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Abstract

Multiview video increasingly finds its way into our everyday lives. While only ten years
ago the practical relevance of this kind of data was low, the availability of mobile commo-
dity hardware capable of recording high quality video has led to an explosion of produced
videos, calling for a intensified examination of multiview video.
The glut of video data being acquired every day and partially being made available on-
line entails technological challenges regarding efficient representation, transmission and
storage. Then again, a variety of hitherto unthinkable opportunities arise for novel, high-
ly innovative applications around multiview video. By all means, adequate and effective
means for data analysis become necessary.
In this thesis, different approaches and algorithms are presented which aim at enabling
and facilitating the analysis of multiview video. The temporal and spatial aspects of vi-
deo are treated separately. The specific contributions are a novel, fully automatic video
synchronization algorithm that is very robust against disturbing influences and highly fle-
xible. Furthermore, the thesis introduces a universal framework to evaluate the precision
of multiscale image features. Lastly, a new class of visual markers is presented and, based
thereon, two novel and highly efficient multiscale feature detectors.
The thesis hence makes theoretical, but also practically relevant contributions in several
areas of spatio-temporal analysis of multiview video.
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Kurzfassung

Multiview Video, also aus mehreren Perspektiven gleichzeitig aufgenommenes Video, ge-
winnt zunehmend an praktischer Bedeutung. Während noch vor zehn Jahren relativ we-
nig alltäglicher Bedarf bestand, sich mit dieser Art von Daten zu befassen, ergibt sich, ge-
trieben durch die zunehmende Verfügbarkeit erschwinglicher mobiler und videofähiger
Geräte und der damit verbundenen rasanten Zunahme an produziertem Videomaterial,
mehr und mehr die Notwendigkeit, sich mit diesem Thema auseinanderzusetzen.
Die enorme Anzahl an Videos, die täglich aufgenommen und teilweise auch online verfüg-
bar gemacht werden, stellt einerseits eine technologische Herausforderung dar in Bezug
auf die effiziente Repräsentation, Übertragung und Speicherung dieser Daten. Zum an-
deren ergeben sich bislang ungeahnte Möglichkeiten für neue, innovative Anwendungen
rund um Multiview Video. In beiden Fällen ergibt sich dabei der Bedarf nach effektiven
Verfahren für die Datenanalyse.
In dieser Arbeit werden verschiedene Verfahren und Algorithmen vorgestellt, die die Ana-
lyse von Multiview Video ermöglichen und vereinfachen sollen. Dabei werden der zeitliche
und örtliche Aspekt von Video getrennt voneinander untersucht. Insbesondere wird ein
neuartiger, vollautomatischer Videosynchronisationsalgorithmus vorgestellt, der sehr ro-
bust gegenüber Störeinflüssen und äußerst flexibel einsetzbar ist. Des Weiteren führt die
Arbeit ein universelles Evaluierungssystem ein, mit dessen Hilfe die Präzision skalenin-
varianter Bildmerkmale bewertet werden kann. Schließlich wird einen neuer Ansatz zum
Entwurf visueller Marker präsentiert und darauf basierend zwei neuartige, hocheffiziente
Bildmerkmalsdetektoren.
Damit leistet diese Arbeit wissenschaftliche und zugleich praxisrelevante Beiträge, die
mehrere Teilbereiche der zeitlich-örtlichen Analyse von Multiview Video umfassen.
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1 Introduction

In the 1990s, the term multimedia was popularized, describing the convergence of differ-
ent types of media in single applications in order to improve the tangibility of concepts
presented to the user. At the same time, static content was more and more abandoned in
favor of more dynamic forms of presentation, increasingly encouraging user interaction.
An important catalyst for this development was digital video which found its way into a
then still young and mostly text and image based Internet. Back in these days, video hence
played an indispensable, if not the defining role in the emergence of multimedia.

Two decades later, with haptic communication still in its infancy, and olfactory or even
gustatory data communication far out of reach, audio-visual data is still the most prevalent
form of multimedia today. An interesting turn that video communication took in the early
2000s, and with it the entire Internet, is a blurring of the boundaries between consumption
and production of content. With the advent of the so coined Web 2.0, more and more users
started to actively participate and furnish their own content, sharing it with an interested
audience through specific internet platforms. This phenomenon affected traditional media
forms, such as text, with professional content providers seeing new competitors in the
form of blogs, as well as newfangled forms of multimedia such as video. Users did no
longer content themselves with their former role of mere consumers, they increasingly
began to produce content themselves and have gradually become prosumers since.

Another aspect that fueled the progress of user-generated content is the availability of
mobile devices capable of recording high quality video. Along with video sharing plat-
forms encouraging their users to upload their recordings on the go, this has led to a vast
and ever increasing amount of video data being available online. In urban areas nowa-
days, virtually every busy spot, and every noteworthy event is potentially covered by one
or even more laymen cameramen.

Neglecting privacy issues, this enables a variety of exciting new applications that range
from 3-D scene reconstruction to automatic video editing to free viewpoint video naviga-
tion. Alas, the sheer amount of video data also puts a burden on both the hosting service
providers and consuming users who are confronted with a vast disarray of videos. Conse-
quently, efficient solutions for structuring and organizing videos are necessary. The men-
tioned recovery of 3-D structure can serve a valuable purpose here beyond its primary
applications in immersive multimedia. More precisely, the spatio-temporal relationship
between videos, be it recoverable, can help put videos acquired by different users into a
common context. Once it is known where and when different videos have been acquired,
they can be easily grouped into sets which are then also very likely to be linked semanti-
cally [SSFK09].

In the following section, some concrete example applications will be discussed that ex-
ploit the spatio-temporal relations of user-generated videos to semantically group them
into multiview sets and present them to users with additional value. Besides the se-
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1 Introduction

Figure 1.1: Schematic visualization of the spatio-temporal registration of videos. The objective is to
determine where and when videos have been recorded with respect to each other.

mantic organization of user-generated content and multimedia applications exploiting the
spatio-temporal relationships between casually recorded videos there are of course other
fields where multi-camera setups are involved. Examples are video surveillance, post-
production in the movie industry, and robotics or computer vision in general.

1.1 Multiview Video Applications

Equipped with mobile devices that comprise a video camera, a GPS receivers and a con-
nection to the Internet, users can record geo-tagged video clips and instantly upload them
to a central server. For some applications it might be sufficient not to send the entire video
data but only a reduced representation thereof. For other applications the upload process
might consist of streaming the video on the fly.

At the server, videos that happen to have been recorded at the same spot can be registered
with respect to each other and incorporated into a database. Initially, this database con-
tains only a few reference views with precisely known position and viewing direction. In
the course of operation, it is expanded with every uploaded video. The goal is to recover
the exact 3D location of the involved cameras, their viewing directions, as well as the tem-
poral relationship between the different recordings. How to perform the spatio-temporal
registration is still subject of intense research. This thesis provides tools and algorithms
designed to help solve some of the various open problems in this context. Once videos are
registered, it is a straightforward task to find spatio-temporal clusters that most probably
represent a common event.

A system that enables mobile users to determine both their location and viewing direction
from images taken with their cameras has many potential applications. The most obvious
one is a visual compass that allows a single user to orient herself in an unknown environ-
ment. In this particular case it is not necessary to transmit entire videos or still images but
only a reduced representation based on image features that can be extracted on the device

2



1.1 Multiview Video Applications

Figure 1.2: Multiview video sharing portal. Left: Search results for a particular query. Right:
Interactive playback of the “Marienplatz” video set. Arrows indicate the location and
viewing direction of each video, the currently selected one is highlighted in blue.

locally. But based on this key functionality an even greater number of applications can
be conceived that revolve around the concept of user cooperation. People can be offered a
video sharing platform that allows them to upload their content which is then semanti-
cally linked to that of other users. So formed multiview video sets describe the depicted
events much better than an unstructured collection of single clips. Other users interested
in the such an event can intuitively choose between different viewpoints and get a more
immersive feeling of what the event was like. At the same time, the size of a video set can
be an indicator for an event’s relevance or popularity. In specific scenarios, videos could
also be streamed in real-time from the producing users to the consumers. Whenever an
event is captivating enough to have more than one spectator filming it, a multi-angle live
stream could so be made available. Example scenarios for live multiview video streaming
are sport events or concerts.

Figure 1.2 shows the interface of the mobile video sharing platform proposed in [SSFK09]
from a consumer’s point of view. A query for the term “Munich” results in a number of
video sets each containing multiple videos. On a conventional video platform such a re-
quest would give rise to a vast and confusing amount of results, comprising all different
kinds of videos that have been tagged with “Munich” for some reason. The way in which
this system structures the results makes it much more convenient to find videos of rele-

3



1 Introduction

vant content. Once the user selects a video set, the available viewpoints are displayed as
arrows on a map of the site. Since the videos in the set are all synchronized, they all refer
to a common time line. If a video clip does not span the entire duration of the event, its
arrow symbol is simply faded in and out at the respective times. During playback, the ar-
row locations and orientations are updated in accordance with the motion of the cameras
over time. Once the user selects a view the corresponding video clip is displayed. The
map is minimized but still visible in the upper left corner so that orientation within the
scene remains possible. At any time, another perspective may be selected and, due to the
synchrony, the new video seamlessly sets in where the previous one has stopped.

In the applications discussed so far, user cooperation referred to the passive agreement of
users to have something done with their public videos. But this concept can be pushed
even further when users decide to deliberately cooperate with each other in order to create
a specific multiview video set. An example is the cooperative shot of a panorama image or
even a video panorama, as illustrated in Figure 1.3. Using a single camera, it is obviously
impossible to simultaneously capture a dynamic scene from different viewpoints. With
the help of friends or passers-by and their cameras, however, it can be accomplished given
an appropriate image stitching algorithm. Another occasion to arrange the cooperative
shot of multiview video is for instance at family reunions, say a wedding. The produced
video material then lends itself to fully or semi automatic editing where objects of interest
can be kept in focus by transitioning between views, always selecting the most suitable
one. Another application is the combination of the high quality audio signal captured by
a nearby camera (say again, at the wedding ceremony) with the total view on the scene
that only a second camera that is situated further back can provide. Or imagine the visual
enhancement of parts of the video image through super-resolution techniques based on the
input from various views on the scene. The last two examples are particularly useful in
a lecture scenario where a lecturer and the blackboard are in the view of several cameras,
maybe including a stationary system installed in the auditorium, but legible writing and
comprehensible audio can only be recorded from front row seats.

1.2 Technical Challenges and Contributions

The focus of this thesis is on the visual analysis of video signals acquired in multi-camera
environments. Each video signal1 constitutes a three-dimensional object, with two-dimen-
sional images, or frames, stacked along a third, temporal dimension. These complemen-
tary aspects of video, space and time, are studied separately. From the applications de-
scribed previously, two technical challenges can immediately be identified that exactly
correspond to these aspects. First, one must solve the problem of video synchronization,
second, the problem of spatial registration. Both these problems have been intensively
studied over the past decades and legion of solutions have been proposed for each one of
them, specialized for specific requirements and with certain constraints.

Regarding video synchronization, preferable properties are high accuracy, minimum con-
straints on the depicted scene and the viewpoints, on the camera or video parameters,

1 The term video signal refers to the visual component of video only. The audio component will be disregarded
throughout this thesis.
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1.2 Technical Challenges and Contributions

(a) Images acquired with four cameras simultaneously at t = t1

(b) Images acquired with a single camera at distinct time instants t = t0, t1, t2, t3

Figure 1.3: (a) One frame of a video panorama stitched from multiple simultaneous recordings.
(b) A single camera cannot capture the dynamic contents of the scene.

tolerance towards camera motion, varying lighting conditions, etc. Section 2.1 on related
work in video synchronization gives an extensive overview of existing algorithms and
lists their strengths and deficiencies in this regard. With the novel video synchroniza-
tion algorithm presented throughout the rest of Section 2, an elaborate approach is pro-
posed that comes very close to satisfying the requirements listed above. Unlike most other
state-of-the-art methods it furthermore operates automatically, basically requiring no user
intervention at all, which makes it unrivaled in terms of flexibility. A great deal of the
robustness is owing to a novel cross-correlation approach coined ConCor, described in
Section 2.3, which is capable of detecting and eliminating incoherent parts in the videos.
But ConCor is not limited to video synchronization. It is rather a general concept that can
be applied to a number of problems where robust cross-correlation is needed.

As to the problem of spatial registration, different disciplines have established tackling it
in different flavors. Structure-from-Motion (SfM), for instance, addresses the problem of
reconstructing 3-D structure from multiple 2-D images. The images are typically frames
taken from a video captured with a moving camera, hence the name of the discipline. But
conceptually there is no difference to using images acquired by different (video or still)
cameras. As with all stereo vision approaches, the missing depth information is inferred
from parallax effects due to the camera displacement which is typically small in SfM. In
wide baseline reconstruction, the same problem is studied for the case where the involved
cameras are further apart. Once the geometry of the scene can be reconstructed, the camera
poses are known too, and video registration is achieved. Without going into further detail,
most of the approaches available today rely on image features. There are different feature
detectors out there, each with distinct properties and applications. An important family
are multiscale or scale-invariant features which can naturally compensate for variations in
camera distance, zoom level, and size changes in general. Scale-invariant image features
are extensively studied in Section 3 of this thesis. More specifically, the location uncertainty
of image features detected with a given algorithm is studied in Section 3.3. The proposed
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1 Introduction

evaluation framework allows the quantification of this uncertainty, and makes it available
to improve and facilitate subsequent processing, for example in SfM.

In Section 3.4, two novel feature detectors are presented that distinguish themselves by
their low computational complexity. On the basis of an established feature detection algo-
rithm, a radically simplified, linear detector, coined suSURF, is conceived. It achieves high
detection performance, yet at a fraction of the processing time. The second novel detector
is AsuSURF which, at the cost of a tolerable complexity increase, additionally incorporates
affine invariance. This makes AsuSURF highly suitable for wide baseline matching tasks,
e.g., in 3-D reconstruction, but even more so in object detection and image retrieval.

Moreover, a new class of visual markers is introduced in Section 3.2. Unlike existing
marker systems, the proposed Maximum Detector Response Markers (MDRMs) do not
require a separate detection step, but are detected with standard feature detectors. The
markers are designed to be optimally detectable and thus offer superb detection and low
false negative rates.

Parts of this thesis have been published in [ZGS+09, SSFK09, SZG+09, SSE+10, SSE+11,
ANCS+12, SSE+13].
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2 Temporal Video Analysis: An Information-theoretic
View on Video Synchronization

Every multimedia application involving multiple videos of the same scene requires exact
temporal synchronization in order to extract useful information from the given data. The
inference of depth information from multiview videos can in general only be performed
if the corresponding frames have been acquired at the same time instant. Otherwise, the
projections of dynamic objects are inconsistent. The same holds for applications which aim
at stitching the input videos together to form a panoramic view, or at editing videos in such
a way as to provide seamless transitions between different perspectives on the portrayed
action. Fields of application are very diverse and include basically every domain where
multiple cameras are deployed. Be it any kind of camera network, used for instance in
a surveillance application, in television or film production, or novel community based
video sharing applications; whenever two or more videos of the same scene are available,
there is an interest in aligning the image sequences in time. The required precision of this
alignment may vary depending on the particular application, typically a synchronization
with integer frame accuracy or below is desired. Another important requirement in many
applications is that the synchronization process should be fully automated, without the
need for user intervention.

While the above demands can be satisfied with hardware-based solutions, these ap-
proaches are not applicable in many of the targeted scenarios. In fact, cameras related
by a central clock are only used in high-end applications, such as professional multiview
sportscasts or automotive crash tests. An alternative are deliberately placed, external syn-
chronization cues, e.g., by use of a clapperboard in film productions. None of them are
practical unless the camera setup is permanent to some extent, or the acquisition is planned
well in advance. For less costly productions, or in scenarios where a camera network forms
in an ad-hoc manner, possibly without control over the used cameras, only software-based
synchronization approaches are viable. In the case of user-generated content, an event
might even have been captured independently by total strangers. Their recordings can
only be unified afterwards through some common video sharing service. Many mobile
devices, such as camcorders and mobile phones, contain receivers for either or both the
Global Positioning System (GPS) and the Global Navigation Satellite System (GLONASS),
which both provide highly accurate clock signals. However, there is no reliable tempo-
ral association between a device’s satellite navigation and camera modules. Timestamps
attached to video recordings (typically just a file creation time) are always based on the
device clock and are only exact to the second. For the purpose of video synchronization
with frame or even subframe precision (i.e., tolerances below 30–40 ms), this is insufficient.

The less influence one has on the acquisition process, the more robustness a video syn-
chronization algorithm needs to offer. Assumptions about perfectly stationary cameras,
identical frame rates, or similar viewing directions are more often than not invalid in prac-
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2 Temporal Video Analysis: An Information-theoretic View on Video Synchronization

(a) Two cameras in sync (b) Cameras out of sync

Figure 2.1: The principle behind feature-based video synchronization: scene rigidity as a measure
for synchrony. Two cameras record a moving pair of rigidly linked points (marked with
• and ◦) at time instants t1, t2, . . . and t′1, t

′
2, . . . , respectively. (a) Rays back-projected

from images acquired at the same time instant t′i = ti intersect at the corresponding
scene point location. (b) With a temporal offset of one frame (t′i = ti+1), the points of
each pair are reconstructed at incorrect locations, their distance is not preserved. The
pair’s rigidity is violated in this case.

tice. Ideally, a video synchronization algorithm can deal with unknown input sequences
and, as long as they show the same event, reliably determine their temporal alignment.

The remainder of this chapter is organized as follows: In Section 2.1 an overview of exist-
ing video synchronization approaches is given. Throughout Section 2.2, a fundamentally
different, bitrate-based synchronization algorithm is presented and described in detail.
Section 2.3 is devoted to Consensus-based cross-Correlation (ConCor), an extension pro-
posed on top of the basic approach which increases robustness against erroneous data and
allows for largely autonomous operation without user intervention. The ConCor enhanced
synchronization algorithm is then applied to several challenging datasets in Section 2.4.

The ideas and contributions developed in this chapter have been published in parts in
[SSE+10, SSE+11, ANCS+12, SSE+13].

2.1 State-of-the-art

In the late 1990s, when more and more applications involving multiple videos of one
scene began to emerge, the first software-based video synchronization algorithms were
proposed. One of the pioneer authors to take on this subject was Gideon Stein [Ste99]
who presented a feature-based approach assuming coplanar object motion. Estimating a
homography, points along trajectories in two views are brought to alignment, the es-
timation error being used as a measure of asynchrony. Most subsequent feature-based
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2.1 State-of-the-art

(a) Videos in sync (b) Videos out of sync

Figure 2.2: Example for intensity-based video synchronization: Two telephoto views of the same
scene are warped and superimposed in the top row. Their gray level difference is shown
below. (a) For simultaneously acquired frames, the alignment is rather accurate. (b)
Between frames from different time instants, however, dynamic objects cause significant
intensity differences. (Source images from [CI]

methods have seized this fundamental principle of establishing geometric consensus be-
tween dynamic features. To deal with more general object motion, other approaches quan-
tify misalignment by means of epipolar geometry, estimating a fundamental matrix [PB-
VDHC03, CSI06, WHK06, BPCP08, PCSK10] or a trifocal tensor [WLB05, LY06]. Rao et
al. [RGSSM03] avoid the explicit computation of epipolar geometry and evaluate rank
constraints instead. Some authors apply voting schemes to find the most consistent tem-
poral alignment among feasible candidates. Pooley et al. employ the Hough Transform
to establish an affine relationship between timelines [PBVDHC03], Pádua and Carceroni
et al. use RANSAC instead [PCSK10]. Tuytelaars and Van Gool have detached their ap-
proach from epipolar constraints and evaluate the distance between back-projected rays
of sight in affine space [TVG04]. In [YP04], Yan and Pollefeys extract spatio-temporal
interest points from the videos and cross-correlate their occurrence over time. Raguse
and Heipke present an approach aiming at accurate alignment of footage acquired with
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2 Temporal Video Analysis: An Information-theoretic View on Video Synchronization

multiple high-speed cameras [RH06]. They regard the cameras’ temporal deviations as
additional intrinsic parameters, and so incorporate them into regular bundle adjustment.
Wedge et al. and Brito et al. have proposed dedicated algorithms, respectively, to synchro-
nize recordings of objects in free fall [WHK06], and of mobile sensors actively tracking
their own position [BPCP08] (adopting the principles of [PCSK10]). Relying on external
aids, both approaches can be considered on the verge to hardware-based methods. The
general principle of feature-based video synchronization is illustrated in Figure 2.1.

A second major branch of synchronization approaches is formed by intensity-based meth-
ods. Instead of matching image features and their trajectories, constraints on the alignment
are derived from the body of pixels in all video frames. In 2000, Caspi and Irani presented
their work on sequence-to-sequence alignment [CI00] where the temporal alignment be-
tween frames and their spatial transformation is solved for simultaneously. In an iterative
approach operating on scale pyramids generated from the input videos, the actual devia-
tion in gray levels is minimized (cf. Figure 2.2). In later publications, a different similarity
measure replacing mean squared error was introduced [UI06], as well as a feature-based
variant of the initial algorithm [CSI06]. Another early work by the same authors deals with
the synchronization of rigidly linked, moving cameras [CI02], exploiting similar changes
over time in both views. Dai et al. have seized the principle behind [CI00], but solve for
the spatio-temporal alignment through 3-D phase correlation [DZL06b]. Along completely
different lines, Ushikazi et al. derive a frame-wise measure of appearance change that can
be matched using cross-correlation [UOD06]. Recently, Shresta et al. published a multi-
modal approach exploiting audio fingerprints and the occurrence of camera flashes which
they align across videos using dynamic programming.

