
Technische Universität München
Lehrstuhl für Hochfrequenztechnik

Polarimetric SAR Modelling

of a Two-Layer Structure

– A Case Study Based on Subarctic Lakes –

Noora Al-Kahachi
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Zusammenfassung

Die vorliegende Arbeit liefert einen Beitrag zur Interpretation voll-
polarimetrischer SAR-Daten von (flachen) subarktischen Seen. Zweck ist
es, das Potenzial eines Radars mit synthetischer Apertur aufzudecken, das zur
Ermittlung der Eigenschaften von unter der Oberfläche gelagerter Schichten
und Inhomogenitäten im Eis – vorwiegend Methanbläschen – beitragen kann.

Dazu wird ein Modell der polarimetrischen Rückstreuung einer zweischichti-
gen Struktur erarbeitet, wie sie auch mit einem seitlich blickenden Radar mit
synthetischer Apertur bei niedrigen Frequenzen (L-Band) gemessen wird. Die
obere Schicht ist wenige Meter dick und enthält Inhomogenitäten. Das erstell-
te Modell beschreibt die Rückstreuung als inkohärente Überlagerung der drei
Hauptbeiträge: Streuung an der Zwischenschicht (X-Bragg), Rückstreuung des
Volumens kleiner Teilchen und Zweifachstreuung. Das Volumen wird als Wol-
ke teilweise vertikal ausgerichteter Ellipsoide modelliert. Die Komponente mit
zweifacher Streuung entsteht durch Streuung an der Wolke kleiner Teilchen –
verantwortlich für die Volumensteuung – und anschließender Reflektion an der
Zwischenschicht. Die mathematischen Ausdrücke für diese zweifache Streuung
werden hier erstmals vorgestellt und erweisen sich als wesentlicher Bestandteil
des Modells.

Die Berechnungen mit dem Modell werden mit SAR-Daten verglichen. Die
Daten stammen von ALOS-PALSAR, aufgenommen über gefrorenen, flachen,
subarktischen Seen verschiedener Gebiete in den nördlichen subarktischen Re-
gionen. ALOS-Daten zeigen die gleiche polarimetrische Signatur wie die Modell-
simulationen. Das Modell kann zeitliche Veränderungen des Eises beschreiben
und zwischen bis auf den Grund gefrorenen Seen und Seen mit schwimmendem
Eis unterscheiden.



Abstract

The work contributes to the interpretation of quad polarimetric SAR data over
(shallow) subarctic lakes, on the purpose of investigating SAR capabilities in
revealing facts about the subsurface and the inhomogeneities within the ice
layer which are dominated mainly by methane bubbles.

For this, a model for the polarimetric backscattering from a two-layer struc-
ture observed by a fully polarimetric side looking synthetic aperture radar at
low frequency (L-Band) is developed. The upper layer thickness is few me-
tres thick and contains inhomogeneities. The developed model describes the
backscattering as the incoherent sum of the three main contributions: subsur-
face (X-Bragg), volume and dihedral backscattering. The volume is modelled
as a cloud of partially vertically oriented ellipsoids. The dihedral backscattering
component is modelled as the electromagnetic wave reflected on the subsur-
face after being scattered by the same cloud of particles that is responsible
for the volume backscattering. The mathematical formulation of this dihedral
backscattering is presented for the first time here and proved to be an essential
component in the model.

The model simulations are compared to data obtained by ALOS-PALSAR
over frozen shallow subarctic lakes acquired over several regions in the northern
wetlands. ALOS data show the same polarimetric backscattered signature as
the simulations. The model can describe temporal changes of the ice and the
difference between grounded and floating ice.
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Chapter 1

Introduction

Methane (CH4) is a potent greenhouse gas, which traps heat far more power-
fully than (CO2). Its atmospheric concentration has risen by 1 % per year [74]
over the last century. The reasons for this trend are not completely understood
since the sources and sinks of methane on a global scale are today inaccurately
quantified.

Methane is produced from the degradation of organic materials in the ab-
sence of oxygen and is released into the atmosphere from both natural and
human sources. One of the natural sources of methane is in the cryosphere, as
the carbon that is stored in the permafrost is in the form of peat and methane.
When climate warms, permafrost thaws and releases methane to the atmo-
sphere through microbial processes. Methane release induces warming, causing
more gas release and further warming.

Thermokarst lakes are bodies of freshwater, usually shallow, that are formed
as ice-rich permafrost thaws. These lakes are known to emit methane gas.
However, the magnitude of these emissions remains uncertain since the princi-
pal emission mode (ebullition) is highly variable in space and time. Ebullition
represents 50-95 % of lakes’ methane emissions and increases the previous es-
timations of Northern wetlands methane fluxes, as shown in [96], by 10-63 %.
This methane is imprecisely accounted for in climate change modelling [35].

During winter these lakes freeze and the methane bubbles are trapped in
the lake ice, such that the amount of the trapped methane is in correlation
with ebullition. Quantitative monitoring of the trapped methane on a global
scale can extend current climate models. Remote sensing achieved by satellite
synthetic aperture radar (SAR) systems at low Earth orbits provides periodi-
cally global coverage observations of the northen wetlands. Therefore relating
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Chapter 1. Introduction

SAR observations with the amount of trapped methane is an essential step in
evaluating ebullition.

The analysis of SAR data acquired by RADARSAT-1 (C-band) and ALOS-
PALSAR (L-band) over thermokarst lakes showed that the backscattering from
methane bubbles becomes visible in the SAR image implying that SAR may
have a role in evaluating methane ebullition. In [97] a correlation between the
backscattered power measured by RADARSAT-1 with field survey data for a
percentage of lake ice with bubbles and for point-source ebullition has been
observed. The results show a better correlation in the early winter acquisition,
and also at steeper look angles. Similar relations are shown in [25]. However,
relations based on observations are not sufficient for quantitative evaluation of
methane bubbles ebullition, as they cannot account for the varying conditions
that can occur over different areas and times, such as the dependency of the
observation on the material under the ice. In addition, finding the optimum
measurement system (e. g. optimum look angle and/or frequency) is harder
when relying on observations rather than relying on a model. Therefore an
adequate modelling of the backscattering is required.

In this work I establish a model for the polarimetric backscattering of frozen
shallow subarctic lakes, which are frozen usually up to two meters depth during
winter, as shown schematically in Fig. 1.1. The model takes into account the
inhomogeneities in the ice layer introduced mainly by trapped methane bubbles.
The electromagnetic waves at lower frequencies are expected to penetrate into
the ice volume, interact with the trapped bubbles, and finally reach the interface
between the ice and the subsurface, such that considerable backscattering from
bubbles, subsurface and their mutual interaction is expected.

The scattering from the bubbles depends strongly on the nature and shape of
the bubbles for a certain frequency and direction of the incident electromagnetic
wave. Several studies report inhomogeneities within the ice layer specially
caused by methane bubbles. A brief description of the inhomogeneities is given
in the next section of this chapter.

Any scattering model for the evaluation of methane bubbles trapped in the
ice lake should be able to account for the variety of possible scenarios such as
floating and grounded ice. Changes in the experimented backscattered power
under different lake conditions are summarized in Section 1.2.

Some observations of the polarimetric backscattering from the subarctic lakes
within the last decade are presented in Section 1.3. However current models
cannot accurately explain the relation of the co-polarisation ratio with the
presence of floating ice. Therefore the changes in the backscattering under
different conditions are not yet predictable.
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1.1. Ice Inhomogeneities and Methane Bubbles

Ice

Soil/
Frozen soil

Water

Subsurface Volume Dihedral

Figure 1.1 The Scattering mechanisms considered in the model of shallow subarctic
lakes

As the derived model is compared to fully polarimetric L-Band data obtained
by the ALOS-PALSAR sensor, Section 1.4 includes a short summary about
ALOS-PALSAR instrument in the polarimetric mode.

1.1 Ice Inhomogeneities and Methane Bubbles

Observation of inhomogeneities within ice cores from arctic lake ice have been
done in [25] and [47]. The authors describe several shapes of bubbles and crys-
tals in ice cores with a diameter of 10 cm obtained in a region east of Churchill,
Manitoba. It is reported in [25] that different types of inhomogeneity exist
within the ice without explicitly mentioning their size. They are mainly elon-
gated tubular (cylindrical) bubbles oriented normal to the ice surface. Beside
them, tiny spherical bubbles, spherical and sub-spherical (teardrop-like) bubbles
were also observed. In addition to the bubbles, crystals are mentioned, where
some of them are congelation crystals with horizontal c-axes and others mas-
sive crystals with vertically oriented c-axes. Along the c-axis (crystalline axis),
the light can pass unhindered through the crystal. The author also explains
that a strong radar backscattering can occur due to large spherical (ebullition)
bubbles, often created by methane released from the lake sediment. In [47] the
ice formation for water freezing on the bottom of the initial layer is described.
The ice crystals grow downward into the water with two different orientations
of the c-axes. One has horizontally oriented c-axis and the other has vertically
oriented c-axis, but regardless of the c-axes orientation both types generate ver-
tically elongated crystals. In [98], it is demonstrated that emission of methane
associated with thawing produces dissolved methane in lake water, which ap-

3



Chapter 1. Introduction

Figure 1.2 Methane bubbles trapped in lake ice, images obtained from [27] and [31]

pears as densely-packed, vertically oriented tabular bubbles in ice. The density
increases when the ice thickness increases for shallow lakes.

More recent observations of high methane emission lakes describe methane
bubbles in more detail [27], and relate the methane emission rate to ”the point
source classification”, as the methane bubbles form different structures depend-
ing on the emission rate . According to [27], the structures can be isolated bub-
bles trapped between multiple ice layers above each other, merged in multiple
layers, merged in one single big pocket or untrapped rising from open holes in
the ice most of the year. In the mentioned publication, methane bubbles are
described as tiny bubble tubes (<2 cm diameter) generated at the sediment
layer in the hotspots, where the methane is produced in a larger volume.

In general, bubbles rise constantly from the sediment at the bottom of the
lake. The ice is formed layer by layer (night after night) and the bubbles that
rise get trapped in the newly formed layer of ice, generating the column shape
structure. This formation and these bubble shapes, shown in Fig. 1.2, are
approximated by vertically oriented ellipsoids in this work, in order to evaluate
its backscattering to the side-looking SAR.

Permittivity of methane is almost similar to air. In spite of the small per-
mittivity, methane bubbles can still play a significant role in the backscattering
which is more dependent on the bubble size than on the material permittivity,
as will be discussed later in Chapter 5.

1.2 Subarctic Lakes

The subarctic land is mostly covered by lakes, and most of them are shallow.
The lakes usually melt completely during summer. During winter, ice of ap-
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1.2. Subarctic Lakes
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Figure 1.3 Scattering scenarios in thermokarst lakes during winter

proximately one meter depth is formed with a snow cover, which typically does
not exceed 50 cm, above it [28]. Many publications had already reported about
observations of subarctic lake ice using a radar/SAR system [24], [22], [23],
[25], [21], [46], [48], [49], [68], [47], [102], [100], [101], which is different from
the ice observed at glaciers [87], [79], where ice thickness exceeds the penetra-
tion depth [17]. For some lakes, ice freezes to the lake bed and forms grounded
ice, while for deeper lakes, fresh water exists all year long and only floating
ice is generated during winter, see Fig. 1.3. The changes in the dielectric
properties of the material under the ice and the inhomogeneities within it influ-
ence the backscattered power to the SAR system. Many publications report on
changes in the backscattered power from the lakes during different times of the
year. In summer, most of the incident electromagnetic wave is reflected on the
smooth lake surface away from the receiver of a monostatic system resulting in
a low backscattered power, such that the lake appears dark in the radar image.
When floating ice is formed, the backscattered power increases dramatically
(around 10 dB at C-band), due to the contribution of the scattering from the
ice inhomogeneities that are reflected back on the ice-water interface [25]. The
backscattered power is lower when the water freezes to the bed, since the re-
flection from the ice-water interface is replaced by the one from ice-lakebed,
whose permittivity contrast is lower, and leads to a lower reflection from this
interface. A low power backscattered from the lakes’ borders, due to the lower
depth of the lake bed that forms grounded ice during winter, is reported in the
literature [49] [51].
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1.3 Polarimetric SAR: State of the Art

SAR observations of the lake ice addressed in the previous section are based
on the evaluation of the amplitude of the backscattered signal. However there
are several works developed within the last two decades addressing the relative
ratios between different polarisations. Polarimetic observations allow better
quantitative estimations because the observed polarimetric signatures depend
strongly on the actual scattering process. In comparison to conventional single-
channel SAR, SAR polarimetry can lead to a significant improvement in the
quality of data analysis [59].

One of the earliest observations of the polarimetric SAR backscattering from
frozen lakes is reported in [71]. The data were acquired over the Great Lakes
at C-band with incident angles up to 60◦. The data show a higher horizon-
tal than vertical backscattering and low co-polarisation coherence during ice
presence. The polarimetric SAR data set were useful for the development of
ice mapping algorithms; the maps were in good agreement with the ice charts
of the National Ice Center (NIC) [60]. A higher ratio of horizontally to verti-
cally polarised backscattering and the lower co-polarisation coherency during
ice presence on Mackenzie River near Inuvik is also reported in [93]. The co-
polarisation backscattering ratio is addressed even clearer in [36] and proved
to be related to the presence of floating ice, where the results are based on
observations.

Current models of the backscattering from a two-layer structure could not
explain the observed co-polarisation ratio and its dependency on ice presence.
The model presented in [37] predicts a higher vertical than horizontal backscat-
tering with a difference that increases for larger ice thickness. The publication
mentions the backscattering from the interactions of the volume within the
upper layer and the boundary between the two-layers, but this backscattering
contribution is not considered in the model. In [99], a model for the polarimet-
ric backscattering from a two-layer structure is presented. The backscattering
from the interaction between the volume in the upper layer and the surface
in the lower layer were neglected here as well. The model was compared with
data obtained by the PALSAR sensor over permafrost regions in Alaska. De-
spite that the model could explain the trend in the cross-polarisation channels,
it predicts a lower horizontal to vertical backscattering ratio than the observed
data.

Statistical parameters extracted from the polarimetric backscattering allow a
discrimination of different types of scattering mechanisms and a better evalua-
tion of the polarimetric signature. The polarimetric entropy-alpha parameters
proposed in [16] are statistical parameters that are considered, because of their
capabilities in interpreting the backscattering mechanism as will be seen in
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1.4. ALOS-PALSAR System

Figure 1.4 Schematic illustration of the ALOS spacecraft (image credit: JAXA)

Chapter 2. Evaluation of the entropy-alpha values observed over a two-layer
structure of ice and fresh water was recently shown in [92], without providing
an interpretation of the entropy-alpha trends.

Modelling the polarimetric backscattering, while considering second order
scattering mechanisms, is essential for explaining the polarimetric signature.
The importance of these scattering mechanisms has also been noted in [58],
where mathematically based approaches are established to represent them.
Nevertheless the electromagnetic theory behind these scattering processes has
to be addressed for a more realistic and interpretable approach. Therefore the
main focus of this study is to establish a scattering model with second or-
der scattering mechanisms for the shallow subarctic lakes that can explain the
entropy-alpha values and the co-polarisation ratio observed by a fully polari-
metric sensor such as ALOS-PALSAR.

1.4 ALOS-PALSAR System

The Advanced Land Observing Satellite (ALOS) [45] was launched by the
Japanese Aerospace Exploration Agency (JAXA) in 2006. The satellite ob-
served most of the land surface in a systematic way until 2011, when the
mission ended.

One of the main objectives of ALOS was to enable land observations with the
Phased Array type L-band Synthetic Aperture Radar (PALSAR). The PALSAR
instrument, shown in Fig. 1.4, was capable of acquiring fully polarimetric im-
ages, when it was operated in the polarimetric mode. This mode was operated
during ascending passes every second years and covered most of the Northern
subarctic region. The look angle used in this operation mode is 21.5◦ or 23.1◦,

7



Chapter 1. Introduction

Central Frequency 1270MHz (L-band)
Chirp bandwidth 14MHz
Polarisation HH + HV + VV + VH
Incidence angle 8−30◦
Range Resolution 24 to 89m
Observation Swath 20 to 65km
Bit quantization (BAQ) 3 or 5bits
Data rate 240Mbps
Noise-equivalent sigma-zero (NESZ) −29dB
Signal-to-ambiguity ratio 19dB

Table 1.1 Parameters of PALSAR Polarimetric Mode [72]

while the achieved resolution is 24 m in range, and 5 m for single look in the
azimuth. The system covers a 30 km swath width in this mode. All further
parameters of ALOS-PALSAR are summarised in Tab. 1.1.

1.5 Objectives and Scope of the Work

The detailed information about the steps of building a scattering model for
the shallow subarctic lakes and the comparison with ALOS-PALSAR data are
presented in the following chapters. Below is a short summary of the contents
of each chapter, followed by a presentation of the main points addressed in the
thesis.

In Chapter 2, the basics of scattering concepts for fully polarimetric synthetic
aperture radar are described, where the included information is essential for the
understanding of the model development and evaluation. In this chapter, the
requirement of coherency and the covariance matrix to describe the distributed
scatterers is clarified, and two decomposition concepts (eigen decomposition
and model-based decomposition) are presented.

The available test sites for this study are the Churchill, Baker Lake, Inuvik,
and Lena Delta regions. Their Pauli images and first analyses of the lakes’
samples are included in Chapter 3.

Chapter 4 describes the properties of a surface and the dependencies of a
suitable surface model on those properties. The coherent component (reflected
/ transmitted) and the incoherent component (scattered) of the electromag-
netic wave impinging a surface are discussed. Bragg and X-Bragg models [40]
are used in modelling the subsurface scattering under the ice cover and a closer
look at these models is performed.

The volume scattering from particles of ellipsoidal shape and its mathemat-
ical model are introduced in Chapter 5. In order to better understand the

8



1.5. Objectives and Scope of the Work

scattering from a volume of ellipsoids, as a first step the volume scattering
from spherical and dipole shaped particles is introduced. The chapter intro-
duces the general equations of the scattering from an ellipsoid and a volume
of ellipsoids, that can be adapted for bistatic cases and also for obtaining the
scattering from a volume of particles reflected back by the subsurface (dihedral
of volume and subsurface), which is done in Chapter 6. The volume scattering
model in this chapter is used to model methane bubbles in the ice layer of the
subarctic lakes.

Chapter 6 introduces the dihedral scattering from the interaction of volume
and subsurface. The model presented in this chapter is used to estimate the
scattering from the volume of methane bubbles that is reflected back by the
subsurface interface (ice-water/soil).

The complete model with the clarified subsurface, volume and dihedral scat-
tering of the previous chapters is presented in Chapter 7 with several scenarios
that include different lake conditions. The results are compared with ALOS
data, which allow the interpretation of the data. Then based on those results
a colour scheme is proposed and colour coded maps which visualise the data
interpretation are shown. A summary of achievements, and conclusions based
on the comparison between the simulated and measured data are drawn in
Chapter 8. In addition further investigations to improve the retrieval of in-
formation about the subarctic lakes with methane bubbles and applicability to
other scenarios are suggested in this last chapter.

The work presented within the eight chapters establishes a novel understand-
ing of the electromagnetic theory in relation to the polarimetric backscattering
from a two-layer structure measured by a side-looking SAR system. The two-
layer structure for the case addressed in this study is set up by a surface and a
volume above it.
To achieve this, several issues are addressed:

� The dihedral backscattering from a volume reflected by a subsurface is
well known and had been considered in a variety of applications, but its
polarimetric backscattering for the application of side-looking synthetic
aperture radar had not been considered in an analytical approach, that
coherently adds the backscattering from the two paths (surface – particle
and particle – surface) so far. Therefore this scattering mechanism is
studied in detail in this work.

� Within the scope of this work, basic expressions for the scattering from
a single particle within a volume and from the interaction of the sin-
gle particle with the subsurface are derived. A method to obtain the
backscattering from the volume and the interaction between volume and

9
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subsurface is presented, and dedicated processing functions are developed
for this purpose.

� It is shown that the new approach of combining the volume backscat-
tering with the dihedral of volume-subsurface backscattering can open
many new possibilities for a novel understanding and interpreting of the
backscattered polarimetric signature.

� Applying the newly developed forward model to a two-layer structure
of frozen lakes shows a remarkable agreement with fully polarimetric
L-band experimental data acquired by the ALOS-PALSAR sensor over
the Northen subarctic region. The model can explain temporal changes
and can successfully distinguish between different physical properties of a
lake, such as lakes with grounded ice versus lakes with floating ice. This
is the first known approach of using the polarimetric information based
on a model to separate lakes with grounded ice and floating ice without
exploiting the absolute backscattered power of the lake.

� The comparison of the experimental data and the forward model leads
to a power independent colour scheme. Accordingly, maps of ALOS-
PALSAR acquisitions are generated where a closer look at the individual
lakes are provided. The conclusions obtained from these colour coded
maps are in agreement with the results of the previous comparison.

10



Chapter 2

Polarimetric SAR Principles

Over the last five decades, SAR has been evolved to a very powerful remote
sensing tool for monitoring the planet Earth. It has been used extensively for
mapping biological and geological structures and features.

The translation of the measured data into information about the temporal
or spatial changes within the observed scene and changes in the physical or
spatial properties of the scatterers is an important task to evaluate the usability
of microwave remote sensing. In many cases, the backscattered power alone
had proved to be insufficient to extract this information accurately, therefore
polarimetric measurements for the backscattering had been implemented, as
the polarimetric signatures depend strongly on the actual scattering process
[43]. Therefore polarimetric SAR data are considered in this work and a brief
introduction of polarimetric SAR is discussed in this chapter.

In order to understand polarimetric SAR, the polarimetric scattering matrix
for objects will be presented in the first part of this chapter. Since most natural
scenes consist of distributed scatterers, statistical quantities of the scattering
matrix, covariance and coherency matrix particularly, are more suitable for de-
scribing them [59]. These matrices will be introduced and discussed in the
second part of this chapter.

Natural scenes are usually covered by forest/vegetation, by snow and ice in
cold regions, and by dunes in desert. Therefore, the backscattering will usually
not only correspond to a pure surface scattering, but also to the scattering
from the covering volume. Several concepts to decompose the polarimetric
backscattering into individual components have been developed [11], and two
of the most powerful and commonly used are presented in the last part of this
chapter.

11



Chapter 2. Polarimetric SAR Principles

2.1 Polarimetric Scattering Matrix

The temporal changes of the electric or magnetic field cause spatial changes
in the magnetic or electric field respectively. These relationships have been
described by Maxwell’s equations. According to these equations, a source that
generates temporal electric field changes �E/�t, will induce a magnetic field
5×H that is spatially perpendicular to the electric field which, in turn, induces
a changing electric field perpendicular to the magnetic field which will further
generate a magnetic field resulting in a propagating electromagnetic wave.

When the source of the electromagnetic wave is relatively far from the ob-
served scene and the considered resolution cell, then the wave is travelling in
parallel directions generating surfaces of constant phase, which is a so called
plane wave.

The electric field of the plane electromagnetic wave is described by the wave
equation shown in Eq. (2.1), which is derived from Maxwell’s equation as-
suming a source free propagation medium with a permittivity equal to × and
permeability of Þ.

52 E = Þ×
�2E
�t2

(2.1)

The solution of this equation for the electric field is described by

E(r, t) = E0e
j( 2á

Ý ·r+ét), (2.2)

where r is the distance from the source. The electric field is perpendicular to
the direction of the wave propagation.

When an electromagnetic wave propagates then its electric field vector must
lay in the plane that is perpendicular on the Poynting vector, which corresponds
to the direction of the wave propagation. Therefore two orthogonal basis in this
plane are sufficient to describe the electric field, and hence the electromagnetic
wave completely.

One of the commonly used orthogonal basis is the horizontal and vertical
polarizations basis, where the electric field is described as follows

~E(r, t) = Eh(r, t)~h + Ev(r, t)~v. (2.3)

Other orthogonal basis, such as left and right handed circular polarisation,
are also used in certain applications, but the linear horizontal and vertical
polarisations are considered in the following.

In this sense, the electric field is better described in a vector form, that
corresponds to the orthogonal polarisations as

~E =

[
Eh
Ev

]
. (2.4)
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2.2. Pauli Scattering Vector

The transmitted electromagnetic field interacts with the scatterers within the
scene, such that the polarisation and the power of the scattered electromag-
netic wave depend on the object’s physical properties, such as dimension and
permittivity in addition to its spatial properties, for example its orientation with
respect to the incident wave.

