Szenenbasierte Fahrstilerkennung durch probabilistische Auswertung von Fahrzeugdaten

5. Tagung Fahrerassistenz - TÜV-Süd Akademie GmbH

Tobias Bär Jan Aidel J. Marius Zöllner

FZI Forschungszentrum Informatik Intelligent Systems and Production Engineering (ISPE) 76131 Karlsruhe, Germany www.fzi.de/ispe

16. Mai 2012

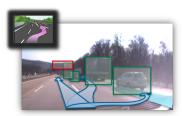
Inhaltsverzeichnis

Kurzvorstellung FZI - TKS

Motivation

Statement Studie Fahrsimulator - ANESA Lösungsweg über Fahrstilerkennung

Fahrerprofil


Fahrstilerkennung Klasseneinteilung Fahrszenen Prozesskette

Evaluation

FZI-Fahrsimulator Teststrecke und Datenbank Auswertung

Zusammenfassung

Kurzvorstellung FZI - TKS

Statement

These

Zukünftige, intelligente Fahrerassistenzsysteme müssen individuell auf den Fahrer abgestimmt sein.

Gründe

- Genauere und aussagekräftigere Vorhersagen von Zuständen und Ereignissen
 - Verbesserung von Komfort und Sicherheit
 - Verbesserung der (Energie-) Effizienz

Mögl. Lösungsweg für dies und viele ähnliche Problemstellungen:

Bereitstellung einer Wissensquelle, von der FAS Informationen über den Fahrer und dessen Verhalten erhalten.

Einführendes Beispiel - ANESA

Anticipatory Energy Saving Assistant (ANESA)

ANESA hält den Fahrer zum energieeffizienten Fahren an, in dem der Fahrer auf aufkommende Geschwindigkeitsbeschränkungen einen Ausrollhinweis erhält [1].

So spart der Fahrer Energie (ca. 12%) und verliert nur unwesentlich Zeit (ca 3%).

Experimente im Fahrsimulator zeigten:

Speziell in Kurven ignorierten sportliche Fahrer den *Standard-hinweis* oft. Ängstliche oder ungeübte Fahrer bremsten zu früh.

Anpassung des Hinweises auf den Fahrstil des Fahrers

Entwicklungsziel

Entwicklung eines Fahrerprofils, welches Informationen über den Fahrer und dessen Verhalten hält

Wesentliche Herausforderung

Maschinelle Erkennung und objektive Bewertung des Fahrstils auf Basis der Fahrzeugparameter während der Fahrt.

Anwendungsbeispiel

Parametrisierung von ANESA auf Basis des Fahrerprofils und des erkannten Fahrstils [2].

Szenenbasierte Fahrstilerkennung

Fahrerprofil - Informationen über den Fahrer

Komfort Parameter Sicherheitsabstand zum voraus fahrenden Fzg, Geschwindigkeitstoleranz zu Geschwindigkeits-

Zugehörigkeitsfkt. zu 5 Fahrstilen: sportlich, aggressiv, defensiv, energiesparend, unsicher

Fahrzeugnutzung Gewerbliche Nutzung, Kalenderanbindung, Viel- bzw. Wenigfahrer . . .

Unveränderliche Informationen Geschlecht, Führerscheinklasse, Geburtsdatum, ...

Machine Learning

User Provided

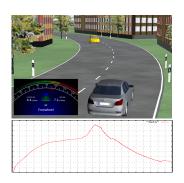
Fahrstilerkennung - Klasseneinteilung

Fahrer wurden in fünf Fahrstilklassen eingeteilt:

- Aggressiv Hohe Geschwindigkeiten und starke Beschleunigungen, hohes Risiko, bringt auch andere Verkehrsteilnehmer in Gefahr
- Sportlich Kennt sein Auto und nutzt den vollen Umfang der Fahrzeugdynamik, bringt andere Verkehrsteilnehmer nicht in Gefahr
- Moderat Moderates Risikolevel, verantwortliches Geschwindigkeitslevel, gelassen, rücksichtsvoll
- Ängstlich Unerfahren, defensiv, niedriges Risikolevel, fährt oft langsamer als ausgeschrieben, geringe Beschleunigungen
- (Energieeffizient) Versucht auf aufkommende Geschwindigkeitsbeschränkungen auszurollen, versucht das Fzg. auf konstantem Geschwindigkeitslevel zu halten, vermeidet Bremsen