All these methods have their specific strengths and limitations in terms of requirements
to be imposed on the cameras, their setup, and the portrayed scene itself. In particular,
there are differences in the number of supported cameras, their relative orientation, the
nature of allowed motion, as well as image resolutions, frame rates, etc.. Scene objects
sometimes must be sufficiently textured, so as to detect, track and match reliable features,
their movements restricted both in nature and intensity. Generally speaking, a main issue
of feature-based approaches is their restriction of relative camera viewing angles due to
limited matchability [MTS+05]. If features are derived from silhouettes, view points are
typically confined to a plane, depending on the assumptions on object shapes and motion
(e.g., horizontal baselines in case of upright posture). Intensity-based methods on the other
hand tend to be incompatible with independently moving cameras.

2.2 Bitrate-based Video Synchronization

In [SSE+10], a fundamentally different approach to video synchronization has been pro-
posed. Instead of imitating the human eye in detecting synchronous events in two videos,
this approach depends on a more abstract concept: the information content of individ-
ual video frames. Based on the fundamental understanding that synchrony is inextricably
linked with motion in the scene, the primary goal is to reliably quantify motion throughout
a video. Obviously, static scenes do not carry any information from one frame to the next.
From an information theoretic point of view, a frame that does not differ from its neighbors
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differentially encoded MVs

intra encoded MBs
residual errorresidual error

differentially encoded MVs
intra encoded MBs

(a) (b)

differentially encoded MVs

intra encoded MBs
residual errorresidual error

differentially encoded MVs
intra encoded MBs

(a) (b)

Figure 2.3: Simplified qualitative view on bitrate contributions in the cases of (a) sheer camera
motion and (b) additional scene changes

exhibits vanishing conditional entropy, its additional information content is zero. Only if
there is deviation from the already observed statistical behavior, a frame brings about an
information increase; which is exactly the case if objects in the scene are in motion.

There have been several advances towards quantifying scene changes specifically for the
purpose of video synchronization, e.g., in [UOD06]. The biggest challenge for all these ap-
proaches is to make the proposed measures as robust as possible to detrimental effects. In
order to avoid restrictions to be imposed on the videos, the measures need to be designed
to deal with all kinds of external influences, which amounts to an incessantly complex task.
The most important issue is to reliably distinguish between camera motion and scene mo-
tion. While the latter carries precious information closely related to synchrony, camera
motion is entirely independent, thus irrelevant for synchronization (unless the cameras
are rigidly linked to each other, e.g., on a stereo rig).

A field where this same problem – viewed from a different perspective – has already
been solved to a great extent is video compression. Here, the goal is to represent video
data with the least possible rate, hence to reduce it to its very essential information con-
tent. State-of-the-art video compression algorithms efficiently compensate for predictable
motion, reducing the bit-rate demand of corresponding macroblocks to a minimum. Fig-
ure 2.3 schematically illustrates how a hybrid video codec handles motion in the video.
For homogeneous motion patterns, which are characteristic for camera pans, prediction
from previous frames is highly efficient. The merely translatory displacement of each mac-
roblock is encoded in a motion vector, achieving vanishing residual error. A motion vector
field as smooth as in Figure 2.3a can further be encoded differentially at very low rate.
The major bitrate contribution in this example stems from image parts that are uncovered
on the left border due to the camera motion. Ordinarily, these macroblocks need to be
encoded independently, in so called INTRA mode. In the case of additional scene mo-
tion, the bitrate composition is different, as depicted in Figure 2.3b. Not only do moving
objects uncover additional background areas, which results in an increased contribution
of independently encoded blocks. The motion vector field is also less regular, and thus
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Figure 2.4: (a) Absolute synchronization error as a function of template length. Four videos with
varying viewpoints, depicted in (b), are compared to the given reference. The two em-
bedded graphs show the Zero-mean Normalized Cross-Correlation (ZNCC) functions
for the view at 90° for exemplary template lengths, the solid red lines therein indicate
the ground truth offset, the dashed one an erroneous synchronization outcome.

more difficult to compress. Since object motion is in general more complex, prediction
efficiency is lower, leading also to a higher residual error. To summarize, camera motion
can be represented very efficiently while scene motion requires higher bitrates. Ideally, the
effects of camera motion are reduced to "background noise" negligible in comparison with
contributions caused by scene motion.

Even though camera motion cannot be fully eliminated in practice, its contribution is
limited and, most notably, not correlated between views. It has been shown in [SSE+10]
that cross-correlating bitrate sequences is indeed a reliable way to determine the tempo-
ral offset between two videos of the same scene. It has further been demonstrated that
the bitrate-based approach imposes only minimal restrictions on the videos to be synchro-
nized. Owing to the sophisticated motion compensation qualities of H.264, it can cope
with moderate camera motion, and it is independent of the cameras’ viewing directions
since the amount of motion in the scene is quantified rather than its precise appearance.
The only prerequisites obviously are the presence of motion in the observed scene and that
the depicted actions of interest remain in the focus of both cameras throughout the record-
ing. It will be shown that this requirement can even be relaxed to a certain extent when
ConCor is employed.

The key property of viewpoint independence is illustrated with an example in Figure 2.4.
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Figure 2.5: Synchronization error for different parameter settings. Perfect synchronization is indi-
cated by green markers, yellow stands for an absolute error of exactly one frame, red for
error values of two frames and higher.

Here, an individual performing exercises is recorded from five different directions. Ex-
cerpts from the corresponding bitrate sequences are then aligned with the chosen reference
using ZNCC. As long as the selected excerpts are long enough, the correct temporal offsets
are retrieved in all cases. Only if the template length is insufficient the excerpts loose their
distinctiveness and misalignment can occur. In this scenario, 800 frames or 4 seconds are
enough to guarantee frame accurate synchronization. For one of the pairs, an excerpt as
short as 200 frames is sufficient. Another observation is that although the true offset is no
longer found at the highest ZNCC peak in some of the cases, it does remain a reasonable
offset candidate with a local ZNCC maximum of comparable strength. This important fact
will be exploited in the ConCor algorithm described in Section 2.3.

2.2.1 Influence of Encoding Parameters

In [SSE+10], bitrate sequences were generated by re-encoding a given video using the
x264 encoder implementation of the H.264 codec. A fixed quantizer needs to be used to
produce Variable BitRate (VBR) output, and bi-directional prediction disabled in order not
to interrupt the sequence’s chronology. This implies a Group Of Pictures (GOP) structure
of the form IPPP. . . , i.e., single I-frames separated by a series of P-frames. The most crucial
parameters in the re-encoding process are hence the Quantization Parameter (QP) which
adjusts the fidelity of the re-encoded video, and the length of the Group Of Pictures (GOP),
i.e., the distance between I-frames separated by a series of P-frames. In Figure 2.5, the syn-
chronization error for a representative video pair is displayed subject to different settings
of these parameters. It can be observed that frame accurate synchronization can only be

13



2 Temporal Video Analysis: An Information-theoretic View on Video Synchronization
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Figure 2.6: Contributions to bitrate components. The three macroblock types allowed in our im-
plementation are INTRA, P and SKIP. B-type prediction being disabled, the only con-
tributors to the relevant texture and motion vector components are INTRA and P-type
MBs. The signaling and syntax overhead, denoted MISC in the figure, is negligible.

consistently achieved in a region of high QP and GOP length values. This and other ex-
periments suggest that maximally long QPs, and maximally coarse quantization should
be used. In the following, an attempt is made at explaining why coarse quantization and
long GOPs facilitate bitrate-based synchronization.

Quantization Parameter

To understand why coarse quantization is beneficial, different bitrate components need to
be examined separately. There are basically two complementary types of information con-
tributing to the bitrate output of a hybrid video encoder: data necessary to represent the
Motion Vectors (MVs) of every predicted macroblock, and so called TEXture data (TEX)
which comprises the associated residual prediction error and the contribution of individ-
ually encoded INTRA macroblocks, both after transform coding and quantization. Fig-
ure 2.6 illustrates the obvious linkage between different coding modes and these compo-
nents.

Intuitively, one associates scene motion primarily with the MV component. Later in this
section, it will be shown under which circumstances this assumption is valid. For the time
being, let us go with intuition and identify MV data with dynamics in the video sequence.

From Figure 2.7 it can be seen that in the case of fine quantization, i.e., for small QP values,
the (very noise-like) texture component is predominant. Only for large QPs the bitrate for
motion vectors can compete with and even surpass their TEX counterpart. It is further
remarkable how the TEX component assumes the shape of the MV signal for increasingly
coarse quantization, and thus also carries information about scene motion. This interesting
fact will also be investigated later in this paragraph.

Figure 2.8 explicitly illustrates the behavior of both components for varying QP values.
The rapid decrease of the TEX component is related to the obvious effect of QP in the quan-
tization process, directly controlling the quantizer step sizes, which consequently leads to
the observed descent in 2.8a. The characteristic behavior of the MV component in 2.8b,
however, requires finer dissection.
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Figure 2.7: The bitrate profiles for one of the "Human Adam" sequences, at two different quanti-
zation parameter values QP and identical GOP length 499 (I-frames removed). The
bitrates for the TEX and MV components are plotted separately, as well as the total
bitrate (TEX+MV+overhead). For QP = 1, TEX dominates the total bitrate without
following any characteristic evolution. At the other end of the scale, for QP = 51, MV
comes out on top and imposes its temporal behavior which is closely related to the actual
motion present in the video.

Given the fact that in this setting, with B slices disabled, P-type macroblocks are the only
contributors to the MV component (cf. Figure 2.6), the focus will be on the occurrence of P-
frames and their properties. Figure 2.9a shows the allocation of a frame’s macroblocks into
the three types allowed by our settings as a function of the Quantization Parameter (QP).
The exact numbers are of course subject to the video content and the encoder implemen-
tation, but the qualitative QP dependency is the one presented here, with diminishing
INTRA and increasing SKIP rates, and a P-type percentage increasing up to a certain QP,
labeled q0 in the figure, receding thereafter. To understand this behavior, the choices the
encoder makes during mode selection using Rate-Distortion Optimization (RDO) [SW98]
must be considered. The established technique applied in RDO is the macroblock-wise
minimization of a Lagrangian cost relating the necessary rate R for a given coding mode
and the associated distortion D.

J = D + λR (2.1)

The non-negative relative weight λ is typically set as a function of QP, e.g., in [SW98] an
experimentally motivated λ = 0.85 (QP/2)2 is proposed. Figure 2.10 schematically illus-
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Figure 2.8: The average bitrates (averaged over all frames) for (a) the TEX and (b) the MV compo-
nent as a function of the quantization parameter, and (c) their relative contribution to
the total bitrate. At QP = q1, the two components switch roles.
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Figure 2.9: The average number of the different macroblock types in a frame for varying quantiza-
tion parameter (a), and the size in bits of an average P-type MB (b). The latter, together
with the P-type curve from (a), explains the behavior of the MV component over QP
from Figure 2.8b.
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Figure 2.10: The x264 encoder uses Rate-Distortion Optimization (RDO) to determine the encod-
ing mode for a given macroblock. According to the H.264 standard, there are 13 IN-
TRA and 67 P-type variants to choose from, in addition to SKIP mode which offers
vanishing rate (neglecting overhead) at usually heightened distortion. The exact po-
sition of the different modes in the R-D plane depends on the particular macroblock.
The dashed line with slope −λ0 = −0.85 (q0/2)2 corresponds to the q0 value from
Figure 2.9a for an "average" macroblock. See text for details.

trates the RDO driven coding mode decision for a particular macroblock. In this diagram,
operating points with constant cost J form a family of parallel, straight lines with slope
−λ. The optimal mode is determined as the contact point of the family member which
is tangent (from below) to the convex hull of all possible operating points. With increas-
ing QP the slope −λ becomes steeper, and modes are selected towards lower rates and
higher distortions. Above a certain QP value, indicated by the slope of the dashed line in
Figure 2.10, SKIP mode is always the optimal choice, permanently providing the lowest
possible rate.

Now consider the QP value labeled q0 in Figure 2.9a. It corresponds to the dashed limit
slope from Figure 2.10 and marks the turning point above which SKIP mode becomes
optimal for more and more of the individual macroblocks. Consequently, the ratio of SKIP
blocks experiences a rather abrupt increase beyond q0, at the expense of INTRA and P-type
macroblocks. For the QP region below q0, where SKIP is not an option due to the higher
emphasis of (2.1) on low distortion rather than on low rate, the only choice for the encoder
is to balance resources between the INTRA and P-type modes. In this region, lower QPs
(hence smaller λ, and heightened emphasis on low distortion) encourage the encoder to
choose INTRA over P-type for an increasing number of macroblocks.

Next, let us have a look at the number of bits necessary to encode the motion vector
information of an average P-type macroblock. H.264 allows for a multitude of block par-
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Figure 2.11: At coarse quantization, scene motion (measured by the number of P-type MBs at
coarsest quantization) has a strong correlation with the bitrate components TEX and
MV, as well as with the total bitrate (b). The occurence of the different block types is
also linked to motion, only moderately for INTRA MBs, but significantly for P-type
and SKIP MBs, the latter being negatively correlated (a).

titioning schemes with subblocks as small as 4×4 pixels. In total, there are 67 different
partitionings with one to 16 motion vectors per macroblock. Again, an RDO argument can
be used to explain the transition to less subtle partitionings when QP is increased. And yet
again, there is a limit value for QP above which it is always the partitioning with one mo-
tion vector per macroblock that will be selected, yielding the lowest possible rate. Hence,
for increasing QPs the number of motion vectors, and accordingly the number of bits per
P-type macroblock, can be expected to decrease, finally going to saturation. This behavior
is validated by the experimental results plotted in Figure 2.9b.

Altogether, the product of the average number of P-type macroblocks (cf. Figure 2.9a) and
the average size of each P-type macroblock in bits (cf. Figure 2.9b) leads to the observed MV
component behavior reported in Figure 2.8b. Unlike the TEX component, MV decays less
rapidly when going towards coarser quantization. In fact, above a certain point, marked
q1 in Figure 2.8c, MV supersedes TEX in its relative contribution to the overall bitrate.

Following the initial intuition that MV is the key component for synchronization, QP
values above q1 should be most suitable for the purpose of video synchronization because
in this region the bitrate is dominated by the motion vector information which is inherently
related to the actual motion in the scene. However, the TEX component is not entirely
irrelevant for synchronization either. Every MV is accompanied by a prediction residual
contributing to the TEX component. In the case of complex motion, the residuals can
be significant and are certainly useful for synchronization. Consequently, it would make
sense to consider QP values below q1 in order to include more of this P-type related TEX
contribution. Nevertheless, TEX contributions that stem from from INTRA macroblocks
need to be excluded.
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2.2 Bitrate-based Video Synchronization

According to Figure 2.9a, the influence of INTRA blocks is generally very limited for QPs
above q0. One might thus be tempted to reduce QP below q1, eventually approaching q0.
Indeed, the number of P-type macroblocks would further increase towards mid-range val-
ues of QP, but, as is visible from Figure 2.12, this effect is not necessarily related to scene
motion. A large amount of the additional P-type macroblocks are rather due to the increas-
ingly fine subblock partitioning which was discussed earlier. Since smaller subblocks are
less distinctive, the encoder sometimes decides – for the sake of minimizing Sum of Ab-
solute Transformed Differencess (SATDs) – to predict individual macroblock pieces from
arbitrary references, whereas unpartitioned macroblocks would have been skipped unless
more consistently predictable. In general, the optical flow, representing the true motion, is
better captured when motion compensated prediction works on entire macroblocks, thus
for higher QP values.

Finally, in order to assess the range of QP values that are suitable for our video syn-
chronization algorithm, the statistical dependencies between scene motion and the bitrate
components are analyzed. To this end, the number of P-type macroblocks at coarsest quan-
tization is considered a legitimate indicator for scene motion, and its correlation coefficient
with the TEX and MV time series obtained is evaluated for varying QP. The results in Fig-
ure 2.11a suggest that the MV component is in general more closely related to scene motion
than TEX, and that both gradually lose their meaningfulness for decreasing QP. Both MV
and TEX retain their usefulness on a constantly high level before it starts to drop at QP
values around 35. This result is in accordance with the initial experiment presented in
Figure 2.5.

In practice, depending on the control one has over the videos to be synchronized, it can
be beneficial to make the effort and treat the two components separately. If for some reason
the videos cannot be specifically re-encoded, it makes sense to combine TEX and MV in
the maximum likelihood approach detailed in [SSE+10], or to omit the TEX component
altogether unless it is known that the existing videos have been produced using a coarse
quantizer. If re-encoding is not an issue, a quantizer with QP = 40 or above should be
selected, in which case the total bitrate (MV+TEX, neglecting overhead) will perform just
as well as the generally superior MV component alone. Note how the performance of the
total rate clings to either of the two components in Figure 2.11a, the turning point being
QP=q1 from Figure 2.8c.

For the sake of completeness, Figure 2.11b shows how scene motion correlates with the
number of different macroblock types, pieces of information which, extracted by a more
sophisticated bitstream parser, could as well serve for the purpose of synchronization.
While the number of INTRA blocks is only remotely linked to scene motion, the number of
P-type and SKIP blocks can very well prove useful, again at coarse quantization. It is worth
noting that the number of SKIP MBs exhibits an (almost perfectly) negative correlation
with scene motion, which stands to reason since it is highly unlikely that a macroblock on
a moving object were to be efficiently encoded in SKIP mode.

Group of Pictures Length

It lies in the nature of I-frames to disrupt the temporal dependences in the video stream.
Exclusively composed of INTRA macroblocks, they do not carry information about scene
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2 Temporal Video Analysis: An Information-theoretic View on Video Synchronization

(a) QP = 1

(b) QP = 21

(c) QP = 51

Figure 2.12: Frame 733 from one of the "Human Adam" sequences, re-encoded with different quan-
tization parameter values. For fine quantization, large areas of the frame are encoded in
INTRA mode, as is evident from the lack of motion vectors in (a). At mid-value QPs,
P-type mode is predominant, also in static parts of the frame; the true optical flow is
not accurately captured. Only for coarse quantization in (c), most of the static image
content is encoded in SKIP mode (indicated by green dots), while the motion vectors
exclusively represent the person’s movements. Note that in (b) there are multiple mo-
tion vectors per macroblock, whereas the majority of motion vectors in (c) represent
single macroblocks.
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Figure 2.13: The size of P-frames (a) and the occurrence of different macroblock types (b) as a func-
tion of the frame’s position inside the GOP. The values are averaged over all GOPs of
the given video containing 10000 frames. The GOP length is 101 frames, the initial
I-frame is not displayed in either graph.

motion themselves, yet they are much bigger in size than the relevant P-frames. Con-
sequently, it has been proposed in [SSE+10] to interpolate the bitrate values at I-frame
positions prior to cross-correlation.

However, as it turns out, immediately subsequent P-frames are also influenced by the
(removed) I-frame. As can be seen from Figure 2.13a, which depicts an average GOP after
I-frame removal, it takes several frames before the bitrate samples actually level off. The
exact manifestation of this effect depends on the amount and nature of motion in the scene.
In the given example, a steady camera was used to capture a person whose moderate
movements cover approximately ten percent of the image. Picture quality experiences a
"refresh" with every I-frame, then degrades again very fast within subsequent P-frames.
Accordingly, prediction becomes less and less efficient, and SKIP mode is increasingly
selected over P mode. Eventually, P-type macroblocks are only used in dynamic scene
parts, while static background is entirely represented in SKIP mode. At the same time, the
number of INTRA macroblocks remains on a constantly low level. Consequently, a quickly
decaying bitrate peak is observable at the beginning of each GOP. The shorter the chosen
GOP length, the more such peaks occur in the re-encoded sequence. In order to mitigate
their repercussions on synchronization, sufficiently long GOPs need to be used. Following
practical experiences (see also Figure 2.5), values beyond 300 frames per GOP are suitable.

2.2.2 Practical Considerations

Re-encoding Artifacts

When bitrate sequences are obtained through re-encoding as described in [SSE+10], the
nature of the original video data needs to be taken into account. Ideally, the source video
is available in hi-quality raw format, ready to be directly encoded into the desired IPPP...
scheme, with parameters as suggested in Section 2.2.1. The bitrate samples then coherently
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2 Temporal Video Analysis: An Information-theoretic View on Video Synchronization

reflect the motion complexity throughout the video – except at the I-frame positions which
are discarded [SSE+10]. However, more often than not the source videos are compressed
in an arbitrary format and with unknown parameters, both evading direct control. In case
of highly compressed source material, the persistence of the original GOP structure after
re-encoding can be observed. This is due to the typically encountered Peak Signal to Noise
Ratio (PSNR) differences between the different frame types. A former I-frame usually
forces the encoder to spend more rate in order to avoid an otherwise disproportionate
distortion. This is accomplished by increasing the number of INTRA macroblocks (in case
of fine quantization), or by using P-type macroblocks instead of SKIP mode. In any case,
this implies a bitrate spike at the position of the given frame, which thereby retains its
"INTRA character". The same holds for former P-frames which similarly differ in PSNR
from possibly present B-frames. The periodicities caused by this combination of persistent
GOP structure and overshoots at the beginning of each new GOP (see Section 2.2.1) are
of course detrimental during synchronization. Two remedies are proposed to counter this
effect: an appropriate choice of the new GOP length, and an active removal of periodic
components from the re-encoded bitrates.

First of all, the periodicities can be diluted by a proper choice of the new GOP length. The
periodic length of the spike pattern is given by the least common multiple lcm(G0, G1)
of the GOP lengths G0 and G1 before and after re-encoding. If the new GOP length
G1 is chosen to be a prime number, the period always assumes the maximum length of
G0 ·G1 samples, irrespective of the given value of G0. As a consequence of the enlarged
period length, the spike disturbance takes on a more aperiodic character. Consider the
re-encoding of GOPs with G0 = 6 for different values of G1. With the prime G1 = 499,
the spike pattern repeats itself exactly every lcm(6, 499) = 499 · 6 = 2994 samples. Every
variation of G1 drastically shortens this period, thus emphasizing the periodicity of the
spike disturbance. With G1 = 500 and G1 = 501, for instance, the period length drops to
lcm(6, 500)=1500 and lcm(6, 501)=1002 samples, respectively. For G1 =498, the period is
as short as lcm(6, 498) = 498 samples.

