 
 
 
 
 
 
 
 
 
 
The implementation has been verified for benchmark problems in elastodynamics. The effect of 
different parameters in time integration schemes and the effect of the FCM specific penalty value for 
fictitious domain has been studied, to obtain optimal results for the time response of a structure. 

 

Different schemes in structural dynamics 

 

 

 

 

 

 

 

 

 

 

 

 

 

Insight into the implicit and explicit schemes 
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Future works with transient FCM! 

Problem: The penalty approach to enforce essential boundary conditions  
significantly destroys the conditioning of the problem 
 
Solution: Bathe [4] introduced new method, considering additional  
midpoint and Euler backward to solve the problem at the supports  
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What was achieved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 We show faster convergence for p-refinement than h-refinement as expected from comparison 

between fig(1) and fig(2) or fig(4) and fig(5).  
 
 In fig(3) it is observed that by h-refinement the frequency of the system decrease till it converged, 

(compare with fig(2)) while in fig(6) we observed increase in frequencies with h-refinement. 
 

 h-refinement with moderate p-degrees is the preferred configuration. 
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Time integration methods 

Explicit Implicit 

𝐷𝑡+∆𝑡 = 𝑓(𝐷𝑡 , 𝐷 𝑡 , … ) 𝐷𝑡+∆𝑡 = 𝑓(𝐷𝑡+∆𝑡, 𝐷 𝑡+∆𝑡, … ) 

Central difference Newmark 

Lumped Mass Matrix Consistent Mass Matrix 

𝒖 𝒕+∆𝒕 = 𝒖 𝒕 + ∆t 𝒖 𝛾  

 
𝒖 𝛾=(1−γ)𝒖 𝒕 +  γ𝒖 𝒕+∆𝒕 , 0 ≤ 𝛾 ≤ 1 

 

𝒖𝑡+∆𝑡 = 𝒖𝑡 + ∆t 𝒖 𝒕 + ∆t2𝒖 𝛽 
 

𝒖 𝛽 =
1

2
− 𝛽 𝒖 𝑡 + 𝛽𝒖 𝑡+∆𝑡 , 0 ≤ 𝛽 ≤ 1 

 Solution is trivial for 
lumped mass 
 

 No need to invert and 
assemble the global 
stiffness matrix. 

 
 Solving the coupled system 
  
 For nonlinear systems the 

stiffness matrix has to be 
solved at every time step. 

 Numerical damping for  𝜸 > 0.5 
 Instability for 𝜸 < 0.5 

 Phase shift 
 Conditionally stable 𝜷 < 0.25  

𝜸 = 0.5 𝜷 = 𝟎. 𝟐𝟓  

Ω𝒑𝒉𝒚𝒔 

Ω𝒇𝒊𝒄𝒕 

Ω𝒇𝒊𝒄𝒕 

1 2 3 

α<<1 

α=1 

13.74 Hz 
13.28 Hz 

29.07 Hz 
31.25 Hz 

46.75 Hz 
46.88 Hz 

ABAQUS: 

FCM FFT: 
68.61 Hz 
65.63 Hz 

82.78 Hz 
83.34 Hz 
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Comparsion of the first 5 symetric frequencies 