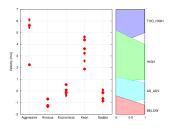
Fahrstilerkennung - Fahrszenen

Im Fahrsimulator wurde eine Strecke mit folgenden Szenen modelliert:

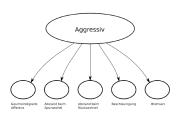

Annäherung an Ortschaft: Typischer Geschwindigkeitswechsel von 100 km/h nach 70 km/h nach 50 km/h. Gemessen wird die Annäherungsgeschwindigkeit, der Startpunkt des Ausrollens, Bremskraft.

Geschwindigkeitsmessung: Geschwindigkeitsmessung während einer 10 m Geraden auf der Landstraße und der Autobahn.

Scharfe Kurve: Durchfahren einer 45 Grad Kurve mit einem Radius von 100 m. Ausgewertet werden Beschleunigungen, Ausrollpunkt vor der Kurve, Geschwindigkeit am Scheitelpunkt der Kurve.


Stoppschild: Annäherung an ein Stoppschild in der Ortschaft.
Zeit-punkt des Ausrollens, Minimalgeschwindigkeit,
Beschleu- nigung beim Anfahren, Anzahl der
Startversuche.

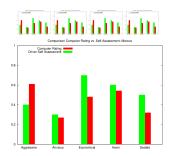
Datenaufzeichnung - Preprocessing


- Während der Fahrer eine Messszene durchfährt, werden Fahrzeugparameter (Bremsdruck, Geschwindigkeit, Beschleunigungen, etc) aufgezeichnet.
- Vorverarbeitung der Fahrzeugparameter. Z.B. Maximaler
 Bremsdruck, Geschwindigkeit am Scheitelpunkt der Kurve, etc.

Eine Geschwindigkeit $v = 5 \frac{m}{s}$ über der Beschilderung wird bspw. abgebildet auf 80% TOO_HIGH und 20% HIGH.

Fuzzifikation

- Aufbereitete Fahrzeugparameter werden auf Unscharfe Mengen (Fuzzy-Sets) abgebildet.
- ➤ Z.B. wird aus der Geschwindigkeit über die Trapezfunktion eine unscharfe Zugehörigkeit zur Fuzzy-Menge { AS_ADVISED, TOO_HIGH, BELOW, HIGH } bestimmt.



$$P_{Sz}(DS) = \sum_{i=0}^{N} w_i P_{Sz}(\lambda_i | DS)$$

Bayes'sche Inferenz

- Über Bayes'sche Inferenz wird für jede Fahrstilklasse eine Zugehörigkeit bestimmt.
- Beispiel: Aggressives Fahren zeichnet sich durch folgende Evidenzen aus:
 - Hohe Geschwindigkeit
 - Geringer Abstand zum Vorrausfahrenden
 - Starke Beschleunigungen
 - **.**..

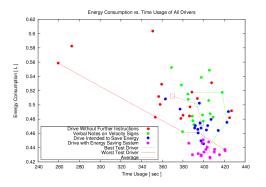
Nicht alle Verkehrsszenen sind für jeden Fahrstil gleich aussagekräftig, deshalb wird der Gesamtfahrstil über eine gewichtete Summe bestimmt.

Bestimmung des Gesamtfahrstils

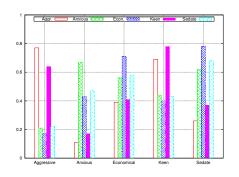
- Über eine gewichtete Summe der letzten Messungen wird ein Gesamtfahrstil abgeleitet.
- Fahrstil basiert auf den letzten 5 Messungen.
- Fahrhinweis wird über Fuzzy-Inferenz auf den Fahrstil angepasst.

