

Sicherheitsgewinn durch Fahrerassistenzsysteme: Aktuelle Erkenntnisse aus Schadenakten der Allianz

Dr. Johann Gwehenberger, Dr. Jörg Kubitzki, Thomas Behl

Inhalt

1. Einführung – Das Allianz Zentrum für Technik

2. Unfallforschung im AZT

- Zentrale Ziele der Unfallforschung
- Aktenauswertung
- Kfz-Schadenfälle
- Vergleich Destatis AZT

3. Forschungsprojekt AKTIV

- Ergebnisse zur FAS-Wirksamkeit aus AKTIV
- Prognosen zur Unfallvermeidbarkeit durch FAS aus Sicht der Versicherungswirtschaft

4. Praxisnutzen: Beispiel ältere Verkehrsteilnehmer

- Ausgangslage: Getötetenraten bei Senioren
- Senioren als Fahrer Fehlverhalten
- Senioren als Fahrer Technische Unterstützung
- Passive Sicherheit von Senioren
- 5. Reparatur im Schadenfall und Wartung
- 6. Grundsätze zur Entwicklung und Auslegung von Fahrerassistenzsystemen
- 7. Ausblick

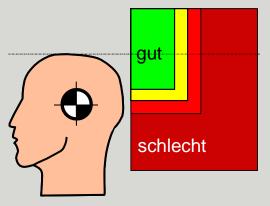
Die Allianz als Autoversicherer – Wir versichern Mobilität

8,8 Mio. Kfz in Deutschland (17% Marktanteil) und über 50 Mio. Kfz weltweit Progress Garant/ Rosno AZ Germany ΑZ Netherland ΑZ Polska AZ Ireland AZT AZ pojisťovna AZ UK AZ Ukraine AZ Belgium Reparaturtechniken AGF Luxemburg poist'ovna **AGF France** Elementar AZ Portugal AZ Tiriac Insurance AZ Suisse AZ Seguros AZ Bulgaria AZ Zagreb AZ Italia KOC AZ Kfz **AZ** General Sigorta Greece (Haftpflicht, Kasko) **Garantie** Assistance Australia

AZT Automotive – Unternehmen und Aufgaben

AZT Automotive – Einfluss auf Schadenaufwendungen

Beispiele


Crashreparaturtest

Crashbox

Sitzerprobung

Konstruktion

Bumpertest

Elektron. Wegfahrsperre

AZT Automotive – Partner in Forschungsprojekten

AZT Automotive als strategisches Element: Partner in Forschungsprojekten

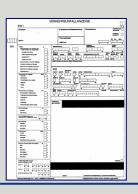
Motiv: Forschungsergebnisse dienen

- (1) dem Erkenntnisgewinn zum Verhalten der Fahrer
- (2) der Ermittlung wirksamer Maßnahmen (z.B. Assistenzsysteme)
- (3) der Förderung wirksamer Maßnahmen (z.B. Kampagnen)

Inhalt

- 1. Einführung Das Allianz Zentrum für Technik
- 2. Unfallforschung im AZT
 - Zentrale Ziele der Unfallforschung
 - Aktenauswertung
 - Kfz-Schadenfälle
 - Vergleich Destatis AZT
- 3. Forschungsprojekt AKTIV
 - Ergebnisse zur FAS-Wirksamkeit aus AKTIV
 - Prognosen zur Unfallvermeidbarkeit durch FAS aus Sicht der Versicherungswirtschaft
- 4. Praxisnutzen: Beispiel ältere Verkehrsteilnehmer
 - Ausgangslage: Getötetenraten bei Senioren
 - Senioren als Fahrer Fehlverhalten
 - Senioren als Fahrer Technische Unterstützung
 - Passive Sicherheit von Senioren
- 5. Reparatur im Schadenfall und Wartung
- 6. Grundsätze zur Entwicklung und Auslegung von Fahrerassistenzsystemen
- 7. Ausblick

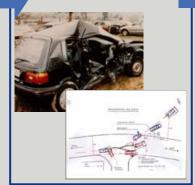
Zentrale Ziele der Unfallforschung


Aus Unfällen "lernen" und SV-Maßnahmen ableiten

Aufbau von Unfalldatenbanken

Unfalldatenbanken seit 2004

- 200 schwere Motorradunfälle
- 1.100 schwere Lkw-Unfälle (KH, VK)
- 6.000 Pkw-Schäden (KH, VK)
- 400 Oldtimer-Schäden (KH, VK)
- 1.000 Traktor-Schäden (KH)
- 500 Marderschäden
- 300 Großschäden (über 1 Mio. €)
- ... kontinuierliche Weiterführung nach Bedarf



In-depth Analyse

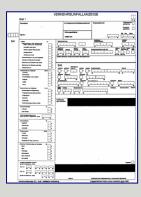
- Unfallstruktur
- Unfallursache
- Schadenschwere
- Vermeidbarkeit

• ...