In addition to choosing a prime GOP length, an active removal of periodic components
from the bitrate sequences after re-encoding is proposed. If the re-encoding history of
the input videos is known1, the corresponding frequencies and their harmonics can be
precisely suppressed in the Fourier domain. For the case where this information is un-
available, the adaptive spectral cleanup illustrated in Figure 2.14 has proven very effective.
In the Fourier domain, unnatural periodicities show as prominent peaks in the magnitude
spectrum. Such peaks are identified by judging them against the local average and stan-
dard deviation computed within a sliding window of width π

5 . If a value exceeds the local
average by more than three times the local standard deviation, it is set to zero, and hence
the corresponding spectral component eliminated from the signal. Figure 2.14 illustrates
this for an example video that is available in two versions: as an uncompressed image se-
quence v0(t), and as low-quality H.264 encoded2 video v1(t) with GOP structure IBBPBBP.
Both versions are (re-)encoded with the x264 encoder at QP = 40 and GOP length 499,
which leads to the bitrate sequences r0(t) and r1(t), respectively. Artifacts in r1(t) due to

1A given video might have been re-encoded multiple times, containing traces of several of the GOP structures
used each time.

2produced with the H.264/AVC JM reference encoder avilable at http://iphome.hhi.de/suehring/tml/
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Figure 2.14: Adaptive spectral cleanup: (a) Bitrate sequence r1(t) obtained by re-encoding a low
quality video exhibiting an IBBPBBP GOP structure. Artifacts from the original GOP
structure are clearly visible. (b) As a reference, the bitrate sequence r0(t) obtained by
encoding the uncompressed image sequence. (c) With the adaptive spectral cleanup
performed in the Fourier domain the GOP artifacts can largely be mitigated.
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2 Temporal Video Analysis: An Information-theoretic View on Video Synchronization

the old GOP structure are clearly visible in Figure 2.14a. Corresponding spectral peaks
occur in its Fourier transform R1(ω) displayed in Figure 2.14c. Figure 2.14c also shows
the adaptive threshold based on local average and standard deviation, and the clipped
spectrum R̃1(ω). The corresponding adjusted bitrate sequence r̃1(t) shown in Figure 2.14b
comes very close to the artifact-free bitrate sequence r0(t). This adaptive spectral cleanup
is versatile enough to mitigate other adverse periodicity effects as well. During frame rate
conversion, for instance, repeated frames exhibit vanishing rate, and dropped ones disrupt
predictability, leading to elevated rate in the following frame.

Synchronization without Re-encoding

In some scenarios it might be impractical to specifically re-encode the source videos. In-
stead, in order to obtain useful bitrate sequences, the frame sizes are determined by pars-
ing the existing representations. In that case, there is no control whatsoever over the exact
nature of the encoding.

As long as both videos are encoded in H.264, there is a good chance that synchroniza-
tion can, to a certain extent, be successful nonetheless. In the experiment reported in Fig-
ure 2.15, two H.264 videos produced with differing encoding parameters are synchronized
with our approach. From the second video, a characteristic excerpt has been selected to
ensure optimal synchronization in the case of identical parameters. For varying encod-
ing parameters, the development of the synchronization error is then monitored. Within
a range of reasonably similar QP and GOP length values, frame exact synchronization is
achieved. Slight misalignments are encountered only if the encoding parameters, espe-
cially QP, deviate unduly between the videos.

In Figure 2.16, a more challenging scenario is investigated where two videos are encoded
with different codecs. In this example, H.264 and MPEG-2 are used to produce the bitrate
sequences for the synchronization process. With the given settings, the resemblant tempo-
ral behavior of both signals in Figure 2.16a is striking. As can be observed in Figure 2.16b,
ZNCC retrieves the alignment almost perfectly. While the number of possible codec con-
figurations is sheer limitless, this last experiment suggests the feasibility of bitrate-based
synchronization for differently encoded input videos.

2.3 Consensus-based Cross-correlation (ConCor)

Apparently, cross-correlating bit-rate sequences is a simple, yet reliable approach to syn-
chronize a pair of videos. So far, the template that was to be matched within the longer
bitrate sequence had been manually selected from the shorter one. In order to be truly
independent of user intervention, an automatic mechanism is necessary to select the most
suitable parts from the sequences. This mechanism needs to discard parts of the second
bitrate sequence b(t) which do not overlap with the first one a(t). Furthermore, it should
identify those signal parts where non-stationary disturbances occur, either in b(t) itself, or
in corresponding parts of a(t). Such disturbances can be of very different causes, includ-
ing temporary occlusions present in one of the views, or sudden movements of one of the
cameras that cannot be fully compensated by the video codec. Another effect that ren-
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Figure 2.15: Bitrate-based synchronization with differing H.264 encoding parameters. A video en-
coded with QP=36 and GOP length 451 is synchronized with a second view opposed
by 180° and encoded with varying parameters, leading to the plotted synchronization
errors.
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Figure 2.16: Bitrate-based synchronization with different codecs. Bitrate sequences obtained by
H.264 (QP = 41, GOP length 499) and MPEG-2 (QP = 31, GOP length 351) are
juxtaposed in (a). Despite the misalignment by 2 frames observed in (b), the principal
temporal similarity is well apparent.
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2 Temporal Video Analysis: An Information-theoretic View on Video Synchronization

ders specific signal parts useless for synchronization is, e.g., the temporary lack of motion
altogether.

With consensus-based cross-correlation (ConCor), an algorithm has been devised that specif-
ically addresses these requirements [SSE+11]. ConCor can detect unapt signal parts, and
exclude them from the computation of the cross-correlation measure. Not only does this
increase the robustness against the described deranging effects, it also automatizes the
process of template selection. In the following sections, the concept behind ConCor will
be introduced, together with an extension based on the ZNCC. Finally, optimal values for
ConCor’s most significant parameters will be derived.

2.3.1 The Basic ConCor Algorithm

The basic idea behind consensus-based cross-correlation is to split one of the signals into
shorter segments, and to cross-correlate each of them with the second signal:

bi(t) =

{
b(t) : (i− 1)M ≤ t < iM

0 : else

ci(∆t) =
∑
t

a(t+ ∆t) bi(t) (2.2)

In (2.2), the regular cross-correlation between a(t) and bi(t) is computed. The resulting
ci(∆t) are referred to as Partial Cross-Correlation Functions (PCCFs). The PCCFs are then
combined using RANdom SAmple Consensus (RANSAC) [FB81] in order to separate the
corrupted segments from the valid ones. In terms of RANSAC, the model to be fitted is
the offset, hence a scalar quantity. The data points are the PCCFs which are combined, i.e.,
summed up in order to determine potential offset candidates. Obviously, the sum of all
PCCFs yields the cross-correlation function of the original signals:∑

i

ci(∆t) =
∑
i

∑
t

a(t+ ∆t) bi(t) =
∑
t

a(t+ ∆t)
∑
i

bi(t) =
∑
t

a(t+ ∆t) b(t) = c(∆t)

By omitting outlier PCCFs in the above summation, their influence on the resulting cross-
correlation function can be specifically excluded.

The algorithm below summarizes the ConCor approach given two input sequences a(t)
and b(t) of lengths La and Lb, respectively, where a(t) is assumed to be the longer of the
two (La ≥ Lb). Both sequences are assumed to be normalized with respect to their global
means and standard deviations.

BASIC CONCOR ALGORITHM

1. Chop the shorter signal into m = bLb/Mc segments bi(t) of equal length M.
2. Compute the PCCFs according to ci(∆t) =

∑
a(t+ ∆t) bi(t).

Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3a) Make a random selection of s PCCFs and compute their sum.
3b) Extract candidate offsets from that sum.
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2.3 Consensus-based Cross-correlation (ConCor)

3c) For every offset candidate, evaluate the number of consenting PCCFs (inliers).

. . . . . . . . until confidence is reached that at least one outlier-free PCCF set has been selected.
4) Select the offset with most consenting PCCFs .

5) Recompute the offset from the sum of consenting PCCFs .

�

As is usual for RANSAC, the stop criterion for the loop over steps 3abc is determined
online, based on the current worst case estimate of the outlier ratio.

In step 3a of the algorithm, a single PCCF would essentially be sufficient to determine the
offset between the input signals. The minimum number of data points required to fit the
model is hence s= 1. However, PCCFs and their combinations are more trustworthy the
more samples have been involved in their computation. Consequently, the total number
sM of effectively contributing samples should be raised to a maximum. In general, increas-
ing s, hence combining several small segments rather than using few large ones, leads to
a better chance of avoiding defective signal parts. In turn, including more samples always
increases the risk of introducing corrupt samples. This trade-off in the choice of s and M
depends on the burst error behavior of the considered signals and will be examined in
detail in the next section.

During step 3b, a combination of PCCFs does not necessarily exhibit a single, conclusive
peak. Instead, it will contain several local maxima of comparable strength, leading to more
than one candidate offset. This effect is more pronounced when only a small number of
PCCFs are combined or when each of them has been computed from very few samples.
Multiple candidates are kept, each of which then undergoes the consensus check of step 3c
with respect to all remaining PCCFs . Nevertheless, it makes sense to reduce the number
of offset candidates, which can be achieved by morphological closure prior to the local
maximum search. The closure operation leaves only the most dominant peaks intact, pre-
serving their exact position, while less significant side lobes get filled in. A structuring
element width of 50 samples has been experimentally determined appropriate.

In step 3c, a PCCF votes for a given offset candidate if it has a local maximum in close
proximity to it. To this end, the PCCF peaks within 10 frames from the candidate offset
are counted. This threshold is tolerant enough to robustly allow for slight misalignments
that can occur naturally. At the same time, it denies the support of PCCFs whose peaks are
more than half a second away, and thus most likely unrelated.

Figures 2.17 to 2.21 illustrate the ConCor algorithm with an example. The used videos
were captured with static cameras and show the same scene of a person acting in front
of a static background. The input sequences a(t) and b(t) are exceptionally short, com-
prising only around 1200 frames each, but have the instructive advantage to clearly reflect
the actions of the recorded scene. For instance, the first notable peak in sequence a(t)
which attains its maximum around t = 90 corresponds to the main performer in the yel-
low sweatshirt entering the scene from the right, then pausing. During the second peak
centered around t = 200, he approaches the paper bank and opens the hatch. He then
climbs into the paper bank, which takes roughly until t = 450. The rather sharp peak just
before t = 500 is caused by the hatch being abruptly closed. There is hardly any activity
until t = 600. Then, both the container is reopened and the group of passers-by walk in
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Figure 2.17: The two input signals a(t) and b(t) and synchronous frames from the video sequences
they have been derived from. The segmentation of b(t) used in the consensus-based
approach is indicated by the dotted vertical lines.

camera b(t) camera a(t)

scene

Figure 2.18: Passer-by effect in schematic top view of the setup from Figure 2.17: Along the depicted
traversal path, the blue and red parts lie in the field of view of only one of the cameras,
having an impact either on a(t) or b(t), respectively.

from the right. The group leave the scene approximately at t = 700, being responsible for
the dominant peak between t = 600 and t = 700. After this event, the main performer
jumps out of the container and leaves the scene as well, causing some minor activity in
the bitrate signal a(t) which lasts until t = 800. The scene remains without motion until
t = 1000 where a second individual passes through the image from left to right.

The same events are observed by the second camera which is associated with the bitrate
sequence b(t). While the main line of action (hide-and-seek in the container) leaves bitrate
traces equivalent to those in a(t), the peripheral actions are slightly shifted in time. This is
due to the differing viewpoints in the given camera setup: Events at the extreme right end
of the scene are only visible in the image that corresponds to a(t), while events occurring at
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Figure 2.19: Conventional normalized cross-correlation of sequences a(t) and b(t) yields the erro-
neous offset ∆txcorr =1 frame. This is due to the dominant, yet spurious, peak between
frames 600 and 700 whose alignment is enforced.

the very left exclusively show up in b(t). Activities associated with passers-by traversing
the scene from right to left thus appear slightly delayed in b(t) as compared to a(t), and
vice versa. This incoherence due to peripheral motion is illustrated in Figure 2.18. Since
the bitrate representation does not (and cannot) describe precise movements but rather
the amount and complexity of motion present in each frame, these shifts pose a problem
to regular cross-correlation. Seemingly shifted events would lead to an according mis-
alignment of the bitrate sequences. In this example, the major peak caused by the group
of three is subject to this problem, and because of its mere dominance, it determines the
cross-correlation result, overruling more consistent signal parts. In Figure 2.19, this issue
becomes apparent in the erroneous result of regular cross-correlation.

The aim of ConCor is to identify and exclude all incoherent signal parts. Figure 2.20
shows the eleven partial cross-correlation functions ci(∆t) resulting from a segmentation
of b(t) with M = 100. In this example, a combination of s = 3 PCCFs is taken in every
iteration to generate offset hypotheses according to step 3b) of the algorithm. During the
voting in step 3c), local maxima in the ci(∆t) assess the validity of each offset hypothe-
sis. In the plots of Figure 2.20, this is exemplified for the ground truth offset marked by
the vertical green line. With local maxima within the default distance threshold, c2(∆t),
c3(∆t), c5(∆t), c8(∆t) and c11(∆t) are in support of the ground truth offset. These PCCFs
correspond to the found inliers which eventually determine the ConCor result, presented
in Figure 2.21.

2.3.2 Normalized ConCor

In [SSE+11], as well as in the previous section, ConCor was proposed as an extension to
regular cross-correlation. Neither the PCCFs ci(∆t) nor their combinations had been nor-
malized with respect to the partial signals’ means or standard deviations. Instead, the
global means had been removed from a(t) and b(t), and both rescaled with their global
standard deviations. The reason for this was to gain independence of the signal magni-
tudes, emphasizing their similarities in signal shape. If the bitrate sequences were wide-
sense stationary, this global treatment would be equivalent to true normalization in the
sense of ZNCC. For realistic bitrate sequences, however, this is only a first approximation.
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Figure 2.20: Partial cross-correlation functions ( PCCFs ) corresponding to the signals in Fig-
ure 2.17.

−400 −200 0 200 400

−0.5

0

0.5

1

∆t in frames

c(
∆t

)

0 200 400 600 800 1000 1200

−2

0

2

4

6

t in frames

a(t) b(t−∆tconcor)
Inliers

Ground
truth
offset

1

1

3
2

3

−400 −200 0 200 400

−0.5

0

0.5

1

∆t in frames

c(
∆t

)

0 200 400 600 800 1000 1200

−2

0

2

4

6

t in frames

a(t) b(t−∆tconcor)
Inliers

Ground
truth
offset

1

1

3
2

3

Figure 2.21: Consensus-based cross-correlation yields the correct offset ∆tconcor = 50 frames. In
particular, segments bi(t) are discarded where 1© people walk into the scene from the
right, 2© people walk in from the left, and 3© where there is not enough scene motion
to reasonably establish temporal relationships between both videos.
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In the following, modifications to the basic ConCor algorithm will be proposed in order to
incorporate normalization.

To this end, several auxiliary quantities need to be defined. In particular, the following
moving averages computed over M consecutive samples of a(t) are required:

a(∆t) =
1

M

∆t+M−1∑
t=∆t

a(t) (moving average) (2.3a)

a2(∆t) =
1

M

∆t+M−1∑
t=∆t

a2(t) (moving average energy) (2.3b)

σa(∆t) =

√
a2(∆t)− (a(∆t))2 (moving standard deviation) (2.3c)

Corresponding measures are considered for the individual segments bi(t):

bi =
1

M

iM−1∑
t=(i−1)M

b(t) (segment average) (2.4a)

b2i =
1

M

iM−1∑
t=(i−1)M

b2(t) (average segment energy) (2.4b)

σbi =

√
b2i − b

2

i (segment standard deviation) (2.4c)

The normalized partial cross-correlation functions (NPCCFs ), defined as the ZNCC of a(t)
with each of the bi(t), can then be expressed as follows:

c̃i(∆t) =
1

M

iM−1∑
t=(i−1)M

a(t+ ∆t)− ai(∆t)
σai(∆t)

·
bi(t)− bi
σbi

, (2.5)

where ai(∆t) :=a(∆t+(i−1)M) and σai(∆t) :=σa(∆t+(i−1)M) are shifted versions of the
moving average and standard deviation from Equations (2.3a) and (2.3c).

It can be shown that the Normalized PCCF (NPCCF)s c̃i(∆t) relate to the corresponding
PCCFs ci(∆t) from Section 2.3.1 in the following way:

c̃i(∆t) =
ci(∆t)−M · ai(∆t) · bi

M ·σai(∆t) ·σbi

It follows that, in order to combine several NPCCFs , they need to be denormalized, added
up, and the sum renormalized according to the union of all participating segments. Let
I = {i1, i2, . . . , is} be the index set of s segments to be combined. The combination of
NPCCFs , denoted by c̃I(∆t), can then be calculated as follows:

c̃I(∆t) =

∑
i∈I
[
σai(∆t) ·σbi · c̃i(∆t) + ai(∆t) · bi

]
− s · aI(∆t) · bI

s ·σaI (∆t) ·σbI
(2.6)
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The quantities relating to the union of segments can be readily calculated from the corre-
sponding measures initially computed subject to (2.3a), (2.3b), (2.4a) and (2.4b):

aI(∆t) =
1

s

∑
i∈I

ai(∆t) =
1

s

∑
i∈I

a(∆t+ (i−1)M) (2.7a)

a2
I(∆t) =

1

s

∑
i∈I

a2
i (∆t) =

1

s

∑
i∈I

a2(∆t+ (i−1)M) (2.7b)

σaI =

√
a2
I(∆t)− a2

I(∆t) (2.7c)

bI =
1

s

∑
i∈I

bi (2.8a)

b2I =
1

s

∑
i∈I

b2i (2.8b)

σbI =

√
b2I − b

2

I (2.8c)

Ultimately, the basic ConCor algorithm only requires modification in that additional
quantities be precomputed, and steps 3a) and 5) be adjusted:

NORMALIZED CONCOR ALGORITHM

1. Chop the shorter signal into m = bLb/Mc segments bi(t) of equal length M.

2. Compute a(∆t), a2(∆t), σa(∆t), and all bi, b2i and σbi according to Equations (2.3a)
through (2.4c), as well as the NPCCFs c̃i(∆t) following Equation (2.5).
Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3a) Make a random selection of s NPCCFs and combine them according to Equa-

tion (2.6).
3b) Extract candidate offsets from the combination c̃I(∆t).
3c) For every offset candidate, evaluate the number of consenting NPCCFs (inliers).

. . . . . . .until confidence is reached that at least one outlier-free NPCCF set has been selected.
4) Select the offset with most consenting NPCCFs .
5) Recompute the offset from the combination of all consenting NPCCFs according to

Equation (2.6).
�

The added computational burden is moderate, amounting toO(1) for the precomputations
in step 2). In steps 3a) and 5) of the algorithm, the NPCCF combination according to
Equations (2.6) through (2.8c) comes at a complexity increase by O(n), based on the input
signal lengths.

The tremendous advantage, however, is the improved localizability of segments bi(t)
within the longer sequence a(t), with all the benefits that ZNCC has over unnormalized
cross-correlation.
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2.3.3 Optimal ConCor Parameters

There is the fundamental trade-off in choosing a segment length M and the number s
of segments to be combined in each RANSAC step. On the one hand, it is desirable to
have as many samples as possible contribute to the cross-correlation functions computed
in every RANSAC iteration. On the other hand, increasing M leads to a higher risk of
involving corrupt samples in each segment, and raising s obviously increases the chance
to include one or more outlier segments. In the following, the optimal choice for M and s
will be determined, maximizing the total number of involved samples while maintaining a
high probability that RANSAC can successfully deliver a solution. The event of RANSAC
success is defined as follows:

RN : "An outlier-free set of segments is selected at least once in at most N random draws."

The optimization problem to be solved is then given by

max
s,M

sM, s.t. Pr{RN } ≥ 0.99, M ≥ 50, (2.9)

where an arbitrarily high confidence level of 99% has been chosen. The lower bound onM
stipulated in (2.9) is intended to ensure that individual (N) PCCFs are sufficiently mean-
ingful to be used for consensus checks. The minimum length of 50 samples is empirically
motivated and corresponds to 2 seconds of video for 25 fps footage. It should be noted that
this constraint onM is hardly determining for the maximization in practical scenarios. The
parameter N bounds the complexity of ConCor, with typical values ranging from 1000 to
10000.

The following notation and assumptions will further be used: The sequences a(t) and
b(t) are La and Lb samples long, where La ≥ Lb by definition. Consequently, b(t) contains
m = bLb/Mc full segments of length M . We assume a worst-case overlap between a(t)
and b(t) of at least L0 samples.

As discussed earlier, there are two main effects responsible for a sample b(t) to be corrupt.
Either it lies outside the overlap region of both signals, or it is part of a burst error in
the video content itself (due to occlusions, lack of motion, etc.). Both phenomena will be
treated jointly in the following.

