Enhancement of a Preprocessor for the Simulation of Human Bones

Software Lab Project 2012
Students: Johannes Wolf, Daniel Baumgartner, Kazbek Kazhyken
Supervisors: Hagen Wille, Martin Ruess

Abstract
A preprocessor capable of visualizing computed tomography (CT) scans and extracting a specific volume of interest, such as a femoral bone, was developed. The preprocessor modeled the load surfaces as a spherical cap in combination with a force vector. The entire model was exported in specialized data formats.

Motivation
Within the scope of current research in biomedical engineering, numerical tools for the simulation of human bones are developed. In future, orthopedic surgeons may use such tools, for instance, to predict and improve the mechanical performance of the total joint replacements.

Existing simulation tools, however, are lacking a preprocessor capable of an interactive and efficient way of numerical modeling of the boundary conditions. Currently, this is done manually by individual scripting.

A preprocessor was developed allowing for an easy definition of the load surfaces and Neumann (force) boundary conditions. First developments were supposed to use the simulation of a human femur as an example. However, the modeling concept can be applied to any bone.

Solution approach
The preprocessor is based on three existing C++ libraries:

- ITK to read the CT scans;
- VTK to visualize the data;
- Qt to set up the graphical user interface.

Typically, one is only interested in a specific part of the overall skeleton, e.g., the femur. Following that, the preprocessor was to allow the definition of the volume of interest (VOI) before modeling the load surfaces:

![Diagram](image)

Force boundary conditions are modeled by:
1. Approximating the load surface with a triangular-meshed spherical cap;
2. Defining a force vector in the spherical coordinates;
3. Determining the pressure load by dividing the force vector magnitude by the projected area of the spherical cap relative to the force vector.

Software features
The software’s capability comprises the following principal features:

- Extracting the VOI by an interactive positioning of the bounding box;
- Thresholding the extracted data allowing for a detailed investigation of a femoral bone structure in terms of corresponding Hounsfield units;
- Interactive modeling of the force boundary conditions within an anatomic setting;
- Exporting data in several formats.

Besides that, various functionalities facilitating the overall usability are implemented, for example, virtual measurements, render options and a tool to investigate a possible finite element mesh.

Conclusions / Outlook
In the scope of this project a preprocessor was developed, allowing an easy modeling of anatomic load scenarios w.r.t. the femur in general and its joint connection to the pelvis in particular. The preprocessor comprises:

- A 3D visualization and data processing of a series of CT scans;
- A modeling of the load surfaces and the application of Neumann BCs;
- A data export and a highly interactive GUI.

The software will facilitate the simulation of human bones by speeding up the modeling procedure. Moreover, it provides a basis for further function developments, e.g., towards an enhanced approximation of the load surfaces.

References
[4] Prof. Dr. R. Westermann.: Computational Visualization – Lecture notes winter term 2010/2011, Chair for Graphics and Visualization in the Computer Science, October 2015, München