Ableiten von SV-Maßnahmen

- Mensch
 - Ausbildung
 - Sensibilisierung
 - Versicherungsprodukte
 - •
- Fahrzeug
 - Airbag
 - ESP
 - Assistenzsysteme
 - ..
- Strasse
 - Ampelschaltung
 - Leitschienen
 - Verkehrsregeln
 - . . .

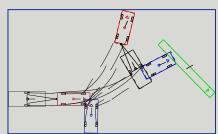
Aktenauswertung



Informationsquellen in den Schadenakten

Unfallmeldebogen der Versicherung

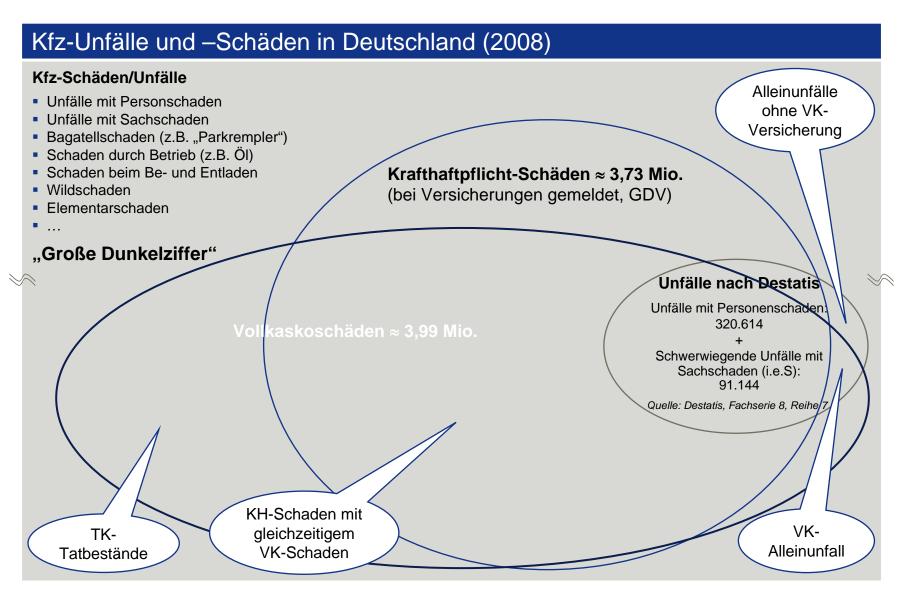
➤ Verkehrsunfallanzeige



➤ Bilder vom Unfallort und den Fahrzeugen

➤ Unfallskizzen / - rekonstruktionen

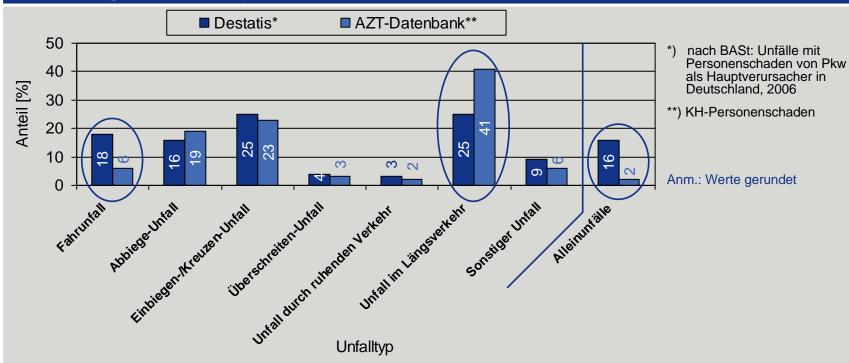
Anwalts- / Gerichtskorrespondenz



The control of the co

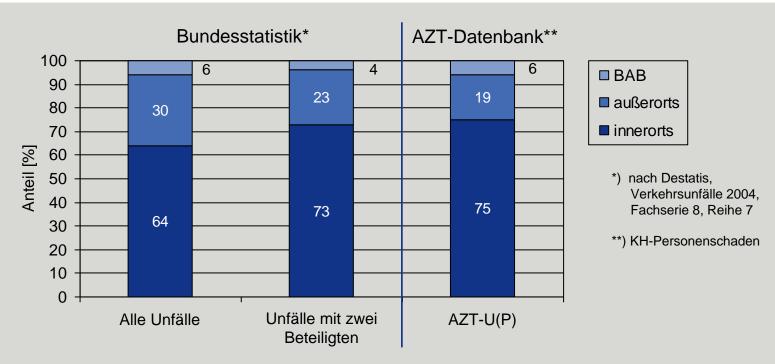
➤ Medizinische Gutachten/Berichte

Kfz-Schadenfälle



Vergleich Destatis – AZT

Verteilung des Unfalltyps bei Pkw-Unfällen mit Personenschaden in %


Warum gibt es Unterschiede bei der Unfalltypenverteilung?