Burst Error Model

To realistically model the occurrence of burst errors, a homogeneous, two-state Markov
chain is devised with transition matrix P =

(
p0 1−p1

1−p0 p1

)
, as depicted in Figure 2.22a. Let

x(t) denote the state of sample b(t) which can either be error-free (x(t) = 1) or corrupt
(x(t) = 0). The transition probabilities

p0 = Pr{x(t)=0 |x(t−1)=0} and p1 = Pr{x(t)=1 |x(t−1)=1} (2.10)

determine how likely it is for the current sample to remain in the same state as the previous
one. The complementary probabilities (1−p0) and (1−p1) quantify the rate of state changes,
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x=1 x=0

1− p1

p1

1− p0

p0

(a)

X=1 X=0

1− P1

P1

1− P0

P0

(b)

Figure 2.22: The Markov chains governing the occurrence of corrupt samples (a), and outlier seg-
ments (b). The states 0 and 1 represent erroneous and valid data, respectively.

accordingly.

In order to describe the Markov chain in a more intuitive way, it is parametrized by its
mean error burst length B, and its steady-state sample error rate p. For an error burst to last l
samples, the Markov chain needs to remain in the corrupt state exactly (l− 1) times before
leaving it. The probability for this to happen is pl−1

0 (1−p0), and consequently:

B = E{l} =
∞∑
l=1

l pl−1
0 (1− p0) =

1

1− p0
(2.11)

The stationary distribution of x(t) can be computed as the eigenvector of P corresponding
to its unity eigenvalue. It is thus the solution to

(
p0−1 1−p1
1−p0 p1−1

) ( p
1−p
)

= 0, resulting in

p =
1− p1

2− p0 − p1
. (2.12)

Accordingly, the recurrence probabilities can be expressed as a function of B and p in the
following way:

p0 =
B − 1

B
, p1 = 1− p

B(1− p) (2.13)

Both B and p can be set to default values or adapted to a particular class of scenarios,
allowing for specific values of the expected duration and frequency of disturbances. For
instance, videos acquired during a sports event will contain many frequent but possibly
brief occlusions, while surveillance videos are generally more steady.

Given this model for the sample outlier occurrence parametrized by p and B, let’s now
turn to the error distribution for segments of length M samples. There are m = bLb/Mc
such segments, each of which is considered an outlier if it contains one or more corrupt
samples. The random process determining the occurrence of outlier segments then obeys
a Markov chain too, very similar to the one governing the sample state (see Figure 2.22b).
Capital letters are used for the segment-based quantities, namely Xi ∈ {0, 1} for the state
of the i-th segment, and P0, P1 and P for the recurrence probabilities and the steady-state
error rate, respectively.

If the previous segment was an inlier, it takes M recurring error-free samples for the
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current segment to be entirely error-free as well, thus

P1 = Pr{Xi=1|Xi−1 =1} = pM1 . (2.14)

An arbitrary segment is an inlier if its first sample is error-free, and the (M−1) subsequent
samples are too. Accordingly, the complementary event that the segment is an outlier
occurs with probability

P = 1− (1− p) pM−1
1 . (2.15)

With a relationship analog to the one in Equation (2.12), the remaining transition probabil-
ity can then be expressed as

P0 = 2− P1 −
1− PI
P

. (2.16)

To evaluate the overall RANSAC success probability Pr{RN } for a given pair of s and
M , first the probability Pr{D} is computed indicating how likely it is that, in one of the
RANSAC iterations, a random draw of s segments is successful.

D : "s randomly selected segments are all inliers."

Ignoring the overlap effect for the moment, let’s define the following random variables:

G =
m∑
i=1

Xi, the number of inlier segments, (2.17)

H = X1 +Xm, and (2.18)

K =
m∑
i=2

Xi−1Xi, the correlation between adjacent segments. (2.19)

It can be shown [Klo72, Klo73] that the joint probability of G, H , and K is given by

Pr{G=g,H=h,K=k} =

(
2

h

)(
g − 1

k

)(
m− g − 1

g − k − h

)
α βg γh δk (2.20a)

where α = (1− 2P + P1P )m−1 / (1− P )m−2, (2.20b)

β = (1− P1)2 P (1− P ) / (1− 2P + P1P )2, (2.20c)
γ = (1− 2P + P1P ) / ((1− P )(1− P1)). (2.20d)

The probability that, among the m segments of b(t), exactly g are inliers is then given by

Pr{G = g} =
2∑

h=0

m−1∑
k=0

Pr{G=g,H=h,K=k}. (2.21)
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Pr{U1=u, U>0}
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(mM−L0) modM
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Figure 2.23: Probability distribution of the numbers U1 and U2 of unusable segments at the head
and tail of b(t), respectively.

Together with

Pr{D|G = g} =
s−1∏
i=0

g − i
m− i =

(
g

s

)/(m
s

)
(2.22)

and

Pr{RN |G = g} = 1− (1− Pr{D|G = g})N , (2.23)

this eventually leads to

Pr{RN } =
m∑
g=0

Pr{RN |G = g} Pr{G = g}. (2.24)

Overlap Effect

In order to incorporate the so far neglected overlap effect, the random variable U is in-
troduced counting the segments of b(t) that are not fully contained in the overlap region,
and thus unusable. Obviously, U depends on the unknown offset between both sequences.
Assuming that the offset is uniformly distributed between (L0−Lb) and (La−L0), such that
the assumed minimum overlap of L0 samples is guaranteed, there are (La+Lb−2L0 +1)
equiprobable shifts in total. For (La−mM+1) of them, all segments of b(t) fully overlap
with sequence a(t), hence U = 0. Let’s furthermore define U1 and U2 as the number of
unusable segments at the beginning and at the end of b(t), separately. By definition, b(t) is
the shorter sequence, so either its head or its tail protrudes beyond a(t). Hence, the events
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Figure 2.24: Possible realization of the sample state x(t) of sequence b(t) according to our joint
error model, with La = 10000, Lb = 8000, L0 = 4000, p = 10% and B = 150. The
dotted line indicates the Markov process generating error bursts, the region shaded in
red marks the samples outside the mutual overlap of a(t) and b(t).

U1 =u and U2 =u are mutually exclusive as long as u>0. Accordingly, the distribution of
U can be expressed as given in Equation (2.25) below.

Pr{U = u} =

{
La−mM+1

La+Lb−2L0+1 : u = 0

Pr{U1 = u}+ Pr{U2 = u} : u > 0
(2.25)

Shifting the sequence b(t) to the left, more and more segments leave the overlap region,
U1 being incremented every M samples. In the worst case, bLb−L0

M c segments lie com-
pletely outside the overlap region, and another one protrudes by ((Lb−L0) modM) sam-
ples. Similarly, if b(t) is shifted to the right, U2 will increase by one every M samples,
eventually leading to bmM−L0

M c non-overlapping segments and one partially protruding
by ((mM−L0) modM) samples. The resulting distributions of U1 and U2 are depicted in
Figure 2.23.

With U unusable segments due to the overlap effect, the number of available segments
in b(t) is de facto reduced from m to (m−U). This requires modifications to the equations
involved in the computation of Pr{G=g}, namely (2.20a), (2.20b) and (2.21), which become

Pr{G=g,H=h,K=k |U=u} =

(
2

h

)(
g − 1

k

)(
m− u− g − 1

g − k − h

)
α̃ βg γh δk, (2.26a)

where α̃ = (1− 2P + P1P )m−u−1 / (1− P )m−u−2, (2.26b)

Pr{G = g} =
∑
h

∑
k

∑
u

Pr{G=g,H=h,K=k |U=u} Pr{U=u}. (2.27)

The rest of the equations, especially (2.22) through (2.24), remain valid.

Figure 2.24 shows an example realization generated by this error model which is de-
termined by the burst-error characteristics of the sequences, described by B and p, the
sequence lengths La and Lb, and their minimum overlap L0.

Fig. 2.25a shows the behavior of the ConCor success probability Pr{RN} for this case.
As to be expected, there is a high probability of avoiding corrupt samples when s and
M are small, i.e., when only a small number of short segments are used. For increasing
values of s and M the success probability drops rapidly. There is only a relatively small
region in the (s,M) plane for which the success probability exceeds the stipulated 99%.
For all combinations of s and M within this region, Fig. 2.25b shows the total number
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Figure 2.25: (a) The ConCor success probability for the specific error model from Fig. 2.24 with
La=10000, Lb=8000, L0 =4000, p=10%, B=150, N=10000. For the values of s
and M where Pr{RN} ≥ 99%, the number of effectively used samples s·M is plotted
in (b).

p=1% p=2% p=3% p=4% p=5% p=10% p=20% p=50%

B = 10
s=5 s=4 s=4 s=4 s=4 s=3 s=3 n/aM=346 M=296 M=232 M=190 M=161 M=119 M=59

B = 25
s=5 s=5 s=4 s=4 s=4 s=4 s=3 s=1
M=470 M=363 M=375 M=320 M=280 M=170 M=119 M=58

B = 50
s=5 s=5 s=5 s=5 s=5 s=4 s=3 s=2
M=571 M=467 M=400 M=347 M=307 M=252 M=186 M=78

B = 100
s=5 s=5 s=5 s=5 s=5 s=4 s=4 s=3
M=615 M=533 M=470 M=421 M=380 M=339 M=199 M=78

B = 150
s=6 s=5 s=5 s=5 s=5 s=4 s=4 s=3
M=533 M=571 M=500 M=470 M=421 M=380 M=234 M=96

Table 2.1: Optimal values of s andM for two sequences with La = 10000, Lb = 8000, L0 = 4000,
given a maximum of N = 10000 RANSAC iterations. The bold numbers correspond to
the signal class represented in Figures 2.24 and 2.25.

of samples s ·M that are effectively used in every ConCor iteration. In this example, the
global maximum is attained with s= 4 and M = 380 which corresponds to a total of 1520
contributing samples. An exhaustive search or any suitable discrete maximization strategy
can be used to determine these optimal values.

In Table 2.1, optimal values for s and M are listed for example sequences of varying error
characteristics p and B. In the extreme case where p = 50% and B = 10, the confidence
requirement of 99% cannot be met.

To summarize, a probabilistic model has been established that realistically describes the
disturbances which occur in bitrate sequences extracted from videos. It covers both the ex-
istence of unapt samples in either of the sequences, as well as the loss of samples outside
the mutual overlap. It links the characteristics of the videos (La, Lb), of the expected dis-
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turbances (p, B, L0) as well as the ConCor parameters (s, M , N ) to the success probability
of our approach.

2.4 Experimental Results

Extensive tests have been performed to validate the algorithm. For Section 2.4.1, specific
video pairs have been selected that exhibit certain characteristics typically not handled
by the state-of-the-art video synchronization algorithms. In Section 2.4.2, ConCor is used
to synchronize a number of publicly available multi-perspective recordings, and specif-
ically those provided by other groups who have developed video synchronization algo-
rithms. Specifically, unless mentioned otherwise, normalized ConCor is applied to bitrate
sequences generated with the x.264 encoder at QP=40, with GOP length 499 frames. Fur-
thermore, the adaptive spectral cleanup described in Section 2.2.2 is used. The videos
stem from diverse sources, and vary in codec, resolution, original encoding parameters,
etc. (see Table 2.2). With that said, the used ConCor parameters have been derived from a
very generic error assumption which allows for a mean error burst length ofB=50 frames
and a sample error rate up to p = 5%. A maximum number of N = 10000 RANSAC it-
erations are allowed and a minimum overlap of 50% of the shorter sequence’s length is
assumed. Unless otherwise available, ground truth offsets have been determined by vi-
sual inspection.

2.4.1 ConCor Tested for Different Effects

Here a number of effects are described that ConCor is able to handle successfully. The
focus is on four particularly interesting effects that pose severe challenges to the state-of-
the-art:

1. Wide baselines: Approaches that rely on matching texture features suffer from the
limited invariance towards view point changes. Hence feature-based approaches not
only exclude scenes where the cameras stand opposite to one another but also scenes
with wide angle overlapping views.

2. Camera motion: A ”shaking” camera renders many synchronization algorithms un-
usable. However, the application of video synchronization of casually captured
multi-perspective events requires an algorithm that can handle also this kind of sce-
nario.

3. Dynamic backgrounds: A changing background can confuse any synchronization
algorithm in identifying the real object of interest.

4. Occlusions: Another problematic effect, especially for approaches that involve the
tracking of features, is the temporary disappearance of objects of interest, as well as
self-occlusions among several moving objects.

In the following four synchronization scenarios are presented which address the issues
pointed out above.
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Figure 2.26: Synchronous frames from the CapoEHA sequences and synchronization outcome.

−800 −600 −400 −200 0 200 400 600 800

−0.4

−0.2

0

0.2

0.4

0.6

offset / frames
co

rr
el

at
io

n 
co

ef
fic

ie
nt

 

 
ground truth offset

Figure 2.27: Synchronous frames from the Taiji sequences and synchronization outcome.

The screen shots shown in Figure 2.26 show two views of the CapoEHA video set. As can
be seen, the perspectives differ in viewing direction by approximately 90°. Furthermore,
since the two subjects wildly dance around each other, frequent self-occlusions occur, and
motion blur becomes an issue. The background appears completely different in the two
views but is mostly static, with the exception of single pedestrians. One of the cameras is
hand-held which introduces slight shaking movements. It can be seen from the result on
the right of Figure 2.26 that frame accurate synchronization is achieved by our approach
nonetheless.

The second experiment, presented in Figure 2.27, showcases ConCor’s ability to deal with
videos recorded with different cameras. The videos, showing Taiji exercises, most notably
differ in spatial resolution. This example contrasts with the previous one in that scene
motion is way more subtle, whereas background motion is more prominent. The cameras
are more than 90° apart, both are hand-held. In one view, several persons walk behind the
main actress, in the other one non-involved persons are visible in the background playing
ball. Despite these unrelated distractions ConCor successfully syncs the video pair and
finds the correct offset.

An exceptional effect is covered in a third demonstration. The screen shots shown in
Figure 2.28 are taken from a scene where three individuals engage in rope skipping. The
inherently repetitive motion pattern can be expected to be highly challenging for a method
that seeks to find the offset by correlating a motion measure. Nevertheless, ConCor suc-
cessfully recovers the temporal delay. A remarkable detail about these videos is the wall-
filling mirror in the background which obviously aids our approach by multiplying the
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Figure 2.28: Synchronous frames from the Rope Skipping sequences and synchronization out-
come.
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Figure 2.29: Synchronous frames from the Soccer sequences and synchronization outcome.

effective amount of scene motion.
Finally, a scenario is presented with a very realistic composition of all the discussed ef-

fects. In the videos shown in Figure 2.29, a ball is kicked back and forth by two individuals
who are surrounded by spectators filming the event. The selected views are diametrically
opposed to each other and show significant background motion; one of the cameras is
hand-held. The particular challenge is that both players regularly leave the cameras’ fields
of view, which leads to inconsistencies to be detected and eliminated by ConCor. Ac-
cording to the synchronization result, ConCor is able to achieve this, yielding accurate
alignment.

2.4.2 Evaluation of ConCor on External Data Sets

Here, ConCor’s performance is demonstrated by reference to a number of scenario rel-
evant video sets available for download from external sources. Focus is particularly on
video sets that are provided by authors of other video synchronization algorithms. In
the lower half of Table 2.2, the tested videos are summarized, Figure 2.30 shows the ob-
tained synchronization results. Unfortunately, some of the available clips are markedly
short, comprising few hundred frames only. An asterisk in the third column of the table
indicates those videos too short to be divided into enough segments of acceptable length.
An optimal choice of the s and M parameters according to (2.9) being impossible in these
cases, we select the parameters such that the prospect of success Pr{RN} is maximized for
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the least permissible segment length, i.e., M =50 frames and s=1. In the exceptional case
of the extremely short Train sequences, it is necessary to further lower the segment length
to M=45, in order to obtain at least three segments for ConCor to work with.

The Dog, Martial Arts and HumanEva datasets have all been produced in a meticulously
controlled studio environment, and show one or two active performers in front of orderly,
static backgrounds. From these sets, video pairs with increasing viewpoint difference,
ranging from around 20° to 180°, have been chosen. All of them are successfully synchro-
nized by the presented approach. A particularity about the selected Martial Arts pair is
that one of the videos shows a top view of the scene while the second one portrays the
action from an unusually low worm’s eye perspective.

The Basketball and Hall sequences have been recorded in natural environments, both with
stationary cameras facing each other. They show the outdoor practice of two basketball
players and an anteroom scenario with multiple persons taking seats and moving on, re-
spectively. The main difficulty lies in the fact that the performers repeatedly enter and
leave their scenes, an effect ConCor proves able to cope with. It should be noted that
the Basketball sequences lack distinctive cues that would allow to conclusively determine
the (actually mid-frame) ground truth offset from the interlaced footage. Consequently,
the observed synchronization error could liberally be interpreted as amounting to half a
frame.

The very challenging Rothman and Magician datasets show an outdoor street performance
and an indoor magic show, respectively. The selected videos are affected by heavy rocking
motion and camera pans. In the Magician set, the cameras are even displaced by several
meters during the recording. In the Rothman set, crowds of spectators constitute a rather
dynamic background, with motion intensities comparable to those of the street performer
himself. A particularly interesting effect in one of the Magician videos is a blackout dur-
ing which the screen remains black for several hundred frames. It is also noteworthy that
there is a difference in image format (portrait vs. landscape), a factor to which our syn-
chronization approach is inherently invariant. ConCor sucessfully excludes the blackout
and, altogether for both the Rothman and Magician datasets, retrieves the sequences’ offset
(up to one frame).

Finally, the Train dataset points out the limits of the presented bitrate based approach.
One problem, as mentioned earlier, is the very limited number of available frames (Lb =
146). The main challenge, however, is the indistinctive, linear motion described by the
depicted toy train, which is also superimposed by relatively strong camera shaking. The
only cues useful for synchronization (both for our algorithm and a human observer) are
the train’s alternately flashing head lights and two hardly discernible collisions with other
toys in the scene towards the end of the recordings. Without violating the lower bound on
M , stipulated in (2.9), no more than two segments would be available. But as it turns out,
only the last third of the shorter signal is actually suitable for our bitrate based approach.
With M = 45, three segments are obtained, but each of the corresponding NPCCFs favors
a distinct set of potential offsets. Given the dissent among the three NPPCFs, it would
be preposterous to speak of a "consensus"-based decision in this case. Which segment
eventually becomes classified as the inlier is basically random: in one out of three cases
this choice is made in favor of the actually faithful third segment. This needs to be borne
in mind regarding the rather accurate synchronization result reported here.
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Figure 2.30: Synchronization outcome for the external datasets (from left to right, and top to bot-
tom): Dog, Martial Arts, HumanEva, Basketball, Hall, Rothman, Magician and
Train.
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Video Set Video Properties ConCor
Parameters

Ground
Truth

Sync.
Result

CapoEHA
– scene 4
– views 1 & 4

• viewpoint difference: ∼ 90°
• stationary / hand-held cameras
• La=Lb=934
• highly dynamic scene, frequent self-occlusions
• MPEG-2, 25 fps, 720×576 pixels

M = 62
s = 4

5 5

Taiji
– views 2 & 3

• viewpoint difference: > 90°
• hand-held cameras
• La=1184, Lb=1177
• smooth, subtle motion
• WMV-9, 25 fps, 720×576/ 640×480 pixels

M = 65
s = 5

−18 −18

Rope Skipping

• viewpoint difference: < 90°
• stationary cameras
• La=4836, Lb=4584
• periodic motion, mirror in scene
• MPEG-2, 25 fps, 720×576 pixels

M = 208
s = 5

122 122

Soccer
– views 1 & 4

• viewpoint difference: ∼ 180°
• stationary / hand-held cameras
• La=10068, Lb=4401
• dynamic background, subjects leave visual field
• MPEG-2, 25 fps, 720×576 pixels

M = 153
s = 4

4 4

Dog
– scene Walking
– views 0 & 1

[Jan09]

• viewpoint difference: ∼ 20°
• stationary cameras
• La=Lb=581
• PNG image sequence, 25 fps, 1624×1080 pixels

M = 58
s = 2

0 0

Martial Arts
– scene Kick One
– views 0 & 6

[Jan09]

• viewpoint difference: ∼ 90° (worm’s eye/top view)
• stationary cameras
• La=Lb=211
• PNG image sequence, 25 fps, 1624×1080 pixels

M = 50∗

s = 1
0 0

HumanEva
– scene S1-Box1
– views C2 & C3

[SBB10]

• viewpoint difference: ∼ 180°
• stationary cameras
• La=Lb=360
• MPEG-4, 60 fps, 640×480 pixels

M = 50∗

s = 1
0 0

Basketball
[CSI06]

• viewpoint difference: ∼ 180°
• stationary cameras
• La=1881, Lb=1798
• Indeo v5, 25 fps, 720×576 pixels

M = 119
s = 4

−262 −263

Hall
[CSI06]

• viewpoint difference: < 180°
• stationary cameras
• La=2638, Lb=2533
• Indeo v5, 25 fps, 720×576 pixels

M = 133
s = 5

94 94

Rothman
– views 1 & 2

[BBPP10]

• viewpoint difference: ∼ 90°
• hand-held cameras
• La=Lb=6899
• Lagarith, 25 fps, 960×544/ 544×960 pixels

M = 344
s = 4

0 1

Magician
– views 2 & 3

[BBPP10]

• viewpoint difference: ∼ 45° (varying)
• hand-held cameras
• La=Lb=3800
• Lagarith, 25 fps, 960×544/ 544×960 pixels

M = 120
s = 4

0 −1

Train
[TVG04]

• viewpoint difference: ∼ 45°
• hand-held cameras
• La=200, Lb=146
• MPEG-4, 25 fps, 720×576 pixels

M = 45∗

s = 1
45 46

Table 2.2: Summary of ConCor results44



2.5 Concluding Remarks

2.5 Concluding Remarks

With the bitrate-based description of scene changes, in combination with consensus-based
cross-correlation, a reliable and versatile video synchronization algorithm has been pre-
sented. In comparison with the state-of-the-art, the approach is highly independent of
camera and image, as well as scene properties. Owing to the very abstract quantification
of relevant scene changes, attributes such as source codec, image resolution, orientation,
brightness, etc. have no or very limited influence on the synchronization process. Since
the amount of scene changes is quantified, rather than their exact appearance, true view-
point independence is achieved. Furthermore, the proposed approach mostly compen-
sates for global camera motion, a capability directly inherited from the underlying quali-
ties of H.264/AVC. The only two requirements of the presented synchronization approach
are the presence of meaningful scene changes, usually in the form of object motion, and
the continuous focus of both cameras on the same objects of interest.