The scattered electromagnetic wave can be described in the same basis as the
incident wave, while the changes on the field induced by the scatterers in the
resolution cell are described by the scattering matrix. The relation between the
incident and scattered wave is shown in Eq. (2.5), where [S] is the scattering
matrix, the subscript “inc” corresponds to the incident wave and “obs” to the
observed wave. [

Eh,obs
Ev,obs

]
=

[
Shh Shv
Svh Svv

][
Eh, inc
Ev, inc

]
(2.5)

The diagonal elements in the scattering matrix describe the changes in the
observed wave depending on the incident wave that has the same polarimet-
ric basis as the observed wave, therefore they are called the co-polarisation
scattering coefficients. The off-diagonal elements describe the relation of the
observed wave with the incident wave of the orthogonal base, as part of the
incident wave with a certain polarisation is transfered to the orthogonal polari-
sation in the scattering process, therefore the off-diagonal elements are known
as the cross-polarisation scattering coefficients. In the monostatic case with
transmitter and receiver collocated, which is the case considered in this work,
the cross-polarisation components are identical Svh = Shv for reciprocal scatter-
ers [8]. The scattering matrix is vectorised in a lexicographic scattering vector
[59]

~kl =
[
Shh

√
2Shv Svv

]T
. (2.6)

2.2 Pauli Scattering Vector

With the scattering matrix, the influence of the scattering process on the field
can be evaluated, but the physical interpretation of the scattering mechanisms
can be better achieved by considering the Pauli combination between the scat-
tering coefficients. The Pauli vector is another representation of the scattering
coefficients, where the relative phase between the co-polarisations is clearer and
better addressed.

The scattering Pauli vector for a monostatic case is written as [59]

~kp =
1√
2

[
Shh + Svv Shh − Svv 2Shv

]T
. (2.7)
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Chapter 2. Polarimetric SAR Principles

The first element in the vector is usually dominant when a first order scattering
is dominant in the resolution cell, as the co-polarisation components are usually
in phase. The second element is dominant when the co-polarisation backscat-
tering is out of phase, which usually occurs when the second order scattering
is dominant, such as for the case of dihedral backscattering. The third term
is dominant when the scatterer is rotated about the line of sight or when ran-
domness is dominant in the resolution cell. Further details are discussed in the
last part of this chapter. Hence polarimetric colour coded radar images are
usually based on Pauli colour coding of the scattering coefficients, as a better
interpretation of the images is achieved.

2.3 Radar Cross Section

For a single object, the radar equation gives a direct form for calculating the
received power from the object. Eq. (2.8) is the radar equation for a monostatic
radar case

Pr =
PtG2Ý2

(4á)3R4
ã. (2.8)

The received power Pr depends on the transmitted power Pt, antenna gain
G , wavelength Ý, the distance between object and radar R, and the radar cross
section (RCS) ã of the surface which is measured in units of m2.

From the radar equation, the RCS can be defined as the effective area of
a perfectly and isotropically reflecting object that intercepts the transmitted
radar power and then scatters that power back to the receiver. The RCS is

calculated from the far field of the scattered and incident electric field ~Es, ~Ei

ã = lim
r→∞4ár2 |~Es|2

|~Ei|2
. (2.9)

When an observed object, for example a surface observed by a SAR system,
has a larger extent than the resolution cell, then the scattering is described
with several scattering centres distributed in the resolution cell, where the
distribution usually changes with time and space, as shown in Fig. 2.1b. Most
of the natural scatterers like forest, vegetation and snow consist of a collection
of statistically identical scatterers. For such cases Eq. (2.8) is not appropriate
to calculate the received power for those scatterers, and it is necessary to
integrate the total power over the illuminated area A0 as

Pr =
"

A0

PtG2Ý2

(4á)3R4
ã0ds. (2.10)
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2.3. Radar Cross Section

~Es

(a) A single point scatterer in a single
resolution cell

~Es1 ~Es2 ~Es3

(b) Distributed scatterers over
several resolution cells

Figure 2.1 Illustration of scatterers type, where ~Es1, ~Es2, and ~Es3 are the scattered
electric fields of the corresponding realisation [59]

The term ã0 is the average radar cross section of the statistically identical
objects per unit area, and defined as [59]

ã0 =
〈ã〉
A0

=
4ár2

A0

〈
|~Es|2

〉

|~Ei|2
. (2.11)

Each radar cross section ã corresponds to the ratio of the total scattered power
intensity from a certain resolution cell to the incident power intensity for a
certain realisation. The total scattered electric field from this resolution cell
Es is obtained from the coherent superposition of backscattered signals from
the multiple scatterers within the resolution cell, where each of them scatters
the electromagnetic field with a different propagation phase depending on the
scatterer’s position. Therefore a different distribution of scatterers leads to
a different backscattered power, such that the measured backscattered power
fluctuates from one resolution cell to the next when a scene with distributed
scatterers is considered. This phenomenon is known as speckle [67]. The
statistical value of the scattering includes the information about the properties
of the distributed scatterers.

Matrices that consider the average over the main power components and the
correlation between them give a good description of the distributed scatterers.
The matrices are usually averaged over space assuming a stochastic distribution
where the temporal and spatial variations of the distribution are identical. The
larger the averaging window, the better the estimation of the matrices as the
random fluctuations (speckle noise) are reduced and the estimation of the
matrix component has less variance and is closer to the mean.
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Chapter 2. Polarimetric SAR Principles

A description of those matrices and their mathematical derivation is discussed
in the following subsections, according to the definitions presented in [59].

2.3.1 Covariance Matrix

The scattering matrix completely describes the scattering from a single scat-
terer, but it is insufficient to describe the scattering from a set of scatterers
with different shapes and orientations located within a single resolution cell,
such as for natural scenes. Statistically based matrices are required for the full
description of such cases.

From the lexicographic scattering vector shown in Eq. (2.6), the lexico-
graphic covariance matrix C3 is generated by computing the outer product of
the vector with its conjugate transpose

C3 =
〈
~kl ·~kH

l

〉
=




〈
|Shh|2

〉 √
2
〈
ShhS

∗
hv

〉
〈ShhS∗vv〉√

2
〈
ShvS

∗
hh

〉
2
〈
|Shv|2

〉 √
2〈ShvS∗vv〉〈

SvvS
∗
hh

〉 √
2
〈
SvvS

∗
hv

〉 〈
|Svv|2

〉



. (2.12)

The diagonal elements of the matrix correspond to the power in each polari-
metric channel, the off-diagonal elements are the correlation between those
polarimetric components.

2.3.2 Coherency Matrix

The coherency matrix is generated from the outer product of the Pauli vector
shown in Eq. (2.7), with its conjugate transpose

T3 =
〈
~kp ·~kH

p

〉

=
1
2




〈
|Shh + Svv|2

〉
〈(Shh + Svv)(Shh − Svv)∗〉 2

〈
(Shh + Svv)S∗hv

〉

〈(Shh − Svv)(Shh + Svv)∗〉
〈
|Shh − Svv|2

〉
2
〈
(Shh − Svv)S∗hv

〉

2〈Shv(Shh + Svv)∗〉 2〈Shv(Shh − Svv)∗〉 4
〈
|Shv|2

〉



.

(2.13)

The diagonal elements represent the power of the Pauli elements while the
off diagonal elements are given by the correlation between them. As already
been discussed in Section 2.2 and further clarified in Section 2.5, a certain
Pauli component dominates when a common scattering mechanism (surface,
dihedral and volume) is dominating. Therefore, Pauli components can better
interpret the scatterers than lexicographic components as the second one can
better describe the impact of the scatterer on the wave. Hence the coherency
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2.4. Eigen Decomposition

matrix has been used more often to describe the scatterers within the observed
scene and in decomposing the scattering mechanisms.

Both covariance and coherency matrices are Hermitian positive semi-definite
matrices which implies that they posess only real non-negative eigenvalues with
orthogonal eigenvectors. Unique transformations from the covariance matrix to
the coherency matrix and vice versa are shown in Eq. (2.14) and Eq. (2.15),

[C3] =



c1 c2 c3
c∗2 c4 c5
c∗3 c∗5 c6


 ,

[T3] =
1
2




c1 + c6 + c∗3 + c3 c1 − c6 + c∗3 − c3
√

2(c2 + c∗5)
c1 − c6 − c∗3 + c3 c1 + c6 − c∗3 − c3

√
2(c2 − c∗5)√

2(c∗2 + c5)
√

2(c∗2 − c5) 2c4


 ,

(2.14)

[T3] =



t1 t2 t3
t∗2 t4 t5
t∗3 t∗5 t6


 ,

[C3] =
1
2




t1 + t4 + t∗2 + t2
√

2(t3 + t5) t1 − t4 + t∗2 − t2√
2(t∗3 + t∗5) 2t6

√
2(t∗3 − t∗5)

t1 − t4 − t∗2 + t2
√

2(t3 − t5) t1 + t4 − t∗2 − t2


 .

(2.15)

Both covariance and coherency matrices consist of three real values in the di-
agonal and three off-diagonal complex values with their conjugate in the sym-
metric places, such that the matrices include nine degrees of freedom instead
of five for the scattering matrix shown in Eq. (2.5).

2.4 Eigen Decomposition

Most of the observed scenes include more than one scattering mechanism within
the resolution cell and the radar measures the cumulative backscattering of
them all. In order to extract physical information about the scattering pro-
cess from polarimetric information, several decomposition algorithms of the
backscatter have been proposed during the last decades. In every decomposi-
tion algorithm, several assumptions have been considered because of the large
number of unknowns compared to the dimensions of the observable space.

Eigen decomposition of the coherency matrix, proposed in [16], is an effective
technique to decompose a maximum of three scattering mechanisms where each
can be fully represented with a single scattering matrix and is polarimetrically
orthogonal to the others. The decomposition provides polarimetric parameters
(entropy, anisotropy and mean alpha angle) that can be used to interpret the
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scattering mechanisms even if they are not completely orthogonal or more than
three scattering mechanisms existing within the observed cell. The parameters
can also separate certain physical effects from each other as some of them can
be independent of part of the physical parameters, for example separating the
permittivity of a surface from the roughness influence [41].

Solving the eigen problem for the coherency matrix is equivalent to rotating
the scattering mechanism to its symmetry axis such that it corresponds to
one eigenvalue. Since the matrix is hermitian positive semi-definite, then the
eigenvalue is non-negative and real, such that it represents the mechanism’s
backscattered power. The mechanism itself is described by the eigenvector, as
shown in Eq. (2.16). The coherency matrix is usually of rank(T) = 3, but it
can have a lower rank. When a single scattering mechanism exists within the
observed resolution cell then the coherency matrix is of rank(T) = 1 [11].

[T3] = [U3]



Ý1 0 0
0 Ý2 0
0 0 Ý3


 [U3]−1 . (2.16)

The matrix [U3] in Eq. (2.16) contains the eigenvectors of the coherency matrix
that are associated with the scattering mechanisms as shown in the following
equation

[U3] =
[
u1 u2 u3

]
,

ui =
[
cosÓiejæ1, i sinÓi cosÔiejæ2, i sinÓi sinÔiejæ3, i

]T
.

(2.17)

The value of Ó represents the type of the scattering mechanism independent
of its rotation, Ô is the rotation angle around the line of sight (LOS) and æ
describes the scattering phase angle which accounts for the phase relations
between the elements of the vector. The alpha value can lie between 0◦ and
90◦ depending on the co-polarisation ratio backscattered from the mechanism
after rotating it to be symmetric around the line of sight. The alpha value is
close to zero when Shh and Svv are almost equal and in phase like in the case
of the backscattering from a surface, while it is close to 90◦ when Shh and Svv
are almost equal but out of phase as for the case of the backscattering from
a dihedral. When one of the polarisation components is dominant over the
other, the alpha angle is close to 45◦ similar to the case of the backscattering
from a dipole since it can be rotated to backscatter Shh or Svv while the other
co-polarisation component is zero, see Fig. 2.2.

The rotation angle of the object around the LOS (Ôi/2) is zero or 180◦/2
when the object is symmetric around the line of sight. The symmetric ob-
ject has a zero cross-polarisation backscattering which can also be observed
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! = 0◦ ! = 45◦ ! = 90◦

Isotropic Surface Dipole Isotropic Dihedral

[S] = a
[
1 0
0 1

]
[S] = a

[
1 0
0 0

]
[S] = a

[
1 0
0 −1

]

Anisotropic Surfaces Anisotropic Dipoles

Figure 2.2 Alpha angle interpretation [11]

from Eq. (2.17). When an object is rotated around the LOS, its backscat-
tering will contribute with a cross-polarisation component that is correlated to
the co-polarisation component. This happens because part of the horizontal
and vertical incident power is transferred to the other channel by the scatter-
ing process for the rotated scatterer. Later in this work, backscattering from
shallow subarctic lakes is considered and the lake surface is symmetric and hor-
izontally oriented independently from the topography such that the cross and
co-polarisation channels are expected to be completely uncorrelated [11].

In the same way since most of the natural fields are flat and a symmetric
distribution of scatterers above it is a realistic assumption, a zero correlation
between cross- and co-polarimetric channel is common. This is the main as-
sumption included in model-based decomposition, as will be seen in Section
2.5.

2.4.1 Polarimetric Entropy, Anisotropy and Mean Alpha Angle

There are three main polarimetric parameters obtained from the eigen decom-
position algorithm which can effectively describe physical features. The pa-
rameters are extracted from the eigenvalues and eigenvectors. The first one
is the polarimetric scattering entropy H which is shown in Eq. (2.18), where
Pi corresponds to the appearance probability for each of the decomposed scat-
tering mechanisms. When one of the scattering mechanisms is dominant then
its probability is close to one while the other mechanisms have an almost zero
probability resulting in an entropy value close to zero. On the other hand,
the entropy is maximized and equal to one when the probabilities of all the
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mechanisms are equal which means they are Pi = 1/3. In general, the entropy
describes the dominancy of one scattering mechanism over the other.

H =
3¼

i=1

Pi log3
1
Pi

(2.18)

The appearance probability of a single scattering mechanism is equivalent to
its power contribution normalised to the total backscattered power. Therefore,
the probabilities are calculated from the eigenvalues by evaluating

Pi =
Ýi

Ý1 +Ý2 +Ý3
. (2.19)

The second parameter is the polarimetric scattering anisotropy. It describes
the relative dominancy of the second most dominant scattering mechanism
over the third one. As can be seen from Eq. (2.20) an anisotropy value of 1
corresponds to a highly dominating second scattering mechanism over the third
and zero anisotropy corresponding to an equal contributions from second and
third scattering mechanism

A =
Ý2 −Ý3

Ý2 +Ý3
. (2.20)

The mean alpha angle is the third main polarimetric parameter obtained from
the eigen decomposition. As discussed in Section 2.4 the value of alpha for a
single scattering mechanism is easily related to the physics behind the scattering
mechanism. The mean alpha angle is calculated from the probability weighted
average of the alpha values for each scattering mechanism, as shown in the
following equation

Ó = P1Ó1 + P2Ó2 + P3Ó3. (2.21)

The mean alpha value, henceforth simply called alpha, describes the average
of the type of the scattering mechanisms within the observed resolution cell.

2.4.2 Entropy-Alpha Histogram

The polarimetric parameters introduced in the previous section are combined
together to describe the backscattering from the scene. An effective method
of interpreting the scatterers and classifying them is to observe the two di-
mensional distribution of the measured entropy and alpha. The algorithm had
been proposed in [16]. It is based on the idea that the entropy rises when
the degree of statistical disorder increases, which is an indicator of the natu-
ral influence within the observed scene, and alpha can be used to identify the
average underlying scattering mechanism.
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Figure 2.3 Entropy alpha classification proposed in [8] and [16]

The entropy-alpha plane has a certain feasible region, defined mathematically
and not physically due to the eigen decomposition. The two curves (curve I
and curve II) shown in Fig. 2.3 specify the boundaries of maximum entropy for
a certain alpha. The curves can be calculated from obtaining the entropy-alpha
values of coherency matrices for extreme cases. The coherency matrices, which
generate curve I and curve II are shown in Eq. (2.22), where the subscripts I
and II correspond to the coherency matrix for curve I and II respectively.

[T]I =



1 0 0
0 m 0
0 0 m


 , 0 ≤m ≤ 1

[T]II,1 =



0 0 0
0 1 0
0 0 2m


 , 0 ≤m ≤ 0.5

[T]II,2 =



2m −1 0 0

0 1 0
0 0 1


 , 0.5 ≤m ≤ 1

(2.22)

From the feasibility region of the entropy-alpha plane, it can be seen that
with increasing disorder, and hence entropy, the interpretation of the average
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scattering mechanism type becomes more challenging as a very limited range
of alpha is feasible.

For the example of L-band data at around 40◦ look angle the feasible region
of the entropy-alpha plane can be divided into eight zones, which correspond
to classes of different scattering behaviour [8]. The region of low entropy and
low alpha is associated with pure surface scattering. Higher entropy with low
alpha is associated with rougher surfaces as the roughness introduced extra
randomness which increases the entropy. The zone of Ó = 45◦ and low entropy
corresponds to a volume of oriented dipoles. When the volume of dipoles is
partially oriented or random, then the entropy increases without a significant
change in alpha as alpha depends on the type of scatterer (dipole) and not
the orientation. The fourth zone of medium entropy and Ó = 45◦ is reached
for partially oriented volume of dipoles which can be observed in vegetated
scenes. The zone of high entropy with Ó ≈ 50◦ is for scenes where several
scattering mechanisms contribute all together within the resolution cell without
the dominancy of one over the other. Noise has an entropy = 1 and lays in
this zone.

High values of alpha occur with the presence of conventional dihedrals which
have both non-zero Shh and Svv values, and out of phase as will be discussed
in Section 2.5.2. A low entropy, high alpha zone is for pure dihedral scattering,
occuring mostly in urban areas. When other mechanisms take place while
dihedral scattering is present and dominating then the entropy-alpha values are
in the region of medium entropy and high alpha. Forest backscattering belongs
to this zone since the dominant scattering mechanism is the dihedral one and
the trees’ canopy contributes with volume backscattering that increases the
observed entropy. The final zone is the high entropy and high alpha region.
This zone is associated with scenes where high randomness can be observed,
nevertheless the presence of the dihedral scattering is still noticeable. The
boundaries of this classification can change for different frequencies and look
angles.

In this study, the model and scattering mechanisms considered in it are eval-
uated by mainly considering the entropy-alpha distribution of the simulated
scenarios as will be explained in Chapters 5, 6, and 7. The data are also eval-
uated by the entropy-alpha histogram of the observed lake samples in addition
to the anisotropy, power, coherencies, and other polarimetric ratios that will be
presented in Chapters 3 and 7.
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2.5. Model-Based Decomposition

2.5 Model-Based Decomposition

The Model-Based decomposition, proposed in [32], considers three simple and
primary scattering mechanisms. In this approach, the mechanisms are modelled
and incoherently added such that the total coherency matrix is considered to
be the cumulation of the three main contributions, using

[T] = [Tsurface] + [Tdihedral] + [Tvolume] . (2.23)

Those three scattering process are: surface scattering, dihedral scattering and
volume scattering. The coherency matrix of the surface and dihedral are usually
of rank 1, while the volume matrix is a rank 3 matrix. The coherency matrix
for each one, [Tsurface], [Tdihedral] and [Tvolume], can be calculated as clarified
in the following subsections.

Model-Based decomposition can separate between the scattering mecha-
nisms even if they are depolarising and not orthogonal, but it requires pre-
knowledge and assumptions about the physical property of the scattering com-
ponent within the observed scene. This decomposition considers no rotation of
the scattering component along the azimuth, such that the elements t3 and t5
of the coherency matrix in Eq. (2.15) are equal to zero, which has also been
discussed in Section 2.4.

2.5.1 Surface Scattering Contribution

The first scattering is theoretically modelled by Bragg surface model. To sim-
plify Bragg model only the first order Bragg equation is considered [90], such
that no cross-polarisation backscattering is predicted. The horizontal Rh and
vertical Rv scattering coefficients are presented in the following equation

[Ssurface] =

[
Rh 0
0 Rv

]

Rh =
√
×r1 cosÚ −

√
×r2 − ×r1 sin2Ú

√
×r1 cosÚ +

√
×r2 − ×r1 sin2Ú

Rv = (×r2 − ×r1)
×r1 sin2Ú − ×r2(1 + sin2Ú)

[
×r2 cosÚ +

√
×r1

√
×r2 − ×r1 sin2Ú

]2
.

(2.24)

The scattering coefficients depend on the local incident angle Ú, the relative
permittivities of the first medium ×r1 and of the second medium ×r2. The first
medium’s permittivity is usually smaller than the one of the second medium.

As can be concluded from the equations above, when only the real parts of the
permittivities are considered, such that the imaginary parts of the permittivities
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Figure 2.4 Bragg surface scattering mechanism

are low compared to the real parts, which is the usual case for soil and water
both with low salt content, then both Rh and Rv are usually real and negative,
such that a zero phase between the horizontal and vertical backscattering is
expected, as shown in Fig. 2.4.

The coherency matrix of the surface is shown in Eq. (2.25), and it is a
rank 1 matrix. The power contribution of the surface backscattering, which
is embedded in PSurface, is not modelled, but is usually obtained from the
decomposition.

[TSurface] = PSurface




1 Rh−Rv
Rh+Rv

0
Rh−Rv
Rh+Rv

(
Rh−Rv
Rh+Rv

)2
0

0 0 0




(2.25)

Bragg surface model has proved to be a good estimation of backscattering for
surfaces with low roughness and low correlation length [90]. The model has
been extended to X-Bragg [41] to show even a better estimation of the surface
backscattering behaviour combined with an increase in the model complexity
as the surface matrix is extended to rank 3. The modelling of the surface
backscattered power and the X-Bragg model will be discussed in Chapter 4.

2.5.2 Dihedral Scattering Contribution

The conventional dihedral scattering consists of two planes perpendicular to
each other, such that the electromagnetic wave is reflected first on the first
plane then on the second plane to propagate back to the transmitter, as shown
in Fig. 2.5. The backscattering is obtained from the product of the specular
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reflection on the first plane and the specular reflection on the second one, as
follows

[SDih] =

[
Shh,Dih 0

0 −Svv,Dih

]

= ØDih



R⊥,Surf1(Ú)R⊥,Surf2

(
á
2 −Ú

)
0

0 −R‖,Surf1(Ú)R‖,Surf2

(
á
2 −Ú

)

 .

(2.26)

The negative sign included in the scattering matrix is due to the geometry,
which leads to a horizontal and vertical backscattering that are out of phase,
as shown in Fig. 2.5. The specular reflection is calculated from the Fresnel
coefficients R⊥/‖,Surf1 and R⊥/‖,Surf2, where the subscript “Surf1” refers to the
horizontal plane and“Surf2”refers to the vertical plane. By considering the SAR
geometry, the vertical polarisation is usually the component of the electromag-
netic wave that is parallel to the plane of incidence denoted by the subscript“‖”,
and the horizontal polarisation is the component that is perpendicular to the
plane of incidence and denoted by the subscript “⊥”. The Fresnel coefficients
are calculated as follows

R⊥,Surface(Ú) =

√
×r1 cosÚ −

√
×r,Surface − ×r1 sin2Ú

√
×r1 cosÚ +

√
×r,Surface − ×r1 sin2Ú

,

R‖,Surface(Ú) =
×r,Surface cosÚ −

√
×r1×r,Surface − ×2

r1 sin2Ú

×r,Surface cosÚ +
√
×r1×r,Surface − ×2

r1 sin2Ú
.

(2.27)

As can be seen in the equations above, the reflected horizontal component
encounters a 180◦ phase shift, since usually the upper medium’s dielectric
constant ×r1 is smaller than the lower medium’s dielectric constant ×rSurface,
while the vertical component is not shifted for local incident angles smaller than
the Brewster angle. Further discussions about the reflection, transmission, and
scattering of an electromagnetic wave impinging a surface will be presented
later in Chapter 4.

The coherency matrix of the dihedral component is a rank 1 matrix. The
power contribution of the dihedral backscattering, which is embedded in PDih,
is obtained from the decomposition.