- Weniger Alleinunfälle in der AZT-Datenbank, da per Definition ein KH-Personenschaden einen verletzten Dritten zur Folge haben muss
- Über 1/4 der KH-Versicherungsschäden sind polizeilich nicht gemeldet
- Über die Hälfte polizeilich nicht gemeldeter KH-Schäden sind Unfälle im Längsverkehr
- Über 1/3 aller HWS-Fälle sind polizeilich nicht gemeldet

Vergleich Destatis – AZT

Ortslagenverteilung bei Pkw-Unfällen mit Personenschaden in %

Warum gibt es Unterschiede bei Ortslagenverteilung?

- Weniger Alleinunfälle in der AZT-Datenbank, daher Vergleich mit Unfällen zweier Beteiligter der Bundesstatistik zweckmäßig
- ➤ Über 1/4 der KH-Versicherungsschäden sind polizeilich nicht gemeldet
- Circa 90 % polizeilich nicht gemeldeter KH-Schäden ereignen sich innerorts

Inhalt

- 1. Einführung Das Allianz Zentrum für Technik
- 2. Unfallforschung im AZT
 - Zentrale Ziele der Unfallforschung
 - Aktenauswertung
 - Kfz-Schadenfälle
 - Vergleich Destatis AZT
- 3. Forschungsprojekt AKTIV
 - Ergebnisse zur FAS-Wirksamkeit aus AKTIV
 - Prognosen zur Unfallvermeidbarkeit durch FAS aus Sicht der Versicherungswirtschaft
- 4. Praxisnutzen: Beispiel ältere Verkehrsteilnehmer
 - Ausgangslage: Getötetenraten bei Senioren
 - Senioren als Fahrer Fehlverhalten
 - Senioren als Fahrer Technische Unterstützung
 - Passive Sicherheit von Senioren
- 5. Reparatur im Schadenfall und Wartung
- 6. Grundsätze zur Entwicklung und Auslegung von Fahrerassistenzsystemen
- 7. Ausblick

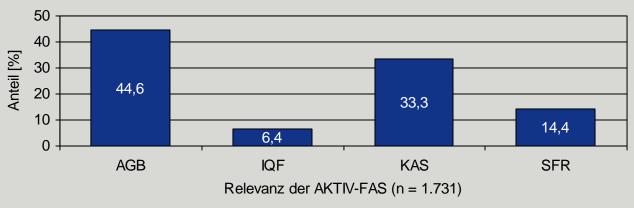
Forschungsinitiative AKTIV – Projekt AS

Ziel: Lösungen für eine erhöhte Verkehrssicherheit und einen optimierten Verkehrsfluss zu entwickeln

Laufzeit: September 2006 bis Dezember 2010

Bundesministerium für Wirtschaft und Technologie

Die 13 AS-Projektpartner: Adam Opel GmbH, AZT Automotive GmbH, AUDI AG, Audi Electronics Venture GmbH, BMW Forschung und Technik GmbH, Bundesanstalt für Straßenwesen, Continental Teves AG & Co.oHG, Daimler AG, MAN Nutzfahrzeuge AG, Robert Bosch GmbH, Continental Safety Engineering International GmbH, Continental Automotive GmbH, Volkswagen AG