The prototypical application scenario where these requirements are met is multiview
video sharing. Uploaded video clips usually undergo re-encoding into a common format
anyway. During this process the bitrate data necessary for synchronization can be tapped
at no extra cost. It should be noted that this implies a certain trade-off between the desired
video quality (obtained with fine quantizers) and synchronization performance (achieved
with coarse quantization). In the common scenario where the multiview video sharing
platform maintains multiple versions of the same video (destined for different devices,
available in several levels of quality, etc.), this is more of a formal issue. Unless a parame-
ter setting suitable for synchronization is already available, a supplementary re-encoding
pass carries only marginal additional weight.

The general video synchronization approach is complemented with normalized ConCor
which deals with distracting, unrelated object motion, monotonous signal parts, occlu-
sions, sudden camera motion too strong to be fully compensated by H.264/AVC, and other
temporary, disturbing effects.

In contrast to other video synchronization methods, the approach as presented in this
chapter does not yield sub-frame accuracy. With little extra effort, this can be achieved
by interpolation of the bitrate sequences at the desired resolution. It remains to be in-
vestigated how the performance of this straightforward approach compares to the more
sophisticated, and by far more complex frame rate upconversion of the initial video data.
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3 Spatial Analysis: Scale-invariant Feature
Extraction

Complementary to the investigation of temporal coherences presented in the previous
chapter, the analysis of spatial relationships between videos is an equally important subject
of study. In applications, such as cooperative video, the spatial properties of interest are
the 3-dimensional poses of the cameras with respect to each other and with regard to the
scene. Spatial analysis can also refer to the alignment of structures within the 2-dimensional
frames of one or multiple cameras, for instance for the purpose of object recognition or
tracking. In either case, a very common approach to obtain these kinds of information is to
identify characteristic image features and relate them between different frames or views.

In this chapter, the focus is on scale-invariant image features, a particular class of features
highly relevant in state-of-the-art applications. The contributions of this thesis are a novel
system of visual markers adapted to scale-invariant feature detection algorithms, further
a framework to assess the location accuracy of detected features, and last but not least
novel, highly efficient feature detectors, extending the scale-invariant paradigm to affine-
invariance.

3.1 Introduction to Scale-Invariant Feature Detection

This section provides a very general introduction to scale-invariant image features, so as
to cover basically all available algorithms of this category. In particular, the Scale-Invariant
Feature Transform (SIFT) [Low04] and Speeded-Up Robust Features (SURF) [BTVG06], which
will be subject of the subsequent sections, obey the principles outlined here.

The motivation for scale-invariance is the fact that image features representing the same
physical structure in the real world are unlikely to appear at the exact same size in different
images. An example for this is given in Figure 3.1. Depending on the distance of the object
to the camera and the particular camera properties, such as focal length or level of zoom,
the same structures appear at different size in an image.

In order to compensate for these scale differences an image is expanded into a scale space
representation prior to feature extraction. In this way, all possible acquisition scales are
simulated, which eventually leads to the desired scale-invariance. This effectively intro-
duces a third dimension, namely the scale σ. In the example of Figure 3.1, in the left image,
delicate twigs would be detectable on a fine-scale pyramid layer with low σ. In the close-
up on the right, the same twigs, that now appear about the width of stronger branches in
the original resolution, would be dominant higher up in the image pyramid, i.e., at scales
with higher values of σ.

Figure 3.2 shows a typical image pyramid used in scale space representations, organized
in octaves. The original image is located at the bottom, towards the top increasingly low-
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3 Spatial Analysis: Scale-invariant Feature Extraction

Figure 3.1: Branches vs. twigs: Two photographs of the same tree. Bold structures in one image
appear at a comparable size as the finer details in the other.

Figure 3.2: An octave-divided image scale space representation I(x, y, σ), with three octaves and
five scale intervals per octave. Example pyramid layers are shown (in pseudocolor and
resampled for comparison), based on the right image from Fig. 3.1.

pass filtered versions, referred to as scales, are stored. In general, a new octave is started
once the image resolution has halved, by subsampling the previous scale level by a factor
two. The choice of the scale range to examine, the exact numbers of octaves and scales per
octave, the scale sampling strategy (uniform versus non-uniform), as well as the involved
filters are parameters of specific algorithms.

Again from a very general point of view, an algorithm-specific operator is then applied
to identify image features in three-dimensional scale space. In a final step, a characteristic
descriptor is computed for every feature point which can be used to reliably compare fea-
tures with each other. To this end, a unique orientation is usually assigned to the feature
in order to achieve additional rotation-invariance.

It’s the goal to make the feature detection process as stable and repeatable as possible,
especially under external influences such as noise or general perspective transformations.
Both Scale-Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF)
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3.1 Introduction to Scale-Invariant Feature Detection

have proven to perform very well in this respect. The following sections will delve more
deeply into the specifics of both the SIFT and SURF algorithms and point out their dif-
ferences. The focus will especially be on their two main functional components, detection
operator and descriptor construction which will be of importance for the rest of this chapter.

3.1.1 Scale-invariant Feature Transform (SIFT)

The Scale-Invariant Feature Transform, or SIFT, has been proposed by David Lowe in 2004
and is still one of the most commonly used scale-invariant image features. Especially the
highly distinctive and rotation and scale invariant SIFT descriptor is still considered as a
benchmark in feature description. In the following, an overview of the SIFT algorithm is
given, with particular focus on the specifics exploited in later sections of this thesis.

Feature Detection

It has been shown that gradually filtering with a Gaussian kernel is particularly suited
to build the scale space representation of natural images [Lin94]. Furthermore, the scale-
normalized Laplacian operator has proven very performant in detecting interest points
within scale space [Lin98, Mik02]. Due to the linearity of derivation, applying the Lapla-
cian operator in Gaussian scale space is equivalent to filtering the original image with a
Laplacian of Gaussian (LoG) filter:

∆(Gσ ∗ I)(x, y) = (∆Gσ︸ ︷︷ ︸
LoG

∗I)(x, y), (3.1)

where Gσ(x, y) =
1

2πσ2
e

−(x2+y2)

2σ2 (3.2)

Here, I is the original image, andGσ a bivariate Gaussian with standard deviation σ repre-
senting scale. SIFT uses logarithmically sampled scale levels, i.e., neighboring scales differ
by a constant factor: σn+1 = k σn = kn+1 σ0. With N intervals per octave, it follows that
k = 21/N , and the n-th scale then explicitly takes the form

σn = 2n/Nσ0 = 2o+i/Nσ0, (3.3)

where o is the octave in which the scale is located as the i-th layer. This logarithmic scale
sampling scheme is shown in Figure 3.6. For computational reasons, image sizes are
halved from one octave to the next, implementing the general image pyramid structure
presented previously in Figure 3.2.

Lowe shows in [Low04] that the scale-normalized Laplacian of Gaussian (LoG) (σ2∆Gσ)
can be approximated by a Difference of Gaussians (DoG) function which lends itself to a
computationally convenient implementation.

σ2∆Gσ = σ
∂Gσ

∂σ

∣∣∣∣
σ=σn

≈ σn
Gσn+1 −Gσn
σn+1 − σn

=
1

k − 1
(Gσn+1 −Gσn)︸ ︷︷ ︸

DoG

(3.4)
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x

y

Figure 3.3: Difference of Gaussians (DoG) filter Hn
DoG used by SIFT at scale σn = 20.

The first equality in (3.4) is due to the fact that the Gaussian function obeys the heat diffu-
sion equation ∂Gσ

∂σ = σ∆Gσ.

With Difference of Gaussians (DoG)s as feature detection filters, the SIFT detector re-
sponse DSIFT at pixel position (x, y) obtained on scale level σn hence reads:

DSIFT(x, y, σn) = (Hn
DoG ∗ I) (x, y), (3.5)

where Hn
DoG = Gσn+1 −Gσn (3.6)

Figure 3.3 shows the typical “flipped mexican hat” shape of Hn
DoG. Features are found as

local extrema of the three-dimensional filter output (3.5). Every feature (x, y, σ) is hence the
combination of location and scale maximizingDSIFT(x, y, σ), where, quadratic interpolation
is used to refine the exact feature position in scale space.

Feature Description

After detection, every feature is assigned a "fingerprint" computed from the gradient dis-
tribution around its pixel location. The more distinct these descriptors are, the better the re-
sults obtained in a subsequent feature matching step will be. In the framework presented
in Section 3.2, descriptors will also be used to identify markers in an image.

The SIFT descriptor is constructed from a square neighborhood of side length 12σ pixels,
where σ is the scale at which the feature was detected. This neighborhood is aligned with
the dominant local gradient direction of the feature and divided into 16 subblocks. Fig-
ure 3.4 shows this 4×4 subdivision. For each of the 16 subregions a 8-bin histogram of
weighted gradients is compiled, and finally the descriptor is constructed by sorting the
bins’ contents from all the subblocks into a vector of length 8×4×4 = 128. Finally, the de-
scriptor vector is normalized to unit length which allows for affine pixel intensity changes.
Due to the scale and rotation adaptive creation process, SIFT descriptors are mostly invari-
ant to moderate geometric transformations.
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Figure 3.4: A SIFT feature (left) and a SURF feature (right) detected in an image. The red circle
(plotted with radius 3σ) and square represent the feature extent, respectively. The green
squares oriented along the dominant local image gradient mark the descriptor support
regions, i.e., the pixel regions the descriptors are computed from.

3.1.2 Speeded-up Robust Features (SURF)

SURF builds on the concepts of SIFT but introduces more radical approximations in order
to speed up the detection process. With the use of integral images, the complexity of
SURF is greatly reduced in comparison to SIFT. Still, SURF is reported to achieve detection
performance even superior to its predecessor [BTVG06].

Feature Detection

Instead of the Laplacian operator, SURF uses the determinant of the Hessian matrix (DoH)
to detect features in scale space. Both operators are closely related – the Laplacian is in fact
the trace of the Hessian matrix – but the DoH has the advantage of being more selective
with respect to weak features along edges in the image, especially when the approxima-
tions proposed by SURF are used [Low04, BTVG06].

Figure 3.5 shows the box filters G̃σxx, G̃σyy and G̃σxy approximating the second order deriva-
tives of the Gaussian Gσ. Scales are again discretized and depend on the size of the used
box filters. By definition, a filter kernel with side length s pixels corresponds to the scale
σ= 1.2

9 s.

Filter sizes are chosen appropriately such as to cover a reasonable range of scales [BTVG06].
In particular, SURF introduces a simplified, slightly coarser scale sampling strategy, as il-
lustrated in Figure 3.6. Octaves are still distributed logarithmically, inside octaves, how-
ever, scales are sampled uniformly.

Applying the approximative box filters from Figure 3.5 to an image I yields (approxi-
mations for) the entries of the Hessian matrix. The detector output at pixel position (x, y)
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3 Spatial Analysis: Scale-invariant Feature Extraction

Figure 3.5: The box filters G̃σxx, G̃σyy and G̃σxy used by SURF (top row) approximating the second
order Gaussian derivatives Gσxx, Gσyy and Gσxy (bottom row).
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Figure 3.6: Comparison of scale sampling schemes: SIFT consistently samples the scale σ logarith-
mically. SURF increases its filter size s linearly within each octave, only doubling the
filter size increments from one octave to the next.

on scale σ is defined as the determinant of this approximate Hessian matrix, given by the
following equations:

DSURF(x, y, σ) = det

[
H11(x, y) H12(x, y)

H21(x, y) H22(x, y)

]
(3.7a)

where H11 = G̃σxx ∗ I, H22 = G̃σyy ∗ I, H12 = H21 = G̃σxy ∗ I (3.7b)
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Since SURF’s computational complexity is independent of the box filter size due to the
use of integral images, subsampling the original image is not required. Nevertheless, the
stride length of the filters is doubled from one octave to the next so that, ultimately, the
SURF detector output DSURF has a pyramid layout congruent to that of SIFT (cf. Figure 3.2).

It is also important to note that, as opposed to SIFT’s DoG filters, the SURF detection
operator is nonlinear in the input image I .

The SURF algorithm searches the detector response (3.7a) for local extrema (maxima as
well as minima). In keeping with SIFT, quadratic interpolation is eventually used to refine
a feature to inter-scale and sub-pixel accuracy.

Feature Description

SURF’s descriptor layout is very similar to that of SIFT, also based on a square region
around the feature point which is aligned with the dominant gradient. It is also divided
into 16 subblocks (see Fig. 3.4), but spans a slightly wider neighborhood of 20σ×20σ pixels.

The oriented descriptor support region is resampled at resolution 20 × 20 from which
the discrete gradient (dx, dy) is computed. Instead of histogram values, SURF uses the
sums and absolute sums of each subblock’s gradient components. Every subblock hence
contributes exactly four descriptor entries, namely

∑
dx,
∑ |dx|,∑ dy,

∑ |dy|. In total, the
SURF descriptor hence comprises 64 entries. The SURF descriptor is normalized to unit
length ensuring invariance to affine intensity variations.

3.2 Visual Markers Adapted to Scale-invariant Feature
Detectors

Visual markers play an important role in augmented reality applications where reliable
correspondences between the real world and 2D projections thereof are required. Subse-
quent tasks such as pose estimation or object recognition are hence vastly simplified. The
simplest designs consist of passive markers containing distinctive planar patterns. Due to
their versatility and low installation costs, these so called fiducial markers are often chosen
over more complex tracking systems employing infra-red or active markers. Example ap-
plications from other fields include visual servoing in robotic surgery and monitoring in
production logistics.

In many applications, fiducial markers are supplemented with image features originating
in salient points in the scene itself. Maybe the most widely used algorithms used for fea-
ture detection today are the previously discussed SIFT and SURF algorithms. At the other
end of the scale, in merely feature-based applications, it might even so be desirable to
place reliably detectable reference points on unstructured surfaces, which would usually
find themselves featureless.

In this section, a light-weight marker framework will be proposed that conflates the 2-
stage strategy consisting of marker detection and feature point extraction into a more ef-
ficient 1-step approach. The aim is on the vast number of computer vision applications
which are based on feature points, enhancing them with markers that fully integrate into
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the existing detection process. The developed markers are provably optimal in that they
trigger maximum response in the SIFT and SURF detectors.

This part of the thesis is based on results presented in [SZG+09].

3.2.1 Related Work on Fiducial Markers

Fiducial markers are widely used in a variety of different fields. Depending on the partic-
ular application, different designs have been proposed. An overview and comparison
of different marker systems can be found in [ZFN02]. Fiducial marker systems typi-
cally consist of a set of distinguishable labels that are placed in the scene and can be
detected and decoded by an associated algorithm. According to the design of the mark-
ers, the detection consists of several nontrivial steps such as edge detection, linking and
line fitting. Decoding refers to the identification of a detected marker. Early systems used
correlation-based approaches to match the appearance of a marker against a database of
templates [KB99, KBP+00]. State-of-the-art marker systems employ binary error correct-
ing codes to allow the unique and robust identification of thousands of different mark-
ers [Fia05]. Recently, there have been efforts towards lowering the computational com-
plexity for mobile real-time applications [WS07, WLS08]. Compared to these highly spe-
cialized systems, our proposed marker scheme offers very elementary, yet highly valuable
functionality: making feature points reliably detectable, at no additional expenses.

Desirable properties of a conventional marker system are low false positive and false nega-
tive rates, as well as low inter-marker confusion rates if the system comprises more than one
distinguishable marker. That is, the system should neither report a detected marker when
there is none, nor miss or mistake an actually present marker.

As mentioned before, state-of-the-art marker systems like, e.g., ARTag [Fia05] use error
correction mechanisms which allow them to reach unrivaled performance in terms of false
positive and inter-marker confusion rates. As the light-weight marker system proposed
in this chapter only provides one marker, respectively two markers in the case of SURF,
inter-marker confusion is not an issue. The main goal is to have a highly detectable low-
cost marker, not necessarily a uniquely detectable one.

The key virtue of the system presented here is its remarkably low false negative rate.
As demonstrated in Section 3.2.4, it can be virtually guaranteed that the SIFT and SURF
markers get detected, even under dramatically varying imaging conditions. This makes
them highly useful in applications where SIFT or SURF points need to be found at a desired
location.

3.2.2 Detector Response Maximization

In this section, optimal input images for the SIFT and SURF detectors will be derived,
which then lend themselves as ideal markers for the respective detector. In this context,
optimal refers to giving rise to the highest possible detector output.
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Figure 3.7: Maximum detector response markers for SIFT.

The SIFT Marker

In case of SIFT, the task of determining the optimal marker is that of maximizing the output
of a linear filter. As discussed in Section 3.1.1, this filter has a Difference of Gaussians
function as impulse response, as given in Equation (3.6) and Figure 3.3.

In order to find the pixel pattern which maximizes the detector response (3.5) the con-
cept of matched filters is borrowed from signal processing. A matched filter is commonly
used to recover a signal of known shape that has been corrupted on its way over a noisy
channel [Tur60]. Example applications include the detection of reflected radar impulses or
the decoding of base band signals. The determining property of the matched filter is that
it maximizes the signal-to-noise ratio at the receiver. It can be shown that this is achieved
when filter impulse response and signal are mirrored versions of each other.

In the present case, the inverse problem is to be solved. For the given DoG filter, an
energy-limited signal is to be determined which, superimposed with image noise, will
yield maximum response at the filter output. Consequently, following the matched filter
paradigm, the SIFT marker is chosen to be a (mirrored1) DoG. The shape and appearance
of the resulting marker is shown in Figures 3.3 and 3.7. Note that a sign-reversed DoG is a
valid “matched signal”, thus marker, as well.

Figure 3.8 shows the associated descriptor which can subsequently be used to identify the
marker. Its characteristic shape due to the fact that the main lobes of the DoG fall inside
the inner four subblocks is beneficial for descriptor matching. These descriptor parts will
be referred to as the SIFT marker signature.

The SURF marker

As discussed in Section 3.1.2, SURF uses a nonlinear detection operator. Hence, the matched
filter approach that was taken for SIFT is no longer applicable in this case. Nevertheless,
the input image that will maximize the detector response can be obtained by solving a
properly defined optimization problem.

1Mirroring obviously has no effect on Hn
DoG due to its symmetry.
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10 20 30 40 50 60

SURF descriptor entries
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SIFT descriptor entries

Figure 3.8: Left: The support region used to compute the descriptors in size comparison with the
SIFT and SURF markers (cf. Fig. 3.4). Right: The descriptor contributions of the
respective markers. The highlighted entries correspond to the inner four subblocks and
constitute the markers’ signatures.

Figure 3.9: Maximum detector response markers for SURF.
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Without loss of generality, the SURF marker of size 9×9 pixels will be derived here, which
involves 81 variables in our optimization. The problem can of course also be solved for the
other kernel sizes used by SURF, i.e., 15, 21, 27, and so on. However, the resulting markers
will just be upscaled versions of the 9×9 marker. Hence, only the elementary case s= 9,
corresponding to σ= 1.2, will be treated in the following. To enforce a maximum of (3.7a)
at position (x0, y0), the 81 pixels in the square region centered on (x0, y0) need to be taken
into consideration. Their values must be adjusted such as to maximize DSURF(x0, y0, 1.2).

First, the 81 variables are rearranged into a vector x, and accordingly the entries of the
box filters into vectors gxx, gxy and gyy. So, the filter output (3.7a) can be rewritten as
follows.

DSURF(x0, y0, 1.2) =

∣∣∣∣∣g>xxx g>xyx

g>xyx g>yyx

∣∣∣∣∣
= x> (gxxg

>
yy − gxyg

>
xy)︸ ︷︷ ︸

G

x

= 1
2x>(G>+G) x

With A = G>+G, this leads to the following quadratic optimization problem, with the
natural additional requirement that the pixel values be limited.

max
x

x>Ax, s.t. ‖x‖ ≤ 1 (3.8)

It can be shown that rank(A) = 3, so the eigenvalue decomposition A = UΛU> together
with the substitution y=U>x yields the equivalent problem:

max
y

y>Λ y = max
y

(λ1y
2
1 + λ2y

2
2 + λ3y

2
3),

s.t. ‖y‖ ≤ 1

There are two solutions yopt =[±1, 0, . . . , 0]>, and back-substitution reveals that xopt = Uyopt
is the eigenvector corresponding to the largest eigenvalue of A (and its inverse respec-
tively). Rearranging xopt into a 9×9 image and adjusting its values to span the whole range
of gray values eventually leads to the desired SURF markers, as depicted in Figures 3.10
and 3.9.

Due to their discrete nature, the SURF markers leave an even more characteristic descrip-
tor signature than their SIFT counterparts (see Figure 3.8). It is particularly noteworthy
that the signatures of the dark and light versions of the SURF marker are distinguishable.
However, the entries corresponding to the sum of absolute gradients values are identical
for both.

3.2.3 Distinguishable Markers

The proposed Maximum Detector Response (MDR) markers are available in two variants
only, a light and a dark version. Conventional marker systems have the advantage to
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Figure 3.10: Maximum response SURF marker optimized for a kernel size of 15 pixels. Note the
qualitative similarity to the reversed Mexican hat of Figure 3.3.

provide a myriad of markers equipped with distinct IDs. In this section, the possibilities
to enhance the SURF MDR marker with unique IDs are briefly discussed. An important
requirement is to keep the detection and identification process compatible with the estab-
lished SURF framework.