[TDih] = PDih




( Shh,Dih−Svv,Dih
Shh,Dih+Svv,Dih

)2 Shh,Dih−Svv,Dih
Shh,Dih+Svv,Dih

0
Shh,Dih−Svv,Dih
Shh,Dih+Svv,Dih

1 0
0 0 0




(2.28)
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Figure 2.5 Dihedral scattering mechanism

The dihedral scattering mechanism is well observed in the polarimetric
backscattered signature of buildings and trees, nevertheless this model-based
decomposition has been considered on scenes where there is no clear presence
of a physical dihedral structure. In these scenes the dihedral scattering mech-
anism is the simplest approximation of the second order scattering (multiple
scattering) in vegetation and ice observations.

2.5.3 Volume Scattering Contribution

The third scattering process is a volume of randomly oriented dipoles, as shown
in Fig. 2.6. This is a special case of a volume with ellipsoid shaped particles
which is discussed in Chapter 5. The coherency matrix of this volume is as
follows

[TVolume] = PVolume



2 0 0
0 1 0
0 0 1


 , (2.29)

where PVolume is the power contribution of the volume backscattering. The
coherency matrix above is obtained from integrating over the backscattering
from dipoles of different orientations. A detailed explanation on how to obtain
the coherency matrix for a volume is presented in Chapter 5. The matrix is a
rank 3 matrix, since the backscattering from each dipole is different from the
others due to the different orientation.

In the model of Eq. (2.23), the number of observations is not sufficient for
achieving a unique estimation of the unknowns. Therefore several assumptions
are considered in practice. Nevertheless the three main contributions of surface,
dihedral and volume scattering give a starting point for modelling, since each
scattering process corresponds to a different polarimetric signature. Depend-
ing on the observed scenarios, some contributions can be directly taken into
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Figure 2.6 Volume scattering

account while others require more complex modelling or further propagation
considerations.
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Experimental Data

The spaceborne ALOS-PALSAR system presented in Section 1.4 operates at
L-Band with several modes. In this study, only the polarimetric mode is con-
sidered, where fully polarimetric (HH, VV, HV, VH) data have been acquired
in an ascending orbit. ALOS had observed the subarctic region with this mode
every two years within the mission lifetime (2007, 2009, and 2011).

Product level 1.1 for the polarimetric mode is available. At this level the data
are compressed in range and a one look azimuth compression is performed. The
data are stored as complex values, and the data represent azimuth and slant
range measurements, where the phase history information is preserved. Each
SAR image covers a swath width of 30 km and a length of 62 to 83 km with a
resolution of around 25 m in range and 8 m in azimuth.

Test sites with prior knowledge have been considered in this study. The
knowledge is obtained either by on-site measurements in the vicinity of the
study area, or by publications that observed the lake’s ice. In spite of the
unavailability of information about the lake ice in a (freely accessible) website
or publications, data over Lena delta site have also been analysed. This site
is scientifically intriguing due to the high methane emissions, as described in
[86], which is caused by the region’s sensitivity to climate changes.

Areas located on the north coast of Alaska such as Barrow Lake and north
coast of Canada have been avoided, because of a broadband, radio frequency
interference induced by military over-the-horizon radar systems [20]. This in-
terference cannot be corrected for level 1.1 ALOS products, and it limits the
choice of test areas. Fig. 3.1 shows the locations of the four selected test sites
for this study.
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Figure 3.1 Considered test sites with data acquired by ALOS

3.1 Test Sites

All the test sites used in this study are located on the Northern subarctic
region. The freezing cycle for the lakes in this region starts in October. In
May, the ice reaches its maximum thickness, which is between one and two
metres. Melting starts around June and in July the lakes are practically ice
free. The depth of the subarctic lakes can vary between 1 m and 2.5 m. Lakes
selected in this work have a minimum dimension larger than 2 km and do not
exceed 7 km. The lakes had been visually chosen and a sample with a size
of 400 × 400m2 from the centre of the lake is considered, corresponding to
around 20 independent looks in range and around 80 in azimuth dimension.
The centre of the lakes is assumed to have a homogeneous ice thickness with
a rather smooth and untilted ice water interface. In addition, the sediments
are assumed to produce a flat lake bed, relevant for the case of grounded ice.
Therefore the assumption of a flat terrain topography is reasonable, and the
terrain topography has no impact on the polarimetric signature of the lake
samples in the center of the lakes [3]. The available information about each
site is summarised in the following subsections.

3.1.1 Churchill Site

This site has been used as a test site in a number of investigations about ice of
shallow subarctic lakes. Ice cores from lakes in the region had been investigated,
as mentioned in Section 1.1, in [25]. Radar observations with RADARSAT-1 (C-
band) lead to remarkable conclusions regarding backscattered power difference
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Figure 3.2 Churchill site: reference data.

between floating and grounded ice, which had been discussed in Section 1.2.
For the purpose of estimating lake depth, Laura Brown and Claude Duguay
proposed an ice thickness model in [9], where measurements of ice thickness
on the Malcolm-Ramsay Lake were compared with model predictions. Those
ice thickness measurements are shown in Fig. 3.2b. The lakes of interest in
this study are located around (58.46◦N,−93.86◦E), which is rather to the
west of the Malcolm-Ramsay lake, but since ALOS did not cover Malcolm-
Ramsay area, the closest area observed by ALOS is considered and the same
ice thickness is assumed.

The Pauli images shown in Fig. 3.3 are filtered from the additive noise, by
considering a 7×7 window for calculating the coherency matrix. The near range
for all ALOS acquisitions shown here is on the left side of the image (west)
while the far range is on the right side (east). The ALOS data set available
over Churchill includes three acquisitions, one during summer and two during
winter. In order to better compare the changes within the lake ice, the Pauli
colour coded winter images are normalised to the same RGB colour mapping.
The lakes selected in the winter images are the ones that are observed in both
acquisitions and the lake samples are indicated by a white box in the Pauli
image. Near and far range differences are neglected, since the variation in the
look angle is only around 2◦.

Measurements indicate a 1.5 m ice thickness during the first acquisition, and
a slight increase of the ice thickness to 1.6 m for the second acquisition. Pauli
images do not show a dramatic change in the two winter acquisitions over the
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(a) SAR image from April
23, 2009 (Pauli image)

(b) SAR image from
May 10, 2009 (Pauli
image)

(c) SAR image from July 27,
2010 (Pauli image)

(d) ALOS-PALSAR Scene location in
Google Maps [39]

Figure 3.3 ALOS data over Churchill site.
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Figure 3.4 Baker Lake site: reference data.

lakes while a very clear difference can be observed and compared to the summer
acquisition. The polarimetric parameters are discussed in Section 3.3.

3.1.2 Baker Lake Site

Information about the ice thickness of Baker Lake is provided by the Canadian
Ice Service [28]. The ice thickness on the lake is around 1.50 m to 1.85 m during
the time of the two ALOS winter acquisitions as shown in Fig. 3.4b, with an
increase of around 30 cm during the second acquisition compared to the first
one.

Baker Lake itself is not considered, because of its large size which makes
it susceptible to cracking due to the presence of fast flowing water, such that
its backscattering is highly influenced by cracks. Samples from the smaller
lakes that are around Baker Lake are evaluated and assumed to have similar ice
thickness as Baker Lake. Those samples are visible in the Pauli image as they
correspond to the bright squares in the middle of the lake. ALOS acquisitions
are located around (64.35◦N,−95.99◦E), and both of the acquisitions are
acquired during winter. Pauli images of the site in Fig. 7.18a are normalised
to the same RBG colour mapping, for the purpose of better comparison.

3.1.3 Inuvik Site

The Canadian Ice Service [28] also covers a lake in the Inuvik region
(68.12◦N,−131.85◦E). Unfortunately the ice thickness data are available only
for several years before the ALOS observations. Nevertheless, the old data show
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(a) SAR image from March
15, 2007 (Pauli image)

(b) SAR image from April
30, 2007 (Pauli image)

(c) Image of the scene taken from
Google Maps [39]

Figure 3.5 ALOS data over Baker Lake site.
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3.1. Test Sites

(a) SAR image from March
11, 2007 (Pauli image)

(b) SAR image from April
26, 2007 (Pauli image)

(c) Image of the scene taken from Google
Maps [39]

Figure 3.6 ALOS data over Inuvik site.
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Figure 3.7 Inuvik site: reference data.

some short periods in May during which the ice thickness is reduced indicat-
ing ice melting. Temperature measurements are available freely in “National
Climate Data and Information Archive” provided by Environment Canada [70].
Fig. 3.7a shows the temperature measurements during the ALOS acquisitions.
The plot shows average temperatures above 0◦C during the week before the
second acquisition. Therefore a short period of ice melting, similar to the ones
observed the years before through the ice thickness measurements, is expected
before the second acquisition.

Two ALOS winter images are available in this area and are used to evaluate
the lakes using the same procedure applied for the previous sites for evaluating
the images. The SAR images show a range ambiguity along the azimuth in far
range especially visible in the cross-polarisation channel. The origin seems to
be a river located at Nadir. Lakes located in this range ambiguity are avoided,
as their polarimetric signature might be corrupted. Applying adavanced tech-
niques in future SAR systems can help in avoiding such unwanted echos [104].

3.1.4 Lena Delta Site

As mentioned in the beginning of this chapter, high methane emission occurs
in the Lena delta region [86]. However the nature of the methane bubbles in
the lake ice, in regards to size, density, and local variations are not available.
Therefore investigations in this site are based on assumptions.

Because of the large dynamic range in the relative power between the differ-
ent polarisations for different acquisitions from Lena delta, each Pauli colour
coded image of Lena delta acquisitions is displayed with its own colour range.
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3.1. Test Sites

(a) SAR image from Novem-
ber 27, 2008 (Pauli im-
age)

(b) SAR image from March
28, 2009 (Pauli image)

(c) SAR image from
May 01, 2009 (Pauli
image)

(d) Image of the scene taken from Google
Maps [39]

Figure 3.8 ALOS data over Lena Delta site.
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The images are located around (73.3◦N,124.3◦E). All the lakes within each
image have been considered because only a small portion of the lakes overlaps
between the images, which would limit the evaluation of the temporal changes.

The images show colour changes along the azimuth and the range which
might be due to radio interference. However there isn’t any source that de-
scribes an interference system in the region. The colour change might also be
due to the changes in the physical properties of the soil as the observed scene
distance from the Laptev see is changing along the azimuth.

3.2 Data Processing

As discussed in Chapter 2, for a monostatic system the noise free cross-
polarisation channels for reciprocal scatterers are expected to be identical. Ac-
cordingly, the difference between the (HV and VH) channels for ALOS data
have been used to estimate additive noise [57].

The principles of estimating the power of the additive noise and filtering it are
proposed in [41]. The algorithm is based on diagonalising the 4×4 coherency
matrix T4 by solving its eigen problem. Usually four eigenvalues (Ý1,Ý2,Ý3,Ý4)
are obtained with four eigenvectors arranged in the eigenvector matrix [U4].
The fourth eigenvalue is 〈|Shv−Svh |2〉/2, and corresponds to the additive noise
power. To filter the noise, the fourth eigenvalue is subtracted from each of
the eigenvalues. The sum of the new eigenvalues is assumed to be the signal
power. The filtered coherency matrix is obtained then as




0
[T3] 0

0
0 0 0 0




= [U4]




Ý1 −Ý4 0 0 0
0 Ý2 −Ý4 0 0
0 0 Ý3 −Ý4 0
0 0 0 Ý4 −Ý4




[U4]−1 .

(3.1)
For the ALOS data used in this study, the coherency matrix is obtained by
averaging a 7×7 spatial window, which provides an adequate number of inde-
pendent looks. The data are filtered according to Eq. (3.1) and the signal to
noise ratio is evaluated.

At L-band the distortion induced by the ionosphere can affect the data.
Faraday rotation is one of the most prominent ionospheric effects, which alter
the polarimetric signature. Faraday rotation occurs because of the presence
of both the ionosphere and the Earth magnetic field. A higher influence of
Faraday rotation closer to the Earth’s poles is expected [7]. Faraday rotation
of a few degrees (less than 45◦) transports part of the horizontal backscat-
tering into the vertical channel and part of the vertical backscattering into
the horizontal channel. This process increases the backscattering from the
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(a) Churchill data: April 23, 2009
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(b) Baker lake data: April 30, 2007
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(c) Inuvik data: April 26, 2007
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(d) Lena Delta data: March 28, 2009

Figure 3.9 Histograms of SNR over the lakes samples before Faraday rotation cor-
rection (grey) and after Faraday rotation correction (black)

cross-polarisation channels. As the cross-polarisation channels include a power
portion transported from the co-polarisation channels, the coherency between
the cross-polarisation and co-polarisation channels increases. However this co-
herency is expected to be zero for reflection symmetry (Section 2.4) in Faraday
rotation free data. In addition, Faraday rotation produces a larger 〈|Shv−Svh |2〉/2,
as it breaks the reciprocity of the scatterer.

For the correction of Faraday rotation, the algorithm in [7] has been used.
The algorithm converts the data to circular polarisation basis and estimates
the Faraday rotation angle from the angular difference between the two circular
cross-polarisations. The exact same processing engine implemented in [50] has
been used to calibrate the data and only calibrated data are considered for
further processing.

The coherency matrix of the Faraday rotation free data are calculated and
filtered from the additive noise. An increase of around 3 dB in the signal to
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noise ratio (SNR) over the lakes is observed as shown in the histogram plots in
Fig. 3.9. Despite that the entropy-alpha histograms did not change noticeably
before and after Faraday rotation correction, only corrected data are considered.

3.3 Data Analysis

The polarimetric parameters and ratios of the lakes’ samples are presented and
discussed in this last section of this chapter. For each site, the correlation
between the two co-polarisation channels as well as between the cross- and co-
polarisation channels are shown. The histograms of the co-polarisation ratio
and phase difference are plotted. The eigen decomposition presented in Section
2.4 is implemented on the data, and the obtained entropy, mean alpha angle
and anisotropy are estimated and discussed.

3.3.1 Churchill Site

Because of the three available acquisitions, one in summer and two in winter,
the site is a good candidate to compare the backscattering from the lakes for
the case of ice presence with the case of ice absence.

In Fig. 3.10 and 3.11, the polarimetric parameters of the lake samples over
Churchill region are displayed. The yellow curve corresponds to the sum-
mer acquisition (27/07/2010), the green one to the first winter acquisition
(23/04/2009), and the blue line to the second winter acquisition (10/05/2009).

From the SNR histogram in Fig.3.10a, two peaks, one of high and one of
low power, are observed in the summer acquisition. The peak with the low
power corresponds to open water as it is expected to have less backscattering
than ice. The second peak could be related to parts of the lakes where ice is
still available at the time of the acquisition. The first winter acquisition shows,
on average, higher backscattered power than the second. Nevertheless, both
winter acquisitions show higher power than open water during summer.

The coherency between the co-polarisation and cross-polarisation channels
is in general low as the data are corrected for Faraday rotation. The peak is
around 0.003 and the variance increases as a function of noise dominancy, such
that summer data show larger variance since it has less SNR. The coherency
between Shh and Svv is presented only for Churchill site as the other sites show
the same behavior.

The coherency between the co-polarisation channels in Fig. 3.10c shows
higher values during summer than during winter, which is due to the dominancy
of the surface backscattering during summer compared to winter case.

The ratio of the horizontal to vertical polarisation is shown in Fig. 3.10d.
Summer data show a higher vertical backscattering than horizontal, which
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matches the predictions of Bragg surface backscattering. Winter data show
a remarkable increase in the ratio of horizontal to vertical backscattering com-
pared to the summer case. The co-polarisation phase difference is around −4◦
during summer, which is very similar to a Bragg surface, whose predictions do
not exceed 2◦. Winter data show a zero co-polarisation phase difference.

From the scattering mechanisms considered by the model-based decomposi-
tion presented in Section 2.5, a higher horizontal than vertical backscattering
is obtained from the backscattering of a dihedral consisting of two surfaces.
The winter data cannot be interpreted by this scattering mechanism since a
zero co-polarisation phase difference is measured instead of 180◦ despite the
higher horizontal than vertical backscattering

A possible scattering mechanism that can predict a zero co-polarisation phase
difference with a higher horizontal backscattering than vertical is a volume of
particles where the major axis of the particles are horizontally oriented, as hori-
zontally oriented dipoles scatter back higher horizontally polarised portion than
vertically polarised portion of the electromagnetic wave. Since the descriptions
of inhomogeneities within ice refer to rather vertically oriented structures as dis-
cussed in Section 1.1, a mechanism of a volume backscattering that produces
a higher horizontal than vertical backscattering is not very likely.

Therefore the dihedral scattering from a volume of ellipsoids and the subsur-
face is more realistic and will be developed and investigated in Chapter 6.

The entropy-alpha values of the summer data presented in Fig. 3.11a cover
the same region of entropy-alpha as X-Bragg at around 25◦ local incident
angle, as will be clarified in Section 4.4. In Fig. 3.11 b, and c the winter data
show higher entropy and alpha values. Nevertheless the entropy-alpha range is
still far from the region expected by a dihedral scattering of two surfaces shown
in Fig. 2.3.

The anisotropy values of the data are shown in Fig. 3.11d. For the summer
data, the values are close to unity with a peak around 0.8 which is expected
for a Bragg surface and, more precisely, for a rather smooth X-Bragg surface.
Winter data show lower anisotropy values.
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Figure 3.10 Polarimetric parameters of the lake samples over Churchill region; Yellow:
summer acquisition on 27/07/2010, green: first winter acquisition on
23/04/2009, blue: second winter acquisition on 10/05/2009

42



3.3. Data Analysis

(a) 27/07/2010 (summer) (b) 23/04/2009 (winter)

(c) 10/05/2009 (winter)
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(d)

Figure 3.11 Entropy-alpha histogram and anisotropy plots for the Churchill data.
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3.3.2 Baker Lake Site

The two winter acquisitions show almost similar backscattered power, both
shown in Fig. 3.12. The coherency between the co-polarisation channels is
around 0.8. The horizontal backscattering is equal or slightly larger than the
vertical backscattering with a zero phase between them. The entropy-alpha
histogram in Fig. 3.13 shows that for some samples the entropy and alpha
values have increased during the second acquisition on 30/04/2007 compared
to the first acquisition on 15/03/2007.
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(d)

Figure 3.12 Polarimetric parameters of the lake samples close to Baker Lake region;
Blue curve: acquisition on 15/03/2007, green curve: acquisition on
30/04/2007
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(a) 15/03/2007 (b) 30/04/2007
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Figure 3.13 Entropy-alpha histogram and anisotropy plots for the Baker Lake data.

45
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3.3.3 Inuvik Site

The two winter acquisitions from the Inuvik site, show almost similar backscat-
tered power. The coherency between the co-polarisation channels is around
0.5 for the first acquisition on 11/03/2007 and 0.6 for the second one on
26/04/2007. Both observations show a second smaller peak with a coherency
close to one in Fig. 3.14b. This small power and high coherence peak might
be an artefact caused by the choice of lake samples that include some land
surface. This is also visible in the entropy-alpha histogram in Fig. 3.15 a and
b, as a second peak appears in the histogram which lays in the typical region for
X-Bragg surface scattering. The horizontal backscattering is in general larger
than the vertical backscattering with a zero phase between them.

The entropy-alpha histogram shows higher values during the first acquisition
in March compared to the second acquisition in April.
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Figure 3.14 Polarimetric parameters of the lake samples in Inuvik region; Blue curve:
acquisition on 11/03/2007, green curve: acquisition on 26/04/2007
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(a) 11/03/2007 (b) 26/04/2007
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Figure 3.15 Entropy-alpha histogram and anisotropy plots for the Inuvik data.
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3.3.4 Lena Delta Site

Early winter data show similar polarimetric properties as the winter data from
the other sites. Winter data acquired during March and May show a lower
co-polarisation coherency and a higher vertical backscattering than horizontal
one.

Figures 3.16 and 3.17 show polarimetric parameters of the lake samples in
Lena Delta site. The entropy-alpha histogram for the March and May acquisi-
tions show much higher entropy and alpha values compared to the other sites,
as the entropy is almost close to one.
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Figure 3.16 Polarimetric parameters of the lake samples in the region of Lena Delta;
Yellow: early winter acquisition on 27/11/2008, green: first (late) winter
acquisition on 28/03/2009, blue line: the second (late) winter acquisition
on 01/05/2009
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(a) 27/11/2008 (b) 28/03/2009

(c) 01/05/2009
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Figure 3.17 Entropy-alpha histogram and anisotropy plots for the Lena Delta data.
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Chapter 4

Random Rough Surface Scattering

The purpose of this chapter is to introduce scattering, transmission and re-
flection of a polarised electromagnetic wave impinging a surface, which are
dependent on the wavelength of the incident electromagnetic wave, geometry,
and the surface properties.

In the first part of this chapter, the physical and geometrical surface proper-
ties are summarised. In the second part, several surface scattering models are
discussed. The last part of this chapter provides a close look to Bragg surface
model and X-Bragg model as X-Bragg model has been implemented in this
study to model both ice-water and ice-soil interfaces of the subarctic lakes.

4.1 Surface Properties

Surface properties, both of the physical and geometrical nature of the soil,
influence the scattering, reflection, and transmission of the electromagnetic
wave when it impacting the surface. Physical properties are mainly described
by the complex dielectric constant of the surface. This constant influences the
penetration through the surface layer, the direction of the coherent component
of the wave (the reflected and the transmitted), the polarimetric ratios, the
propagation speed of the electromagnetic wave within the medium, and the
scattered power from the surface [90]. The geometrical parameters describe the
spatial distribution of the surface material over the interface. Surface roughness
and its variation in space give a statistical evaluation of spatial changes of the
surface. The geometrical parameters are mainly responsible for transferring
part of the power from the coherent components to the scattered ones. They
also influence the polarimetric ratios.
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Chapter 4. Random Rough Surface Scattering

4.1.1 Physical Properties

The complex dielectric constant, which is also called relative permittivity ×r =
×′r + j×′′r , is the main physical parameter that influences the electromagnetic
waves encountering a surface. Theoretically, the permeability Þr can have an
effect equivalent to the permittivity. In practice, most of the materials have
a permeability that is close to unity, which is especially true for normal soil
that does not contain heavy materials, while volcanic sediment can have a
non-negligible permeability [103]. The permeability is considered to be equal
to unity throughout this study.

The permittivity of the material depends on its type, soil porosity, tempera-
ture, operating wavelength, and other physical and chemical parameters. The
Debye relaxation equation [44] describes the dependency of the permittivity
of a dielectric material with an electrical dipole moment, such as water, on
different frequencies and temperatures. In general, the equation shows that
the permittivity increases with increasing temperature and that it is lower for
higher frequencies.

Regarding the porosity, when the vacancies between the soil grains are filled
with air, then the permittivity is lower compared to the permittivity of the
soil grains. When those vacancies are filled with water then the soil permit-
tivity increases with increasing water content, since the water permittivity is
high. There are several approaches to obtain the permittivity of a mixture, for
example the method proposed by G.P. De Loor in [18].

In general, the real part of the water permittivity is around 80 at low fre-
quencies up to 3 GHz [42], while for ice it is much lower (×′r = 2.5 . . .3) because
of the ice crystallisation which binds the water dipoles to each other and pre-
vent them from getting aligned along the varying electric field. For the same
reason, frozen soil has a lower permittivity than wet soil. However it requires
lower temperatures to freeze wet soil than to freeze water [52].

The imaginary part of the permittivity is directly related to losses, such that
the penetration depth depends mainly on it [42]. The imaginary part of the
permittivity, at a certain frequency, leads to losses in the material in the same
way as the conductivity.

For water, the conductivity varies strongly depending on the salt content [5].
For natural water, a high conductivity is assumed and even higher for sea water
than for fresh water. When water freezes to form ice, the water molecules
form crystals which reject the salt [95] such that the ice has low conductivity.
As a consequence, an electromagnetic wave at low frequencies can penetrate
through it.