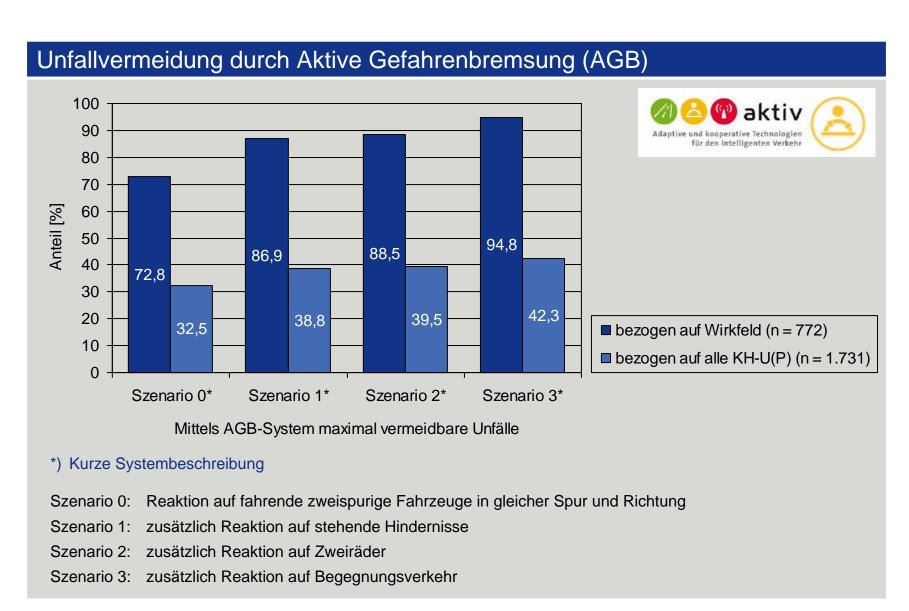


Ergebnisse aus AKTIV-AS

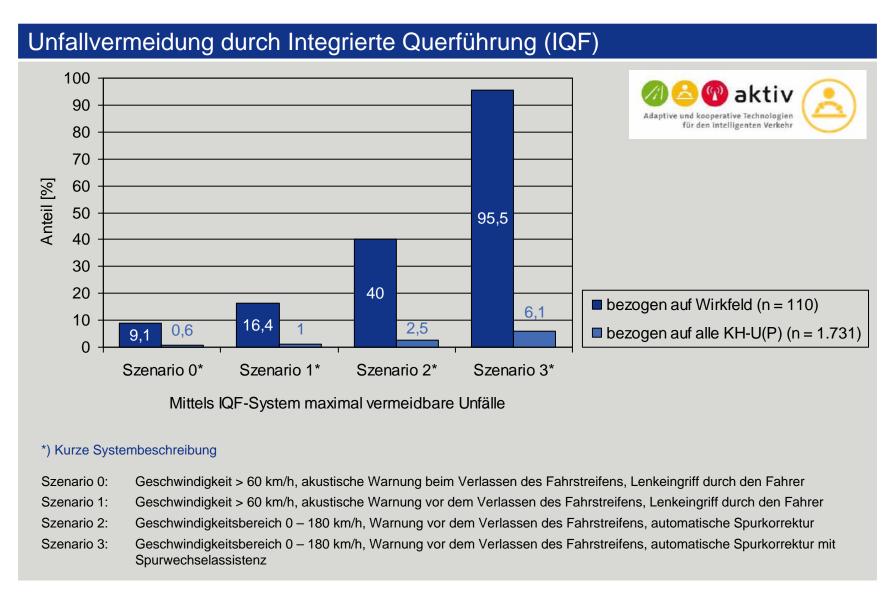
Aufgabe des AZT im Teilprojekt FSA

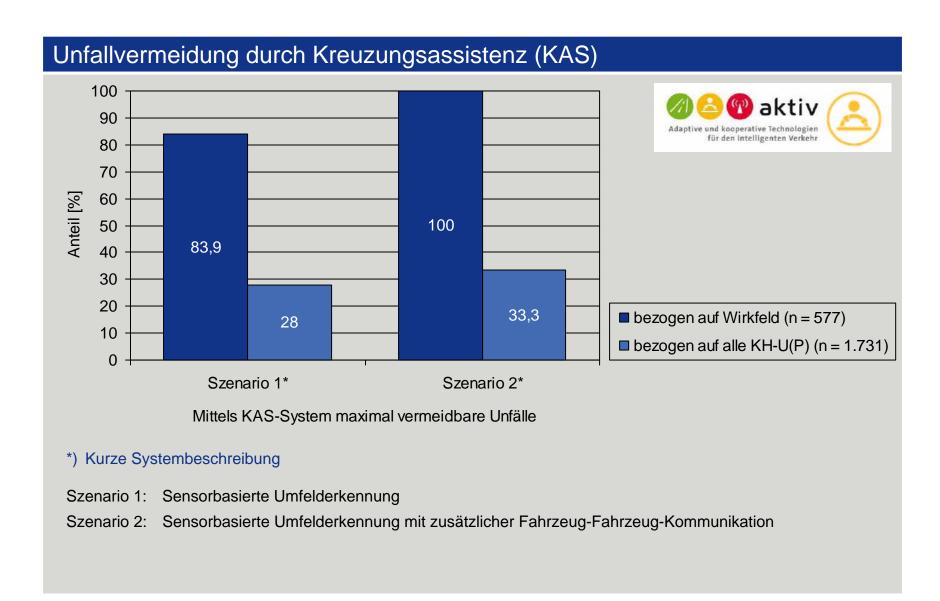
- Aufbau einer Unfalldatenbank aus Kraft-Haftpflichtschäden (KH-Schäden) mit Personenschaden (ca. 1.700 Pkw und ca. 500 Lkw)
- Prognosen zur Relevanz* und Unfallvermeidung durch
 - Aktive Gefahrenbremsung (AGB)
 - Integrierte Querführung (IQF)
 - Kreuzungsassistent (KAS)
 - Sicherheit für Fußgänger und Radfahrer (SFR)