Regarding the SURF marker signature in Figure 3.8, it is obvious that many descriptor
entries are unused. In particular, the descriptor components attributable to the twelve
marginal subblocks of the descriptor support region vanish, amounting to 48 unused de-
scriptor entries. Selectively modifying these subregions allows the marker’s descriptor to
be modulated.

From a theoretic point of view, optimally distinguishable markers with maximum inter-
descriptor distance are desired. Given a fixed number N of distinct markers, the goal is
thus to uniformly2 distribute their 64-dimensional descriptor vectors on the hypersphere
S64. This task is related to the so called Thomson problem known in physics, where N elec-
trons are to be distributed on a sphere in 3-space such that their potential energy is mini-
mized [Tho04]. In 64-dimensional space, and for N < 64, the desired solutions are regular
simplexes, i.e., configurations where all points have equal distance to each other (equilateral
triangle, tetrahedron, and so on). In case where N is a power of 2, the descriptors can be
constructed from the Hadamard matrix of the same order [AZL03]. For arbitrary values
N < 64, the recursive approach illustrated in Figure 3.11 and inspired by [Cox73] is pro-
posed to construct the descriptor vectors. Note that to distribute N descriptors, only N −1
of the 64 dimensions need to be considered. Should the desired number of distinguishable
marker IDs exceed 63 , an iterative optimization can be used to determine theN uniformly
distributed descriptors on S64.

In practice, however, setting the optimal descriptors is not a simple task. The mapping

2Here, uniformly refers to the configuration where the minimum pairwise distance between descriptors is
maximized. This configuration is only defined up to rotations about the origin in 64-space.
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Figure 3.11: Recursive construction of N optimally distributed descriptors on the unit sphere
SN−1: In every step, the previous configuration is shifted along the negative xN−1

axis by dN = 1
N−1 and shrunk accordingly with factor

√
1− d2

N . The N -th descrip-
tor is always placed at xN−1 = 1.

from the pixel domain to descriptors is highly non-linear and cannot be easily inverted.
Furthermore, the descriptor components are interdependent which renders significant
parts of S64 inaccessible. Another important hurdle is the orientation assignment which
is heavily influenced by any modification of the marker’s surrounding.

An investigation of descriptor-based marker IDs compatible with Upright-SURF (a vari-
ant without orientation assignment, lacking rotation-invariance) is conducted in [Wie12].

3.2.4 Experiments on Detectability

The markers derived in Section 3.2.2 are provably optimal only if viewed under perfect
conditions, i.e., frontal to the camera, upright, and at the exact same size as the operator
they were optimized for. Experiments on synthetic and real data suggest, however, that
the markers are still detectable if imaged at sizes halfway between scales, and under per-
spective distortions. In this section, the results of these detectability experiments will be
presented. For all our experiments, the SIFT implementation by Andrea Vedaldi [Ved] and
the OpenCV [BK08] implementaion of SURF were used.

In general, there are two properties related to the performance of the proposed markers
that have to be distinguished.

Detectability: A marker is detectable in an image if it generates a local maximum in scale
space, i.e., the detector will report a feature point at the marker position. This is the
minimum requirement towards the markers.

Unique detectability: If the imaged marker even triggers the global maximum in scale
space, or if the combination of high detector response and signature similarity iden-
tifies it as a marker, it is uniquely detectable. The experiments described in Section
3.2.5 suggest that the markers also have this property.

The goal of the following experiments is to back up the theoretic optimality of the pre-
sented marker design. More specifically, it remains to be shown that even under unfavor-
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Figure 3.12: Examples of the distortions applied to the SURF marker in the synthetic experiments:
In plane rotation by 10◦, out-of-plane rotation by 40◦, additive white Gaussian noise
with standard deviation equal to 50 gray values, Gaussian blur with standard devia-
tion 6 px. The green cross indicates the position at which the marker has been detected.

able viewing conditions, i.e., other than those assumed during the derivations, the markers
still yield over-average detector response. Ideally, the detector response should be invari-
ant to all these effects.

First Experiments on Synthetic Data

In order to assess the general viability of the proposed SIFT and SURF marker systems, a
first set of experiments is run in a fully controllable, synthetic environment. A synthetically
generated marker, either SIFT or SURF, is placed centered in front of a uniform background
in an image of size 513×513 pixels. The initial size of the SURF marker is s= 147 pixels,
and σ = 15 pixels in the SIFT case. After applying different distortions to the image, the
respective feature detector is applied, and its response measured. At the same time, the
localization error with respect to ground truth is monitored. If the marker is detected more
than three pixels off, it is declared undetected. This is a rather strict rule in comparison to
the used marker size. At first, the effects of the following distortions are investigated:

(a) scaling,
(b) in-plane rotation, and
(c) out-of plane rotation.

The visual impact of these distortions in the case of the SURF marker is illustrated in
Figure 3.12. Figures 3.13 to 3.15 show their effect on the detector response values. The
overall observation is that the detector response stays on a fairly high level in general, i.e.,
close to the maximum value reachable in the absence of distortion. Within the plotted
ranges the 3 pixel threshold was never violated (except for major angles in the out-of-
plane rotation scenario). However, there are some unexpected effects which require further
investigations.

A first interesting observation is the behavior of the response over the actual marker scale
(Fig. 3.13). Especially SURF exhibits two severe response drops at mid-scales, roughly at
marker sizes 50 and 100 pixels. Apparently, the spacing between neighboring scale values
is adversely coarse in these regions. This effect will be examined more closely in Section
3.2.4. Apart from that, the two curves show the expected behavior. At too small sizes,
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Figure 3.13: Behavior of detector response under scaling of the marker.

inferior to the smallest detector operator, the markers do not get detected at all. In the case
of SURF, there is also an upper limit to the detectable marker size as, unlike SIFT, SURF
uses a predefined number of scale steps. This experiment suggests a minimum size for the
SURF marker of 12 pixels, and a maximum size of 210 pixels. In practice, typical sizes are
likely not to exceed 50 pixels as markers are preferred to be as unobtrusive as possible.

Regarding the behavior with respect to in-plane rotation, the results are fully convinc-
ing (see Figure 3.14). Even though there are minor variations in the detector output, the
overall response level remains on a constantly high level. This was to be expected for
the rotationally symmetric SIFT marker, because the used resolution is sufficiently high to
avoid severe aliasing artifacts. It is remarkable in case of the SURF marker however, for
which reduced detectability for rotation angles around 45◦ would seem inevitable.

For out-of-plane rotations (Fig. 3.15), the markers hit the limits given by the respective
feature detectors themselves. It is known that both detectors do not cope well with angles
beyond some 40 degrees. While the SIFT marker does well in terms of high detector out-
put, it exceeds the 3 px localization accuracy test for angles greater than 35 degrees. The
SURF marker exhibits a significant response decrease and also deviates from ground truth
more than 3 pixels for angles superior to 25 degrees.

In-depth Evaluation of the SURF Marker

In this section, a more detailed experimental evaluation of the SURF marker system is
conducted. Again, all the experiments make use of the SURF algorithm provided by the
OpenCV library [BK08].
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Figure 3.14: Behavior of detector response under in-plane rotation.
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Figure 3.15: Behavior of detector response under perspective distortion (out-of-plane rotation). The
dotted red lines indicate the limit above which the localization error exceeds 3 px.
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Figure 3.16: Influence of different scale sampling approaches on the SURF detector response. The
values are normalized with the maximum response for the initial marker size.

The performance analysis from Section 3.2.4 is extended by explicitly considering the
evolution of the localization error and the SURF marker signature under distortion. Fur-
thermore, the apparent scale sampling issue observed in Figure 3.13 is addressed, and a
more elaborate examination of perspective distortion (out-of-plane rotation) is provided.
Additionally, the effects of image noise and blur are investigated.

A quantitative assessment of the marker localization error in real images will show that
the results obtained on synthetic images also transfer to real-world data.

Experiments on Synthetic Images To fathom the scale sampling problem discovered
in Section 3.2.4, a marker of initial size 15 pixels is placed in front of a gray background and
gradually enlarged by 2 pixels at a time. Figure 3.16 shows the SURF detector response as
generated by the implementation provided by OpenCV in dashed red. The same response
drops as in Figure 3.13 are observable. The explanation for this effect is the slightly coarser
scale sampling scheme used in the OpenCV’s v2.0 implementation of SURF which dif-
fers from the originally proposed scale sampling described in [BETVG08]. Adjusting the
scale sampling accordingly leads to a curve without drops, denoted by modified OpenCV
in Figure 3.16. For the sake of completeness, the same experiment is conducted using
another widely used SURF implementation [Eva], observing similar problems as for the
unmodified OpenCV version, yet at different marker sizes. Given that the marker is the
prototypical SURF feature, this experiment suggests to give preference to the originally
proposed scale sampling scheme as it seems to cover the examined parts of scale space
more consistently.

Figure 3.17 gives the direct comparison between the two variants of the OpenCV imple-
mentation in terms of the resulting localization errors. The modified version is generally
more accurate for the relevant range of marker sizes below 60 pixels and, in particular,
does not contain the tremendous error peak at 160 pixels.

In the following, a more comprehensive study into SURF marker detectability under per-
spective transformations is given. In Section 3.2.4, only a one-dimensional out-of-plane rota-
tion was considered. Here, the full range of perspective transformations parametrized by
the two-dimensional viewing direction (in azimuth and elevation angles measured from
the marker’s normal) is tested. For this experiment a medium sized marker (115 px from
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Figure 3.17: Localization error as a function of marker size for the two rival SURF scale sampling
schemes.

a frontal vantage point) is placed in front of a gray background, and a perspective trans-
formation applied according to the varying relative viewing direction. Figure 3.18 shows
the detector response relative to its theoretical maximum, the marker’s signature distance to
the undistorted reference marker, and the localization error of the marker in the image. Ob-
viously, the marker gets accurately detected (i.e., with low localization error) for a wide
range of orientations, namely azimuth and elevation of up to 60◦. In order to uniquely
identify a marker, outstanding detector response and low signature distance are required
(see [SZG+09] for more details). Depending on the surrounding natural features, this can
be expected for azimuth and elevation angles up to 40◦ where the detector response is still
above 80% of its maximum. The discontinuity in the detector response beyond this area is
caused by the fact that the marker appears clinched to such an extent that it suddenly gets
detected on the next lower scale.

In the next experiment, the performance of the SURF marker is studied under parasitic in-
fluences, namely Additive White Gaussian Noise (AWGN) and isotropic Gaussian blur. In both
cases, the detector response degrades gracefully with increasing disturbance, as shown in
Figures 3.19 and 3.20. For practically relevant noise and blur levels, unique marker de-
tection remains unimpaired, especially since the strength of natural features typically de-
grades likewise under these effects. The localization error grows approximately linearly
with the noise intensity and never exceeds half a pixel for ranges to be expected in real
applications. Interestingly, excessively increased blurring causes the localization error to
recede. However, these effects take place in the range of insignificantly small errors and
can most likely be neglected.

Experiments on Real Images In addition to the synthetic experiments presented in the
previous paragraphs, the marker performance is now evaluated based on real images.
Figure 3.21 shows the experimental setup with the SURF marker mounted on a tripod
at approximately 1 m from a consumer camera with focal length 34 mm (expressed as
35 mm-equivalent) and resolution 1200×960. Figure 3.21 also shows selected detail views
of the marker being incrementally turned in yaw and pitch direction. It is ensured that
the marker remains in the image center so as to minimize the effects of lens distortion.
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Figure 3.18: Relative detector response, signature distance and localization error for varying
marker orientation. Angles are measured from the marker’s normal vector. The re-
sponse is relative to its theoretical maximum, the signature distance is based on the
undistorted marker’s SURF descriptor, and the localization error is defined as the de-
viation of the detected marker center from its ground truth position.

Moreover, the marker is printed in front of a checkerboard pattern which allows the ex-
act extrinsic calibration of the camera with respect to the marker. This is achieved using
the DLR camera calibration toolbox [JYB] and Zhang’s calibration method [Zha99]. The
imaged size of the frontally viewed marker itself is approximately 120 pixels.

In Figure 3.22, the obtained values for the SURF detector response and signature distance
are plotted. Note the similarity to the results on synthetic data from Figure 3.18. While the
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Figure 3.19: The influence of AWGN on the marker localization error and the detector response
normalized by its maximum value.

0 2 4 6 8 10 12 14 160%

50%

100%

re
l. 

de
t. 

re
sp

.

0 2 4 6 8 10 12 14 16 0

0.1

0.2

blur std. deviation (in pixels)
lo

c.
 e

rr
. (

in
 p

ix
el

s)

localization error
relative detector response

Figure 3.20: The influence of Gaussian blur on the marker localization error and the detector re-
sponse normalized by its maximum value.

Figure 3.21: A SURF marker placed on a checkerboard pattern for the experiments on real images
(far left), and the detected marker location (+) compared to ground truth (◦) for three
selected orientations (cf. Table 3.1).
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Figure 3.22: Detector response (left) and signature distance (right) for different marker orienta-
tions. The former has been normalized with respect to the view closest to frontal.

azimuth angle
7.7◦ 23.9◦ 39.1◦ 53.3◦

el
ev
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n 0.8◦ 0.48 px 0.65 px 0.82 px 0.18 px
15.4◦ 0.60 px 1.09 px 1.43 px 0.72 px
31.1◦ 0.73 px 1.11 px 0.94 px 0.79 px
45.9◦ 1.19 px 1.42 px 1.46 px 1.27 px
60.4◦ 9.18 px 3.62 px 0.29 px 1.46 px

Table 3.1: Localization error in pixels for different marker orientations. Angles are measured from
the normal vector of the marker. The images corresponding to the bold values are depicted
in Figure 3.21.

detector response remains relatively high for angles up to roughly 40◦, the signature dis-
tance remains low in the same range. This gives reason to expect good distinctiveness of
the marker in comparison with natural image features. The measured localization errors
for the different azimuth-elevation pairs are given in Table 3.1. The angles were obtained
from the camera calibration, and ground truth for the marker position was computed from
the intersection of the diagonals through the extremal corners of the checkerboard pattern.
The values for the localization error are similar to those expected from established, con-
ventional marker systems. For instance, in [ZFN02], some quadrilateral designs are tested
in a comparable setup, yielding average localization errors ranging from 0.17 to 1.57 pixels

3.2.5 Example Applications

The proposed markers are particularly useful whenever homogeneous, unstructured sur-
faces need to be "spiced up" with detectable features. Here, two example applications are
presented.

Robotic Navigation

Imagine an experimental setup where a solely vision-based robot is to navigate through
the lab in order to fulfill a certain task. Without a map or detectable markers in the scene,
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Figure 3.23: Image captured with a Panasonic DMC-FX1 at original resolution 1536×2048 pixels.
The detected SURF markers are labelled according to the ranking in Figure 3.24.

the robot would certainly lose track. Assume the task involves the recognition of certain
objects which is based on the use of SURF features already. Such a prototypical scenario is
the ideal application for the maximum detector response markers: The path to be followed
by can simply be lined with markers reliably detectable by the robot with its already built
in functionalities. To facilitate the navigation, the light and dark versions of the marker
could even be used to identify and tell apart the left and right lane boundaries.

Given the sensitivity to perspective distortions due to out-of-plane rotations discovered
in the experiments from Section 3.2.4, a simple preprocessing step is proposed for this
particular scenario: As the height of the robot mounted camera remains constant, we can
assume that the markers are always perceived perspectively distorted in the same way,
i.e., they appear vertically compressed. Stretching the image vertically, e.g., by a factor 2
(using bilinear interpolation) partly undoes the distortion and improves marker detection
significantly.

As illustrated in Figure 3.23, 14 8×8 cm markers are placed on the floor outlining the
desired path. When SURF is applied to the depicted image with low response threshold,
in total some 30000 features get detected. Nevertheless, the MDR markers are reliably
found as those features with the highest detector response values. Two of the markers
get detected twice, each time with different orientation, so there are 16 highest response
features for 14 present markers.
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Figure 3.24: The SURF detector responses from the example in Figure 3.23 in descending order.
The first 16 values belong to the imaged markers.
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Figure 3.25: Signature similarity for the SURF features from the example in Figure 3.23. For every
feature, the Euclidean distance between its signature and the signature of the template
marker is plotted.

69



3 Spatial Analysis: Scale-invariant Feature Extraction

Figure 3.24 shows the response values in descending order. The labels in Figure 3.23
correspond to this ranking. A drop from feature 16 to feature 17 is clearly visible., i.e.,
the markers are indeed uniquely detectable in the image. Figure 3.25 shows the similarity
between the descriptor signature of detected points and the signature of the dark marker
template. Again, the markers clearly stand out. Note that there are other features, e.g.,
number 56, with similar signatures, but their rank, and equivalently the detector response
they trigger are much lower.

A property of this example setup that is worthwhile mentioning is that, since every de-
tected marker comes with a scale assigned by the SURF algorithm, the robot can already
make first assumptions about the marker distances without the need for stereo vision and
triangulation.

SIFT/SURF CAVE

Another example application that takes a similar line is to have a wallpaper or poster
textured with maximum detector response markers. By simply putting up such posters,
a computer vision lab can easily be turned into a "SIFT/SURF CAVE" with dense feature
points all over the walls.

Mixing light and dark versions of the marker, such posters can carry one bit per marker
allowing, e.g., to encode information about different parts of the room. In principle, there
are two ways to distinguish both marker variants from each other, either based on marker
signature or by means of the Laplacian of the respective marker, i.e., the sum of second
derivatives. For SIFT, it is just the detector output (3.6) that approximates the Laplacian.
In the case of SURF, it is given by the trace of the Hessian matrix introduced in (3.7a). The
Laplacian is strictly negative for dark markers and strictly positive for light ones, hence a
simple thresholding is sufficient for separation. Experiments showed that this approach is
more reliable than signature comparison, it will be used in the following.

Figure 3.26 illustrates the combination of markers using arrays composed of three SURF
markers each. The upper left corner of the two-by-two arrays is left blank to have an
unambiguous array orientation. This design allows eight different marker arrays which
could be used to tag strategic areas in the room.

The following simple algorithm proved sufficient to identify and decode these marker
arrays. First, the SURF markers are uniquely detected in the image by means of their
outstanding detector response and signature similarity. The feasibility of this step will be
demonstrated shortly. Second, those markers are identified whose closest two neighbors
satisfy certain geometric constraints, namely (a) their respective distances are similar and
(b) they lie in roughly perpendicular directions. This yields 3-marker clusters in linear
time with regard to the number of markers in place. Assuming that all the marker arrays
are imaged close to upright, the topmost marker of each triple is then defined to carry the
first bit, the leftmost one the second and the remaining marker the third bit. Finally, the bit
value of each marker is determined using the sign of its Laplacian (see Figure 3.28). This
approach is supposed to illustrate that the combination of markers is a feasible approach
in general, it can of course be extended in a more sophisticated way.

Figure 3.27 shows the results of the SURF detection step. Similarly to the robot navigation
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Figure 3.26: Two out of eight possible 3-bit marker arrays photographed with a Sony DSC-S85
at resolution 2272×1704 pixels. The location of the six SURF features which yielded
highest detector response are displayed as green crosses.

example, the detected features are examined in terms of detector response and distance
to the SURF reference signature from Figure 3.8. Every point in the figure corresponds
to a detected feature, and obviously, the six features that belong to the markers form a
cluster in an area with high detector response and low signature distance. As opposed to
the previous experiment where only dark markers were deployed, in this example, both
versions of the SURF marker need to be identified simultaneously. Therefore, instead of the
full marker signatures, only those entries which are common to both marker variants are
considered. In the OpenCV-based implementation of SURF the corresponding descriptor
dimensions are 23, 24, 27, 28, 39, 40, 43 and 44. This reduced representation is referred to
as Version-Independent Signature (VIS).

3.3 Accuracy Assessment for Scale-invariant Image Features

Scale-invariant image features are a widely used tool to identify similar or identical parts
across images. In multi-camera setups, in particular, geometric relations between images
can be inferred exploiting feature correspondences. For trustworthy results it is neces-
sary to work with robust features that can be reliably matched. Relevant measures in this
context are the repeatability of feature detection under varying conditions, as well as the
matching accuracy of corresponding feature pairs. Another important aspect which is of-
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Figure 3.27: Detector response and VIS distance values for all the SURF features extracted from
the image in Figure 3.26. The markers form an apparent cluster.
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Figure 3.28: The sign of the Laplacian allows to reliably distinguish the light (+1) and dark (-1)
versions of the SURF marker (compare with Figure 3.26).

ten overlooked is the accuracy of the detection process itself. In current feature detection
frameworks, it is assumed that the strongest features (according to an appropriate detec-
tion criterion) are automatically well localized. But that is not necessarily true, especially
for scale-invariant features that can be detected on arbitrary scales. As a result of this the-
sis, it was effectively shown that the particular image content has a significant impact on
the localization of the features. An obvious example are features located along an edge
in the image which lack location precision in the direction of the edge. This effect has
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been dealt with, e.g. in SIFT, by identifying overly unreliable features in a second pass
and simply excluding them from further processing. Another, also quite plausible realiza-
tion confirmed by the results presented in this section is that large scale features are less
accurately locatable than fine details.

This work proposes a way to precisely quantify the localization uncertainty of a given
feature based on the underlying image intensities. This allows applications to incorporate
this information and propagate the uncertainty estimates all the way to the computed
results. For instance, [Sur10] makes use of the uncertainty measure proposed in this thesis
to improve feature matching between images.

This part of the thesis is based on results published in [Zei09, ZGS+09].

3.3.1 Related Work on Feature Uncertainty

There are several publications dealing with the localization accuracy of image features.
Many of them, especially the earlier works [KK01,BCGVDH01,Kan04,SJ05], focus on clas-
sical corner detectors such as the Harris [HS88] and Förstner [FG87] algorithms. Only more
recent publications specifically consider scale-invariant features [HJA08]. In all works, the
localization error of an image feature is modeled as zero-mean Gaussian noise, defined by
its 2×2 covariance matrix.

