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Abstract

We assess the reliability of a tunnel in Keuper marl with uncertain mechanical
properties. The tunnel is constructed by the conventional tunneling method. The
limit state function is expressed in terms of a two-dimensional finite element model
of the tunnel. Plain strain finite elements are used to represent the soil and the yield
surface is modeled with a hardening plasticity soil model. The three-dimensional
arching effect is approximated by application of the stress reduction method. In
a first step, the reliability analysis is performed by application of the first order
reliability method (FORM) and the results are verified by importance sampling.
The FORM provides information on the sensitivity of the reliability in terms of
the uncertain variables. This information is used in a second step to account for
the inherent spatial variability of the ground parameters with the largest influence
through a random field modeling. The discretization of the random field leads to
a large number of random variables. Therefore, we apply the subset simulation
method, which is an adaptive Monte Carlo method known to be especially efficient
for such high dimensional problems. The analysis is performed using a reliability
tool that is integrated into the SOFiSTiK finite element software package.
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1 INTRODUCTION

In tunnel construction, a typical design requirement is the restriction of surface set-
tlements to acceptable values with sufficient reliability. This serviceability condition
is particularly important in urban environments, where tunnel induced settlements
may have an impact on existing structures. Predictions of the ground displacement
can be made with the help of non-linear finite element models. However, there is sig-
nificant uncertainty involved in the choice of the model parameters. Moreover, the
mechanical properties of the soil exhibit an inherent spatial variability. These issues
need to be addressed in a proper assessment of the adequacy of the design.

In this paper, we account for the uncertainties in the model parameters and evaluate
the probability that the tunnel induced settlements exceed a predefined threshold. In
addition, we investigate the influence of the spatial variability of soil parameters on
the analysis results.

2 MODEL DESCRIPTION

2.1 Mechanical Model

A conventional driven tunnel with a horse-shoe shaped profile is considered in this
study (see figure 1). The problem is modeled in the SOFiSTiK finite element (FE)
software package, using plain strain finite elements. The numerical model has a
width of 80m and a total height of 26m. In this study, we are interested in surface
settlements over the tunnel center line (point A in figure 1). The excavation process
is modeled by application of the stress reduction method, which approximately ac-
counts for the three-dimensional arching effect of the stress-distribution.

Three different ground layers are incorporated in the model; the layers are illustrated
in figure 1. The cover layer is a man-made fill and has a depth of 5.4m. Heavily
weathered soft rock known as Keuper marl forms the second layer. The thickness of
this layer is assumed to be 16.8m. We adopt a hardening plasticity soil model [1] to
describe the material behavior of the first two layers. This material model allows for a
realistic description of the stiffness and hardening behavior of soft soil in settlement
analysis. The material properties of the cover layer are as follows: elastic modu-
lus for unloading-reloading: 30MPa, Poisson’s ratio: 0.2, specific weight: 20kN /m?,
friction angle: 25°, cohesion: 10kPa, oedometric stiffness modulus: 10MPa, stiffness
modulus for primary loading: 10MPa. The exponent in the hardening law is selected
as 0.5 for the first and the second layer. The angle of dilatancy is assumed as zero,



A Two-Step Approach for Reliability Assessment of a Tunnel in Soft Soil

corresponding to an non-associated flow rule. The soil parameters of the Keuper marl
layer are assumed to be random and their probabilistic description is given in sec-
tion 2.2. Strong limestone constitutes the bottom layer. The Mohr-Coulomb law is
applied for this layer. The material properties are: Young’s modulus: 575MPa, Pois-
son’s ratio: 0.2, specific weight: 23kN/m?, friction angle: 35°, cohesion: 200kPa.
Due to the much larger stiffness of the limestone compared to the stiffness of the
overlaying materials, only 3.8m of this layer are modeled.

_A
Keuper marl
increased

cohesion zone

Figure 1: Ground layers considered in the model

The height of the tunnel above the limestone layer is 6.2m. Consequently, the tunnel
is located in a depth of 16m below the ground surface. At the intersection of the
second and the third layer, the tunnel has a width of 9.16m. In the vicinity of the
tunnel the Keuper marl is reinforced with nails. This is modeled by increasing the
cohesion in the affected region (see figure 1) by 25kPa. Moreover, it is assumed that
the tunnel is located above the groundwater level. The shotcrete lining is modeled
using linear beam elements with a normal stiffness of 10.5GN and a flexural rigidity
of 26.78MNm?.