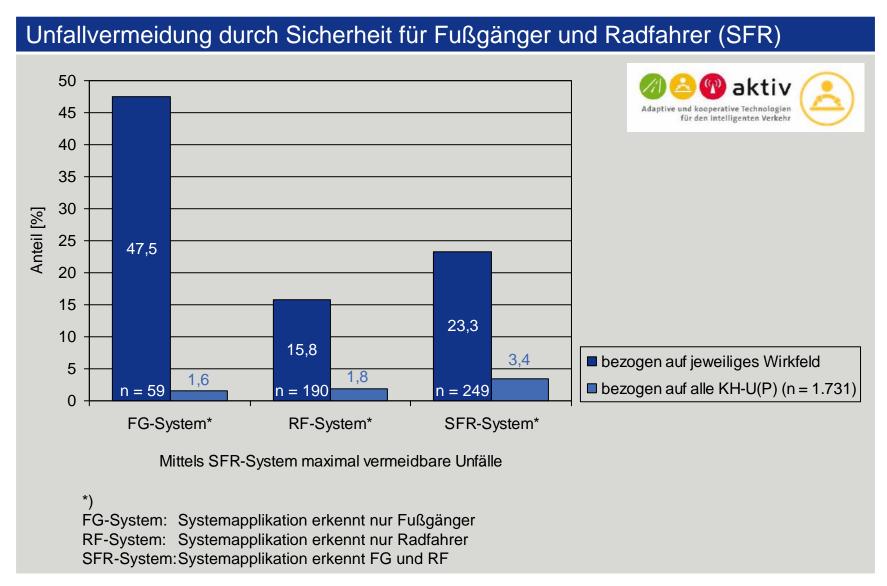
*Nach jeweiliger Systemspezifikation betrachtete Unfallfeintypen



Forschungsinitiative AKTIV – Projekt AS







Wirkpotenzial der Fahrerassistenzsysteme AGB, IQF, KAS und SFR

Maximal vermeidbarer volkswirtschaftlicher Schaden* in Deutschland durch Einsatz der AKTIV-Applikationen (Anm.: Werte gerundet):

Vermeidbare Kosten durch	Getötete		Schwerverletzte		Leichtverletzte		Summe
	Anzahl	Mio. €	Anzahl	Mio. €	Anzahl	Mio. €	Mio. €
AGB-System	768	914	13.184	1.333	81.347	1.133	3.380
IQF-System	159	189	3.217	325	12.842	179	693
SFR-System	110	131	1.891	191	11.665	162	484
KAS-System	605	720	10.389	1.050	64.103	893	2.663

*: Annahme: 100 % Ausrüstungsquote im Bestand, Bezugsjahr 2004

Prognosen zur Unfallvermeidbarkeit durch FAS aus Sicht der Versicherungswirtschaft

Assistenzsystem		Erwarteter Nutzen	Quellen
Motorrad	ABS	10 % aller Motorradunfälle mit schwerem Personenschaden	AZT, GDV
	Fahrdynamikregelung	bis 25 % aller Unfälle mit Personenschaden 35 - 40 % aller Unfälle mit Getöteten	AZT, GDV
Pkw	Nachtsichtsystem*)	bis 8 % der Pkw-Fußgänger Unfälle	GDV
	Notbremssystem (gestern ¹⁾ /heute ²⁾ /morgen ³⁾)	< 5 % / 5-10 % / 15-20 % aller Pkw-Unfälle	GDV
	Fahrdynamikregelung	bis 8 % aller schweren Lkw-Unfälle (KH und VK)	AZT, GDV
	Abstandsregler	bis 7 % aller schweren Lkw-Unfälle (KH und VK)	AZT
	Spurassistent	bis 4 % aller schweren Lkw-Unfälle (KH und VK)	AZT