Kanatani and Kanazawa [KK01, BCGVDH01, Kan04] consider the so called self-matching
residual, i.e., the absolute sum of pixel value differences in a window around an interest
point, as a measure of localization definiteness. They derive, irrespective of the actu-
ally used feature detector, that from a second order approximation of the self-matching
residual an estimate for the covariance matrix of a feature’s localization error can be ob-
tained. Specifically for Harris corners, however, they conclude that the so acquired co-
variances cannot be exploited to significantly improve typical computer vision tasks such
as structure-from-motion. They argue that Harris corners are markedly well selected fea-
tures in that their covariances already are very similar, and especially isotropic. Reweight-
ing Harris corners individually during an optimization, e.g., employing the Mahalanobis
distance [Mah36] (see also Section 3.3.5), would thus be futile.

In a series of experiments, Brooks et al. succeeded to demonstrate that under certain
conditions Harris corners equipped with covariances actually can have a positive influence
on parameter estimation [BCGVDH01]. Their research also casts light on the accuracy of
the covariance estimate itself and its influence on the overall results.

Still considering traditional single scale features, Steele et al. derive covariance estimates
for a given detector, specifically Förstner corners in their case, regarding image noise as the
main source for misdetection [SJ05]. Investigating different noise models, they propagate
the respective stochastic properties through the detection process, which leads to the de-
sired covariance estimates. According to their results complex noise models are necessary
to capture the underlying effects, and to obtain realistic covariance estimates.

Haja et al. go beyond single-scale features and study scale-invariant algorithms [HJA08].
The compared feature detection algorithms are found to differ in terms of location accu-
racy. Furthermore, the location error varies significantly depending on where in the image
a particular feature was detected. Coarser features on higher scales tend to be less precisely

73



3 Spatial Analysis: Scale-invariant Feature Extraction

localized. However, no attempt is made in [HJA08] to quantify the observed localization
errors, i.e., to estimate the corresponding covariances.

The approach presented in this section particularly addresses the covariance estimation of
the location error for scale-invariant features. The proposed framework has been success-
fully applied in several applications, ranging from robust feature matching with a contrario
models [Sur10] to photogrammetric surface reconstruction [BDBL+11].

3.3.2 Location Uncertainty Estimation

Based on the generic scale-invariant feature extraction scheme presented in Section 3.1, a
framework is established to estimate the location uncertainty of image features [ZGS+09].
Consider the scale space representation discussed in Section 3.1, with a stack I(x, σi) of N
discrete scale layers. Here, x = (x, y) specifies the spatial dimensions in the image, and
{σi, i = 1, . . . , N} is the set of discrete scale levels.

Following the work by Lindeberg [Lin90, Lin93, Lin94, Lin98], a derivative-based detec-
tion operator fdet is applied to each layer of the scale-space stack, and local extrema are
identified as features in the three-dimensional detector response. The extremum search can
be regarded as a two-stage process, first identifying local extrema inD( · , σi) = fdet[I( · , σi)]
as feature candidates, individually in each scale layer. Second, scale selection is performed
for each feature candidate by finding local extrema along the scale dimension. Formally,
here for the case where features are detected as response maxima, the two steps can be de-
scribed by Equations (3.9) and (3.10). When response minima are also considered features,
as is common practice in, e.g., some implementations of SIFT, analogous equations apply
with maximization replaced by minimization.

F1 =
N⋃
i=1

{
(p, σi)

∣∣∣p = arg max
x∈Np

D(x, σi)

}
(3.9)

F2 =

{
(p, σ) ∈ F1

∣∣∣σ = arg max
s∈Nσ

D(p, s), D(p, σ) > τ

}
(3.10)

Here,Np andNσ are local neighborhoods around p and σ in space and scale, respectively.
The threshold τ further eliminates all members from the initial candidate set F1 with in-
sufficient response. The final set F2 contains the eventually detected images features 3.
During both maximizations in (3.9) and (3.10), interpolation can be used to obtain sub-
pixel and inter-scale accuracy.

It is important to note that the scale selection process given in (3.10) does not alter the
location at which a feature is ultimately detected. Only the spatial extremum search in
D( · , σi), given by (3.9), is determining.

Obviously, the shape of the functionD( · , σi) determines how well a local extremum is lo-
calized. Peaky maxima lend themselves to accurate localization, whereas shallow extrema
are less reliable. For the following argument, let’s introduce the residual error R(∆p, σi)

3Actually, the set of true image features is a subset of F2. A pairwise comparison of neighboring features in
F2 is still required to discard false local maxima. This additional step, however, has no consequence on the
following considerations and is hence neglected.
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Figure 3.29: A detailed view on the extrema search in the scale space stack. The residual error
R(∆p, σi) takes on a minimum where D( · , σi) has a local maximum.

(Image reproduced from [Zei09])

encountered when a detected feature is displaced from its true location by ∆p:

R(∆p, σi) = |D(p, σi)−D(p + ∆p, σi)| (3.11)

Note that D( · , σi) has a local extremum when R( · , σi) is minimized. See Figure 3.29 for
an illustration.

For small displacements, (3.11) can be adequately approximated by a Taylor series up to
second order:

R(∆p, σ) ≈ R(0) +
∂R(∆p, σ)

∂∆p

∣∣∣∣
∆p=0︸ ︷︷ ︸

=0

+
1

2
∆p>

∂2R(∆p, σ)

∂∆p2

∣∣∣∣
∆p=0︸ ︷︷ ︸

=:H

∆p =
1

2
∆p>H∆p

(3.12)

The zeroth and first order terms vanish because the residualR(∆p, σ), by definition, reaches
its global minimum at ∆p = 0.

The Hessian matrix H describes the curvature of the residual, and its inverse is a good es-
timate for the shape of the localization error’s covariance [KK01], hence the feature uncer-
tainty. The covariance of a feature detected at position (p, σ) in scale-space is consequently
given by

Σ = H−1 =

[
Rxx(∆p) Rxy(∆p)

Ryx(∆p) Ryy(∆p)

]−1

∆p=0

= ∓
[
Dxx(p, σ) Dxy(p, σ)

Dxy(p, σ) Dyy(p, σ)

]−1

. (3.13)

The sign on the right hand side of (3.13) depends on whether the feature (p, σ) has been
detected as a local maximum (−) or as a local minimum (+). Note that Σ is only deter-
mined up to scale, i.e., only the shape and relative extent of the underlying localization
error can be appraised.

Depending on the particular structure of the scale-space representation and the derived
detector stack D, the so computed covariance matrix Σ needs to be normalized with re-
spect to a common reference scale σ0. This ensures that covariances retain their relative
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proportions. In particular, normalization is necessary if the spatial resolution differs be-
tween scale layers, e.g., when the scale space is divided into octaves and scales of higher
octaves are subsampled. Introducing the notation res(I) for the spatial resolution of image
I (measured in pixels per image width), normalization of a covariance matrix Σ computed
at scale σ is achieved by Equation (3.14).

Σ0 =

(
res(D( · , σ0))

res(D( · , σ))

)2

Σ (3.14)

The normalized covariance matrix Σ0 describes the localization uncertainty of the feature
(p, σ) expressed in terms of the original image size.

3.3.3 Application to SIFT and SURF

SIFT and SURF use Difference of Gaussians filters and the determinant of the Hessian ma-
trix as detection operators, respectively (see Sections 3.1.1 and 3.1.2). It is straightforward
to apply the present location uncertainty estimation framework by evaluating the covari-
ance matrix in (3.13) based on the respective detector response values, i.e., either with
D = DSIFT or D = DSURF.

In practice, the required second order derivatives of the detector output are computed
employing finite difference filters, evaluated at the feature location:

Dxx(x, σ) = hxx ∗D(x, σ), (3.15a)
Dxy(x, σ) = hxy ∗D(x, σ), (3.15b)
Dyy(x, σ) = hyy ∗D(x, σ), (3.15c)

where hxx = h>yy =
[
1 −2 1

]
, hxy =

1

4

 1 0 −1

0 0 0

−1 0 1

 (3.15d)

Since both SIFT and SURF use interpolation to refine the feature location in scale space,
a feature (p, σ) usually lies between scale layers. Ultimately, this would require to inter-
polate a non-existent scale from neighboring scale layers to eventually compute (3.15) and
(3.13). As it turns out, the computations can also be performed on the scale layer closest to
σ, without significant degradation of the results [ZGS+09].

Due to the subsampling of higher octaves used by both SIFT and SURF, scale normal-
ization according to (3.14) is necessary. For a feature detected in octave o, normalization
hence takes the form given in Equation (3.16):

Σ0 = 4o Σ (3.16)

3.3.4 Experimental Validation

In order to assess the methodological correctness and the performance of the developed
uncertainty estimation framework, several tests have been conducted. In accordance with
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Figure 3.30: The detection error for SIFT (top row) and SURF (bottom row) under varying viewing
directions. The ground truth feature position is indicated by a green dot, measured
positions by blue plus signs. The measured and estimated covariances are marked in
dashed red and solid black, respectively. (Image reproduced from [Zei09])

the previous sections, and especially Section 3.3.3, the SIFT and SURF algorithms are con-
sidered in the experiments. SIFT is used in the OpenCV-based implementation by Rob
Hess [Hes10]. For SURF, the OpenCV implementation has been altered such that the orig-
inal scale sampling [BETVG08] (cf. Figure 3.6) is in place, as proposed in Section 3.2.4 (see
also Figure 3.13). Both synthetic data and real images are used to substantiate the ap-
proach.

Measured versus Estimated Covariance

The first experiment simulates the detection of a feature at a given ground truth position
in a synthetically generated image. To this end, the maximum detector response markers de-
scribed in Section 3.2 are used to enforce the detection of a single, reliable feature at a
known location. The markers, being the prototypical feature for the respective algorithm,
are viewed from different perspectives, with Gaussian noise added to disturb the detection
process in a realistic manner.

In hundreds of realizations, the deviation from the ground truth marker location is re-
corded, as depicted in Figure 3.30. From these samples, a least squares fit of the local-
ization error’s covariance matrix is computed which is marked with a dashed red line in
Figure 3.30. This measured covariance is then compared to the covariance estimate cal-
culated from (3.13) according to the presented approach (solid black line in Figure 3.30).
Measurement and estimate are normalized to equal Frobenius norm before comparison.

As can be seen from Figure 3.30, the estimate follows the measured covariance quite
accurately. In the case of SIFT, where the distribution of the localization error clearly fol-
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View 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

SIFT 0.181 0.850 0.955 2.72 7.94 32.9 50.2
SURF 0.402 36.5 1.90 0.582 3.57 0.870 12.5

Table 3.2: The Bhattacharyya distance between the measured and estimated covariances from Fig-
ure 3.30. The overall order of magnitude is 103.

lows the distortion of the test image, the covariance estimate changes accordingly. But
also for SURF, where the error evolves counter-intuitively with increasing distortion, the
covariance estimate reliably captures the true distribution. In order to quantify the de-
viation of the estimated covariance from the measured one, the so called Bhattacharyya
distance [Bha43], a common measure for the divergence of probability distributions, is
used. Table 3.2 contains the resulting distances.

Scale-dependence

In a second experiment, the relationship between the scale a feature gets detected on and
its covariance estimated according to the presented framework is investigated. To this end,
SIFT and SURF features are extracted from the image shown in Figure 3.32. The detection
thresholds are deliberately set as low as to produce a sufficiently high number of features.
For every feature, the location error covariance is estimated according to (3.16).

Figure 3.31 shows the results in the form of a scatter plot. Apparently, the uncertainty
of a feature, measured by the Frobenius norm of its covariance matrix, increases with the
scale of the feature. This was to be expected for features on different octaves for which, by
definition (3.16), the covariances have been rescaled during the estimation process. Within
an octave, where all covariances are normalized by the same factor, the same behavior can
be examined as well. This is in accordance with the intuitive understanding that coarse
features, detected on higher (possibly subsampled) scale layers are less well localized than
delicate features.

In Figure 3.32, those SIFT features with markedly high and low covariance are plotted
on top of the used image. This also illustrates the practical relevance of the location error
covariance as a valid indicator for the uncertainty of a detected feature. Features with small
covariances, marked with crosses in the figure, are well localized on fine structures, small
blobs or corners. High covariance features, however, represent bigger, rather vague, blob-
like structures that could just as well be located several pixels off under small distortions.

Covariance under Perspective Distortion

Complementary to the initial experiments on synthetic data, the behavior of the covariance
estimates under distortion has also been repeated with real-world images. The purpose of
this is to demonstrate qualitatively the consistency of the proposed measure. Figure 3.33
shows how the covariance computed according to (3.16) changes when features undergo
perspective transformation.

The figure shows frames from three separate videos where SIFT features have been tracked
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Figure 3.31: Frobenius norm of the covariance for SIFT (a) and SURF (b) features detected in the
image shown in Figure 3.32. (Image reproduced from [Zei09])
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small covariances
large covariances

Figure 3.32: Selected SIFT features in a real-world image from the Graffiti dataset [MTS+05].
Those with large covariances (σ > 8) are poorly localized in comparison to small
covariance features (σ < 2). (Image reproduced from [Zei09])

throughout the image sequences. In the first case, displayed in Figure 3.33(a), the pattern
containing the features is zoomed into, and the covariance estimates follow the associated
scale change accordingly. When a viewpoint change occurs where the object appears com-
pressed along one direction, as shown in Figure 3.33(b), the computed covariances reflect
this in a reduced uncertainty in exactly that direction. Finally, also rotating the object has
the covariances follow in a consistent manner, as shown in Figure 3.33(c).

3.3.5 Application in Structure-from-motion

Having demonstrated the conceptual validity of the feature accuracy assessment method,
it will be shown in this section how an existing computer vision algorithm can actually
benefit from the obtained uncertainty measures. In particular, a structure-from-motion
scenario is considered, where a 3D scene is reconstructed from 2D projections acquired
with a stereo camera.

Setup and Problem Formulation

Formally, the task is to recover the position of n points Xi ∈ R3, and the pose of m = 2
cameras from the points’ projections xij ∈ R2. Introducing projection operators Pj for each
camera, the 3D-2D relationship can be expressed as follows:

xij = PjXi (3.17)

In order to have full control over the setup, especially to have ground truth data available
for quantitative evaluations, virtual scenes are used. Figure 3.34 shows an example setup.
Each test scene is constructed from four parallel, planar patches of different sizes and lo-
cated at varying distances from the cameras. Natural images are mapped onto the planes

80



3.3 Accuracy Assessment for Scale-invariant Image Features

(a) zoom (b) tilt (c) rotation

Figure 3.33: Three image sequences with different perspective distortions, and the evolution of the
covariance for selected SIFT features. A small green dot marks the feature locations,
the ellipses indicate their estimated covariance. (Image reproduced from [Zei09])
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xy

z

Figure 3.34: The virtual setup used in the structure-from-motion experiment composed of two cam-
eras located in the x-y plane (marked with red diamonds), looking along the z axis, and
four randomly placed planar patches (left). Two exemplary camera views on the scene
are shown on the right. (Image reproduced from [Zei09])

such as to provide enough texture for the SIFT and SURF algorithms. The position of the
virtual stereo camera is fixed, the exact pose of the patches is chosen at random each time.

In the stereo camera images, either SIFT or SURF features are detected and matched be-
tween the image pair. To eliminate the influence of outliers, wrong matches are immedi-
ately identified through the known geometry and discarded. State-of-the-art reconstruc-
tion algorithms are then used to infer the 3D setup of planes and cameras. More specif-
ically, an initial reconstruction is obtained by estimating and decomposing the essential
matrix [Hor90, HZ00]. Subsequently, bundle adjustment, which will be briefly summarized
shortly, is employed to iteratively refine the results. The popular SBA implementation
by [LA09] is used for the experiments reported here. In case the reconstruction fails at
any point, e.g., because a random setup didn’t spawn enough feature correspondences,
the current run is aborted and a new random setup is synthesized.

After each successful run, the ground truth location of the 16 patch corners (marked with
blue crosses in Figure 3.34) is compared with the reconstructed patch corners.

Improvements in Bundle Adjustment

Bundle adjustment aims at amending the camera-scene configuration such that the av-
erage error between measured image points xij and their expected positions is globally
minimized:

min
Xi,Pj

n∑
i=1

m∑
j=1

‖xij − PjXi‖2 = min
Xi,Pj

n∑
i=1

m∑
j=1

(xij − PjXi)
>(xij − PjXi) (3.18)

Instead of minimizing the Euclidean distance as in (3.18), the measurements xij and the
associated errors can be weighted according to their individual uncertainties. This leads
to the established Mahalanobis distance [Mah36, HZ00] which directly incorporates the
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average reprojection error
without cov. with cov. improvement

SIFT 2.031 px 1.759 px 13.4%
SURF 2.554 px 2.363 px 7.5%

Table 3.3: Average reprojection error (3.20) after 100 simulated bundle adjustment runs.

known corners
intial estimate
SBA
SBA with covariances

Figure 3.35: Four detail views on the patch corners from Figure 3.34 as seen by the first camera.
The refined estimates tend more closely towards the ground truth position when co-
variances have been used. (Image reproduced from [Zei09])

covariance matrix of each measurement, i.e., each detected image feature:

min
Xi,Pj

n∑
i=1

m∑
j=1

(xij − PjXi)
>Σ
− 1

2
ij (xij − PjXi) (3.19)

The covariance matrices Σij in (3.19) are computed according to (3.16) for every fea-
ture xij . Both with SIFT and SURF, 100 simulation runs are carried out, once without
exploiting covariances minimizing (3.18), and a second time with covariances minimiz-
ing (3.19).

The average reprojection error over the 16 patch corners in one of the cameras is used a
quality measure for the reconstruction:

e =
1

16

16∑
i=1

‖ci1 − P̂1Ci‖, (3.20)

where the Ci are the 16 ground truth corner points in 3D, and ci1 are their projections in
the first camera whose estimated projection matrix P̂1 is a result of the respective mini-
mization.

The results are shown in Table 3.3 and in Figure 3.35. It can be seen that using the
proposed covariance measure in combination with the Mahalanobis distance reduces the
mean reprojection error significantly, by up to 13%. Figure 3.35 illustrates this accuracy
improvement qualitatively, with detail views on selected patch corners.
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3.4 Efficient and Affine-invariant Feature Detection

So far, the focus of this chapter was on the detection properties of existing feature detection
algorithms, and specifically on SIFT and SURF. In this section, two novel, full-fledged fea-
ture detectors, coined speeded-up SURF (suSURF) and Affine-invariant suSURF (AsuSURF),
will be presented, based on the findings from Section 3.2. The motivation behind these
detectors is, for one thing, a reduction of computational complexity, and for another, addi-
tional invariance against affine geometric transformations.

The reason for these two requirements is obvious. Faster and especially leaner imple-
mentations enable real-time applications and the deployment on less powerful devices,
e.g., on smart phones. In the context of mobile media search for instance, as touched upon
in Section 1, where a database of known features is maintained somewhere in the back-
end for mobile users to query, image features are the atoms for image and video retrieval.
From a service provider’s perspective, it is desirable to have the mobile devices perform
the feature extraction locally, so that only features instead of whole images or videos need
to be transmitted. However, mobile devices are significantly limited both in processing
power and memory capacities. Consequently, faster and more efficient feature extraction
algorithms are necessary, especially if real-time performance is required.

Affine-invariance on the other hand increases the applicability of a feature detector, al-
lowing more drastic view point changes to be compensated. While (the only rotation- and
scale-invariant) SIFT and SURF typically cope with viewing directions differing by up to
30◦ (see also Section 3.2.4), general perspective distortions prevent corresponding features
to be detected and successfully matched between two views. When the dimensions of a
feature are negligible in comparison with the viewing distance, which is typically the case,
perspective transformations can be approximated with an affine model. A detector that
is invariant to affine transformations is thus also largely invariant to general projective
effects.

3.4.1 State-of-the-art

Fast Feature Detection

In the literature, several attempts at fast and efficient feature extraction have been made.
One direction follows the development of simplified detectors, such as FAST [RD06] or the
related ORB [RRKB11], that specifically target mobile, real-time tracking applications. An-
other line of thought aims at more efficient implementations of existing, well established
algorithms. In the family of scale-invariant approaches, General-Purpose GPU (GPGPU)
based implementations for SIFT and SURF have been proposed [SFPG06, HMS+07, Wu,
CVG08,FYZ+11], taking advantage of their high parallelizability. The full potential of par-
allelization can of course only be exploited on architectures where GPGPU techniques are
available. In a different approach, similar to SURF’s box filter approximations, Grabner
et al. have proposed to radically simplify the Difference-of Gaussian kernel used by SIFT,
computing a Difference of Mean on integral images instead [GGB06]. The approach be-
hind the suSURF algorithm presented in Section 3.4.2 is comparable to [GGB06] in that it
simplifies the SURF detector, yet following a more substantiated line of argument.
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Affine-invariance

As for affine-invariance, there are several feature detectors that have been proposed in the
literature. They can be divided into two main categories based on whether they compen-
sate for affine transformations by normalization or by simulation. In this context, normaliza-
tion refers to estimating the affine transformation parameters from the pixel neighborhood
of a feature, and "undoing" the transformation, thus bringing the image patch around the
feature to a normalized form. Both SIFT and SURF use this concept, for instance, to nor-
malize the orientation of a feature. Among affine-invariant features, the most prominent
representative of this category are Maximally Stable Extremal Regions (MSER) [MCUP04].
As the name implies, the MSER algorithm detects characteristic pixel regions in an image
rather than single points in scale-space. Ellipses fitted to these regions contain the affine
transformation parameters, and normalization is achieved by mapping them to the unit
circle.