2.2 Stochastic Model

The cover layer and the limestone layer are considered as deterministic in the anal-
ysis. Since the cover layer is a man-made fill, we assume that its soil properties are
well-known, and the associated uncertainties are small compared to the uncertainties
in the material description of the Keuper marl layer and can be neglected. The lime-
stone layer is also modeled as deterministic because - due to its large stiffness - the
contribution of this layer to the surface settlements is negligible. The probability dis-
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tribution describing the uncertainties in the material parameters of the Keuper marl
layer are listed in table 1. We assume that the stiffness modulus for primary load-
ing Eg%f equals the oedometric stiffness modulus Eggg We also consider a correlation
of 0.7 between the parameters ng;fl and E,;. The friction angle and the cohesion are
assumed to have a negative correlation of —0.5.

In conventionally driven tunnels, there is usually a large uncertainty in the choice of
the relaxation factor € [0, 1] of the stress reduction method [2]. In this study f3 is
modeled as a beta-distributed random variable (see table 1).

Table 1: Uncertain parameters of the Keuper marl layer

Parameter Distribution Mean C.o.V.
Relaxation factor 3 Beta(0.0,1.0) 0.5 10%
Elastic modulus for un-/reloading Ey; [MPa] Lognormal 80.0 32%
Oedometric stiffness modulus E{)‘;S [MPa] Lognormal 30.0 32%
Poisson’s ratio v Beta(0.0,0.5) 0.2 15%
Friction angle ¢ [°] Beta(0.0,45.0)  20.0 15%
Cohesion ¢ [kPa] Lognormal 25.0 30%
Specific weight y [kN /m?3] Lognormal 24.0 5%

In the second part of this study, the inherent spatial variablity of the parameters E(r)‘;fi
and E,; is taken into account. This is achieved by modeling the two parameters as
cross-correlated homogeneous random fields. It is assumed that the spatial variabil-
ity depends only on the separation in horizontal and vertical direction between two
locations, denoted by Ax and Ay, respectively. The following exponential autocorre-

lation coefficient function is chosen for both random fields:
Ax A
p(Ax,Ay) = exp (——y) (1)

where [, and /, denote the correlation lengths in horizontal and vertical direction,
respectively. The cross-correlation coefficient function is:

Pcross (AX,A)’) = Pc- P(Ax> Ay) (2)

where p. denotes the correlation of E(r)ztd and E,; at the same location.

The midpoint method [3] is used for the discretization of the random fields. In this
study, the stochastic finite element (SFE) mesh is a coarser variant of the determin-
istic finite element mesh. The SFE mesh consists of 142 deterministic finite element
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patches and is illustrated in figure 2, where the patches in the second layer are indi-
cated by areas of different color. In the midpoint method, the random field is assumed
to be constant in each SFE and represented by its value at the midpoint of the SFE.
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Figure 2: Stochastic and deterministic finite element mesh

3 RELIABILITY ANALYSIS

3.1 Introduction

In reliability analysis, we compute the probability of failure of a system as:
P=Pr{e(X) <0} = [ fe(x)dx 3)
8(X)<0

where g is called limit-state function and X is the K-dimensional vector of random
variables with joint probability density function fx. Failure of the system occurs if
g(x) < 0. In this study the limit state function is defined as:

8 (X) = Uthreshold — UA (X) 4)

where ua denotes the surface settlement in point A (see figure 2) as computed with
the FEM, and utreshold 1S the maximum allowed settlement.

For most reliability methods it is convenient to transform the original space of ran-
dom variables X to a space of independent standard normal random variables U.
The limit-state function defined in the transformed space is denoted by G : U — R.
Consequently, equation 3 can be rewritten as:

&zmawsmzﬂwmwwm (5)
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where @y is the K-dimensional standard normal joint probability density function.

3.2 FORM

The first order reliability method (FORM) solves the reliability problem formulated
in equation 5 approximately by a linearization of the limit-state function G(u) at the
design point u*. The design point is defined as the most probable point of failure.
It is obtained by a minimization of v/uTu subjected to G(u) = 0. The quality of the
approximation depends on how well G(u) can be approximated by a linear function.
The probability of failure defined in equation 5 is approximated as:

Py~ ®(—p) (6)

where @ denotes the standard normal cumulative distribution function, and f is the
FORM reliability index and is defined as 8 = vu*Tu*. In this work, the standard
HL-RF method [4, 5] is applied to solve the optimization problem.

A by-product of the FORM are sensitivities at the design point. In this work the
sensitivity is expressed in terms of the influence coefficients ¢;. The coefficients ¢
represent the direction cosines along the coordinate axes U;; they are helpful for
estimating the most important uncertain parameters in terms of their influence on
the structural reliability [6].

33 Importance Sampling

In the standard Monte Carlo simulation, we draw N samples from U and count how
often the failure event G(U) < 0 is observed. An estimate of the probability of fail-
ure is obtained by dividing the number of failures by N. This procedure becomes
inefficient if the problem to investigate has a small failure probability.

The idea of importance sampling is to draw the samples not from U, but from a
distribution that produces more samples in the failure domain. This distribution is
called importance sampling function. In this work, the importance sampling func-
tion is chosen as the K-dimensional normal distribution with unit variance centered
around the design point u*.