For the subarctic lakes, the water permittivity is assumed to be ×r = 80+ j20,
while for the ice a lower permittivity of ×r = 2.5 + j0.01 is assumed. In spite
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topography

large scale
ãrms

small scale
ãrms

Figure 4.1 A two-scale rough surface

of the pessimisticly high value for the imaginary part of the ice permittivity
as compared to literature, the losses for the penetration of a 2 m ice layer are
almost negligible. For frozen soil a permittivity of ×r = 8+ j2 is assumed. These
assumptions can vary with temperature and for different material compositions.
Nevertheless, the assumptions are a good starting point for the modelling of
subarctic lakes since they demonstrate the high dielectric contrast between
water, frozen soil and ice.

4.1.2 Geometrical Properties

The spatial variations of the surface are described statistically by three param-
eters: The standard deviation of surface height ãrms, the surface correlation
length l, and the normalised autocorrelation function â.

Surface roughness
The standard deviation of the surface height ãrms is the measure of the surface
roughness. It is obtained by the root mean square of the height differences
between the samples of the natural surface compared to the average height
of the surface. The average height of the surface can change when the area
considered increases as shown in Fig. 4.1. For this reason, the roughness is
usually defined for a certain spatial frequency, and usually referred to as small
scale and large scale roughness [90].

The dependency of the scattered electromagnetic wave on the roughness
varies for different wavelengths, such that surfaces appear smoother at lower
frequencies. Therefore the surface roughness is usually multiplied by the wave
number kãrms. The considered roughness in modelling should be measured
with the scale that plays the most significant role in the scattering of the
electromagnetic wave, and this scale depends on the system resolution and
operating frequency. For high resolution systems, large scale roughness should
be treated as topographic slopes that is considered in the local incident angle
of the surface scattering model [81], [82].
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Figure 4.2 An example of different surface correlation functions that had been con-
sidered in [62]

Surface correlation length
The correlation length describes the spatial properties of the surface. When
considering an area larger than the correlation length, the surface roughness
shows large changes in its geometrical parameters. The correlation length can
be calculated from the surface autocorrelation function, as it corresponds to
the distance in which the correlation drops to e−1.

Because of the same reasons discussed in the previous section, the correlation
length is usually expressed by its product with the wave number kl. In general
roughness describes the vertical variation, while the correlation length shows
the horizontal variations of the surface.

Surface autocorrelation function
The shape of the autocorrelation function can influence the power scattered by
the surface. Observations of surfaces described a surface autocorrelation func-
tion whose trend varies between Gaussian and Exponential distribution. Figure
4.2 shows different shapes of the correlation function that had been considered
to represent the surface autocorrelation. The plots show the correlation versus
the distance which has been normalised to the correlation length.

The influence of the autocorrelation function shape on the backscattered
power and polarimetric signature is significant when the system wavelength is
in the same range as the correlation length [63], because the observed roughness
range of the surface (the effective roughness) varies for different frequencies
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Incident
wave

~
(a) Surface with low roughness

(kãrms is small)

Incident
wave

~
(b) Surface with high roughness

(kãrms is large)

Figure 4.3 Example of schematic scattering pattern for two surfaces with different
roughness.

within the system bandwidth. This variation follows the shape of the correlation
function, which shows a varying slope when the electromagnetic wavelength is
in the range of the correlation length [62].

4.2 Surface Modelling

When a plane electromagnetic wave impinges a surface, each point on the
surface acts similar to a point source. The radiations from all the points
are added together. In the direction of the specular reflection, the individual
contributions are added coherently, such that they generate a high, directed
power component, referred to as the coherent component [90]. Depending
on the geometrical properties of the surface and especially the roughness, the
losses in the coherent component can vary.

In directions other than the specular reflection direction, the radiation is
added incoherently and only a scattered component is observed. The surface
roughness influences the total power in the coherent component, such that
higher roughness reduces the power in the coherent components and increases
the incoherent scattered component, as shown in Fig.4.3.
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medium1 ×r1
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Figure 4.4 Reflection and transmission on a surface.

4.2.1 Coherent Component (Specular Reflection and Transmission)

Part of the power from the wave incident on the surface is reflected while the
other part is transmitted. Both reflected and transmitted powers are obtained
by the coherent addition of the fields on the boundary between the two me-
dia (the medium that contains the local incident and reflected wave and the
medium that contains the transmitted wave). The intensity of the reflected or
transmitted power portion depends on the local incident angle and the complex
permittivities of the media.

The direction of the specular reflection lies in the incident plane which is
defined by the direction of the incident wave and the surface normal vector.
The local incident angle ÚL, which is the angle between the incident wave and
the normal vector is equal to the reflected angle Úref that is the angle between
the normal vector and the direction of the reflected wave, as shown in Fig. 4.4.

The specular reflection is defined by the Fresnel coefficients presented in Eq.
(2.27), which are derived from the boundary conditions [90].

The transmitted wave travels in the second medium with a different speed
as its wavelength changes to Ý/Re{√×r2} [19]. For this reason, the direction of
the transmitted coherent component changes according to the permittivity of
the medium. In general, the transmitted wave lays also on the incident plane
and the transmitted angle Út is calculated according to

Re{√×r2}sinÚt = Re{√×r1}sinÚL. (4.1)

56



4.2. Surface Modelling

The transmissions coefficients are obtained by considering the power portion
of the incident wave that is not reflected. The power transmission coefficients
for both horizontal and vertical polarization are given by,

T2⊥ = 1− R2⊥ =
4
√
×r1 cosÚL

√
×r2 − ×r1 sin2ÚL

(√
×r1 cosÚL +

√
×r2 − ×r1 sin2ÚL

)2

T2
‖ = 1− R2

‖ =
4×r2 cosÚL

√
×r1×r2 − ×2

r1 sin2ÚL

(
×r2 cosÚL +

√
×r1×r2 − ×2

r1 sin2ÚL

)2
.

(4.2)

The surface roughness effect on the power of the coherent component is
modelled as exponential losses as follows [90]

Coherent component ∝ e−4k2 cos2 ÚLã
2
rms . (4.3)

From the equation above, it can be seen that a roughness of several centime-
tres in L-band (Ý0 = 24cm and Ýice ≈ 10cm), is already very small and will
drive the exponential term to be almost equal to one. Therefore in the fol-
lowing, these losses in the coherent component of the scattering are neglected.
The depolarisation in the coherent component due to roughness had not been
considered here.

4.2.2 Incoherently Scattered Component

For a monostatic side-looking SAR system, the specular reflection does not con-
tribute to the backscattering, so in spite of the low power contribution of the
incoherent scattering component compared to the contribution of the coherent
component, only the incoherent scattering component is received by the system.
Several models have been proposed to describe this component. Some of those
models are empirical and based on experimental measurements, others are the-
oretical, and some combine theory and empirical approaches (semi-empirical).
In this study, only theoretical models are addressed because empirical models,
for the subsurface case, are not well developed.

For the electromagnetic problem on the surface boundary of any surface
geometry, the Kirchhoff approximation is used. Nevertheless the theoretical so-
lution is too complex to be formulated in a closed or in a series form. Therefore
theoretical models consider only a certain range of surface geometries [90].

For surfaces with large correlation lengths (compared to the wavelength)
optical approaches have been implemented. The Geometrical Optics model
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predicts a polarimetric backscattering that is equal in both horizontal and ver-
tical channels [90], which does not fully match the data over frozen lakes.
Models based on Physical Optics predict a different horizontal than vertical
backscattering, but so far they have not succeeded in practically estimating the
polarimetric backscattering from bare soil surfaces.

Surfaces with low correlation length compared to the wavelength and with
low roughness can be modelled using the Small Perturbation Method (also
reffered as Bragg model) [90]. Bragg surface model has proved to provide a
good estimation for the surface backscattering within its validity range. The
model has been used in this thesis, not only because of its performance, but also
because of its simplicity such that its polarimetric signature is independent of
the correlation length. The influence of roughness on the polarimetric signature
is observed in experimental data but not considered by Bragg model; therefore
the model has been extended by X-Bragg model [41]. X-Bragg model has a
better estimation for the surface backscattering [41], such that it could model
a wider range of surface roughness compared to the simple Bragg surface.

The Integral Equation Method (IEM) covers a large range of surface corre-
lation lengths and roughnesses [63] . The method gives identical estimations
of the polarimetric backscattering as Bragg model when a small value for the
correlation length is assumed [34], [2]. The main challenge in implementing the
IEM method in its validity range is the strong dependency of its polarimetric
signature on the correlation length and the shape of the surface correlation
function [62] . The Small Slope Approximation model (SSA) is another ap-
proach to estimate the backscattering of surfaces that are rougher than Bragg
surfaces. The model requires a similar knowledge about the surface as the IEM
model, which also limits its applicability [29].

Information about the surface roughness and correlation length, for the inter-
face between ice and water/soil, are not available. Nevertheless the Small Per-
turbation (SPM) or Bragg surface model is used, not only because it is widely
independent of the correlation length, but also because at L-band, Bragg and
X-Bragg models show practically a good performance in the prediction of the
backscattering from bare surfaces [41].

4.3 Small Perturbation Model (Bragg Surface Scattering)

The theoretical conditions for applying the SPM model are a standard deviation
of the surface height of less than 5% of the wavelength and a low correlation
length such that kl < (kãrms)2 [90].

The standard deviation considered corresponds to the surface roughness com-
ponent with a spatial frequency of 2k sinÚ. The model assumes that this sur-

58



4.3. Small Perturbation Model (Bragg Surface Scattering)

face component resonates with the incident wave and is responsible for the
main part of the backscattered power, such that a Fourier transform of the
surface correlation function W(k) is obtained and only this spatial frequency is
used to calculate the backscattering. The radar cross section of Bragg surface
ãpp is given as follows [90]

ãvv,hh = 8k2ã2
rms cos4Ú|Rv,h|2W(2k sinÚ,0). (4.4)

From this equation, it is clear that the power backscattered by Bragg surface
increases with higher roughness, higher operating frequency, and lower local
incident angle as long as W(2k sinÚ) is not too small. The polarimetric sig-
nature depends on Bragg scattering coefficients Rh, Rv which are given in Eq.
(2.24).

An investigation of a two-layered structure built up by Bragg surface and
Bragg subsurface is performed in [1]. The results show a total polarimetric
alpha angle value equivalent to the power weighted average of the alpha values
belonging to the surface and subsurface. The entropy value of the two-layered
structure hardly increases above zero.This indicates that the polarimetric sig-
nature of a two-layer structure is almost similar to the polarimetric signature
of a synthetic single Bragg surface whose surface parameters are between the
parameters of the two surfaces and closer to the parameters of the dominant
one.

The power contribution from the surface is reduced in comparison to the
contribution from the subsurface with increasing the incident angle when the
propagation losses within the upper layer are small. Because of this, the pa-
rameters of the synthetic surface change with the angle and approach the pa-
rameters of the subsurface when increasing the incident angle. Consequently,
the curve of alpha angle for the synthetic surface versus the local incident angle
deviates from the one of a single Bragg surface.

Data acquired by ALOS covers a very small range of local incident angles.
Therefore the backscattering from two Bragg interfaces will appear as a single
Bragg surface. Thus, for the shallow subarctic lakes, a single Bragg layer is
assumed. Since the contrast in the permittivity between air and ice is less than
the contrast in the permittivity between the ice and the subsurface (water/wet
soil), a higher power backscattered from the subsurface is expected. Therefore
the synthetic Bragg surface is assumed to be similar in parameters to the
subsurface only.
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4.4 X-Bragg Model

The polarimetric parameters presented in Chapter 2 for Bragg surface depend
only on the surface permittivity and the local incident angle. The first order
(simple) Bragg model does not predict any cross-polarisation backscattering,
which is in contrast to experimental data, that show a clear dependency of
the polarimetric signature on the surface roughness [41]. In order to consider
the influence of the surface roughness along the azimuth direction on the po-
larimetric signature, the extended Bragg model (X-Bragg) has been proposed.
The roughness along azimuth is modelled by rotating the coherency matrix of
Bragg surface around the line of sight and the final coherency matrix is then
the integral over the different rotations. At a single small fragment of the sur-
face, Bragg surface is asymmetric around the line of sight. The backscattering
at that fragment transfers part of the co-polarisation backscattering to the
cross-polarisation channel, as discussed in Section 2.4. For the full resolution
cell, different fragments of the surface within the cell are rotated at different
angles clockwise and anti-clockwise, where each rotation angle is specified by
the surface slope at that fragment. The sum of the coherency matrices with
different rotations results in a zero coherency between the co-polarisation and
cross-polarisation channel and also a reduction in the coherency between the
two co-polarisation channels.

For the mathematical calculation of the coherency matrix, a uniform distribu-
tion of the slope angles is assumed. The coherency matrix for X-Bragg surface
[TS] depends on the distribution width of the slope angles (2Ô) as follows

[TS] = PS ·




1 Rh−Rv
Rh+Rv

sinc(2Ô) 0
Rh−Rv
Rh+Rv

sinc(2Ô) (Rh−Rv)2

(Rh+Rv)2 (1 + sinc(4Ô)) 0

0 0 (Rh−Rv)2

(Rh+Rv)2 (1− sinc(4Ô))



.

(4.5)
The entropy-alpha distribution of X-Bragg surface is shown in Fig. 4.5. The
entropy value increases when the roughness increases and reduces the difference
between the horizontal and vertical polarisation, such that the value of alpha
decreases.

The figure shows higher entropy and alpha values for higher local incident
angles. Unfortunately, the polarimetric ALOS data set were acquired at 25◦
local incident angle, where the plot indicates a weak sensitivity of the surface
entropy and alpha angle to permittivity changes. Therefore the investigations
of grounded and floating ice in Chapter 7 are recommended to be reperformed
later with data sets acquired at higher local incident angles, in order to better
observe the effect of the subsurface permittivity.
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Figure 4.5 Entropy-alpha distribution for X-Bragg surface of different local incident
angles plotted for changes in Ô = 0 . . .á/2 and ×r = 3 . . .25.
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Chapter 5

Particle and Volume Scattering

Volume scattering occurs within media with local variations in dielectric prop-
erties distributed in a three-dimensional geometry. When the electromagnetic
wave penetrates into the media, it interacts with those local variations (parti-
cles). The excited particles scatter part of the wave energy and absorb another
part of it. The interactions depend strongly on the particle size compared to
the wavelength of the electromagnetic wave.

In this chapter, the interaction of the wave with a small particle whose radius
a < Ý (Rayleigh or Mie scattering) for different shape, size and orientation is
evaluated. The response of a cloud of particles is discussed in the last part of
this chapter.

5.1 Scattering of a Single Particle

Particle scattering can be negligible when the particles are very small compared
to the wavelength (a < 0.0003Ý) [10]. For larger particles Rayleigh theory,
Mie theory, and Geometrical Optics are used to model the scattering. Rayleigh
scattering is an approximation of Mie scattering that considers the smaller
sized particles. The particle size limit for the Rayleigh approximation to be
valid varies across different references and applications (a < 0.03Ý in [10] and
a < 0.1Ý in [90]).

The Mie scattering formulation is derived by solving Maxwell’s equations on
the boundary between the particle and background media [65]. The solution is
very complex compared to Rayleigh. For particles of very large sizes, scattering
can be considered to be a result of interference of the rays having multiple
reflections and refractions according to the laws of Geometrical Optics [91].
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Region of interest

Figure 5.1 Application space for different scattering models over ranges of particle
radius and wavelength, [10].

Fig. 5.1 shows the region covered by the three scattering models over dif-
ferent radiuses and wavelengths [10]. The factor x which relates the particle
radius to the wavelength is introduced in Eq. 5.1. Here x is used to evaluate
the suitable scattering model for a single particle.

x =
2á
Ý

a (5.1)

The dashed lines in Fig.5.1 represent constant value of x which describe the
boundaries between the appropriate scattering model for the scattering from
the particle. The graph does not cover L-band but it can be extended to any
frequency taking into consideration x values at the boundary.

In radar remote sensing applications, the particle radius is usually much
smaller than the wavelength. For L-band most of the particles that contribute
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5.2. Rayleigh Scattering

significantly to the volume scattering have dimensions that lay in the region of
Rayleigh or Mie scattering.

5.2 Rayleigh Scattering

For a free charged particle, the scattering of the electromagnetic wave follows
the Thomson scattering theorem [84]. The electric field of the incident wave
accelerates the charged particle, causing it to emit radiation at the same fre-
quency as the incident wave, and thus the wave is scattered. Thomson theorem
holds as long as the motion of the particle has a speed that is much less than
the speed of light. The particle oscillates following excitation by the incident
electric field, and for a linearly polarised case the particle oscillate along a path
resembling a dipole.

In the case of a harmonically bound charged particle, the particle oscillates
sinusoidally with a certain frequency. The bound charged particle can be forced
(driven) by the incident wave to oscillate with the wave’s frequency. When
the driving frequency is much lower than the free oscillation frequency of the
bound charged particle, then the electric field is nearly static for the particle
and the dipole moment is directly proportional to it [84]. This scattering is
called Rayleigh scattering and the relation between the dipole moment and the
electric field defines the polarisability which is static for this case [91].

For particle dimensions that are very small compared to the wavelength, the
charges on the circumference of the particle are excited by the incident electro-
magnetic field and move within the particle similarly to a driven harmonically
bound charged particle by a frequency lower than its free oscillation frequency.

This charge movement on the particle holds only when the electric field is
constant inside the particle. Changes of the field inside the dipole are negligible
when the particle size is small compared to the wavelength inside the particle
[91]. This leads to the following condition for Rayleigh scattering

2á
√
×r

Ý
a� 1, (5.2)

where ×r is the particle’s relative permittivity.
For a spherical particle, the oscillating charges follow the exciting electro-

magnetic wave independently from the orientation because of the symmetry
of the sphere. In case of a dipole shaped particle, the charges can only move
along the dipole axis following the projection of the incident field on the dipole
axis. These two extreme particle shapes are not found in natural environments.
More realistic are spheroidal particles (prolate and oblate) with one major axis
and two equal minor axes. According to [91] these three axes define the particle
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polarisabilities p1,p2 and p3. The incident electric field is projected on each
polarisability and the sum of those projections determines the movement of the
charges on the particle. The mathematical derivation of the scattered field for
each particle shape (sphere, dipole and ellipsoid) is given in the following.

5.2.1 Sphere Shaped Particle

To obtain the particle scattering matrix, a spherical coordinate system that
describes the orientation of the particle, the incident wave, and the scattered
wave is considered as shown in Fig. 5.2a.

A spherical coordinate system is easier for describing the scattered fields and
the orientation of the particle in the three-dimensional space. The center of the
coordinate system coincides with the particle center as clarified in Fig. 5.2a.

The electromagnetic wave propagates in the direction that is opposite to the
radial direction which is −~er with a certain polar angle Úinc and azimuthal angle
æinc until it encounters the particle. The scattered electromagnetic wave from
the particle is traveling in ~er direction, and the considered scattered wave is
observed at a certain polar angle Úobs and azimuthal angle æobs. The vertical
polarisation for the incident and scattered wave is in the direction of the polar
angle ~eÚ when the azimuthal angle æ ∈ [90◦,270◦], and in the direction of −~eÚ
when æ ≤ 90◦ or æ ≥ 270◦. The direction that is perpendicular on the plane
defined by ~er and the vertical direction, is the orientation of the horizontal
polarisation for both incident and scattered wave.

The scattering matrix for a single spherical particle, where transmitter and
receiver are positioned at the same azimuthal angle (æobs = æinc) is obtained
by the following equation [91]

[
SS

hh SS
hv

SS
vh SS

vv

]
= j(2á)3.5 a

3

Ý3
(m −1)

J3/2

(
4á
Ý asin á−dÚ

2

)

(
4á
Ý asin á−dÚ

2

)3/2

[
1 0
0 −cos(Úobs −Úinc)

]
,

(5.3)
where m is the ratio of the particle’s refractive index to the refractive index of
the background material. J3/2(x) is the Bessel function of the 3/2th order.

The absence of a cross-polar component in the scattered field is due to the
symmetric shape of the sphere. By projecting this geometry onto the one of the
side-looking SARs, two main scattering properties of the sphere are obtained.
First the backscattered power at Úobs = Úinc has equal horizontal and vertical
component. Second, the scattered power for a bistatic case (Úobs , Úinc),
where æ is still the same for the transmitter and the receiver, has a higher
horizontal than vertical scattered power. This second observation will play a
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z

x
yIncident wave

Observed scattered
wave

Ú

Ú = 0◦

~er

æ = 0◦

æ = 180◦

æ

(a) Spherical coordinate system

Incident wave

Observed wave

~Ev

~Eh

~Ev

Úinc

Úobs

Horizontally polarised
scattering

Vertically polarised
scattering
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Figure 5.2 Rayleigh scattering for a sphere in a spherical coordinate system; spherical
particle in the center of the coordinate system
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role in the formulation of the double bounce backscattering from the volume
and the subsurface later in Chapter 6.

5.2.2 Dipole Shaped Particle

When an electromagnetic wave encounters a dipole only the energy portion
of the wave in the polarisation parallel to the dipole orientation excites it.
This energy portion of the incident wave can be mathematically obtained by
considering the projection of the wave’s electric field on the dipole axis. The
observed scattered wave is the projection of the induced field by the dipole on
the plane that is perpendicular to the Poynting vector of the scattered, linearly
polarised wave. Polarisation and amplitude are obtained from the projection as
shown in Fig.5.3b.

The scattered wave is the projection of the dipole induced field on the plane
that is perpendicular to the Poynting vector of the observed wave. It is a linearly
polarised wave whose polarisation and amplitude are obtained from the field
generated by the dipole as shown in Fig.5.3b. Regarding the power scattered
from a short dipole, it is assumed that the power backscattered from a sphere
is similar to the power backscattered from a dipole whose orientation coincides
with the polarisation of the incident wave, and has the same characteristic
dimension as the sphere.

To calculate the scattered field from a dipole, first the projection of the
electric and magnetic field of the wave incident on the dipole are required, and
then its projection on the predefined horizontal and vertical polarisation axes of
the receiver. The solution is a matter of geometry and in the same coordinate
system that has been introduced in the previous section (Fig. 5.2a), a dipole
oriented along the specified polar angle Ú and azimuthal angle æ is placed (Fig.
5.3a).

The scattering matrix for a single dipole H(Ú,æ) (corresponding to Hertzian
dipole) which is normalised to the backscattered electric field from a sphere
with the same characteristic dimension as for the dipole [91] and where the
transmitter and receiver are positioned at the same azimuthal angle (æinc =
æobs = 180o) is obtained by

[H(Ú,Úinc,Úobs,æ)] =

[
SH

hh SH
hv

SH
vh SH

vv

]
, (5.4)
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Figure 5.3 Used coordinate system and radiation pattern for scattering from a short
dipole
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with

SH
hh =

(1− cos2æ)(1− cos2Ú)
4

,

SH
hv =sin2æcosÚobs

1− cos2Ú
4

− sinæsinÚobs
sin2Ú

2
,

SH
vh =sin2æcosÚinc

1− cos2Ú
4

− sinæsinÚinc
sin2Ú

2
,

SH
vv =cosÚinc cosÚobs

(1 + cos2æ)(1− cos2Ú)
4

− sin(Úinc +Úobs)cosæ
sin2Ú

2
+ sinÚinc sinÚobs

1 + cos2Ú
2

.

(5.5)

Here Úinc is the polar angle of the wave incident on the dipole and Úobs is the
polar angle in the direction of the receiver. The derivation of Eq. (5.5) is given
in Appendix B.

We can see that for a vertically oriented dipole (Ú = 0◦), Shh = 0 and
Svv = sinÚinc sinÚobs, while for a horizontally oriented dipole (Ú = á/2,æ = á/2),
then Shh = 1 and Svv = 0. From this we notice that when Úinc , Úobs and for
a wide range of orientations, the average Shh is higher than the average Svv,
when æ is the same for the transmitter and the receiver.

5.2.3 Ellipsoid Shaped Particle

The scattering from a small ellipsoid can be regarded as an intermediate case
between scattering from a dipole and a sphere. The main direction of the
vertically polarised scattered power is not directed along the Poynting vector
of the incident wave like for the sphere case (Fig. 5.2b) nor perpendicular to
the orientation of the particle main axis like for the dipole case (Fig. 5.3b), but
lies in between depending on the ellipsoid orientation and shape (Fig. 5.4b).
That is because the free charges are not bound to the dipole shape anymore
and are also not free in their movement as in the case of the sphere. They tend
to follow the ellipsoid shape by moving along the long axis.

