# Radarinterferenzbasierte Höhenschätzung von Objekten des Fahrumfeldes

Fabian Diewald







Group Research, Environmental Sensing 16.04.2010

## Inhalt

- Einführung und Motivation
- Radarinterferenzmuster
- Signalverarbeitung für Höhenschätzung
- Simulationsergebnisse
- Ergebnisse aus Realdaten
- Weitere Schritte





## **Einführung und Motivation**

#### Kontinuierlich sinkende Verkehrsopferzahlen dank passiver und aktiver Sicherheitssysteme während der letzten Jahrzehnte





## **Einführung und Motivation**

- Aktive Sicherheitssysteme wie Notbremsassistenten benötigen hohe
   Objektsicherheit stehender Hindernisse
- Radarsensorik bietet hierfür viele Vorteile, u. a.:
  - + exakte Entfernungsmessung
  - + direkte Geschwindigkeitsmessung
  - + hohe Witterungsrobustheit
  - + "Hindurchsehen" durch andere Objekte





- Jedoch Problem der
   schlechten Auflösung in Azimut
  - → Entscheidung bezüglich Objektrelevanz nicht trivial





0 0

## **Einführung und Motivation**

- Entscheidung bezüglich Relevanz eines Objektes u. a. möglich durch
  - Logik: Wird das Objekt von anderen Verkehrsteilnehmern über-/unterfahren?
  - Höhenschätzung durch Betrachten des langfristigen Amplitudenverlaufs während der Annäherung ("Verschwinden" von Objekten)



000

## **Einführung und Motivation**

- Schwächen dieser Höhenschätzungsstrategie:
  - Information erst spät verfügbar
    - → Objekt verschwindet ggf. erst wenn eine Warnung bereits erfolgen hätte müssen



- falls überhaupt quantitativ: lediglich ein (rel. ungenauer) Höhenwert
  - → genauere Höheninformationen könnten die Segmentierung von Radarbildern sowie eine Objektklassifikation unterstützen

## Inhalt

- Einführung und Motivation
- Radarinterferenzmuster
- Signalverarbeitung für Höhenschätzung
- Simulationsergebnisse
- Ergebnisse aus Realdaten
- Weitere Schritte



0 0

## Radarinterferenzmuster

#### Prinzip der Interferenzmusterentstehung

Phasendifferenz  $\Delta \phi = |\phi_d - \phi_i|$  des direkten und des indirekten Pfades:

Phasensprung

durch

 $\Delta \varphi = 2\pi f \frac{\Delta l}{d} \approx 2\pi \quad [+\pi] \approx 3\pi$ 

Reflexion

$$\Delta \varphi = |\varphi_d - \varphi_i| \approx 2n \cdot \pi$$

$$\Rightarrow \text{ konstruktive } \qquad \Rightarrow \text{ destruktive } \\ \text{Interferenz} \qquad \qquad l_d$$

geom. Ort destruktiver Interferenz

Wegstreckendifferenz  $\Delta I$ 

0 0

## Radarinterferenzmuster

#### Prinzip der Interferenzmusterentstehung

Phasendifferenz  $\Delta \phi = |\phi_d - \phi_i|$  des direkten und des indirekten Pfades:





0 0

## Radarinterferenzmuster

#### Prinzip der Interferenzmusterentstehung bei konstanter Frequenz



Radarsysteme jedoch oft mit veränderlicher Frequenz, z.B.:



[3] H. Winner (Hg.): Handbuch Fahrerassistenzsysteme; Vieweg+Teubner, Wiesbaden, 2009



## Radarinterferenzmuster

Prinzip der Interferenzmusterentstehung bei linear ansteigender Frequenz



$$f(l) = f_0 - \dot{f} \frac{l}{c}$$

Problem:

Phasendifferenz wird bei vorhandener Wegstreckendifferenz

auch durch Frequenzänderung beeinflusst

$$\varphi = \varphi_0 + 2\pi f_0 \frac{l}{c}$$

$$\varphi = \varphi_0 + \int_0^l \frac{2\pi f(l_i)}{c} dl_i$$

$$= \varphi_0 + \frac{2\pi}{c} \left( f_0 l - \dot{f} \frac{l^2}{2c} \right)$$

Fragestellung: Werden die Phasendifferenzen bei einem Radar mit einer üblichen Frequenzrampensteigung maßgeblich verschoben, so dass das Interferenzmuster beeinflusst wird?







## Radarinterferenzmuster

#### Schneider, Robert:

Höhenschätzung von Punktzielen durch Amplitudenverlauf [1]



## Inhalt

- Einführung und Motivation
- Radarinterferenzmuster
- Signalverarbeitung für Höhenschätzung
- Simulationsergebnisse
- Ergebnisse aus Realdaten
- Weitere Schritte



15



## Signalverarbeitung für Höhenschätzung

Formel für interferenzbeeinflusste Empfangsleistung [2]



→ näherungsweise sinusförmige Schwingung konstanter Frequenz auf 1/r-Achse → näherungsweise sinusförmige Schwingung konstanter Frequenz auf h<sub>s</sub>/r-Achse

 $\rightarrow$  zur Objekthöhe proportionale Frequenz kann z. B. durch FFT bestimmt werden

[2] M. I. Skolnik: Introduction to Radar Systems, 3rd edition; McGraw-Hill Book Company, New York, 2001



## Signalverarbeitung für Höhenschätzung



## Inhalt

- Einführung und Motivation
- Radarinterferenzmuster
- Signalverarbeitung für Höhenschätzung
- Simulationsergebnisse
- Ergebnisse aus Realdaten
- Weitere Schritte



0 0

## Simulationsergebnisse

- $\rightarrow$  Punktziel in 4 m Höhe, ebene Fahrbahn
- $\rightarrow$  Punktziel in 50 cm Höhe, ebene Fahrbahn
- → Punktziel in 4m Höhe, Bodenwelle
- → Punktziel in 4m Höhe, maximale Beschleunigungen
- → <u>Video 1</u>
- $\rightarrow$  Video 2
- → <u>Video 3</u>
- → Video 4









## Inhalt

- Einführung und Motivation
- Radarinterferenzmuster
- Signalverarbeitung für Höhenschätzung
- Simulationsergebnisse
- Ergebnisse aus Realdaten
- Weitere Schritte





## **Ergebnisse aus Realdaten**

→ Reales Verkehrsszenario (Autobahnbrücke) →  $\underline{Video 5}$ 

→ Reales Verkehrsszenario (stehendes Fahrzeug)→  $\underline{Video 6}$ 



0 0



## Inhalt

- Einführung und Motivation
- Radarinterferenzmuster
- Signalverarbeitung für Höhenschätzung
- Simulationsergebnisse
- Ergebnisse aus Realdaten
- Weitere Schritte



000

0 0

## **Weitere Schritte**

- Steigerung der Robustheit der Höhenschätzung
- Untersuchen des Potentials zur
  - Unterstützung der Segmentierung von Radarbildern
  - Klassifikation von Objekten durch Höhe als Merkmal
  - Fusion mit sowie Plausibilisierung von anderen Höhenschätzverfahren
- Evaluierung



## Vielen Dank für Ihre Aufmerksamkeit!