In the simulation based category, the space of affine transformations is sampled, and each
of the resulting transformations is applied to the image. In one of the so distorted images,
a given feature will appear as if seen straight from the front. An affine transformation is
hence "undone" by simulating the frontal view of the feature. This concept is also em-
ployed for example during scale selection in SIFT and SURF. To be able to handle the vast
number of image versions the simulative approach produces, the simulated affine trans-
formations must be selected wisely, and sophisticated feature matching strategies are re-
quired. The foundation for the simulative concept has been laid by Yu et al. whose Affine-
invariant SIFT (ASIFT) algorithm successfully applies it to SIFT [YM09,MY09,YM11]. With
AsuSURF, presented in Section 3.4.3, the same concept is carried over to suSURF.

3.4.2 Speeded-up SURF (suSURF)

The detector presented here, as its name suggests, is based on the already extensively dis-
cussed SURF algorithm. The goal is to reduce the complexity in the detection process and
hence make for an acceleration, while maintaining the superb detection quality of SURF.
To achieve this, the insights gained during the development of the maximum-detector
response (MDR) markers in Section 3.2 are exploited. Let us recall that SURF uses a non-
linear detection operator. The approach followed here is to linearize the SURF detector
and to reduce the number of operations needed to compute its response. All the other
processing steps, especially extremum search via non-maximum suppression, scale-space
interpolation, orientation assignment and descriptor computation, remain untouched.

Detector Design

The MDR markers developed in Section 3.2 and depicted in Figure 3.9 on page 56 were
constructed such as to trigger the strongest possible SURF response. They can thus be
considered the prototypical features that the algorithm is supposed to detect. Conversely,
to reliably locate features of this kind in an image, the SURF detector is the means of choice.
Yet, it is not the only one. The optimal linear detection operator predestined for this task,
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Figure 3.36: The suSURF kernel (left) can be efficiently decomposed as the superposition of four
separate box filters (right).

in that it achieves maximum signal-to-noise ratio, is the matched filter fitted to the wanted
signal (cf. SIFT marker construction in Section 3.2.2).

Accordingly, the speeded-up SURF (suSURF) detector is defined as the matched filter
adapted to the SURF MDR markers. That makes it the linear detector that shares its pro-
totypical features with SURF. Due to the apparent symmetry, the suSURF kernel is iden-
tical to the underlying MDR marker4. Again, it is interesting to observe how the suSURF
kernel qualitatively resembles the Difference of Gaussians used in SIFT (cf. Figure 3.3 on
page 50). Thus, suSURF can simultaneously be considered a linearization of SURF and a
non-uniformly quantized version of SIFT.

Figure 3.36 illustrates how the speed-up in suSURF is achieved. Given the block structure
of the kernel, the concept of integral images can be exploited to efficiently perform the
convolution at arbitrary scales. The suSURF kernel is essentially composed of four sub-
filters which require one box integration each. In comparison, the filters involved in the
derivative computations carried out by SURF comprise a total of eight such integrations.
In addition, SURF performs a non-linear combination of the filter outputs.

Specifically, the suSURF response DsuSURF can be calculated as follows:

DsuSURF = IΣ(a1)− IΣ(a2) + IΣ(a3)− IΣ(a4) (3.21)
+ IΣ(b1)− IΣ(b2) + IΣ(b3)− IΣ(b4)

− 3 ·
[

IΣ(c1)− IΣ(c2) + IΣ(c3)− IΣ(c4)

+ IΣ(d1)− IΣ(d2) + IΣ(d3)− IΣ(d4)
]
,

4Either version of the MDR marker can be used since their responses to a desired feature are simply the
inverse of each other, and the extremum search considers both maxima and minima alike.
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Figure 3.37: The coordinates relevant for the computation of the suSURF filter response from an
integral image, exploiting the box decomposition from Fig. 3.36

where IΣ is the integral image initially computed from a given image I through

IΣ(x, y) =
x∑
i=1

y∑
j=1

I(i, j), (3.22)

and the a1 through d4 are the scale-specific coordinates marked in Figure 3.37.
One can see that in (3.21) only 15 additions/subtractions and one multiplication per pixel

and scale are necessary to compute the suSURF detector response. In comparison, SURF
requires a total of 30 additions/subtractions and 5 multiplications. An according speed-up
over SURF can thus be expected in the suSURF detector response computation. Moreover,
any state-of-the-art implementation for fast convolution, either in software or hardware,
can be used to further accelerate the suSURF detection process. Another favorable prop-
erty of suSURF is that it seamlessly integrates with every DoH-based feature extraction
algorithm. Other proposed extensions and advancements acting, e.g., on the descriptor
design can hence be combined with the suSURF detector.

Performance Analysis

With the linearization of the detection operator presented so far, a speed advantage is
achievable in theory. Quantitatively, this is verified by the results given in Table 3.4 where
the actual detection times of suSURF and SURF are compared for OpenCV implementa-
tions on a 3 GHz desktop PC. Different test image sets from [MTS+05] are used in the
comparison. Each set comprises six images of size 800×640 pixels, and the table displays
average results over each set. The detection thresholds of SURF and suSURF are set such
that the number of detected features is just about equal for both algorithms. It can be seen
that the suSURF approach is faster, both for feature rich images (e.g., from the Graffiti set)
and less textured ones. In terms of detection time per feature, an average reduction by
31.6% is achieved.

It remains to be shown that suSURF not only detects faster but also meaningful features.
Figure 3.38 compares the results of both detectors qualitatively when applied to a natural
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image
set

algo. avg. number
of features

average
detection time

avg. detection
time per feat.

Graffiti SURF 2129.5 1.6716 s 784.97 µs
suSURF 1951.2 1.0389 s 532.43 µs

Boat SURF 1338.0 1.1570 s 864.70 µs
suSURF 1373.7 0.8577 s 624.40 µs

Wall SURF 1546.3 1.3833 s 894.55 µs
suSURF 1401.5 0. 8170 s 582.95 µs

overall average:
848.07 µs
579.93 µs

Table 3.4: Detection times by SURF and suSURF on different test images from [MTS+05].

SURF features

suSURF features

Figure 3.38: The suSURF detector responds to the same type of image structures as SURF.
(Test image from flickr.com/janinerussell)
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image. Apparently, suSURF and standard SURF react to the same class of features, many
of which coincide. The fact that the extracted suSURF features are in parts identical to
those detected by SURF is advantageous in that it allows the combination of suSURF and
SURF features in one application, e.g., in existing databases.

A quantitative evaluation is presented in Figure 3.39, again using test images, and the
evaluation methodology, from [MTS+05]. Here, the so called repeatability score is evaluated.
This measure gives the ratio of detected features which are successfully recovered in the
image after applying a known distortion. In the Graffiti and Wall datasets, perspective
distortion is parametrized by the viewing angle relative to the reference image. Other
tested (yet not absolutely parametrized) effects are image blur, zoom and rotation, as well
as lighting and JPEG compression. For all except the last two effects two datasets are
available, differing in homogeneity/texturedness of the depicted scene.

Obviously, suSURF can compete with standard SURF, as well as with SIFT. In some
categories, suSURF even outperforms SIFT and SURF, e.g., in the presence of image blur
(Bike and Tree) or JPEG compression artifacts (UBC). It is interesting to note that suSURF
generally performs better on scenes that contain homogeneous regions with distinctive
boundaries (the left column in Figure 3.39), as opposed to repetitively textured scenes
(right column).

Experiments on other datasets have shown that suSURF tends to detect features that are
located along straight edges and thus poorly localized (see also Section 3.3). This is a
problem that suSURF shares with SIFT. Hence, similar counter measures can be taken,
e.g., applying the edge response elimination proposed in [Low04] or evaluating the Harris
corner measure [HS88], only for already detected features.

3.4.3 Affine-invariant Speeded-Up SURF (AsuSURF)

The suSURF detector presented in the previous section distinguishes itself from SURF by
its reduced complexity. At the same time, its detection performance can keep up with
SURF. With AsuSURF, presented next, the opposite direction is explored, trading off, to
some degree, suSURF’s low complexity against a gain in robustness. More specifically,
affine invariance will be achieved by incorporating the suSURF detector into the ASIFT
framework [YM09, MY09].

Review of ASIFT

As pointed out in Section 3.4.1, ASIFT simulates a variety of affine transformations in order
to find the closest agreement between parts of two images. An affine transformation maps
a 2D image I(x) to I(A(x − x0)). The matrix A describing the non-translational parts of
the transform can be partitioned using singular value decomposition:

A = UΣV > = λ

[
cosψ − sinψ

sinψ cosψ

]
︸ ︷︷ ︸

U

[
t 0

0 1

]
︸ ︷︷ ︸

1
λΣ

[
cosφ − sinφ

sinφ cosφ

]
︸ ︷︷ ︸

V >

(3.23)
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(c) Bike
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(d) Tree
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(f) Bark
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(g) UBC
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Figure 3.39: Repeatability scores for suSURF based on image datasets from [MTS+05] in compar-
ison to SIFT and SURF (at a similar number of detected features).
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Figure 3.40: Camera model used in the ASIFT framework, specified by azimuth, elevation and roll
angles φ, θ and ψ (in this order) of a camera performing parallel projection. The
induced mapping from the viewed plane to the image plane is affine (see Figure 3.41).

Figure 3.41: Image formation under the affine camera model depicted in Figure 3.40.

Interpreting the individual transformation steps from right to left, V > represents the rota-
tion of the camera by an azimuth angle φ, the diagonal matrix 1

λΣ the vertical compression
by factor t due to the camera elevation θ, and U a camera roll by ψ. Finally, the image
is uniformly scaled with factor λ proportional to the camera distance. The geometric rela-
tionships and their effects on an image are illustrated in Figures 3.40 and 3.41, respectively.
In keeping with [YM09], the compression factor t is referred to a tilt. It is related to the el-
evation angle through t = 1

cos θ .

SIFT, being scale and rotation invariant, can cope with two of the partial transformations
in (3.23): the rescaling by λ and the in-plane rotation induced by U . SIFT can also com-
pensate for any translation x0. The two remaining affine parameters are the tilt t, being a
function of θ, and the azimuth angle φ. The approach of ASIFT is to simulate the effects of
these two parameters over a sufficiently wide range, so as to allow the successful matching
between affinely warped images. Figure 3.42 illustrates how azimuth φ and elevation θ are
sampled. ASIFT uses elevations θi such that the corresponding tilts ti follow a geometric
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Figure 3.42: Azimuth and elevation angles sampled by ASIFT according to Eq. (3.24) and (3.25).
(Image reproduced from [MY09])

series, and equally spaced azimuths φij :

θi = arccos
1

ti
with ti = (

√
2)i, i ∈ {0, . . . , n} (3.24)

φij =
π

10
·
j

ti
with j ∈ {0, . . . , b10 tic}, (3.25)

where n = 5 is suggested as a typical value in [YM09].

Since an image is virtually multiplied in the process (32 variations for n = 5, see Fig-
ure 3.42), the number of detected features increases accordingly. Given an image pair, the
combinatorial possibilities for feature matches hence explodes, roughly surging by a fac-
tor 1000 when n = 5 is chosen5. To counter this, Yu and Morel propose a two-resolution
scheme where ASIFT is first applied on decimated versions of the images followed by
feature matching. In full resolution, ASIFT then no longer simulates all affine transforma-
tions, but only those which led to a significant number of matches in the first pass. More
specifically, the M best matching variations are used. The parameter M can be regarded
as a presumption about the geometry of the depicted scene. Consider the case of an urban
environment with buildings and other man-made structures. It can be expected to find
many planar surfaces in this scene each of which maps from one image to another through
a certain (approximately affine) transformation. Features on such a plane will be properly
matched when its particular inter-image transformation is simulated. So, there is one opti-
mal transformation for every plane in the scene6. Yu and Morel suggest a default value of
M = 6. Strictly speaking, this "pre-matching" step makes ASIFT more than just a feature
detection algorithm. ASIFT inextricably combines feature detection and matching and is
thus always applied to image pairs.

5 With N the number of features detected in an average image, there are N2 possible matching pairs in the
non-ASIFT case and (32N)2 = 1024N2 for ASIFT.

6 More precisely, there is one ideal transformation for every vanishing line, i.e., parallel planes share the same
optimal transformation.
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Figure 3.43: Matching scores for AsuSURF in comparison with ASIFT for those datasets from
[MTS+05] with viewpoint changes.

Adaptation and Performance Analysis

For AsuSURF, the simulative framework for affine transformations proposed in [YM09,
MY09] and reviewed in Section 3.4.3 is fully adopted. Instead of the SIFT dectector, how-
ever, the suSURF detector from Section 3.4.2 is used. This will reduce the computational
burden without severe impacts on performance, as is confirmed by the following experi-
mental results.

AsuSURF performs a combination of feature detection and matching and can thus not
be directly compared to pure detection algorithms such as SIFT and SURF. In the fol-
lowing, the comparison is made between AsuSURF and ASIFT. The performance also
depends on the used descriptor and the matching strategy. For the presented experiments,
AsuSURF is equipped with the SURF descriptor and ASIFT uses the SIFT descriptor. In
both cases, the number of simulated tilts is set to n = 5, and the M = 14 top ranking
simulations are promoted from the low resolution stage (downsampling factor 1:3) to full
resolution. Figure 3.43 shows the achieved matching scores, i.e., the percentage of correctly
determined feature pairs with respect to given ground truth transformations. Since the
purpose of affine invariance is to defy perspective distortions between views, only the
specific datasets from [MTS+05] have been selected which comprise varying viewpoints.

AsuSURF is clearly inferior in case of the Wall dataset which contains fine and highly
repetitive structures. In Figure 3.45, it can be observed how the number of correctly
matched features comes down with increasing viewpoint difference and, concurrently, the
ratio of spurious matches goes up. For the Graffiti dataset, it is interesting to see that
AsuSURF can outperform ASIFT at intermediate viewpoint angles. The feature matches
are displayed in Figure 3.44. This is in accordance with the experimental finding from Sec-
tion 3.4.2 that suSURF generally performs best on scenes with homogeneous regions and
distinctive boundaries.

On a 2.6 GHz desktop PC, the average runtime per image pair was 19.954 s for AsuSURF
and 33.784 s for ASIFT, given an image resolution of 800× 640 pixels.
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(a) 20◦

(b) 30◦

(c) 40◦

Figure 3.44: Matching AsuSURF features in the Graffiti set for selected viewing angles
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(a) 30◦

(b) 40◦

(c) 50◦

Figure 3.45: Matching AsuSURF features in the Wall set for selected viewing angles
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3.5 Concluding Remarks

In this chapter, a wide range of aspects related to spatial image and video analysis have
been treated. The common theme was multiscale feature detection due to the prevalent use
of this concept in a variety of applications. The specific contributions are a new paradigm
for the design of visual markers, a novel accuracy assessment framework generally appli-
cable to scale-space based features, and two accelerated feature detectors.

The visual marker design presented in this chapter distinguishes itself from previous
approaches in that the markers are adapted to existing state-of-the-art feature detectors.
The Maximum Detector Response (MDR) property guarantees optimal detectability by
the specific algorithm the marker has been designed for. At the same time, the need for a
separate marker detection algorithm is obviated.

With the feature accuracy framework, also proposed in this chapter, image features de-
tected with scale-space based algorithms can be judged according to their localization fi-
delity. This is valuable information for subsequent processing tasks, such as triangulation
or the computation of epipolar geometries and homographies.

The two feature detectors introduced in this chapter, namely suSURF and AsuSURF, are
derived from the MDR marker principle. While the first simplifies the established SURF
by linearizing its detection operator, the latter adds affine-invariance to enable successful
feature matching even for extreme viewpoint differences. Both detectors are significantly
faster than the algorithms from the literature that they are based on, but provide compa-
rable performance nonetheless.
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Video data is omnipresent today, and the trend is towards more powerful, cheaper, and
more available capture devices. The impact of video can thus be expected to increase even
more. This brings about many challenges but also the opportunity for novel applications
that improve our everyday lives. This is especially true for multiview video data where
more than one shot of a particular scene is available. In order to make use of the video
material out there methods to analyze it are necessary. In this thesis the two main compo-
nents of video data have been looked into. Specifically, both the temporal and the spatial
dimension of multiview video data has been scrutinized.

Synchronization is necessary to make use of multiple videos of a scene in a reasonable
way. Only when video sequences are temporally aligned, sensible information can be ex-
tracted. Depth measurements for example can only be taken where corresponding image
information is available. Unless the scene is entirely static, which is uncommon in the
world of "moving pictures", slight misalignments in time can lead to severe biases in the
retrieved depth values. For most applications frame-accurate synchronization is therefore
a minimal requirement.

Spatial video analysis which translates to still image analysis once the temporal depen-
dencies have been resolved, aims at extracting information about the geometric setup of
the scene and the cameras. This involves the inversion of the projection performed by the
cameras during acquisition. At this point, the multi-view aspect of the data comes into ef-
fect which enables triangulation in the first place. Especially for wide-baseline and sparse
reconstruction1 scenarios, local image features are an indispensable tool. An important
property of local features is their distinctiveness which enables their reliable detection and
identification. One specific requirement is the invariance against distortions of any kind,
photometric, geometric, etc. A key property indispensable in almost any application is
the scale-invariance of local image features. Multi-scale detectors meet this basic require-
ment. More sophisticated algorithms can also deal with more complex geometric image
distortions such as affine transformations.

In the context of low-performance devices, another important property of feature detec-
tors is their computational complexity. For mobile devices in particular, processing time
is an essential factor, especially in real-time video processing, but also the induced battery
drain. In the light of these requirements, given the increasing impact of smartphones and
other mobile devices, efficient feature detectors are thus necessary.

The aspiration of this thesis is to make contributions to the areas mentioned above. De-
spite the broad variety of topics related to spatio-temporal multiview video analysis, sev-
eral considerable improvements and proper innovations have been acquired.

Regarding the temporal dimension, a novel, full-fledged video synchronization algo-
rithm has been proposed in this thesis. Based on the bitrate demand of the encoded video,

1 as opposed to dense reconstruction which determines the depth of every pixel
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a characteristic activity profile is derived which allows for accurate temporal alignment.
With the novel and powerful correlation method ConCor, also proposed in this thesis, the
synchronization process becomes very robust, withstanding various parasitic effects. Oc-
clusions, camera motion and other inconsistencies can thus be compensated for to a large
degree. Moreover, the bitrate-based synchronization approach is unaffected by the videos’
resolutions, photometric properties and especially viewing directions. This makes it an
extremely versatile, fully automatic algorithm that operates without the need for user in-
tervention. In this respect, the presented video synchronization algorithm is unique.

As to the spatial analysis, contributions in different areas have been made. For one thing,
a complete framework to assess the location accuracy of multiscale image features has been
developed. This framework is generic and has been successfully applied to the established
SIFT and SURF detectors. The obtained accuracy estimates can be exploited in a variety
of computer vision algorithms to improve the results. This has been demonstrated in this
thesis and in other authors’ work.

Another contribution in the area of multiscale image features are the visual markers opti-
mized for given feature detectors. The proposed markers are constructed such as to trigger
the maximally possible response and are hence provably optimal to detect. The concept
of response maximization is again very general; in this thesis, it has been applied to the
prototypical SIFT and SURF.

Furthermore, novel, more efficient feature detection algorithms have been studied. Bor-
rowing concepts from the marker optimization, a low-complexity detector has been de-
veloped which yields outstanding performance at significantly reduced complexity. This
makes it particularly useful in mobile applications where computational resources are em-
inently precious. On the basis of this efficient detector, an existing affine-invariant feature
detector has been modified, again reducing complexity at steady performance.

In summary, the thesis covers a wide range of topics revolving around the spatio-temporal
analysis of multiview video. All presented concepts have been motivated and derived the-
oretically and then validated experimentally.

Future work drawing on the contributions of this thesis is conceivable in different direc-
tions. Regarding the practicability of the proposed bitrate-based video synchronization
paradigm, extensive tests in a realistic server/client setup involving several hundreds of
videos are necessary. Only then, a meaningful performance assessment becomes possible.
The proposed synchronization algorithm can also be adopted to align other kinds of (mul-
timedia) signals. In [ANCS+12], video synchronization is boosted by applying consensus-
based cross-correlation to downsampled Pulse-Code Modulated (PCM) audio sequences.
Other fields could also benefit from the robustness provided by the proposed approach.
Examples are template matching as suggested in [SSE+11] or correlation-based beat detec-
tion in audio processing. Beyond the world of multimedia, potential application include
the measurement of astronomical Doppler shifts in physics or the study of time series in
economics. For many applications, an enhancement of the approach towards subframe or,
more generally, subsample accuracy needs to be studied.

The feature uncertainty framework proposed in this thesis can be applied to general scale-
space based image features. Furthermore, it can assist the computation of a variety of ge-
ometric and epipolar geometric quantities. Further formalizations are necessary to incor-
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porate the covariance estimates into the respective calculations. Frédéric Sur has demon-
strated this for homography based 2D image matching and 3D data fusion in [Sur10].

Regarding the visual markers developed in this thesis, a more thorough examination of
potential marker discrimination methods is advisable. In the current, descriptor-based ap-
proach, it might be necessary to trade off (optimal) detectability against distinctiveness by
abandoning the maximum response requirement and use a modified marker pattern. As a
last resort, the proposed markers can be combined with existing marker ID systems. This
requires of course additional processing steps such as corner localization and ID decoding,
which would violate the minimalistic design objectives followed in this thesis.

The feature detectors described in this thesis require further testing under practical con-
ditions and in real applications. First attempts with suSURF features in an existing visual
location recognition framework [HSH+12a] have already yielded promising results. An is-
sue that has become evident from these experiments is suSURF’s sensitivity to edges men-
tioned in Section 3.4.2. Suitable counter measures indicated in the same section should
be implemented before suSURF and AsuSURF can be successfully deployed in practical
environments.
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