To model the scattering from a small particle, the particle’s polarisabilities are
considered [91]. The three polarisabilities of a particle are perpendicular to each
other and the particle is symmetric around each of them, such that when the
incident electric field on the particle is parallel to one of the polarisabilities then
the induced dipole moment (the oscillation of the driven harmonically bound
charged particle) is parallel to the polarisability vector too. For an incident
wave of any polarisation, the scattered field is given by the superposition of the
wave scattered on the three polarisabilities, each excited by the projection of
the incident field. In other words the scattering from the ellipsoid is equivalent
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p1 = p2
p1� p2

p1 > p2

(a) Polarisabilities

~Ev

~Eh

(b) Radiation pattern of an ellipsoid over
æinc = æobs = 180o plane

Figure 5.4 Scattering from a small ellipsoid, which is equivalent to the coherent
superposition of the scattering from three short dipoles p1, p2, and p3

to the total scattering from the three short dipoles (polarisabilities) that are
perpendicular to each other and aligned along the principle axes of the ellipsoid
as shown in Fig. 5.4a. Accordingly, the scattered wave from the ellipsoid is
obtained by

[E(Ú,Úinc,Úobs,æ)] =

[
SE

hh SE
hv

SE
vh SE

vv

]
=p1 · [H(Ú,Úinc,Úobs,æ)]

+ p2 · [H(Ú + á/2,Úinc,Úobs,æ)]

+ p2 · [H(Ú + á/2,Úinc,Úobs,æ+ á/2)] ,

(5.6)

where p1 is the polarisability parallel to the main axis of the ellipsoid, while
p2 = p3 are the polarisabilities of each of the minor axes.
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By substituting [H(.)] from Eq. (5.4), the elements of the scattering matrix
can be written as

SE
hh =

(1− cos2æ)(1− cos2Ú)(p1 − p2) + 4p2

4
,

SE
hv =

(
sin2æcosÚobs

1− cos2Ú
4

− sinæsinÚobs
sin2Ú

2

)
(p1 − p2),

SE
vh =

(
sin2æcosÚinc

1− cos2Ú
4

− sinæsinÚinc
sin2Ú

2

)
(p1 − p2),

SE
vv =cosÚinc cosÚobs

(1 + cos2æ)(1− cos2Ú)(p1 − p2) + 4p2

4

− sin(Úinc +Úobs)cosæ
sin2Ú

2
(p1 − p2)

+ sinÚinc sinÚobs
(p1 + p2) + (p1 − p2)cos2Ú

2
.

(5.7)

The particle anisotropy Ap = p1/p2 describes the shape of the particle. Spherical
particles are given by Ap = 1: the superposition of three equal polarisabilities
yield to a scattering similar to the one described in Eq. (5.3). A value of
Ap > 1 describes prolate shapes (needle like), while Ap < 1 describes oblate
shapes (disc like).

The spheroid scattering equation is more complex than the equations for
sphere and dipole, but it covers a more realistic and a wider variation of particle
shapes. The power scattered from an ellipsoid is considered similar to the power
scattered from a Rayleigh sphere (Eq. (5.3)) and from a dipole both are of the
same characteristic dimension. The shape of the ellipsoid only influences the
polarimetric signature.

5.3 Mie Scattering

When the particle dimensions are comparable to the wavelength ((x ≈ 3), see
Eq. 5.1) then the field induced on the particle is no longer constant, because of
the different phases of the wave incident on the boundary between the particle
and the background. To obtain the exact formulation of the scattering from
such particles, Maxwell’s equations must be solved across the boundary between
the particle and the background material. The solution is rather complex.
In general it shows that when the particle size increases, then the forward
scattering will dominate over the backward scattering as shown in Fig. 5.5,
[10].

As discussed in the previous sections the phase difference between the hor-
izontal and vertical backscattering for the Rayleigh case is either 0 or á . For
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5.3. Mie Scattering

Forward scattering

Figure 5.5 Angular distribution of the scattered power for Rayleigh scattering x = 0.1
and Mie scattering x = {1,3,10} [10]

Mie scattering, this phase difference is 0 or á only at Úobs−Úinc = {0,á}, while
a certain shift is expected at other observation angles. Since the particle size
compared to L-band wavelength in ice lies mostly in the Rayleigh scattering
region, Rayleigh scattering is the main focus of this research, and only a brief
description of the polarimetric scattered field for Mie sized objects (sphere,
dipole, and ellipsoid) is presented in the following subsections.

5.3.1 Sphere Shaped Particle

The scattering from a sphere of arbitrary radius and material had been derived
by solving Maxwell’s equation [65]. The solution includes an infinite series that
can be found in [91]. In this sense the Rayleigh solution is an approximation of
the Mie solution that takes into account only the first term of the series: When
the radius of the sphere is considerably smaller than the wavelength then the
Mie scattering acts similar to Rayleigh scattering with a higher forward than
backward scattered power. For larger spherical particles, the scattering pattern
is more complex with several zeros and sidelobes, which can be seen by solving
the Mie series.

5.3.2 Dipole Shaped Particle

The concept of traveling wave antennas can describe the scattering from a
long dipole [73]. Since the dipole is long, the induced current is not constant,
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Chapter 5. Particle and Volume Scattering

but has a certain change of phase due to the different propagation distance of
the incident wave. The changing phase in the induced current for a vertically
oriented dipole can be written as

I(z) = I exp
(
j
2á
Ý

z cosÚinc

)
, (5.8)

where z is between −l/2 and l/2 and l is the length of the dipole. In this sense,
the scattered wave is proportional to the spatial Fourier inverse of the surface
current on the dipole, which is also known as the radiation vector [73]

Evv,Hvv ∝ jk
e jkr

4ár
sinÚ

∫ l/2

−l/2
I(z)e jkz cosÚdz. (5.9)

In the case of long dipole, I(z) in Eq. (5.8) is substituted in Eq. (5.9) and this
leads to

Evv,Hvv ∝sinÚ
∫ l/2

−l/2
Ie jkz cosÚince jkz cosÚdz

= lI sinÚ ·
sin

(
kl
2 (cosÚinc + cosÚ)

)

kl
2 (cosÚinc + cosÚ)

.

(5.10)

The phase shift in the induced current is described by the exponent term
j2á/Ýz cosÚinc, and corresponds to a sin(x)/x function in the angular distri-
bution, where the sin(x)/x peak is at Ú = á − Úinc and Ú = á + Úinc. The
cos-function within the sin(x)/x widen the maximum of the main lobe, and
increases the slope at the edge of the main lobe. The resulting beam is shown
in Fig. 5.6. Equation (5.10) also contains an angle (Úobs, Úinc) dependent
phase term.

Due to the directivity of the long dipole, a random volume of long dipoles
has a larger scattering in the forward direction of the whole volume than the
backward direction.

The scattering from a short dipole is an approximation of the general ap-
proach for the long dipole with consideration of the impulse like spatial distri-
bution of the induced current on the short dipole I(z) = Ö(z). In this sense, the
integral becomes a uniform function and Evv,Hvv ∝ sinÚ. This is the angular
distribution observed in Section 5.2.2.

5.3.3 Ellipsoid Shaped Particle

Ellipsoid scattering is expected to behave as an intermediate case between a
dipole and a sphere scattering. Solving Maxwell’s equations on the boundary of
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Figure 5.6 Radiation pattern of a long dipole

the ellipsoid (or using numerical programs to do so) leads to an exact solution.
Further investigations regarding modelling the ellipsoid with long dipoles will
not be treated in this work.

5.4 Coherency Matrix for a Cloud of Particles

Because particles do not normally exist alone, investigating a cloud contain-
ing particles of different sizes, shapes and orientations is required. The total
scattering is given by the sum of the scattering from all particles, where each
one has a different phase. Thus the scattered electric field for the arrangement
shown in Fig. 5.7 can be calculated as follows [91]

Es = Ei [S]
¼ 1

jkr
e jk(x2+y2)/2r . (5.11)

where [S] is the single particle scattering matrix, x and y are the two dimen-
sional displacement of the single particle within the volume from the shortest
path between the incident wave and the receiver. The sum can be replaced with
an integral over the volume dimensions and hence the electric field is calculated
as

Es = Ei
2á
k2

Nl [S] , (5.12)
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Figure 5.7 Scattering from a distributed volume of particles

where N is the volume density and l the thickness of the volume layer. The mag-
netic field is equivalent to the electric field divided by the free space impedance
(i.e. H = E/Ù), with a direction that is perpendicular to the electric field and
the propagation direction.

The power scattered by the volume depends on the volume density, depth, the
wavelength and the scattering of the single particle. Equation (5.3) indicates
that the scattering from a single particle depends mainly of the particle size
and on the material’s dielectric properties, while the particle shape influences
only the polarimetric signature of the scattered field.

By evaluating the entropy-alpha values obtained from the eigen-
decomposition of the coherency matrices introduced in Section 2.4, the
polarimetric signature is characterized. For small particles, the scattering
matrix in Eq. (5.6) is used to calculate the coherency matrix. By setting
p1 = p2 = p3 in the equation the scattering matrix of a sphere is obtained,
while the dipole coherency matrix corresponds to p1 = 1, p2 = p3 = 0. Substi-
tuting Úobs and Úinc by the local incident angle ÚL, the volume backscattering
for the monostatic case is obtained. Then the corresponding coherency matrix
is calculated according to Eq. (2.7). The averaging in the equation is done
here by integrating over different orientation angles

[TV] =
∫ 2á

0

∫ Úorientation

0

~kP(Ú,æ) ·~k∗P(Ú,æ) · P(Ú)dÚdæ, P(Ú) =
sinÚ
4á

, (5.13)

where P(Ú) is the probability density function of the orientation angle of the
dipoles in the volume. The integral covers the upper half of a sphere. The
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Figure 5.8 Entropy–alpha distribution for the backscattering from a volume of el-
lipsoids at 90◦ local incident angle, where the red colour indicates the
change in shape from dipoles (dark red) to spheres (bright red) and blue
the change in orientation from totally oriented (dark blue) to randomly
oriented (bright blue) particles

probability density of the orientation angles presented in Eq. (5.13) maintains
a homogeneous (uniform) distribution of orientations in the 3D space.

By applying the above described integration, the coherency matrix for the
volume backscattering can be obtained for any local incident angle, orientation
distribution, and particle shape. The resulting entropy-alpha distribution of the
volume scattering for 90◦ local incident angle is presented in Fig. 5.8. The red
color indicates a spherical shaped particle (lower Ap, where Ap ∈ [1,∞)), and
the blue color indicates a rather randomly oriented volume (higher Úorientation,
where Úorientation ∈ [0◦,90◦]). The plot is similar to the one obtained in [12],
which indicates that both approaches are almost equivalent. The plot shows
that the alpha value depends mainly on the particle shape, while it remains
widely independent of the width of the orientation distribution, that is influ-
encing the entropy value.

Different local incident angles do not really influence the power scattered
from the volume, contrary to the surface backscattering whose power drops fast
with increasing local incident angle. The alpha value for the volume slightly
decreases for larger local incident angles, but it shows a higher independency
from the local incident angle when the volume is more random (the region of
the maximum entropy line), as can be seen in Fig. 5.9 in comparison to Fig.
5.8.
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Figure 5.9 Entropy–alpha distribution for the backscattering from a volume of el-
lipsoids at 25◦ local incident angle for the same samples shown in the
previous figure

The large particles act similar to the small particles regarding the volume
backscattering in the monostatic case. For the bistatic case and for second
order scattering, the sin(x)/x radiation pattern described in Eq. (5.10) is
required for calculating the Pauli vector.

This approach of calculating the volume scattering can be adapted to calcu-
late any volume distribution. By substituting Úinc with the local incident angle
of the transmitter and Úobs with the local incident angle of the receiver, the
volume scattering for the bistatic case is obtained.
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Chapter 6

Multiple Scattering (Dihedral Backscattering)

When a wave is scattered by only one localised scattering centre, the process
is called single scattering. In the presence of several scattering centres, the
wave can undergo several scattering interactions before being received, which
is known as multiple scattering. The coherency matrix for this process is not
the sum of the particles’ coherency matrices nor the multiplication, as the
interaction process has a coherent polarimetric effect. Therefore the scattering
matrix for the multiple scattering process is considered before generating the
corresponding coherency matrix of geometrically distributed scatterers.

With the presence of a subsurface under a volume, multiple scattering can
occur as a scattering at a particle in the volume combined with a reflection
at the subsurface interface. Such second-order scattering contributions can be
as large as or even larger than the single scattering contributions of volume or
surface backscattering, as the specular reflection at the subsurface can have
negligible losses. Hence the second order scattering can not be ignored in
modelling a two-layer structure. In certain applications, for example in [6], it is
possible to observe the multiple scattering separated from the single scattering,
such that its impact on the total backscattering can be demonstrated.

For a side-looking SAR system, a commonly observed second-order scattering
mechanism specially in urban areas and forests is the dihedral. Therefore the
same term dihedral backscattering is used here to refer to the backscattering
from a volume scattering that is reflected back by the subsurface. Due to the
decreased power of higher order scattering contributions, terms of higher order
than two are not considered in the following.

The formulation of the volume-subsurface backscattering considers the co-
herent addition of the scattering from first subsurface then particle and first
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particle then subsurface components. The calculation of the backscattering
from a volume of spheres and a subsurface is introduced first, then for volumes
of dipoles and ellipsoids. In the last section of this chapter, the fact that the
particles are geometrically distributed is considered in calculating the coherency
matrix and the power backscattered from this scattering mechanism.

6.1 Sphere Shaped Particles

The scattering from the sphere is presented in Eq. (5.3). The part of the scat-
tered power that participates in the dihedral scattering is the one whose specular
reflection from the subsurface is directed to the receiver. By considering a flat
subsurface, the scattering from the volume that is reflected back to the mono-
static radar is the portion that is directed to the angle Úobs = á−ÚL, such that
the angle between the incident and the observed wave is Úobs−Úinc = á−2ÚL.
From the above, the scattering matrix of a dihedral which consists of a sphere
and a subsurface that is normalised to the backscattered electric field from the
sphere one can be written as



SD,S

hh SD,S
hv

SD,S
vh SD,S

vv


 =

[
R⊥ 0
0 R‖ cos(á −2ÚL)

]
, (6.1)

where R⊥, R‖ are the Fresnel coefficients for the subsurface interface.
From this equation, we can see that the backscattering from the particle-

subsurface interaction has a larger horizontal backscattering than vertical, as
the cosine function is smaller than 1 and |R‖| < |R⊥|. Since usually R⊥ is
negative and R‖ is positive, as can be seen in Eq. (2.27), Shh and Svv are
in phase for ÚL < 45◦ as the cosine term is negative, and they are out of
phase when ÚL > 45◦, as shown in Fig. 6.1. The scattering from the sphere
which contributes in the dihedral backscattering for local incident angles larger
than 45◦ corresponds to the backward lobe of the Rayleigh scattering angular
pattern from the sphere, hence the total co-polar phase difference is 180◦
which is similar to the conventional dihedral scattering introduced in Section
2.5.2.

For a cloud of spheres, the scattering from it followed by the reflection at the
subsurface does not depolarise and corresponds to a zero entropy value and zero
cross-polarization component, since a sphere is symmetric and does not change
its backscattering with orientation. Figure 6.2 shows the simulated dihedral
backscattering (volume of spheres – surface), where the Fresnel coefficients are
assumed to be (1,−1). The parameters for the plots can be obtained from the
coherency matrix that will be explained in detail in Sec. 6.4. The results are
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Figure 6.1 The dihedral backscattering from a single sphere and a surface.
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Figure 6.2 Simulated dihedral backscattering (cloud of small spheres – surface), Fres-
nel coefficients are assumed to be (1,−1)

shown here to illustrate the effect of the specific particle shape on the response
of the dihedral. The particle-subsurface dihedral mechanism induces a larger
horizontal backscattering than the vertical and both components are in phase
for ÚL < 45◦.

The dihedral component from a scattering from a large sphere first and then
a specular reflection from the subsurface can contribute with larger backscat-
tering than the direct backscattering from the large sphere itself. This can
occur when the dimensions of the sphere are in the range of the electromag-
netic wavelength, such that Mie scattering theory applies. With Mie theroy the
scattering from the forward lobe can have a larger power than the scattering
from the backward lobe, as explained in Section 5.3, and when the contrast of
the permittivity on the subsurface interface is large then most of the power is
reflected back in a specular reflection, as shown in Fig. 6.3. The backscatter-
ing from this dihedral component has a higher power, when the Mie scattering
and specular reflection compensate for the extra propagation attenuation that
influences the dihedral backscattering due to the longer propagation path.

6.2 Dipole Shaped Particles

As shown in the previous chapter and particularly in Fig. 5.8 and 5.9 the main
difference between the scattering from a cloud of dipoles and a cloud of spheres
is the depolarisation induced by of the dipole scattering leading to a higher
entropy, and the dependency of the scattering on the dipole orientation, since
its shape is not symmetric for every orientation. The dihedral backscattering
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Figure 6.3 Schematic drawing to clarify the possibility of higher backscattering con-
tribution from dihedral of large sphere–subsurface than backscattering
from the sphere alone, see also Fig. 5.5 for the sphere radiation pattern.

of a particle and subsurface can occur as a sequence of scattering at a particle
in the volume followed by the specular reflection at the subsurface interface.
The same particle scatters back another portion of the electromagnetic wave
but in the reverse order. To obtain the correct scattering matrix for a dihedral
of a single dipole and the subsurface, both scattering from first dipole then
subsurface and first subsurface then dipole are added coherently to each other
[11]. Fig. 6.4 shows the two paths, whose scattering are added to obtain the
dihedral scattering.

The scattering from a cloud of dipoles had been clarified in Section 5.2.2, Sec-
tion 5.3.2 and 5.4. A uniform orientation distribution is assumed in Section 5.4
for calculating the backscattering from both a cloud of long and short dipoles.
The same assumption is considered in calculating the dihedral scattering from
short dipoles, while for the long dipoles case the mask introduced in Section
5.3.2 influences the distribution of the dipoles that effectively contribute to the
dihedral backscattering.

Because of the difference in the distribution of the effective orientation be-
tween long and short dipoles, their dihedral scattering will be discussed sepa-
rately.
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Path 2 Path 1
ÚL

(a) Contributing short dipoles

Path 2 Path 1
ÚL

(b) Contributing long dipoles

Figure 6.4 Schematic representations of the dipoles contributing to the dihedral
backscattering. The contribution of the two propagation paths, repre-
sented by the red arrows, are added coherently.

6.2.1 Short Dipole

The direction of the main scattering from a single dipole is perpendicular to
the dipole orientation and unlike the long dipoles, the two scattering lobes are
wide and, therefore all dipole particles within the volume are considered in the
mathematical formulation of the dihedral scattering.

For an electromagnetic wave encountering a dipole at Úinc = ÚL, the wave
scattered at an angle Úobs = á −ÚL is reflected by the subsurface back to the
radar. This component is added coherently to the component scattered at the
angle Úobs = ÚL from a dipole excited by the wave reflected at the subsurface.
This wave reflected at the subsurface encounters the dipole at an angle of
á −ÚL. Therefore the two paths shown in Fig. 6.4 sum up to



SD,H

hh SD,H
hv

SD,H
vh SD,H

vv


 =

1
2

[
R⊥ 0
0 R‖

]T
[H(Ú,æ)]

∣∣∣ Úinc=ÚL
Úobs=á−ÚL

+
1
2

[H(Ú,æ)]
∣∣∣Úinc=á−ÚL
Úobs=ÚL

[
R⊥ 0
0 R‖

]
,

(6.2)

where the [H(.)] matrix is the normalised scattering matrix of a single dipole
discussed in Section 5.2.2, Eq. (5.4). The factor 1/2 results from averaging the
two paths of the dihedral backscattering.
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Figure 6.5 Simulated dihedral backscattering (cloud of random short dipoles–
surface), Fresnel coefficients are assumed to be (1,−1), see Fig. 6.2.

Then the elements of the scattering matrix can be written as

SD ,H
hh =R⊥

(1− cos2æ)(1− cos2Ú)
4

SD ,H
vh =SD ,H

hv = (R⊥ − R‖)sin2æcosÚL
1− cos2Ú

8
− (R⊥ + R‖)sinæsinÚL

sin2Ú
4

SD ,H
vv =

R‖
2

(
−cos2ÚL

(1 + cos2æ)(1− cos2Ú)
2

+ sin2ÚL(1 + cos2Ú)

)
.

(6.3)

The scattering from this dihedral mechanism shows a significant cross-
polarisation power that depends of the dipole orientation.

For a cloud of dipoles, due to their non-symmetrical shape, in the case of
statistically distributed orientation, a high entropy is expected for the dihedral
backscattering from a cloud of dipoles and a subsurface. As an example, Fig.
6.5 shows the simulated backscattering of a dihedral (volume of dipoles –
surface), where the Fresnel coefficients are assumed to be (1,−1) and the
dipoles are assumed to be randomly oriented (orientation distribution width
Úorientation = á/2). The coherency matrix can be obtained according to Sec.
6.4, specifically Eq. (6.9). The results are shown here to illustrate the effect
of the specific particle shape on the response of the dihedral. The distribution
is similar to the illustration shown in Fig. 6.4a. The dihedral scattering in
this case, shows a zero phase between horizontal and vertical backscattering at
local incident angles lower than 45◦ and is out of phase for larger local incident
angles, which is similar to the case of a dihedral formed by a cloud of spheres
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and the subsurface discussed in the previous section, because the total average
of the scattering for a completely random volume of dipoles includes more
scattering from the forward lobe of the dipoles than from the backward lobe
for smaller angles. If the volume is more vertically oriented, the co-polarization
component will be out of phase at smaller local incident angles, as more dipoles
will contribute with scattering from the backward lobe than the forward lobe.

The dihedral scattering from a volume of dipoles in combination with a
subsurface backscatters more horizontally than vertically polarised power, and
results in a zero co-polarization phase for small local incident angles. The scat-
tering has a non-zero cross-polarisation backscattering and a small coherency
between the co-polarisation channels. In general this scattering shows a high
entropy value.

6.2.2 Long Dipole

The scattering from a vertically oriented long dipole is directed mainly towards
á−Úinc, as has been shown in Section 5.3.2. If the dipole is tilted by an angle ä
to the line of sight then the beam will be directed to á−ÚL +2ä, and the main
power scattered by the long dipole is not reflected back to the radar system by
the subsurface. Because of this directivity, dipoles that are tilted in the line of
sight direction contribute with lower dihedral backscattering than dipoles titled
with the same angle but around the line of sight.

A simplified approach to calculate the backscattered polarimetric signature
from this dihedral mechanism is proposed here which uses the short dipole
approach, but considers a different volume distribution as illustrated in Fig.
6.4. The following coordinate system, shown in Fig. 6.6, is used to describe
the distribution of the effective volume in a clearer way.

The scattering matrix for a single dipole in this system is equivalent to the
scattering matrix of a single dipole in the system shown in Fig. 5.2 for a short
dipole, but with replacing Ú from the coordinate system of Fig. 5.2 by æ and
substituting æ by á/2−Ú.

With this system two distribution widths for the dipole orientation can be
modelled. The angle æorientation in this system corresponds to the physical
orientation distribution of the dipoles, while Úorientation represents the effective
orientation distribution of the dipoles around Ú = á/2 in the line of sight di-
rection. The effective orientation distribution is always less than the physical
orientation distribution Úorientation < æorientation and even much less for longer
dipoles, as the beam is more directed and the effective volume is less distributed
in the line of sight direction.

For very long dipoles the main beam is narrow and only dipoles located in the
plane perpendicular to the subsurface and perpendicular to the incident plane
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(a) The rotated spherical coordinate system
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(b) Two long dipoles in the center of a coordinate system oriented one on
æ = æ1 and the other on Ú = Ú2 angles

Figure 6.6 Adapted coordinate system for the long dipoles/ellipsoids which can de-
scribe the distribution of the effective volume along the line of sight ~eÚ
and around it ~eæ.