FZI - Fahrsimulator

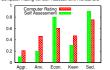
- Extraktion von virtuellen 2D und 3D-Kamerabildern über IPG-Movie
- Leichte Erprobung verschiedener Sensor Konfigurationen
- 270° Panorama über mehrere Projektoren
- Aktives Gaspedal, aktives Lenkrad, integrierte Vitalsensorik
- ► Erzeugung von Nick- und Rollbewegungen über hydraulisch angesteuerte Stoßdämpfer


Testfahrten und Messdatenbank

- Um die Aussagekräftigkeit der Fahrstilerkennung zu testen, wurden im FZI-Fahrsimulator eine Teststrecke von ca. 7km Länge mit Landstraßencharakter modelliert.
- Die Teststrecke umfasste insgesamt 7 Messpunkte.
- Probanden waren Studenten und Mitarbeiter im Alter zwischen 18 und 50 mit verschiedener Fahrerfahrung.
- Die Messdaten wurden per Fragebogen und per Expertenwissen gelabeled.

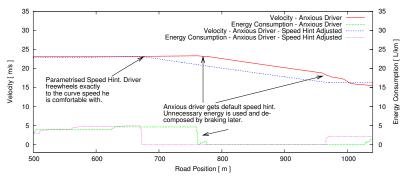

ANESA - Ergebnisse Fahrsimulatortests

Im Durchschnitt sparten die Fahrer $12.97\,\%$ an Energie bei einem Zeitverlust von $2.53\,\%$.

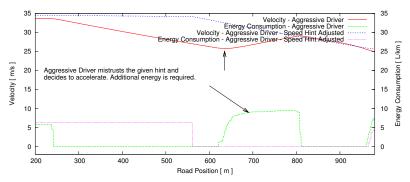

Auswertung der Messergebnisse

- Nach der Maximum-Likelihood Hypothese h_{ML} = argmax(P(h|D)) konnten 83% der Messungen richtig klassifiziert werden.
- Am meisten Verwechslung bestand zwischen den Moderat u. Energieeffizient und Aggressiv u. Sportlich

Auswertung - Selbsteinschätzung vs. Computer Rating



- ▶ 75% der Fahrer schätzten sich in die gleiche Klasse wie die maschinelle Auswertung.
- Viele Fahrer überschätzten Ihre Fähigkeiten Energie zu sparen (hier können FAS weiter helfen).


Auswirkungen (Kurve) - Unsichere Fahrer

Mit einem, an einen unsicheren Fahrer angepassten ANESA-Fahrhinweis, konnte bei unsicheren Fahrern ein zu frühes Bremsen verhindert werden.

Auswirkungen (Kurve) - Aggressive Fahrer

Für aggressive und sportliche Fahrer erscheint der Fahrhinweis später - das Befolgen des Vorschlages wird dadurch wahrscheinlicher.

Zusammenfassung

- Zukünftige, intelligente Fahrerassistenzsysteme müssen individuell auf den Fahrer abgestimmt sein.
- Deshalb brauchen ADASs ein Fahrerprofil, in dem Informationen über den Fahrer und dessen Verhalten abrufbar sind.
- Vorgestellt wurde die maschinelle Erkennung des Fahrstils (fünf Klassen). Die Erkennung ist
 - szenenbasiert
 - probabilistisch
 - basierend auf der Auswertung von Fahrzeugparameter
- ► Als Anwendung wurde der ANESA Fahrhinweis auf den individuellen Fahrer angepasst.

Szenenbasierte Fahrstilerkennung durch probabilistische Auswertung von Fahrzeugdaten

5. Tagung Fahrerassistenz - TÜV-Süd Akademie GmbH

Tobias Bär Jan Aidel J. Marius Zöllner

FZI Forschungszentrum Informatik Intelligent Systems and Production Engineering (ISPE) 76131 Karlsruhe, Germany www.fzi.de/ispe

16. Mai 2012