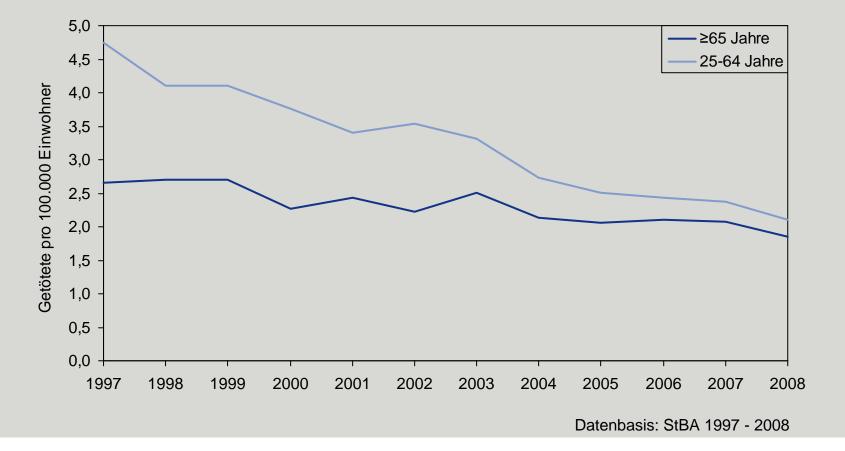
^{*):} maximales Potential bei optimalem System

^{1):} keine Umfeldinformation, nur vorausfahrende Fahrzeuge, Bremsung nur bei Fahrereingriff

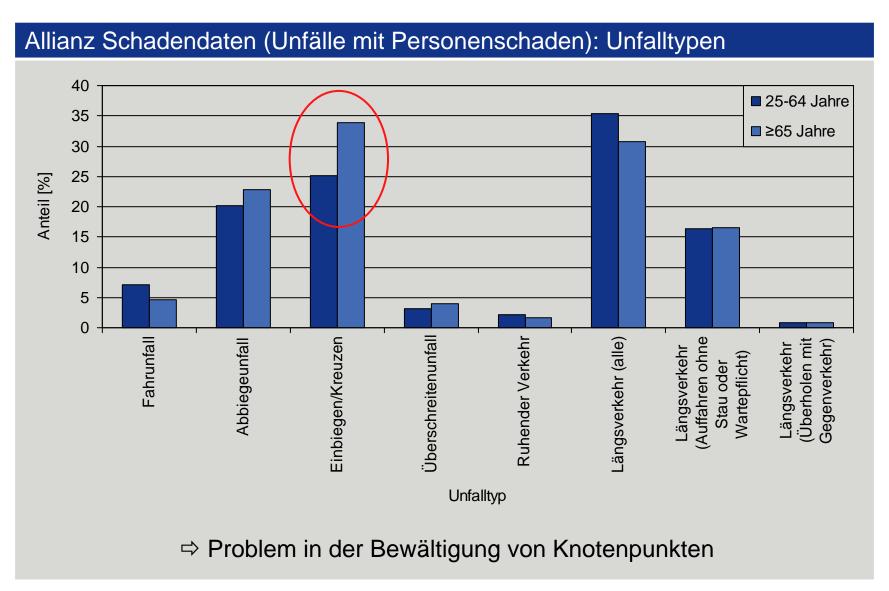
^{2):} Umfeldinformation und Warnung, Teilbremsung ohne Fahrereingriff, nur vorausfahrende Fahrzeuge

^{3):} Umfeldinformation und Warnung, Vollbremsung ohne Fahrereingriff, FG, RF, Krad, stehende Fahrzeuge.