87



Chapter 6. Multiple Scattering (Dihedral Backscattering)

of the wave on the subsurface, that is clarified in Section 4.2.1, contribute to
the dihedral backscattering. Therefore the effective volume distribution is only
the one shown in Fig. 6.4b. Only this portion of the volume contributes to the
dihedral backscattering, while the rest of the volume scatters the wave away
from a monostatic receiver. Therefore the scattering matrix for a dihedral of
single very long dipole and a subsurface is calculated according to



SD,L

hh SD,L
hv

SD,L
vh SD,L

vv


 ∝



SD,H

hh SD,H
hv

SD,H
vh SD,H

vv




∣∣∣∣∣∣∣æ=á/2
Ú=æ

= ØD,L




R⊥(1− cos2æ) −(R⊥ + R‖)sinÚL
sin2æ

2
−(R⊥ + R‖)sinÚL

sin2æ
2 R‖ sin2ÚL(1 + cos2æ)


 ,

(6.4)

where ØD,L is a normalisation factor for the scattered electric field.
For a cloud of long dipoles, since the effective volume of long dipoles is

more vertically oriented than for short dipoles, the dihedral backscattering con-
tains a stronger contribution from the backward lobe than from the forward
lobe of the dipoles. Accordingly, long dipoles contribute with co-polarization
backscattering that is out of phase. Figure 6.7 shows the simulated backscat-
tering of a dihedral formed by a volume of very long dipoles and a subsurface
(Úorientation = 0), where the Fresnel coefficients are assumed to be (1,−1) and
the dipoles are assumed to be randomly distributed (orientation distribution
width æorientation = á/2). The coherency matrix can be obtained according to
Sec. 6.4, specifically Eq. (6.12). The results are shown here to illustrate the
effect of the specific particle shape on the response of the dihedral.

The scattering from a dihedral formed by a volume of long dipoles and the
subsurface is almost similar to the scattering of a conventional dihedral, where
the horizontal backscattering is larger than the vertical one and out of phase.
The cross-polarisation backscattering component is proportional to the sum
of the Fresnel coefficients as shown in Eq. (6.4), and it is equal to zero in
this example, because of the preassumption of the Fresnel coefficients. This
effective volume approach in modelling the backscattering from the dihedral of
a volume of long dipoles and a subsurface is a simple way to approximate the
backscattering, which can use the same approach as for short dipoles but with
a different spatial distribution of the volume.

6.3 Ellipsoid Shaped Particles

The dihedral scattering from a volume of ellipsoids and the subsurface has
properties that are between the dihedral formed by a cloud of spheres interacting
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Figure 6.7 Simulated dihedral backscattering (cloud of random long dipoles–surface),
Fresnel coefficients are assumed to be (1,−1)

with the subsurface and the version with a cloud of dipoles and a subsurface. As
mentioned in Chapter 5 the ellipsoid scattering is equivalent to the superposition
of the scattering from the three polarisabilities of the ellipsoid as shown in Eq.
(5.6). For the dihedral backscattering from an ellipsoid and a subsurface, the
scattering from an ellipsoid to the subsurface direction, that is reflected back
to the sensor, is added coherently to the scattering from the same ellipsoid in
the direction of the sensor that has been excited by the wave reflected on the

Path 2 Path 1
ÚL

Figure 6.8 Schematic representations of the small ellipsoids contributing to the di-
hedral backscattering. The contribution of the two propagation paths,
represented by the red arrows, are added coherently.
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subsurface as shown in Fig. 6.8. Therefore the backscattering from a dihedral
of a single ellipsoid and the subsurface is obtained by the following equation



SD,E

hh SD,E
hv

SD,E
vh SD,E

vv


 =

1
2

[
R⊥ 0
0 R‖

]T
[E(Ú,æ)]

∣∣∣ Úinc=ÚL
Úobs=á−ÚL

+
1
2

[E(Ú,æ)]
∣∣∣Úinc=á−ÚL
Úobs=ÚL

[
R⊥ 0
0 R‖

]
,

(6.5)

where [E(Ú,Úinc,Úobs,æ)] is the scattering matrix for an ellipsoid as shown in
Eq. (5.6), such that

SD ,E
hh =R⊥

(1− cos2æ)(1− cos2Ú)(p1 − p2) + 4p2

4

SD ,E
vh =SD ,E

hv =
(
(R⊥ − R‖)sin2æcosÚL

1− cos2Ú
8

−(R⊥ + R‖)sinæsinÚL
sin2Ú

4

)
(p1 − p2)

SD ,E
vv =

R‖
2

(
−cos2ÚL

(1 + cos2æ)(1− cos2Ú)(p1 − p2) + 4p2

2

+sin2ÚL((p1 + p2) + (p1 − p2)cos2Ú)
)
.

(6.6)

For a cloud of ellipsoids, Fig. 6.9 shows the simulated backscattering of
a dihedral (volume of ellipsoids–surface), where the Fresnel coefficients are
assumed to be (1,−1) and the ellipsoids are assumed to be randomly oriented.
The coherency matrix can be obtained according to Sec. 6.4. The results are
shown here to illustrate the effect of the specific particle shape on the response
of the dihedral. The particle shape is defined by Ap = 3. The plots show values
that lay between the curves obtained with a dihedral of a volume of dipoles
and a surface and the one of a volume of spheres and a surface. The horizontal
is still larger than the vertical backscattering, and the co-polarisation phase at
small local incident angles is zero.

For the dihedral of a volume of large ellipsoids and the subsurface the same
approach as discussed for the long dipole can be used to estimate the dihedral
scattering and only a portion of the volume is considered according to the
geometry clarified in Fig. 6.6. The single ellipsoid scattering matrix in the
geometry of Fig. 6.6 is similar to the one shown in Eq. (6.6) with substituting
Ú by æ and æ by á/2−Ú.
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Figure 6.9 Simulated dihedral backscattering (cloud of small random ellipsoids (Ap =
3) –surface), Fresnel coefficients are assumed to be (1,−1)

6.4 Coherency Matrix for a Dihedral of a Cloud of
Particles and a Subsurface

The power backscattered from the mechanism using a cloud of particles and a
subsurface is equivalent to the power backscattered from the volume with an
attenuation arising from the propagation through the volume and a reflection
at the subsurface, as shown in Eq. (6.7). As the experimental data show a zero
copolar phase shift, the extinction through the volume is neglected assuming
small particles compared to the wavelength and distributed in a layer of only
one metre and a half thickness (small depth).

ãdihedral = |R⊥/‖|2 · e(2kcosÚ)2ã2
rms · ãvolume(Úobs = á −Úinc). (6.7)

At lower frequencies, such as L-band, a roughness in the range of centimetres
is already small enough to drive the exponent term close to one, such that the
attenuation of the forward volume scattering depends mainly on the reflection
coefficients, which are discussed in Section 4.2.1. Therefore the contribution of
the dihedral scattering is highly dependent on the subsurface’s physical prop-
erties.

The polarimetric signature of the dihedral scattering from a volume of el-
lipsoids and a subsurface is evaluated and compared to the polarimetric signa-
ture of a volume scattering by calculating its corresponding coherency matri-
ces according to Eq. (2.13), and the entropy-alpha values are obtained from
eigen-decomposition, discussed in Section 2.4. The averaging for obtaining
the coherency matrix is performed here by integrating over different angles of
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volume orientation, similar to the concept applied in Eq. (5.13), but with the
dihedral scattering matrix instead of the one for the particle backscattering.
The Pauli vector used to evaluate the integral is obtained from the scattering
matrix for the dihedral of an ellipsoid and a subsurface shown in Eq. (6.6). For
the general case regarding particle shape and orientation distribution, a sym-
bolic integration, using a computer algebra package e. g. Maple core [64] for
Matlab, can be performed to obtain numerical results of the coherency matrix.

For the specific case of a random volume of short dipoles with a uniform
orientation distribution reflected back by the subsurface the scattering matrix
in Eq. (6.6) with p1 = 1 and p2 = 0, which is equivalent to Eq. (6.3), is
substituted in Eq. (2.7) to generate the corresponding Pauli vector. Then a
closed form of the coherency matrix, introduced in Eq. (2.13), is obtained by
applying basic integration rules and integrating over different angles of volume
orientation, similar to Eq. (5.13). The upper limit Úorientation in the integration
is set to á/2 to represent a random volume for this case. The solution of the
integral had also been verified using computer algebra program (Maple) [64].
The coherency matrix results as follows:

[
TD ,H

3

]
=

PVolume

2




tD ,H1 tD ,H2 0

tD ,H∗2 tD ,H4 0

0 0 tD ,H6



, (6.8)

where PVolume is the power contribution of the volume backscattering as intro-
duced in Section 2.5.3 and

tD ,H1 =1.5R2⊥ + R‖R⊥
(
1−2cos2ÚL

)
+ R2
‖
(
1.5−4cos2ÚL + 4cos4ÚL

)

tD ,H2 =1.5R2⊥ − R2
‖
(
1.5−4cos2ÚL + 4cos4ÚL

)

tD ,H4 =1.5R2⊥ − R‖R⊥
(
1−2cos2ÚL

)
+ R2
‖
(
1.5−4cos2ÚL + 4cos4ÚL

)

tD ,H6 =0.5R2⊥ + R‖R⊥
(
1−2cos2ÚL

)
+ 0.5R2

‖ .

(6.9)

For large ellipsoids the coordinate system shown in Fig. 6.6 is considered and
the integral is evaluated over the effective volume, clarified in Section 6.2.2 and
6.3, with a homogeneous distribution as shown is the following equation

[Tdihedral] =
∫ á/2+Úorientation

æ=á/2−Úorientation

∫ æorientation

Ú=−æorientation

~kp(Ú,æ) ·~k∗p(Ú,æ) · P(Ú)dÚdæ,

P(Ú) =
sinæ
4á

.

(6.10)
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The vector ~kp in the equation above corresponds to the Pauli vector of a small
ellipsoid. The angles Ú and æ are replaced by æ and á/2 − Ú by changing the
integral limits compared to Eq. (5.13). The integral covers the upper half of a
sphere.

The coherency matrix for the backscattering for the specific case of a ran-
domly oriented volume of long dipoles reflected back by the subsurface can
be obtained in a closed form by applying basic integration rules and solving
the integral above with the limits æorientation = á/2 and Úorientation = 0. The
solution of the integral had also been verified using computer algebra program
(Maple) [64] and is as follows:

[
TD ,L

3

]
= PD ,L




tD ,L1 tD ,L2 0

tD ,L∗2 tD ,L4 0

0 0 tD ,L6




(6.11)

where PD ,L is the power contribution of the dihedral backscattering from long
dipoles and a subsurface, and

tD ,L1 =1.5R2⊥ + R‖R⊥ sin2ÚL + 1.5R2
‖ sin4ÚL

tD ,L2 =1.5R2⊥ −1.5R2
‖ sin4ÚL

tD ,L4 =1.5R2⊥ − R‖R⊥ sin2ÚL + 1.5R2
‖ sin4ÚL

tD ,L6 =0.5sin2ÚL

(
R‖ + R⊥

)2
.

(6.12)

The entropy-alpha values for the dihedral backscattering from a volume of
small ellipsoids reflected by the subsurface at 25◦ local incident angle and a
large permittivity for the subsurface material (80 + j ·20), referring to water as
discussed in Section 4.1.1, are shown in Fig. 6.10. The points correspond to
the same values for shape and orientation as the points in Fig. 5.8 and 5.9.

In general the points show a larger alpha value, indicating a larger co-
polarization ratio due to the reflection coefficient that increases the horizontal
polarisation compared to the vertical one. The points cover also a wider range
of entropy-alpha values including the region of the conventional double bounce
discussed in Section 2.4.2. This region is covered by a volume of vertically
highly oriented, almost dipole shaped particles as the dihedral backscattering
includes more scattering from the backward scattering lobe of the particles than
from the forward scattering lobe and the co-polarization backscattering is out
of phase, see Section 6.2.1. Because of the influence of the backward/forward
lobe contributions in the dihedral scattering mechanism, the alpha value is
highly dependent on both the shape and the orientation distribution of the
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Figure 6.10 Entropy–alpha distribuition for the dihedral backscattering of a cloud
of small ellipsoids-subsurface at 25◦ local incident angle and subsurface
permittivity of (80 + j · 20), where the red colour indicates the shape
from dipole (dark red) to spheres (bright red) and blue describes the
orientation from totally oriented (dark blue) to randomly oriented (bright
blue) particles

particles, unlike the volume backscattering whose alpha is mainly dependent
on the particle shape.

Some areas of the entropy-alpha distribution of this dihedral mechanism
overlap with areas covered by the backscattering from the volume. Nevertheless
the backscattering here is different as it has a higher backscattering from the
horizontal polarisation than the vertical polarisation. This higher ratio of Shh/Svv

than expected for a Bragg surface and a partially vertically oriented volume
is also observed in ALOS data, as discussed in Chapter 3. Therefore this
scattering mechanism plays a significant role in the backscattering from the
subarctic lakes.
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Chapter 7

Two-Layer Structure Ice–Subsurface: Theoretical
Model and Observed Data

This chapter addresses the complete polarimetric backscattering model for the
shallow subarctic lakes. The model considers the three main scattering mech-
anisms as presented in Chapters 4, 5, and 6: subsurface scattering from the
ice/water or ice/frozen soil interface modelled as an X-Bragg surface backscat-
tering model discussed in Chapter 4; volume backscattering from the methane
bubbles trapped within the ice modelled as cloud of partially vertically oriented
ellipsoids as presented in Chapter 5; and dihedral scattering which is generated
by scattering from the same volume of partially vertically oriented ellipsoids
reflected by the subsurface whose mathematical form was derived in Chapter
6. They occur when ice is present on the lakes and they dominate the backscat-
tering. The total backscattering is the incoherent sum of the backscattering
from those mechanisms with a certain power weighting for each. The power
dependency of the individual scattering mechanism on the physical and geo-
metrical properties is already discussed in Chapters 4, 5, and 6. Combining
the backscattering from these mechanisms considers these dependencies and is
presented in the first part of this chapter.

The forward simulation of the model is performed for different scenarios,
that are grounded/floating ice with high/low inhomogeneity densities within
the ice. Then the simulation results are compared to fully polarimetric L-Band
data that have already been presented in Chapter 3. From those results, an
entropy-alpha colouring scheme is suggested and colour coded maps, that can
distinguish between lakes with floating and grounded ice, are presented in the
last part of this chapter.
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7.1 Model equation

The coherency matrix of the model is obtained by adding the coherency ma-
trices of the three main scattering mechanisms that are subsurface, volume
and dihedral scattering, as shown in Fig. 1.1. As discussed in Chapter 6,
the third scattering mechanism contributes with higher horizontal than vertical
backscattering and a zero phase between them. ALOS data show an increase
in the horizontally polarised backscattering compared to the vertically polarised
during ice presence which has been noticed in Chapter 3, e.g. Fig. 3.10. Since
this increase is not predicted by the subsurface nor the volume contribution,
only the dihedral backscattering (volume-subsurface) can be used to predict
it. Therefore the backscattering from this mechanism can not be neglected
especially when the subsurface is water, which has a high reflectivity.

The backscattering from the surface (air-ice interface) is neglected, as its
power is very low compared to the power backscattered from the ice–water
interface and its polarimetric signature is very similar, such that its influence is
further reduced, as shown Section 4.3.

The total backscattering coherency matrix for the model is

[Ttotal] =PSS




TSS
11 TSS

12 0

T ∗SS
12 TSS

22 0

0 0 TSS
33




+ PV




TV
11 TV

12 0

T ∗V12 TV
22 0

0 0 TV
33




+ PD




TD
11 TD

12 0

T ∗D12 TD
22 0

0 0 TD
33




+ [TN] ,

(7.1)

where each matrix above is normalized to the sum of its eigenvalues.
The first term in the equation corresponds to the backscattering from the

subsurface. The subsurface is assumed to be an X-Bragg interface, since the
X-Bragg model describes well the backscattering from the lakes during summer,
as shown in Section 3.3.1, where only scattering from the air-water interface is
expected. The power backscattered from the subsurface assuming an X-Bragg
model is proportional to the factor PSS and depends on the surface’s geomet-
rical and physical properties as clarified in Section 4.3. The power portion of
the X-Bragg scattering is related to the permittivities of the layers through the
scattering coefficients, shown in Eq. (2.24), as PSS ∼ |R2

h + R2
V |2. The polari-

metric coherency matrix of the X-Bragg depends on the layers’ permittivities
and the distribution width of the subsurface slope angles which is related to
the surface roughness. A preassumption of the permittivities is done according
to Section 4.1.1. A fixed value for the distribution width of the slope angles
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(Ô = 30◦) is assumed for all cases, since it is the predicted value by the X-Bragg
model for the backscattering acquired during summer.

The second term in the equation represents the coherency matrix of the vol-
ume backscattering. Rayleigh scattering is assumed. The power backscattered
is proportional to the factor PV which depends on volume density, layer thick-
ness and the scattering from the single particles as shown in Eq. (5.12) and
Eq. (5.3). The exact knowledge about the volume density and the particle
dimensions is not available, nevertheless the volume backscattered power is ex-
pected to increase with increasing ice thickness. The volume is approximated
by partially vertically oriented ellipsoids as mentioned in Section 1.1, and the
power normalised coherency matrix of the volume backscattering depends on
the particle shape and the orientation distribution. The forward simulations
of the model consider the whole range of particle shapes (between sphere and
dipole) and orientation (between oriented and random distribution). Preas-
sumptions for the particle shape and distribution are not accurate without a
priori knowledge as both may vary from site to site, the same holds for the
particle density.

The third term in Eq. (7.1) corresponds to the coherency matrix of the di-
hedral backscattering from the volume reflected by the subsurface. The power
backscattered from this component PD depends on the specular reflection at
the subsurface and the power scattered by the volume in the direction where
the power is reflected back to the satellite by the subsurface. Hence this
power backscattered by the dihedral component depends mainly on the volume
backscattered power and the permittivities of the layers. The normalised co-
herency matrix in the forward simulation depends on the shape of the particles
in the volume and the orientation distribution which are the same dependencies
than those of the volume coherency matrix.

The last term in Eq. (7.1) is the additive noise consisting of a power coeffi-
cient multiplied by a unitary matrix.

7.2 Scenario Simulation

The model described in the previous section is used to simulate different lake
conditions. The influence of the dihedral mechanism on the backscattering is
better understood when it is observed in combination with the volume backscat-
tering. In the following subsection, the scattering from volume and dihedral
is discussed, and in the second subsection, simulations that consider the full
combination of surface, volume and dihedral are performed.
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7.2.1 Combination of Volume and Dihedral Backscattering

The entropy-alpha distribution of the volume backscattering, dihedral backscat-
tering and the combination of both is shown in Fig. 7.1. The volume backscat-
tering in Fig. 7.1a differs from Fig. 5.9 by including the influence of the trans-
mission through the air–ice interface. In general, the incident angle within the
ice is smaller because of the transmission effects through the air–ice interface
on the electromagnetic wave. Therefore the alpha values in Fig. 7.1a are
smaller than in Fig. 5.9. The dihedral backscattering from the volume contri-
bution reflected by the subsurface is shown in Fig. 7.1b, the left plot considers
water subsurface and the right is for a frozen soil. The dihedral backscattering
in those plots includes the transmission effects, which have not been included
in Fig. 6.10. Similar to the volume, the transmission effects yield to lower
alpha values. The permittivity of the subsurface slightly influences the dihedral
polarimetric backscattering signature due to the relative changes in the Fresnel
coefficients.

The combination of volume and dihedral backscattering has a higher entropy
value compared to the volume backscattering, as shown in the two graphs in
Fig. 7.1c, the left plot considers water subsurface and the right is for frozen
soil. The combined backscattering of volume and dihedral is power weighted.
The power backscattered from the dihedral is assumed to be equal to the power
backscattered from the volume, since Rayleigh scattering with equal backscat-
ter in the forward and backward direction is assumed and the look angles for
the available ALOS data is rather small. Power attenuation through the 2 me-
tres of fresh water ice layer is negligible at low frequencies (L-band) when the
values in Section 4.1.1 are taken into account, and the power scattered from
the volume that is related to the dihedral backscattering is mainly attenuated
by the Fresnel reflection coefficients as described in Section 6.4. Power losses
through reflection on the subsurface due to roughness are also neglected in the
process of dihedral backscattering as the ice–water and ice–lake bed interfaces
are expected to be smooth at L-band and the losses are small compared to
the Fresnel coefficients. Accordingly the dihedral backscattered power is ap-
proximated to be proportional to the average Fresnel coefficient and the power
backscattered by the volume as follows:

PD ≈ PV
(R⊥ + R‖)2

4
. (7.2)

As can be seen in the equation above, the power contribution of the dihedral and
volume backscattering is highly dependent on the permittivity of the subsurface.
The high permittivity of the water yields to a higher dihedral backscattering
contribution which brings an entropy-alpha distribution closer to the line of
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(a) Volume backscattering
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(b) Dihedral backscattering (left: water subsurface, right: soil subsurface)
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(c) Volume + dihedral backscattering (left:water subsurface, right: soil subsurface)

Figure 7.1 Simulation of volume and dihedral backscattering at 25◦ local incident
angle for the same points as in Fig 5.9 and Fig. 6.10.
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maximum entropy compared to a subsurface of frozen soil as can be observed
in Fig. 7.1c.

The dihedral component has a higher absolute value for the coherency be-
tween the Shh − Svv and Svv + Shh channels than the volume backscattering.
This coherency is proportional to the t2 element of the normalised coherency
matrix in Eq. (2.15). This coherency has a positive sign as Shh > Svv, unlike
the coherency of the backscattering from partially vertical oriented prolates
considered here, which has the property Svv > Shh. Because of this higher
coherency with opposite sign, a small contribution from the dihedral backscat-
tering effectively increases the entropy, as the coherency of the total volume
and dihedral contribution is reduced, while the polarimetric ratio Shh/Svv and
alpha angle are only slightly influenced, since the polarimetric ratios are more
power dependent than the coherency. This can also be observed in the right
graph of Fig. 7.1c when compared to Fig. 7.1a. The alpha value is slightly
reduced since the co-polarisation ratio is closer to one and the influence of the
coherency can be clearly observed with the high entropy values that are close
to the line of maximum entropy.

7.2.2 Subsurface, Volume and Dihedral Backscattering Combination

As has been discussed in Chapter 5, the volume backscattering depends mainly
on the bubble size, bubble density and ice thickness, while the subsurface
backscattering as presented in Chapter 4 depends mainly on the subsurface
roughness and permittivity. Because of the wide variety of dependencies, no
practical value based on theory for the subsurface to volume power ratio can
be assumed, at least not based on the current knowledge about the methane
bubbles and the subsurface properties. The lag of a priori knowledge about
this ratio or about the bubbles’ shape and orientation distribution leads to a
non-unique mapping of entropy-alpha values, as for every subsurface to volume
power ratio the same values of entropy and alpha are obtained for different
realisation with respect to the shape of particles and their orientation distribu-
tion.

Figures 7.2a–7.2c show the entropy and alpha distributions for different vol-
ume power contributions (10 %, 25 % and 40 %). The distributions in Fig.
7.2a, 7.2b and 7.2c assume a water subsurface. The distribution in Fig. 7.2a
has a 10 % volume backscattering, the dihedral backscattering contributes with
5 % calculated from Eq. (2.27) and Eq. (7.2), and the remaining 85 % is the
power contribution of the subsurface backscattering. Therefore the distribution
of the points are close to the surface scattering region, defined according to Fig.
2.3 . Figure 7.2d shows the same scenario as Fig. 7.2a, except the change in
the subsurface permittivity where instead of water, soil is assumed. The power
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(a) 10% power backscattered by the vol-
ume with water subsurface.
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(b) 25% power backscattered by the vol-
ume with water subsurface.
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(c) 40% power backscattered by the vol-
ume with water subsurface.
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(d) The same simulation of (a) with soil
subsurface
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(e) The same simulation of (b) with soil
subsurface
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(f) The same simulation of (c) with soil
subsurface

Figure 7.2 Simulation of subsurface, volume and dihedral backscattering at 25◦ local
incident angle for the same set of points regarding shape and orientation
of the particles, but different scenarios regarding lake conditions.
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Water subsurface
Volume power 10 % 25 % 40 %
Dihedral power 5 % 12 % 19 %
Subsurface power 85 % 63 % 41 %

Soil subsurface
Ratio of total backscattered power
for soil to water

0.26 0.38 0.51

Volume power 39 % 65 % 79 %
Dihedral power 3 % 6 % 7 %
Subsurface power 58 % 29 % 14 %

Table 7.1 Obtained power contributions of the different scattering mechanisms for
different given volume power contribution in case of a water subsurface.

backscattered by the subsurface and the power backscattered by the dihedral
are reduced for the lower subsurface permittivity. The change in the power
backscattered by the subsurface due to the different permittivity is summarized
in Eq. (4.4) and obtained for soil as shown in the following equation:

PSS,soil =
(Rh,soil + Rv,soil)2

(Rh,water + Rv,water)2
· PSS,water (7.3)

The dependency of the power backscattered by the dihedral on the physical
properties is shown in Eq. (6.7) and the changes in the power backscattered
by the dihedral for the water subsurface to the dihedral with a soil subsurface
is according to

PD,soil =

( |R⊥,soil|+ |R‖,soil|
|R⊥,water|+ |R‖,water|

)2

· PD,water. (7.4)

From the two equations above, lower powers backscattered by the subsurface
and the dihedral in Fig. 7.2d are obtained. Those lower values of the two
backscattering mechanisms drive the volume backscattered power to be more
dominant and correspond to a higher percentage of power despite that the
absolute power backscattered by the volume does not change from Fig. 7.2a
to Fig. 7.2d. Hence, the volume backscattering in Fig. 7.2d is around 39 %,
the dihedral backscattering is only 3 %, and the subsurface backscattering is
58 %. The total absolute power in the case of Fig. 7.2d is scaled by a factor
of 0.26 compared to the total power in the case of Fig. 7.2a.