34 Subset Simulation

The subset simulation method [7] is an adaptive Monte Carlo method that is efficient
for high dimensional problems. In this method, the probability of failure is expressed
as a product of larger conditional probabilities.
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Let us introduce M intermediate failure events F;, with 1 <i< M and F; D F» D
... D Fyy = F. The failure events F; are defined as F; = {G(u) < ¢;}, where ¢; € R
with ¢; > ... > ¢y = 0. The probability of failure Py = Pr(Fy) can be expressed as:

M
Pr= HIPr(E\Fi_l) (7)

where Fy denotes the certain event, and Pr(F;|F;_;) is the probability of the event
F; conditioned on the occurrence of the event F;_;. The values c¢; can be chosen
adaptively such that the conditional probabilities Pr(F;|F;—;), i < M correspond to a
given value py.

Standard Monte Carlo simulation is applied to compute Pr(F}). The conditional
probabilities Pr(F;|Fi_;) for 2 < i < M are approximated by means of Markov Chain
Monte Carlo (MCMC) techniques. In this work, the component-wise Metropolis-
Hastings algorithm is used [7]. Moreover, py is fixed to 10%.

3.5 Two-Step Procedure

To solve the reliability problem we adopt the following two-step procedure. In the
first step, the spatial variability of the material parameters is neglected. The stochas-
tic model is described by the seven random variables listed in table 1. The proba-
bility of failure is approximated by FORM. Importance sampling is used to verify
the results obtained with FORM and to investigate the non-linearity of the limit-state
function.

In the second step, the spatial variability of the parameters with the largest influence
on the failure probability is considered. This is modeled by a cross-correlated ran-
dom field. The random field model results in a large number of additional random
variables, and, FORM cannot be applied efficiently. Therefore, the subset simulation
method is used to perform the reliability analysis.

4 RESULTS AND DISCUSSION

4.1 Step 1: Spatial Variability is Neglected

The results of the analysis neglecting the spatial variability of the soil are listed
in table 2. Brorm denotes the reliability index obtained with FORM for different
threshold values uyreshold- Pr,Form 18 the associated probability of failure according
to equation 6. The number of steps required for convergence of the HL-RF algo-
rithm is given in the column Nep rorm. Importance sampling with 1000 limit-state
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function evaluations was used the verify the FORM results. The estimate is listed
in column Py 15, the associated coefficient of variation is given in CVis. Comparing
the results obtained by FORM with the results from importance sampling, we ob-
serve that for all investigated ureshold, FORM gives a good approximation of the
probability of failure.

Table 2: FORM and importance sampling results

Uthreshold [CM] Brorm Pr FORM Nstep FORM  PrIs CVis
1 0.12 45-107T 2 - -

2 2.0 2.1-1072 5 2.0-1072 5.0%
3 3.3 5.6-107% 7 5.6-107% 6.2%
4 4.1 1.9-1073 9 2.0-1073 7.0%
5 4.8 8.8-1077 10 9.8-1077 8.4%

Figure 3 depicts the squared influence coefficients & in a pie graph. It is observed

that the variable with the largest influence is the oedometric stiffness modulus E™f,.

In the next step, we account for the spatial variability of this parameter by a random

field modeling. Since Ef)zfi is strongly correlated with the elastic Young’s modulus

E\;, the later parameter is also modeled as a random field.

M Relaxation factor
M Oedometric stiffness modulus
M Elastic Young's modulus
M Poisson's ratio
M Friction angle
® Cohesion
Specific weight

Figure 3: Squared influence coefficients

4.2 Step 2: Spatial Variability is Considered

In this section only the case uesholg = 3cm is investigated. As correlation length we
choose [, = 20m and /, = 5m. The parameters Eg‘;‘; and E,; are modeled as cross-
correlated random fields, compare section 2.2. With subset simulation using 500
samples per conditioning step we computed a probability of failure of 6.8 -107>. In
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a second run with 3500 samples per conditioning step we obtained a probability of
failure of 6.1-10~>. Comparing this to the FORM estimate of 5.6- 10~* from table 2,
we observe that neglecting spatial variability results in a significantly conservative
estimate. This is due to the fact that in the model with spatial variability a local loss
of strength becomes possible and a global loss of strength less likely. Among all
possible local losses, only a small fraction will lead to failure.

5 SUMMARY

In this paper we accounted for the risk that tunnel induced settlements in soft soil ex-
ceed a specified threshold. We used FORM to evaluate the reliability of the problem
for the case where spatial variability is neglected. The subset simulation method was
used to perform reliability analysis for the case where spatial variability of the most
influential ground parameters is taken into account. It was shown that the spatial
variability has a significant influence on the computed reliability.
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