Inhalt

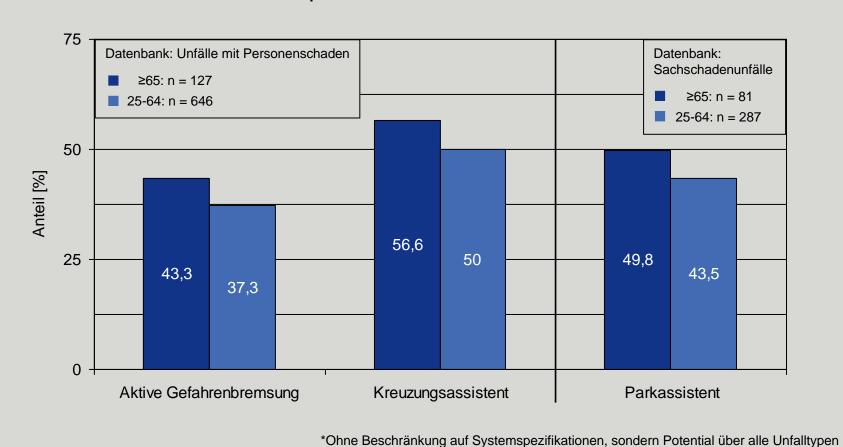

- 1. Einführung Das Allianz Zentrum für Technik
- 2. Unfallforschung im AZT
 - Zentrale Ziele der Unfallforschung
 - Aktenauswertung
 - Kfz-Schadenfälle
 - Vergleich Destatis AZT
- 3. Forschungsprojekt AKTIV
 - Ergebnisse zur FAS-Wirksamkeit aus AKTIV
 - Prognosen zur Unfallvermeidbarkeit durch FAS aus Sicht der Versicherungswirtschaft
- 4. Praxisnutzen: Beispiel ältere Verkehrsteilnehmer
 - Ausgangslage: Getötetenraten bei Senioren
 - Senioren als Fahrer Fehlverhalten
 - Senioren als Fahrer Technische Unterstützung
 - Passive Sicherheit von Senioren
- 5. Reparatur im Schadenfall und Wartung
- 6. Grundsätze zur Entwicklung und Auslegung von Fahrerassistenzsystemen
- 7. Ausblick

Ausgangslage: Getötetenraten bei Senioren


Höhere Vulnerabilität der Senioren auch als Pkw-Fahrer

Ältere Fahrer profitieren in geringerem Maße von der verbesserten Sicherheit im Straßenverkehr insgesamt

Senioren als Fahrer – Fehlverhalten



Senioren als Fahrer – Technische Unterstützung

Fahrerassistenzsysteme: Nutzen vor allem auch für Senioren

Aktive Gefahrenbremsung, Kreuzungsassistent (noch nicht im Handel) und Parkassistent besonders empfehlenswert für ältere Fahrer*

Passive Sicherheit von Senioren

"Seniorenauto" Leichtkraftfahrzeug?

- Leichtkraftfahrzeuge z.T. baugleich mit Krankenfahrstühlen
- Fahrerlaubnisklasse S: 38% ≥60 Jahre (2006); Anstieg um 20,5% von 2008 auf 2009 (alle Altersklassen)
- Geringe passive Sicherheit der Fahrzeuge, die der Seniorenmobilität dienen
- Moderne Fahrzeugtechnologien müssen auch von Senioren genutzt werden

Ligier Ambra - Krankenfahrstuhl - 25 km/h

Fahrzeug: Ligier Ambra Krankenfahrstuhl
Baujahr: 01/2000
Farbe: Silber-Metallic
Kilometer: 6200

Zustand: 1. Hand, neuwertig
Reifenprofil: 5 mm

Sonstiges: Radio-Kassette, getönte Scheiben, heizbare Heckscheibe, Alufelgen,

Standheizung

Preis: auf Anfrage

zum Vergrößern bitte Bilder anklicken

Ich interessiere mich für dieses Fahrzeug, bitte rufen Sie mich an

Name:

Absenden

Ligier Nova 500 Diesel - 45 km/h Leichtkraftwagen mit 4 kW

Fahrzeug: Ligier NOVA 500 Diesel
Baujahr: 04/2001
Motor: Lombardini Diesel 505 cm³, 4 kW

Farbe: Unilack Gelb
Kilometer: 15.500

Zustand: 1. Hand, Top-Zustand Reifenprofil: 7 mm

Radio-Kassette, getönte Scheiben, elektrsche Fensterheber, heizbare Heckscheibe

Preis: 5.900,-€ inkl. qes. MwSt.

zum Vergrößern bitte Bilder anklicken

Bild: Screenshot Website Autohaus Lepori

Inhalt

- 1. Einführung Das Allianz Zentrum für Technik
- 2. Unfallforschung im AZT
 - Zentrale Ziele der Unfallforschung
 - Aktenauswertung
 - Kfz-Schadenfälle
 - Vergleich Destatis AZT
- 3. Forschungsprojekt AKTIV
 - Ergebnisse zur FAS-Wirksamkeit aus AKTIV
 - Prognosen zur Unfallvermeidbarkeit durch FAS aus Sicht der Versicherungswirtschaft
- 4. Praxisnutzen: Beispiel ältere Verkehrsteilnehmer
 - Ausgangslage: Getötetenraten bei Senioren
 - Senioren als Fahrer Fehlverhalten
 - Senioren als Fahrer Technische Unterstützung
 - Passive Sicherheit von Senioren
- 5. Reparatur im Schadenfall und Wartung
- 6. Grundsätze zur Entwicklung und Auslegung von Fahrerassistenzsystemen
- 7. Ausblick

Problem: Wartung und Reparatur

Selbst Fachwerkstätten sind heute bei der Fehlerdiagnose und Fehlersuche überfordert

- mangelnde Qualifikation
- fehlende Diagnose-Tools

Exakte Sensorjustage nach erfolgter Instandsetzung erforderlich

Quelle: Bosch

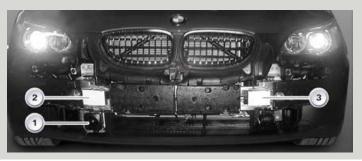
Beispiel: Volvo CitySafety

Schutz vor Sachschaden

 Einbauort hinter der Windschutzscheibe bietet hohen Schutz für Lasersensoreinheit

Reparaturfreundlichkeit

- Einfacher Aus- und Einbau im Falle eines Windschutzscheibenaustausches möglich (Sensor ist mit Klammern befestigt)
- Ersatzteilkosten für Sensoreinheit komplett ca. 330,- €zzgl. MWSt.