The entropy-alpha distribution for the other cases (25 % and 40 % volume
contribution) are also obtained with the same procedure presented above, and
the obtained powers are shown in Tab. 7.1 .
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7.3. Data Interpretation

All the simulations above show that the entropy and alpha values are higher
when the volume is more dominant, therefore grounded ice has higher entropy
and alpha values than floating ice for the same ice properties as the volume
backscattering is more dominant over the subsurface and the dihedral. On the
other hand, the influence of the dihedral backscattering is visible in the floating
ice scenario as high entropy values are obtained for relatively low alpha, such
that the entropy-alpha distribution is closer to the maximum entropy line.

7.3 Data Interpretation

The subarctic lakes are acquired in different conditions during the year, where
for each condition different assumptions for the volume contribution and the
subsurface permittivity are required to model them correctly. During summer
and in the beginning of winter, a small volume contribution from a thin layer
of floating ice is assumed. During winter, a higher volume contribution repre-
senting a thicker ice layer for both floating and grounded ice is assumed.

In this section, the forward simulations for the entropy and alpha values of
different assumptions that match the expected site conditions are performed
and compared with the observed entropy-alpha histograms. The test sites have
been presented in Chapter 3. This comparison can better present the relation
between the physical conditions of the lakes and the observed polarimetric
information.

In the end of this section, a summary of expected properties of the backscat-
tering for different lake conditions is shown in Tab. 7.4

7.3.1 Churchill site

As mentioned in Chapter 3, the summer acquisition over Churchill site shows a
respond that matches the predictions of the X-Bragg surface model. Temper-
ature measurements and ice thickness information close to the test site do not
indicate considerable changes between the two winter acquisitions (23/04/2009
and 10/05/2009).

In general for each of the two acquisitions, the lake samples are divided into
two groups, one with low backscattered power that is assumed to be grounded
ice. The other group has high backscattered power and is assumed to be
floating ice. The distribution of the lakes samples for May data is based on the
separation performed for April data regarding grounded and floating ice, such
that samples do not change groups and can be compared for temporal changes.

The grounded ice group from April data shows an average backscattered
power that is around 0.35 of the average power of the floating ice samples.
The entropy-alpha histogram for the data is shown in Fig 7.3b and 7.3c.
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(a) Histogram of pixel intensities nor-
malised to pixel noise intensity, grey:
low backscattered power (grounded
ice), black: high backscattered power
(floating ice)

(b) Entropy-alpha histogram for floating
ice (high power)

(c) Entropy-alpha histogram for grounded
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(d) Model simulation for 25% volume
contribution, Ap = 3.5 . . .18, and
Úorientation = 4◦ . . .54◦ (water subsur-
face)
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(e) The corresponding simulation to (d)
(soil subsurface)

Figure 7.3 Data evaluation and corresponding simulation for Churchill site
(23/04/2009).
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malised to pixel noise intensity, grey:
grounded ice categorised according to
April observation, black: floating ice
categorised according to April obser-
vation

(b) Entropy-alpha histogram for floating
ice

(c) Entropy-alpha histogram for grounded
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(d) Model simulation for 35% volume
contribution, Ap = 4.5 . . .18, and
Úorientation = 4◦ . . .54◦ (water subsur-
face)
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(e) The corresponding simulation to (d)
(soil subsurface)

Figure 7.4 Data evaluation and corresponding simulation for Churchill site
(10/05/2009).
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According to the analysis presented is Section 7.2, a volume power con-
tribution of 25 % for floating ice, results in a total backscattered power for
grounded ice that has a factor of 0.38 of the power for floating ice. A
certain range of volume orientation and particle shapes is simulated in Fig.
7.3d and 7.3e. The ranges of volume shape (Ap = 3.5 . . .18) and orientation
(Úorientation = 4◦ . . .54◦) are chosen to produce entropy and alpha values that
cover the same range observed in the histogram of the floating ice. Figure
7.3d shows the distribution for the exact same parameters used to produce
Fig. 7.3e but for a soil subsurface instead of water. The simulation does not
highly differentiate between the floating and grounded ice as both simulation
and data do not show high changes for different subsurfaces in this range of
entropy-alpha.

The grounded ice group of the May data shows an average backscattered
power that is 0.46 of the average power of the floating ice samples. The
entropy-alpha histogram for the data is shown in Fig. 7.4b and 7.4c. Using
the same analysis described above, a volume power contribution of 35 % for
floating ice results in a total backscattered power for grounded ice that has
a factor of 0.46 of the power for floating ice. The ranges of volume shape
(Ap = 4.5 . . .18) and orientation (Úorientation = 4◦ . . .54◦) are chosen to produce
entropy and alpha values that cover the same range observed in the histogram
of the floating ice shown in Fig. 7.4b. Figure 7.4e shows the distribution for the
exact parameters used to produce Fig. 7.4d but for a soil subsurface instead
of water. Both simulation results and data show the same tendency, and vary
similarly from floating ice to grounded ice.

7.3.2 Baker Lake site

The entropy-alpha histograms for the lake samples over Baker Lake site are
shown in Fig. 7.5 for both acquisitions (March 15, 2007 and April 30, 2007).
Ice thickness measurements over the Baker Lake show an increase of around
50 cm from March to April, see Fig. 3.4. The temperature measurements
increased after March but it is still below zero in the end of April.

To investigate the change in the entropy-alpha histogram, an initial volume
contribution for floating ice during March is chosen (Scenario 1 and Scenario
2 in Tab. 7.2). From the initial set up of the two scenario, two assumptions
for each scenario are investigated for April. The first one assumes an increase
of 5 % in the volume contribution and the second one is that the subsurface
changes from water to frozen soil.
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(a) March 15, 2007 (b) April 30, 2007

Figure 7.5 Entropy-alpha histogram obtained from ALOS data over Baker Lake site.
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(a) 25% volume contribution (water sub-
surface)
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(b) The corresponding simulation to (a)
for 30% volume
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(c) The corresponding simulation to (a)
for (soil subsurface)

Figure 7.6 Simulated entropy-alpha point distributions for Baker Lake considering
the parameters of scenario 1 in Tab. 7.2.
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(a) 30% volume contribution (water sub-
surface)
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(b) The corresponding simulation to (a)
for 35% volume
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(c) The corresponding simulation to (a)
for (soil subsurface)

Figure 7.7 Simulated entropy-alpha point distributions for Baker Lake considering
the parameters of scenario 2 in Tab. 7.2.
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(a) 25% volume contribution (water sub-
surface)
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(b) The corresponding simulation to (a)
for 30% volume
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(c) The corresponding simulation to (a)
for (soil subsurface)

Figure 7.8 Simulated entropy-alpha point distributions for Baker Lake considering
the parameters of scenario 1 in Tab. 7.2, but for a larger local incident
angle ÚL = 30◦ instead of 25◦, A clearer separation is expected for larger
local incident angles.
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Water subsurface Scenario 1 Scenario 2
Volume power 25 % 30 %
Dihedral power 12 % 14.5 %
Subsurface power 63 % 55.5 %
Úorientation 4◦ −52◦ 4◦ −60◦
Ap 4.5 - 18 4.2 - 18.2

Water subsurface + 5 % volume power
Volume power 30 % 35 %
Dihedral power 14.5 % 17 %
Subsurface power 55.5 % 48 %

Soil subsurface
Ratio of total backscattered power
for soil to water

0.38 0.42

Volume power 65 % 71 %
Dihedral power 6 % 6 %
Subsurface power 28 % 23 %

Table 7.2 Parametres and power contributions of the two different simulated scenar-
ios considered for Baker site.

Volume contributions of 25 % (Fig. 7.6a) and 30 % (Fig. 7.7a) are assumed
and compared with the March acquisition, shown in Fig. 7.5a. With increasing
the volume contribution by 5 % for the same volume shape and orientation,
an entropy-alpha point distribution is obtained and shown in Fig. 7.6b and
7.7b that covers the same region as the data in April. By running the same
simulation of March but with soil subsurface, the entropy-alpha distributions
in Fig. 7.6c and 7.7c are obtained, where the values are larger than what is
obtained from ALOS data during April. Nevertheless the grounded ice region
highly overlaps with the region of ALOS data such that April data can also
be covered by a mixture of grounded and floating ice. The values of volume,
dihedral and surface contribution in addition to the assumed ranges of volume
shapes and orientations are listed in Tab. 7.2.

When the entropy-alpha values are low then the point distributions for varying
parameters are more confined and closer to the maximum entropy line. In this
region the values for floating and grounded ice highly overlap. For larger local
incident angle, the effects of more volume can be better distinguished from
grounded ice as shown in Fig. 7.8, where the same simulation as in Fig. 7.6 is
performed but with a local incident angle of 30◦.
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(a) 11/03/2007 (b) 26/04/2007

Figure 7.9 Entropy-alpha histogram obtained from ALOS data over Inuvik site.

7.3.3 Inuvik site

For the Inuvik site two acquisitions one in March and one at the end of April
are available. Temperature measurements in the area for the days before the
second acquisition were above zero indicating a possible melting process, see
Fig. 3.7. Unfortunately, ice thickness measurements are not available for the
year of the acquisition but similar melting processes are observed in the ice
thickness measurement in the years before the acquisition, occurring at the
beginning of May.

For the SAR data, higher entropy and alpha values with a distribution that is
further away from the maximum entropy line is observed for the first acquisition
compared to the second (Fig. 7.9a and 7.9b). This indicates a change from
grounded ice in the first acquisition to floating ice in the second.

Similar investigations for floating and grounded ice that were referenced on
Churchill and Baker lake region are performed for Inuvik data with an assump-
tion of 40 % and 25 % volume contribution during ice presence and shown in
Fig. 7.10 and Fig. 7.11 respectively. The sets of parameters used for those two
scenarios are summarised in Tab. 7.3. Considering a different volume contribu-
tion results in a different range of particles’ shape and orientation to cover the
same region of entropy-alpha values, but shows similar trend between grounded
and floating ice.

The simulation of 10 % higher volume contribution shown in Fig. 7.10b and
7.11b, do not show a similar correspondence to the data obtained during March
since the entropy-alpha histogram observed by the data is not very close to the
maximum entropy line as well as for the simulation.
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(a) 40% volume contribution (water sub-
surface) compared to April data
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(b) The corresponding simulation to (a)
for 50% volume compared to March
data

M
ea

n 
al

ph
a 

an
gl

e

80

60

40

20

0

Entropy
1.00.80.60.40.20.0

(c) The corresponding simulation to (a)
for (soil subsurface) compared to
March data

Figure 7.10 Simulated entropy-alpha point distributions for Inuvik considering the
parameters of scenario 1 in Tab. 7.3.
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(a) 25% volume contribution (water sub-
surface) compared to April data
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(b) The corresponding simulation to (a)
for 35% volume compared to March
data
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(c) The corresponding simulation to (a)
for (soil subsurface) compared to
March data

Figure 7.11 Simulated entropy-alpha point distributions for Inuvik considering the
parameters of scenario 2 in Tab. 7.3.

113



Chapter 7. Two-Layer Structure Ice–Subsurface

Water subsurface Scenario 1 Scenario 2
Volume power 40 % 25 %
Dihedral power 19 % 12 %
Subsurface power 41 % 63 %
Úorientation 4◦ −50◦ 4◦ −50◦
Ap 3.5 - 18 5.3 - 18.3

Water subsurface + 5 % volume power
Volume power 50 % 35 %
Dihedral power 24 % 17 %
Subsurface power 26 % 48 %

Soil subsurface
Ratio of total backscattered power
for soil to water

0.51 0.38

Volume power 79 % 65 %
Dihedral power 7 % 6 %
Subsurface power 14 % 29 %

Table 7.3 Parametres and power contributions of the two different simulated scenar-
ios considered for Inuvik site.
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(a) 27/11/2008 (b) 28/03/2009

(c) 01/05/2009
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Figure 7.12 Histograms obtained from ALOS data over Lena Delta site, a,b, and c
are entropy-alpha histograms, d is the histogram of t6/t4.

7.3.4 Lena Delta site

While for all other test sites and all acquisition times a strong correlation be-
tween model prediction and experimental data is given, the winter data over
the Lena Delta site are an exception with entropy-alpha values that exceed the
model limits, as shown in Fig. 7.12b, 7.12c. This can also be observed in the
low coherency between the co-polarisation channels in Fig. 3.16b and the low
value of the polarimetric anisotropy in Fig 3.16d. Later winter data over Lena
site show also a lower horizontal to vertical backscattering ratio than the data
obtained during early winter, as can be observed in Fig. 3.16c.

The data show also a high backscattering in the cross-polarization channel,
such that a high value for the t6 element of the coherency matrix, shown in
Eq. (2.15), is observed. The histogram of the measured t6 to t4 ratio is shown
in Fig. 7.12d. It contains values that exceed 1 during late winter acquisitions.
A low coherency between the co-polarisation and cross-polarisation channels
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is also measured indicating a symmetry around the line of sight, as discussed
in Section 2.4. A value of t6 to t4 ratio that is larger than one could not be
predicted by any model that assumes symmetry around the line of sight [58],
even when a volume of large dipoles is considered.

On-site measurements of the physical properties of the ice and lakebed and
maybe a more sophisticated model might be required to explain the measured
backscattering.
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Water subsurface
Volume power 0.1 %−60 %
Dihedral power 0 %−29 %
Subsurface power 99.9 %−11 %
Úorientation 45◦ −30◦
Ap 18

Soil subsurface
Ratio of total backscattered power
for soil to water

0.18−0.67

Volume power 0.6 %−89 %
Dihedral power 0 %−8 %
Subsurface power 99.4 %−3 %

Table 7.5 Parameters for the power contributions considered for the simulation of the
two (floating/grounded lake ice) entropy-alpha lines, shown in Fig. 7.13a.

7.4 Data Representation

As can be concluded from the previous section, the entropy-alpha values depend
on the scattering processes occurring. For a certain range of particle shapes
and orientations within the ice volume of the frozen subarctic lakes, a clear
difference between floating and grounded ice can be observed in measurements
and simulations of the power independent entropy-alpha plane. Therefore an
entropy-alpha colour scheme based on those simulations is suggested and colour
coded maps of the considered ALOS acquisitions are presented and discussed
in this section.

The colour scheme is generated by considering two entropy-alpha lines. One
corresponds to floating ice and the other to grounded ice. The value for the
particle anisotropy (Ap) of the inhomogeneities within the ice layer is assumed
to be 18, a value well within the range covered by all scenarios considered in the
previous section. Note that no remarkable difference is observed compared to
a particle anisotropy of 8. The orientation distribution is assumed to decrease
from 45◦ for a thin ice layer to 30◦ for a thick ice layer, by assuming that a thin
ice layer has more randomness in the orientation of the inhomogeneities, while
they are more oriented in thick ice. This combination of particle anisotropy and
orientation distribution corresponds to entropy and alpha values for different
volume contributions that are close to the maximum entropy line and observed
by most of the data acquired during ice presence.

Figure 7.13a shows the two simulated entropy-alpha lines, where the blue
line corresponds to grounded ice and the red line corresponds to floating ice
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(a) Simulated entropy-alpha lines, red for
floating ice and blue for grounded ice
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(b) The two lines that are used to generate
the colour scheme
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(c) The simulated lines of Fig. 7.13a with
the colour scheme

Figure 7.13 Construction of a colour scheme based on the simulation of subsurface,
volume and dihedral backscattering at 25◦ local incident angle for the
same set of points regarding shape and orientation of the particles, but
different scenarios regarding lake conditions. Blue: thin layer of grounded
ice. Green: medium thickness layer of grounded ice. Red: medium
thickness layer of floating ice. Yellow: thick layer of floating ice.

with a larger dihedral backscattering. Each line is generated by considering
the volume shape and orientation described above, the corresponding subsur-
face permittivity and different contributions of the volume backscattered power
starting from 0.1 % up to 60 % of the total backscattered power for floating
ice. The detailed simulated parameters and power contributions are listed in
Tab. 7.5.

Two new lines are generated from the simulated lines by doubling the distance
between the simulated lines as shown in Fig. 7.13b. The new lines are used
to calculate the colour scheme shown in Fig. 7.13c, such that the colours
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gradually change from one line to the other. This colour scheme assigns a blue
colour to a thin layer of grounded ice as for the case of bare soil lands that
are covered by a thin layer of ice during winter. The red colour is assigned to
a medium thickness layer of floating ice, while the green colour corresponds
to a medium thickness layer of grounded ice (grounded lakes). The yellow
colour corresponds to a thick layer of floating ice, it has to be noted that this
case might not be accurately modelled, as propagation effects which are not
considered here might influence the backscattering significantly.

This model with fixed volume shape and orientation distribution is a sim-
plified approach for representing the complex nature of subarctic lakes, but
nevertheless it can explain the trends observed in ALOS acquisitions, as can be
seen in the following subsections.

7.4.1 Churchill site

The power histogram observed over Churchill site in Fig. 3.10a shows a wide
range of powers over the lakes (around 10 dB range) with two peaks which made
the site a good candidate for dividing the lake samples into two groups, as shown
in Section 7.3.1. One group has low backscattered power and it is assumed to
correspond to grounded ice. The other group has high backscattered power and
is assumed to be floating ice. The entropy-alpha histogram observed during the
winter acquisition (10/05/2009) is in a good agreement with the simulation.
Therefore a close look at the maps of this acquisition is presented here.

The power map of the winter acquisition (10/05/2009) over Churchill site
is shown in Fig. 7.15a and according to this power map the lake samples are
assigned to be either grounded, shown in Fig. 7.14a, or floating ice, shown in
Fig. 7.14b. For each pixel in the maps, entropy, alpha and anisotropy values
can be calculated, as shown in Fig. 7.16a,7.16b, and 7.16c. To implement the
colour scheme in Fig. 7.15b, the colour of each pixel is assigned according to
the entropy and alpha values observed at that pixel after looking up the values
in the colour scheme. The map of Churchill acquisition (10/05/2009) in Fig.
7.15b is generated in this way. In general, bare soil in the entropy-alpha colour
coded maps appears blue during winter, since it is covered by a thin layer of
ice and acts similar to a thin layer of grounded ice. Lakes with floating ice
appear red in addition to parts of the Churchill river as water under a meter
thick layer of ice contributes with more dihedral backscattering than grounded
ice. Some lakes that have not been considered in the preselected samples also
appear red in the power normalised entropy-alpha map, and they correspond
to high power when they are compared to the power map indicating that they
are floating ice. The lake indicated in Fig. 7.15a with a red circle is assigned
according to the observed power to be grounded ice but appears to be floating
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7.4. Data Representation

ice in the entropy-alpha map. Without on-site measurements it is difficult to
conclude about the right interpretation. Lakes with grounded ice appear green
as the backscattering is mostly dominated by the volume backscattering. The
entropy-alpha values for grounded lakes are ambiguous with the values for the
trees as they also appear green in the entropy-alpha map but the scattering
mechanisms occurring at trees are different, which can be observed in the
anisotropy map in Fig. 7.16c, as the lakes and the ground have in general
higher anisotropy than the trees.

The maps of entropy or alpha alone cannot describe the difference between
the two classes of lakes, but the combined information in the entropy and alpha
values can better interpret the observed scatterer.

The entropy-alpha colour coded maps for Churchill site for both winter ac-
quisitions (23/04/2009, and 10/05/2009) are shown in Fig. 7.17a, and 7.17b,
in order to evaluate the temporal changes. For the first winter acquisition some
lakes appear as grounded ice with few inhomogeneities within the ice layer (a
thin layer of ice or few bubbles within the ice). Therefore they are indicated
by blue colour while other lakes show a rather red colour indicating floating
ice condition. The difference between grounded and floating ice is clearer in
the second acquisition as more inhomogeneities are observed within the lake
ice, such that lakes with grounded ice appear green since the backscattering is
dominated by the volume contribution and lakes with floating ice appear more
red compared to the first acquisition as the dihedral backscattering increases.
Hence a clearer difference in the contribution of the dihedral backscattering be-
tween grounded and floating ice is observed in the second available acquisition.
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(a) Samples of lakes
with grounded ice

(b) Samples of lakes
with floating ice

Figure 7.14 SAR image from May 10, 2009 (Pauli image) over Churchill site with
white squares that represent the lake samples.
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��
��

(a) Power map (b) Entropy-alpha colour
coded map

Figure 7.15 SAR image from May 10, 2009, Churchill site. The colour coded map is
generated from the colour scheme shown in Fig. 7.13c.
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(a) Entropy map (b) Alpha map (c) Anisotropy map

Figure 7.16 SAR image from May 10, 2009, Churchill site.
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(a) April 23, 2009 (b) May 10, 2009

Figure 7.17 Entropy-alpha colour coded maps of Churchill site. The maps are gen-
erated from the colour scheme shown in Fig. 7.13c.
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7.4.2 Baker Lake site

k

k

(a) March 15, 2007

k

k

(b) April 30, 2007

Figure 7.18 Entropy-alpha colour coded maps of Baker Lake site. The maps are
generated from the colour scheme shown in Fig. 7.13c.

The entropy-alpha colour coded maps over Baker Lake site for the winter
acquisitions (15/03/2007, 30/04/2007) are shown in Fig. 7.18. The image
of the second acquisition shows a more intensive red and green colour, which
indicates a clear increase in the inhomogeneities within the ice layer as the lakes
show either a larger backscattering from the volume or backscattering from the
dihedral of volume and water subsurface. This increase in the inhomogeneities
can be due to the increase in the ice thickness in the time between the first
and second acquisition, as has been discussed in Section 7.3.2. The lakes
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marked with white circles have floating ice in the first acquisition which became
grounded ice in the second acquisition.

The second acquisition shows black areas in a part of the Baker Lake, which
indicates the presence of scattering mechanisms that correspond to entropy-
alpha values that are not covered by the colour scheme proposed in Fig. 7.13.
This can be due to cracks within the ice layer that can appear in big lakes.

7.4.3 Inuvik site

1

2 3

4

(a) March 11, 2007

1

2 3

4

(b) April 26, 2007

Figure 7.19 Entropy-alpha colour coded maps of Inuvik site. The maps are generated
from the colour scheme shown in Fig. 7.13c.
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The entropy-alpha colour coded maps over Inuvik site for the two acquisitions
in March and end of April are shown in Fig. 7.19. Possible melting occurrence
before the second acquisition is discussed in Section 7.3.3. The melting is also
observed in the entropy-alpha colour coded maps, as several lakes changed
their colour from green indicating grounded ice to red indicating floating ice
condition. Some of those lakes are indicated by the numbers 1 to 4 in Fig. 7.19.
The red lakes during the first acquisition stay red during the second acquisition
as floating ice stays floating. Some relatively large lakes show a black colour
and are not covered by the scattering model proposed.

7.4.4 Lena Delta site

The entropy-alpha colour coded maps from data acquired over Lena Delta are
shown in Fig. 7.20. The early winter acquisition (27/11/2008) shows that
most of the lakes on the northern part of Lena Delta and close to the Laptiv
sea are already frozen to the lakebed, while the lakes that are further to the
south still covered by floating ice since they appear red in the map.

Late winter data (28/03/2009 and 01/05/2009) show several lakes that are
black as they are not covered by the model. Most of the lakes in the first
late winter acquisition (28/03/2009) are red but this does not indicate an
increase in the dihedral backscattering, because the ratio of the horizontal to
vertical co-polarisation channels is less than the ratio measured in the other
two acquisitions of Lena Delta as shown in Fig. 3.16c. Interpretation of the
backscattering from Lena Delta site during late winter is not feasible without
the on-site ground measurements, that lead to an extended model for the lakes.
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(a) November 27, 2008 (b) March 28, 2009 (c) May 01, 2009

Figure 7.20 Entropy-alpha colour coded maps of Lena Delta site. The maps are
generated from the colour scheme shown in Fig. 7.13c.
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Chapter 8

Conclusion

With the purpose of investigating the potential of long wavelength side-looking
SAR in revealing facts about the subsurface within several metres depth, a
model for the polarimetric backscattering was developed and compared to fully
polarimetric L-band data acquired by ALOS-PALSAR over frozen subarctic
lakes. Most of the data were acquired during ice presence where the lakes’
water freezes up to one or two metres.

The data show a noticeable decorrelation between the co-polarisation
backscattering, which indicates a strong contribution of the scattering from the
inhomogeneities within the ice in addition to the backscattering from the ice-
water subsurface. Literature reports several sources of inhomogeneities, such
as crystals and bubbles, but one type of inhomogeneities which is the largest
in size are the methane bubbles. For modelling it, observations of methane
bubbles in lakes, were considered. They clarify that the ice is formed layer by
layer and the bubbles get trapped in the newly formed layer of ice, generating
the column shape structure. The volume backscattering from those structures
was modelled as the Rayleigh backscattering from partially vertically oriented
ellipsoids.

ALOS data show an increase in the horizontally polarised backscattering
correlated with the ice presence. This increase cannot be explained with the
volume backscattering since the partially vertically oriented volume contributes
with a higher vertically than horizontally polarised backscattering. The most
well-known scattering mechanism that corresponds to a higher horizontally than
vertically polarised backscattering is the dihedral backscattering, but it predicts
a co-polarisation phase shift of á which is not observed in the data. Therefore
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the dihedral backscattering from the volume reflected by the subsurface was
evaluated.

The mathematical formulation for the backscattering from this mechanism
has been developed within the frame of the thesis, since there had not been
any closed form that can directly evaluate this scattering. First, the scatter-
ing for a single ellipsoid particle has been derived in the form of a scattering
matrix, which is used to describe its interaction with the subsurface. Then for
the correct polarimetric signature it is essential to consider the two possible
paths for the particle subsurface interaction. Finally, the contribution of the
dihedral mechanism is obtained by statistically averaging over all possible par-
ticles in the volume. The resulting polarimetric backscattering was described
in a coherency matrix. This scattering mechanism predicts a larger horizontally
polarised backscattering than vertically polarised, a zero co-polarisation phase
shift for small local incident angles and a phase shift of á for large incident
angles. This mechanism could describe a great part of the backscattering from
the subarctic lakes.

The final model for the subarctic lakes considered the three main backscat-
tered contributions: subsurface backscattering modelled as X-Bragg subsurface,
volume backscattering, and the dihedral backscattering of a volume above a
subsurface. The power contribution from the dihedral mechanism was assumed
to be equal to the power contribution of the volume attenuated by the reflec-
tion coefficient on the subsurface. This assumption holds only for negligible
propagation losses within the volume layer and a smooth subsurface, which is
expected for the case of subarctic lakes (1 to 2 meters of ice) using L-band.
In this way, the dihedral backscattering depends on the volume characteristics
and the subsurface permittivity, such that the model has the same number
of unknowns as a model that considers the contributions of the subsurface
and volume only. The model is more complex but it can explain far better
the backscattering dependency on the subsurface material (water/soil) and the
observed high value of the polarimetric entropy than other models with only
subsurface and volume.

The model predicts a higher backscattered power from the floating ice than
from the grounded ice, because of the higher contribution from the subsurface
and the dihedral backscattering. Because of the higher backscattered power
from the dihedral mechanism, a higher horizontal to vertical backscattering
ratio is expected for floating ice. The model also predicts a higher entropy
value when the ice is grounded than when the ice is floating for an ice layer
of medium thickness, since the volume contribution is more dominant over
the subsurface and dihedral contribution for the first case. According to the
model, the entropy-alpha combination for grounded ice is further away from
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the entropy-alpha boundary line than the combination for floating ice in the
case of medium thickness.

Simulations based on the model were compared with ALOS data. Over
Churchill site the lake sample were divided into two groups, one with high
backscattered power that was assumed to be floating ice and one with low
backscattered power that was assumed to be grounded ice. The forward sim-
ulation with a water subsurface and a certain range of volume characteristics
matched the observed polarimetric parameters for floating ice lake samples ob-
served by ALOS. The exact same simulation with the identical assumptions was
performed for grounded ice and it matched the observed polarimetric parame-
ters for grounded ice lake samples observed by ALOS. Hence the model shows
the same trend as the observed data for grounded and floating ice. Over Inuvik
site a similar investigation was performed while assuming the first acquisition
to be grounded ice and the second to be floating ice, as ice melting before
the second acquisition was verified by temperature measurements. The model
could explain this temporal change as well.

Sites with very high methane emission form large bubbles (larger than 5 cm)
or even some holes in the ice (hot spots). The examples of such subarctic
lakes are the lakes over Lena Delta site. The polarimetric parameters for those
lakes during later winter exceed the limits predicted by the model, since the
assumption of Rayleigh size inhomogeneities seems not appropriate anymore.
On-site measurements of the physical properties of the ice and lakebed in Lena
Delta site and further investigations are required for further considerations in
modelling the lakes in Lena Delta.

In general, for all the sites except late winter acquisitions over Lena Delta,
the model predicts the same polarimetric backscattering as the observed ALOS
data. The model could also explain the difference in the backscattering for
different states of the lake ice (grounded/floating) and some temporal changes.
The data have also been represented with power independent colour coded
maps, where the temporal changes were also observed. The colour scheme was
generated by applying the model, while considering a specific particle shape
and orientation within the volume.

The applicability of the novel model is not limited to the exclusive scenario of
frozen subarctic lakes. Several other scenarios in remote sensing of natural sites
can be approached with the established scattering model, as the basic struc-
ture of having a surface covered by a volume exists in several different natural
scenarios. An example of such a structure is the vegetation cover observed at
low frequencies, such as P-band. Propagation effects and/or scattering by a
volume of large particles might need to be considered at higher frequencies and
an extended version of this model then might be able to explain the backscat-
tering also at higher frequencies. Another example of a structure of a volume
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above a surface is snow cover [89], [85] observed at C-band. A slightly dif-
ferent model based on the presented one, that considers propagation effects
[14] and/or scattering by a volume of large particles might be able to explain
the backscattering from the snow cover, since a co-polarisation phase shift of
around 10◦ at typically 30◦ incident angle is measured as shown in [38]. Rock
bed covered by sand dunes is another example of a two-layer structure [33],
[56], [75], [55], [76], that is spread on Earth, where the model might be able
to explain the backscattering from it. As most of the nearby planetary objects
beside Earth, for example Moon or Mars, have a dry surface, several meters of
penetration within their upper layer (regolith) is expected at frequencies such
as L-band and P-band [30], [77]. An interpretation of the backscatter of a
possible two-layer structure might reveal facts about their surface and subsur-
face properties in the same way as demonstrated here at the example to frozen
lakes.

For further verifying the model or enhancing it with empirical assumptions,
on-site measurements of bubble density and shape in addition to weather data
can lead to a quantitative evaluation of the model. Such validation might show
the importance of further developing this model and the requirement of enhanc-
ing the model by including higher order scattering mechanisms such as triple
scattering [4]. The trihedral backscattering could predict even higher horizon-
tal than vertical backscattering and a higher backscattered power with a water
subsurface presence. Obtaining on-site measurements together with time series
of fully polarimetric L-band SAR acquisitions, similar to the one performed in
[93], might show clearer the impact of weather and climate changes on the ice
and can demonstrate the potential benefits of a wide SAR coverage for these
areas. Combining fully polarimetric measurements with interferometry [13],
[78], that will be more feasible in future SAR missions [53], [66], might be able
to estimate the volume contribution compared to the subsurface and dihedral
contribution, which is one of the unknowns in the model and it might aid in
further developing the model and in inverting for the subsurface permittivity.
Another possibility to resolve more unknowns in the model might be achieved
through combining different look angles and exploiting the local incident angle
dependency in the model. A possible solution for having different look angles
could be to consider multistatic SAR constellations [54], which would require
the adaption of the model equations starting from the general dipole scattering
matrix in Appendix B, Eq. (B.11) to the multistatic case. Another possibly
powerful way to separate the volume contribution from the subsurface and dihe-
dral contribution might be the application of SAR tomography in combination
with polarimetry, as it allows the separation of multiple phase centres in the
vertical direction. Even the retrieval of volume structure information might be
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possible and would be a promising application, as already demonstrated with
L-band airborne data in [69], [83], [61].
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of P-band synthetic aperture radar applicability and performance for Mars
exploration: Imaging subsurface geology and detecting shallow moisture,”
Journal of Geophysical Research: Planets, vol. 111, no. E6, pp. n/a–n/a,
2006. [Online]. Available: http://dx.doi.org/10.1029/2005JE002528

[78] K. Papathanassiou, “Polarimetric SAR interferometry,” Ph.D. disserta-
tion, DLR Oberpfaffenhofen, 1999.

[79] G. Parrella, N. Al-Kahachi, T. Jagdhuber, I. Hajnsek, and K. Papathanas-
siou,“Ice volume characterization using long-wavelength airborne PolSAR
data,”in IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), July 2012, pp. 3245 –3248.

144

http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html
http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html
www.ece.rutgers.edu/~orfanidi/ewa
www.ece.rutgers.edu/~orfanidi/ewa
http://dx.doi.org/10.1029/2005JE002528


Bibliography

[80] A. Phelps, K. Peterson, and M. Jeffries, “Methane efflux from high-
latitude lakes during spring ice melt,” Journal of Geophysical Research,
vol. 103 (D22), pp. 29 029–29 036, 1998.

[81] G. Picardi, D. Biccari, A. Bazzoni, F. Fois, M. Iorio, R. Seu, P. Melacci,
C. Federico, A. Frigeri, G. Minelli, L. Marinangeli, R. Orosei, D. Cal-
abrese, E. Zampolini, W. Johnson, R. Jordan, J. Plaut, and A. Safaenili,
“Mars advanced radar for subsurface and ionosphere sounding (MARSIS):
subsurface performances evaluation,” in Proceedings of the International
Radar Conference, Sept. 2003, pp. 515 – 521.

[82] G. Picardi, D. Biccari, R. Seu, L. Marinangeli, W. Johnson, R. Jordan,
J. Plaut, A. Safaenili, D. Gurnett, G. Ori, R. Orosei, D. Calabrese, and
E. Zampolini, “Performance and surface scattering models for the Mars
advanced radar for subsurface and ionosphere sounding (MARSIS),”
Planetary and Space Science, vol. 52, no. 1–3, pp. 149 – 156, 2004.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0032063303001831

[83] A. Reigber and A. Moreira,“First demonstration of airborne SAR tomog-
raphy using multibaseline L-band data,”IEEE Transactions on Geoscience
and Remote Sensing, vol. 38, no. 5, pp. 2142 –2152, Sept. 2000.

[84] G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics.
Wiley-VCH, 2004.

[85] E. Santi, M. Brogioni, S. Paloscia, and P. Pampaloni, “Analysis of the
frequency and polarization indexes over snow cover areas by means of
experimental and theoretical data,” in Microwave Radiometry and Re-
mote Sensing of the Environment (MicroRad), 12th Specialist Meeting
on, March 2012, pp. 1 –4.

[86] J. Schneider, G. Grosse, and D. Wagner, “Land cover classification of
tundra environments in the arctic Lena Delta based on Landsat 7 ETM+
data and its application for upscaling of methane emissions,” Remote
Sensing of Environment, vol. 113, no. 2, pp. 380–391, 2009.

[87] J. Sharma, I. Hajnsek, K. Papathanassiou, and A. Moreira,“Polarimetric
decomposition over glacier ice using long-wavelength airborne PolSAR,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1,
pp. 519 –535, Jan. 2011.

[88] M. I. Skolnik, Introduction to Radar Systems. New York: McGraw-Hill
Book Company, 2001.

145

http://www.sciencedirect.com/science/article/pii/S0032063303001831
http://www.sciencedirect.com/science/article/pii/S0032063303001831


Bibliography

[89] L. Tsang, J. Pan, D. Liang, Z. Li, D. Cline, and Y. Tan,“Modeling active
microwave remote sensing of snow using dense media radiative transfer
(DMRT) theory with multiple-scattering effects,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 45, no. 4, pp. 990 –1004, April
2007.

[90] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing
Volume 1. Artech House, 1981.

[91] H. Van De Hulst, Light Scattering by Small Particles. New York: Dover
Publication Inc, 1982.

[92] J. van der Sanden and H. Drouin, “Polarimetric RADARSAT-2 for river
freeze-up monitoring,” http://www.polinsar2011.com/, 2011, [Presenta-
tion slides; online; status: September 21, 2012].

[93] ——,“Satellite SAR observations of river ice cover: A RADARSAT-2 (C-
band) and ALOS PALSAR (L-band) comparison,” in Proceedings 16th
Workshop on the Hydraulics of Ice Covered Rivers, 2011, pp. 179–197.

[94] V. K. Varadan and V. V. Varadan,“Acoustic, electromagnetic and elastic
wave scattering - focus on the T-matrix approach,”in Proceedings of the
International Symposium sponsored by the U.S. Navy and Ohio State
University, 1979.

[95] L. c. v. Vrbka and P. Jungwirth, “Brine rejection from freezing salt
solutions: A molecular dynamics study,” Phys. Rev. Lett., vol. 95,
p. 148501, Sept. 2005. [Online]. Available: http://link.aps.org/doi/10.
1103/PhysRevLett.95.148501

[96] K. M. Walter, M. E. Edwards, G. Grosse, S. A. Zimov, and F. S. Chapin,
“Thermokarst lakes as a source of atmospheric CH4 during the last
deglaciation,” Science, vol. 318, no. 5850, pp. 633–636, 2007.

[97] K. M. Walter, M. Engram, C. Duguay, M. Jeffries, and F. S. Chapin,
“Potential use of synthetic aperture radar (SAR) for estimating methane
ebullition from arctic lakes,” Journal of the American Water Research
Association, vol. 44, no. 2, pp. 305 – 315, 2008.

[98] K. M. Walter, S. A. Zimov, J. P. Chanton, D. Verbyla, and F. S. Chapin,
“Methane bubbling from Siberian thaw lakes as a positive feedback to
climate warming,” Nature, vol. 443, pp. 71–75, 2006.

146

http://www.polinsar2011.com/
http://link.aps.org/doi/10.1103/PhysRevLett.95.148501
http://link.aps.org/doi/10.1103/PhysRevLett.95.148501


Bibliography

[99] M. Watanabe, G. Kadosaki, Y. Kim, M. Ishikawa, K. Kushida,
Y. Sawada, T. Tadono, M. Fukuda, and M. Sato,“Analysis of the sources
of variation in L-band backscatter from terrains with permafrost,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 50, no. 1, pp. 44
–54, Jan. 2012.

[100] W. F. Weeks, A. G. Fountain, M. L. Bryan, and C. Elachi,“Differences in
radar return from ice-covered north slope lakes,” Journal of Geophysical
Research: Oceans, vol. 83, no. C8, pp. 4069–4073, 1978. [Online].
Available: http://dx.doi.org/10.1029/JC083iC08p04069

[101] W. F. Weeks, A. J. Gow, and R. J. Schertler,“Ground-truth observations
of ice-covered north slope lakes imaged by radar,”Cold Regions Research
and Engineering Lab Hanover NH, Tech. Rep. ADA108342, 1981.

[102] W. F. Weeks, P. V. Sellmann, and W. J. Campbell, “Interesting features
of radar imagery of ice-covered north slope lakes,” J. Glaciol., vol. 18,
no. 78, 1977.

[103] K. Wohletz and G. Heiken, Volcanology and Geothermal Energy.
Berkley: University of California Press, 1992, available online:
http://ark.cdlib.org/ark:/13030/ft6v19p151/.

[104] M. Younis and W. Wiesbeck, “SAR with digital beamforming on receive
only,”in Proceedings International Geoscience and Remote Sensing Sym-
posium, vol. 3, 1999, pp. 1773 –1775 vol.3.

147

http://dx.doi.org/10.1029/JC083iC08p04069




Appendix A

Nomenclature

Variable Description

Ó Alpha angle
Ói Alpha angle of the ith scattering mechanism
Ô Half of the distribution width of the surface slope angles, and

angle of rotation in Section 2.4
Ôi Angle of rotation of the ith scattering mechanism
× Permittivity of a medium
×r Relative permittivity of a medium
Ý Wavelength
Ýi Eigenvalue
Þ Permeability of a medium
Þr Relative permeability of a medium
ã Radar cross section
ã0 Average radar cross section per unit area

ãrms Standard deviation of surface height
ÚL Local incident angle

Úref Reflection angle
Út Transmission angle

Úinc Polar angle of the wave incident on a particle where the centre
of the spherical coordinate system is specified by the particle.

Úobs Polar angle of the considered scattered wave from a particle
where the centre of the spherical coordinate system is specified
by the particle.
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Appendix A. Nomenclature

Variable Description

Úorientation Orientation distribution width of the particles within the ef-
fective volume (equals to the physical orientation distribution
width for Rayleigh particles)

æinc Azimuthal angle of the wave incident on a particle where the
centre of the spherical coordinate system is specified by the
particle.

æobs Azimuthal angle of the considered scattered wave from a par-
ticle where the centre of the spherical coordinate system is
specified by the particle.

æorientation Physical orientation distribution width of large particles
a Particle radius
A Anisotropy
A0 Illuminated area in Section 2.3
Ap Particle anisotropy
C3 Covariance matrix
ci Single element of the covariance matrix
E Electric field
Eh Horizontal component of the electric field
Ei Incident electric field
Ev Vertical component of the electric field
Es Scattered electric field

E(Ú,æ) Normalised scattering matrix of a single ellipsoid
G Antenna gain
H Entropy

H(Ú,æ) Normalised scattering matrix of a single dipole
k Wavenumber
~kl Lexicographic scattering vector
~kp Pauli vector
l Surface correlation length in Section 4.1.2, length of the long

dipole in Section 5.2.2, and volume thickness in Section 5.4
N Volume density
m Ratio of the particle’s refractive index to the refractive index

of the background material
pi The ith polarisability of the particle

P(Ú) Probability density function of the orientation angle of the
particles in the volume

Pi Appearance probability for a decomposed scattering mecha-
nisms (see Section 2.4.1)
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Variable Description

Pr Received power
Pt Transmitted power
Pq Power coefficient of the scattering mechanism ’q’
r Distance of the observed field from the source
R Distance between object and radar

Rh,v Horizontal and vertical Bragg scattering coefficient
R⊥,‖ Horizontal and vertical Fresnel reflection coefficient

S Scattering matrix
Spq Scattering coefficient for the polarisation ’p’ of the incident

wave and the polarisation ’q’ of the scattered wave
T3 Coherency matrix
T4 The 4×4 coherency matrix
ti Single element of the coherency matrix

T⊥,‖ Horizontal and vertical transmission coefficient
ui Eigenvector
U3 Matrix containing the eigenvectors of the coherency matrix
U4 Matrix containing the eigenvectors of the T4 coherency matrix
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Appendix B

Derivation of the dipole scattering matrix

To derive the dipole equation, a method to calculate the projection of the
wave incident on the dipole in 3D space is required. A way to calculate the
angle between the incident field and the dipole, which is required to obtain
the projection is shown here. The same method is also used to calculate
the projection of the scattered wave on the observed field direction. For the
geometry described in Fig. B.1, the angle Úwanted between the two plotted
lines is of interest.

P1

P2

O

Úwanted

Figure B.1 Geometry for the calculation of Úwanted
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Appendix B. Derivation of the dipole scattering matrix

The first line is from the origin to (r,Ú,æ) = (1,Úp1
,æp1

), and the second one
is from the origin to (r,Ú,æ) = (1,Úp2,æp2). In a cartesian coordinates system
P1 lays at 


xp1
yp1
zp1


 =



cosæp1 sinÚp1
sinæp1 sinÚp1

cosÚp1


 (B.1)

and the second point P2 is written as



xp2
yp2
zp2


 =



cosæp2 sinÚp2
sinæp2 sinÚp2

cosÚp2


 . (B.2)

The distance L between the P1 and P2 can be calculated by

L2 =(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

=(cosæp2 sinÚp2 − cosæp1 sinÚp1)2

+ (sinæp2 sinÚp2 − sinæp1 sinÚp1)2 + (cosÚp2 − cosÚp1)2

=2−2cosæp2 cosæp1 sinÚp2 sinÚp1

−2sinæp2 sinæp1 sinÚp2 sinÚp1 −2cosÚp2 cosÚp1.

(B.3)

The distance L can also be calculated by considering the triangle P1–P2–O, and
obtaining the length of the third side from the length of the two other sides
and the angle between them by

L2 = 1 + 1−2cosÚwanted. (B.4)

From solving the last two equations

cosÚwanted =cosæp2 cosæp1 sinÚp2 sinÚp1

+ sinæp2 sinæp1 sinÚp2 sinÚp1 + cosÚp2 cosÚp1
(B.5)

where cosÚwanted can be used to calculate the projection of one line on another
line with a Úwanted angle between them in a three dimensional space.

In the derivation of the dipole scattering, the coordinate system presented
in Section 5.2.1 is used. The scattered field is the projection of the vertically
and horizontally polarised field of the incident wave on the dipole multiplied by
the projection of the scattered wave on the horizontal and vertical polarisation
of the receiver. In general the horizontal direction for incident/scattered wave
compared to the propagation direction of the wave in a spherical coordinate
system is r = 1, ÚH = á/2, æH = æinc/obs − á/2. For the vertical polarization this
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results in r = 1, ÚV = Úinc/obs − á/2,æV = æinc/obs. For the incident wave, the
projection of the horizontally polarized wave on the dipole is as follows

EH,dipole =EH, inc ( cosæcos(æinc − á/2)sinÚsin(á/2)

+ sinæsin(æinc − á/2)sinÚsin(á/2) + cosÚcos(á/2) )

=− EH, inc sinÚsin(æ−æinc).

(B.6)

The projection of the vertically polarized wave on the dipole becomes

EV,dipole =EV, inc ( cosæcosæinc sinÚsin(Úinc − á/2)

+ sinæsinæinc sinÚsin(Úinc − á/2) + cosÚcos(Úinc − á/2) )

=− EV, inc (cos(æ−æinc)sinÚcosÚinc + cosÚsinÚinc) .

(B.7)

In the same way, the projection of the scattered wave is calculated

EH,scattered =− EH,dipole sinÚsin(æ−æobs) (B.8)

EV,scattered =− EV,dipole(cos(æ−æobs)sinÚcosÚobs + cosÚsinÚobs). (B.9)

The scattering matrix is obtained from the product of the projection of the
incident field on the dipole and the projection of the dipole on the scattered
field

[H(Ú,Úinc,Úobs,æ,æinc,æobs)] =

[
SH

hh SH
hv

SH
vh SH

vv

]
, (B.10)

with

SH
hh =sinÚsin(æ−æinc)sinÚsin(æ−æobs)

SH
hv =(cos(æ−æinc)sinÚcosÚinc + cosÚsinÚinc)sinÚsin(æ−æobs)

SH
vh =sinÚsin(æ−æinc)(cos(æ−æobs)sinÚcosÚobs + cosÚsinÚobs)

SH
vv =(cos(æ−æinc)sinÚcosÚinc + cosÚsinÚinc)·

(cos(æ−æobs)sinÚcosÚobs + cosÚsinÚobs).

(B.11)

For the monostatic SAR case with æinc = æobs = á, Eq. (5.4) is obtained.
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