Beispiele für Reparaturkosten bei ACC-Radarsensoren

Fahrzeugmodell	Ersatzteilkosten*) (exkl. MWSt, ggf. inkl. Halter)	Arbeitszeit*) laut Hersteller (ggf. incl. zusätzlicher Diagnose- und Einstellarbeiten)		
Audi A8 (ab 2008)	1.600 €	2,4 Stunden		
BMW 5er (E60/61)	1.730 €	2,5 Stunden		
Ford Mondeo (ab 2007)	1.410 €	2,2 Stunden		
Mercedes S-Klasse (Typ 320)	1.440 €	3,1 Stunden		
VW Passat CC (ab 2006)	1.040 €	2,0 Stunden		

*): Zirka Werte, 2009

Problem: Anstieg des Schadendurchschnittes

Bei Beschädigung der Sensorik kann im Schadenfall der Schadendurchschnitt steigen

Beispiel ACC-Sensor (ausgebrochene Kunststoffhülse)

Inhalt

- 1. Einführung Das Allianz Zentrum für Technik
- 2. Unfallforschung im AZT
 - Zentrale Ziele der Unfallforschung
 - Aktenauswertung
 - Kfz-Schadenfälle
 - Vergleich Destatis AZT
- Forschungsprojekt AKTIV
 - Ergebnisse zur FAS-Wirksamkeit aus AKTIV
 - Prognosen zur Unfallvermeidbarkeit durch FAS aus Sicht der Versicherungswirtschaft
- 4. Praxisnutzen: Beispiel ältere Verkehrsteilnehmer
 - Ausgangslage: Getötetenraten bei Senioren
 - Senioren als Fahrer Fehlverhalten
 - Senioren als Fahrer Technische Unterstützung
 - Passive Sicherheit von Senioren
- 5. Reparatur im Schadenfall und Wartung
- 6. Grundsätze zur Entwicklung und Auslegung von Fahrerassistenzsystemen
- 7. Ausblick

Grundsätze zur Entwicklung und Auslegung von Fahrerassistenzsystemen

10 wichtige Punkte

- 1) Volle Verantwortung muss immer beim Fahrer liegen
- 2) Keine Ablenkung
- 3) Einfache, klare und plausible Handhabung
- 4) Vermeidung von "überhöhtem Sicherheitsgefühl"
- 5) Höchste Zuverlässigkeit (Betrieb, Fahrzeugalter)
- 6) Fehlererkennung und Fehlertoleranz
- 7) Überprüfungsmöglichkeiten sicherheitsrelevanter Funktionen (z.B. SK, HU)
- 8) Qualifikation des Werkstattpersonals
- 9) Langfristige Ersatzteilversorgung (z.B. Steuergeräte, Sensoren)
- 10) Maßnahmen gegen unberechtigte Manipulationen (z.B. Hacker-Angriff)
 - + Aufklärung der Fahrer hinsichtlich Wirkung, Nutzen und Grenzen

Inhalt

- 1. Einführung Das Allianz Zentrum für Technik
- 2. Unfallforschung im AZT
 - Zentrale Ziele der Unfallforschung
 - Aktenauswertung
 - Kfz-Schadenfälle
 - Vergleich Destatis AZT
- Forschungsprojekt AKTIV
 - Ergebnisse zur FAS-Wirksamkeit aus AKTIV
 - Prognosen zur Unfallvermeidbarkeit durch FAS aus Sicht der Versicherungswirtschaft
- 4. Praxisnutzen: Beispiel ältere Verkehrsteilnehmer
 - Ausgangslage: Getötetenraten bei Senioren
 - Senioren als Fahrer Fehlverhalten
 - Senioren als Fahrer Technische Unterstützung
 - Passive Sicherheit von Senioren
- 5. Reparatur im Schadenfall und Wartung
- 6. Grundsätze zur Entwicklung und Auslegung von Fahrerassistenzsystemen
- 7. Ausblick

Ausblick

Unfallfreies Fahren bleibt (noch lange!) eine Vision!?

Vielen Dank für Ihre Aufmerksamkeit.

AZT Automotive GmbH

